
Business Rules
Management and
Service Oriented

Architecture
A Pattern Language

Ian Graham

John Wiley & Sons, Ltd

Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44)
1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Ian Graham has asserted his right under the Copyright, Designs and Patents Act 1988, to be identified
as the author of this work.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02721-9 (PB)
ISBN-10: 0-470-02721-5 (PB)

Typeset in 10.5/13 Palatino by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Foreword ix
Preface xi

1 Aligning IT with Business 1
1.1 Historical Background 3
1.2 What are Business Rules? 5
1.3 What is Business Rules Management? 8
1.4 Why use a Business Rules Management System? 12
1.5 The Benefits 13
1.6 Summary 14
1.7 Bibliographical Notes 15

2 Service Oriented Architecture and Software Components 17
2.1 Service Oriented Architecture and Business Rules 19

2.1.1 Business Drivers, Benefits and Pitfalls 25
2.2 Service Implementation using Components 26
2.3 Agents and Rules 31

2.3.1 Agent Architecture 33
2.3.2 Applications of Agents 35

2.4 Service Oriented Architecture and Web Services 37
2.5 Adoption Strategies 46

2.5.1 After SOA 47
2.6 Summary 50
2.7 Bibliographical Notes 51

3 Approaches to Business Rules 53
3.1 Database-centric Approaches 53
3.2 GUIDE and the Business Rules Group 57
3.3 Using UML and OCL to Express Rules 57
3.4 Business Rules Management Systems and Expert Systems 59
3.5 Other Developments 63

v

vi Contents

3.6 Standards, Directions and Trends 65
3.7 Summary 68
3.8 Bibliographical Notes 68

4 Business Rules Management Technology and Terminology 71
4.1 Rules and Other Forms of Knowledge Representation 71

4.1.1 Rules and Production Systems 74
4.2 Knowledge and Inference 76

4.2.1 Semantic Networks 78
4.3 Inference in Business Rules Management Systems 79

4.3.1 Forward, Backward and Mixed Chaining Strategies 79
4.4 Data Mining and Rule Induction 84
4.5 Techniques for Representing Rules 87

4.5.1 Decision Trees and Decision Tables 88
4.6 Uncertainty Management 91
4.7 Ontology and Epistemology: the Rôle of Object Modelling in

Natural Language Processing 96
4.8 Summary 98
4.9 Bibliographical Notes 98

5 Features of Business Rules Management Systems 99
5.1 The Components and Technical Features of a BRMS 101

5.1.1 Rules 103
5.1.2 Rule Templates 104
5.1.3 Rule Syntax Checking 104
5.1.4 Procedures and Algorithms 104
5.1.5 Ruleflows 105
5.1.6 Decision Tables and Decision Trees 105
5.1.7 Inference 105
5.1.8 Uncertainty and Explanation 106

5.2 BRMS Products 108
5.2.1 Blaze Advisor 111
5.2.2 HaleyRules and HaleyAuthority 117
5.2.3 JRules 123
5.2.4 PegaRULES and Versata 130

5.3 A Simple Application 132
5.3.1 The Application in Blaze Advisor 133
5.3.2 The Application in HaleyAuthority 136
5.3.3 The Application in JRules 139

5.4 Usability Issues 141
5.5 Summary 141
5.6 Bibliographical Notes 142

6 Development Methods 143
6.1 Knowledge Acquisition and Analysis 143
6.2 System Development 149
6.3 Halle’s Guidelines 150
6.4 Rule Style Guidance 151

Contents vii

6.5 Summary 157
6.6 Bibliographical Notes 158

7 A Pattern Language for BRMS Development 159
7.1 What are Patterns? 159
7.2 Why a Pattern Language? 168
7.3 The RulePatterns Language – Part I 169

7.3.1 Patterns for Requirements, Process and Architecture 172
7.3.2 Patterns for Finding, Writing and Organizing Business Rules 192

7.4 The RulePatterns Language – Part II 208
7.4.1 Patterns for Knowledge Elicitation 209
7.4.2 Patterns for Product Selection and Application Development 230

7.5 Related Patterns and Pattern Languages 234
7.5.1 Arsanjani’s Rule Object Patterns 234
7.5.2 KADS Patterns 235
7.5.3 Organizational Patterns 235

APPENDICES

A The Business Rules Manifesto 237
B A Simple Method for Evaluating BRMS Products 241

References and Bibliography 259
Index 265

viii Contents

Trademark Notice
ART is a trademark of Inference Corp.; Biztalk, COM, COM+,
DCOM, SOAP, Internet Explorer, Microsoft Windows, Access,
PowerPoint, MSMQ, MTS, Excel, Intellisense, OLE, Visual Basic,
Visual Studio and Microsoft Office are trademarks of Microsoft Inc.;
Catalysis is a European trademark of TriReme International Ltd. and a US ser-
vice mark of Computer Associates Inc.; CORBA, IIOP and OMG are regis-
tered trademarks of the Object Management Group, ORB, Object Request
Broker, OMG Interface Definition Language, IDL, CORBAservices,
CORBAfacilities, Unified Modeling Language, UML, XMI, MOF
and the UML Cube logo are trademarks of the OMG.; Haley Authority
and Haley Rules are trademarks of Haley Systems Inc.IBM, AS/400,
OS/400, CICS, Component Broker, DB2, ENVY, IMS, Visual Age
and Websphere are trademarks of International Business Machines Inc.;
Iceberg, Tuxedo and Weblogic, are trademarks of BEA Systems; Java.
EJB, Enterprise Java Beans, Java Beans are trademarks of Sun Microsys-
tems Inc.; JRules is a trademark of ILOG SA;Kappa, KEE are trademarks of
Intellicorp Inc; Netscape, Netscape Navigator are trademarks of Netscape
Inc.; Nexpert Object and Blaze Advisor are trademarks of a Fair Isaac
Inc.; NeXT, NeXtStep and OpenSTEP are trademarks of NeXT Corp.;
Objectory, Rational Unified Process, RUP, Rose and Requisite Pro are trade-
marks of Rational Inc.; Oracle, CASE*METHOD, Express, are trademarks
of Oracle Inc.; Orbix is a trademark of Iona Technologies Plc ProcessWise
and reveal are trademarks of ICL Ltd.; Select is a trademark of Princeton
Softech; Simula is a trademark of Simula AS; Syntropy is a trademark of
Syntropy Ltd.; Telescript is a trademark of General Magic Inc.; Together
and TogetherJ are trademarks of Together Inc.; Other trademarks are the
property of their respective owners.

Foreword

In Business Rules Management and Service Oriented Architecture, Ian Graham
provides a solid architectural introduction to business rules for IT professionals
and architects taking the next steps into SOA, components, and other state-of-
the-art software engineering techniques. He speaks of concerns I find just about
every IT architect has these days, offering a wide-ranging set of solutions. It’s
a compelling story.

Let me share with you briefly some of the things Ian gets right in this book.

• Separating concerns of business from those of the infrastructure (the
‘plumbing’) is fundamental to building better architecture. He deftly
explains how both business rules and SOA can help you make that
happen.

• SOA and business rules management systems (BRMS) are parallel and
complimentary technologies. They’re both about the quest for
agility – creating new levers to manage (and encourage!) endless,
fast-paced change. Is there anything much more urgent than that these
days?

• It’s all about re-use – but the right kind of re-use. A BRMS allows reuse of
rules across services. Why does that matter to you? You want your
services to be easily reconfigured. When the business changes, you want
to be able to change the rules without ever digging into the code. Ian
claims (and I certainly agree) that this alone can speed development and
ease maintenance even more than the adoption of SOA on its own.

• There are some areas where I’m afraid we need a bit of attitude
adjustment. (Those are my words, not Ian’s – he’s much more diplomatic
about it.) Creating a business model is not a waste of time. More and
more descriptive use cases are not going to solve all your problems!

ix

x Foreword

I could go on and on about that last one, but Ian more than does the topic
justice, so I’ll just invite you to jump right into the book.

• The notion of business rules is on an inevitable collision course with the
notion of patterns. As one who studied this area a great deal in the
formative years of business rules (The Business Rule Book, 2nd edition was
published in 1997), I applaud Ian for breaking new ground in this
important area.

There are many other things I could mention about what Ian gets right in this
book. For example, what about legacy systems? Ian points out how adopting
a BRMS will assist in the transition to SOA because service-based and legacy
applications can be coupled using the BRMS as the common decision engine.
What about semantics and pragmatic management of business intellectual
property (IP)? Business rules provide a pragmatic, proven answer on that one.

The main thing I want to mention, however, is that Ian says he finds little
to disagree with in the Business Rules Manifesto (Business Rules Group, 2003).
That’s an important statement – one that as an IT architect you should find
comforting – because it reflects a growing consensus in the industry as to just
what business rules are about. I mentioned the ‘formative’ period of business
rules above – well, that period is just about over. By any reasonable measure,
business rules are mainstream now. Do have a quick look at the Manifesto – it’s
conveniently included right here in the book for you. Incidentally, the Manifesto
has been translated into about a dozen languages as of this writing. It’s impact
is truly global.

It’s exciting to see new ideas become reality. That’s especially so when
the ideas make the professional’s job easier, and the resulting systems better
for business. Fortunately, Ian’s work is highly approachable. If you want to
know how to go about building a world-class rule-based, service-oriented
architecture, read on!

Ronald G. Ross
Executive Editor, www.BRCommunity.com

Principle, Business Rule Solutions, LLC

Preface

There has been a great deal of interest in business rules management systems
(BRMS) for several years now and the technology has matured consider-
ably. At last it seems that the time is ripe and a plethora of commercial
applications are beginning to be fielded, driven by the escalating difficulty
of maintaining essential computer systems, the onus of greater regulatory
compliance, the increasing complexity and volatility of business processes and
many other factors. The existing literature is surprisingly sparse and most of
it approaches business rules management from the standpoints of database
practice and project management or concentrates on perfecting rule syntax.
All these approaches are valuable but the origins of the subject are more
diverse. It is now time, therefore, for a concise but comprehensive look at
the subject that gets away from both database-centred tunnel vision and from
the exaggerated (and thus discredited) claims of the erstwhile expert systems
community.

The other factor that has moulded the approach I have taken here is the
massive explosion of interest in service oriented architecture (SOA), one of
the most significant potential steps forward in computing for a decade. Here
there is much confusion. Some commentators seem to identify service oriented
architecture with web services, whilst others claim that the main idea is to build
an ‘orchestration’ layer that will glue any new services together with APIs to
the goulash of legacy systems. Both these claims are wrong and the second one
is downright dangerous. With many of my clients now adopting SOA (and
some implementing business rules too) I have become more convinced than
ever that the key to success with both technologies is to pay serious attention
to modelling not only systems issues but the business environment as well.
With the help of my colleague Derek Andrews, I have tried to explain this in
Chapter 2.

xi

xii Preface

As the manuscript developed, and looking constantly at the interactions
between these strands, I found that a constant theme emerged, almost
organically, from my researches, practice and discussions: service oriented
architecture without business rules management is not going to crack the nut.
Similarly, BRMS without SOA is unlikely to address all the pressing needs of
business that so desperately need addressing by IT practice. So the propaganda
message here is simple: SOA and BRMS; do both, or don’t bother with either.
And do them on the basis of first class requirements engineering and modelling
practices too.

Even companies that decide not to invest in a full-blown BRMS product
can benefit from externalizing their rules; writing them down in a clear and
consistent style leads to immediate benefits. One of my clients, for example, is
developing its own customized variant of Ross’s RuleSpeak. This will enable
their business analysts, users and developers to communicate more effectively
and has already led to the discovery of errors and inconsistencies in existing
documentation.

What the Book Covers

The aim of this book is to bring together the following key ideas in modern
enterprise system development best practice.

• The need to separate business logic cleanly from the software ‘plumbing’.

• The need for service-oriented architecture.

• How the former depends on component-based development (CBD).

• Database-centred approaches to business rules.

• Knowledge-based approaches to business rules.

• Best software engineering practice for designing robust, flexible systems
and aligning IT with business more closely than has hitherto been the
case.

• Using patterns to design and develop service oriented business rules
management systems.

The text starts with a business case for adopting BRMSs and surveys the
wide range of possible application areas for this technology. Then we present
a tutorial on and discussion of service oriented architecture, its role, concepts,
and supporting technologies. In this chapter we meet the central role of
modelling in the design of successful computer systems, which a major theme
of the book. The ideas of greater business alignment and of intelligent software
agents are used to pull together the two strands of BRMS and SOA. Chapter 3
is an historical digression looking at the sources of the main ideas of BRMS,
but it also discusses trends and emerging standards.

Preface xiii

Chapter 4 is a technical tutorial on business rules management systems.
Chapter 5 applies the ideas of the previous chapters to existing and notional

BRMS products.
Chapter 6 looks at knowledge elicitation and requirements engineering

techniques insofar as they are specific to BRMS.
Finally, we gather together all the book’s techniques and guidelines into

a pattern language that is intended to be a ‘how to’ guide to running an
actual BRMS/SOA project. Using the language, if done as intended, should
generate specific solutions to a range of concrete development problems. The
two appendices support the material in this chapter.

I believe that pattern languages are far more powerful and flexible than
mere checklists. However, as with a checklist, no pattern language is ever
complete and finished, and the reader will undoubtedly want to refer to the
work of other authors as well as mine. Notably, I have drawn on the modelling
patterns of Peter Coad when discussing SOA, Barbara von Halle’s work on
method and as yet unpublished SOA patterns under development by Derek
Andrews, Hubert Matthews and (to a smaller extent) myself. On rule writing
style, I have tried to capture the essence of the works on Ronald G. Ross and
Tony Morgan but, as always, there is no substitute for reading the originals.
The bibliographical notes to each chapter provide pointers to references of
this kind. There are also some references to my own earlier works, notably
those on requirements engineering, but I have tried to make such material
self-contained within this text.

Intended Readership and Scope

The book is intended to be accessible to readers who do not have deep
knowledge of theoretical computer science, but at the same time it attempts to
treat the important issues accurately and in depth. It provides a tutorial on the
technology and advice on how best to exploit business rules management in
practice.

The primary audience is IT professionals (architects, analysts, developers,
strategists, managers) and some of their interested customers. It may be of use
to undergraduate and postgraduate students studying information technology
or software engineering. It will therefore be of interest to teachers of Computer
Science and Business IT. I have assumed that the reader has at least a nodding
acquaintance with the basic UML notations for use cases, class diagrams and
state models.

The book is designed to be read sequentially, although readers with differing
interests may safely omit some sections. For example, readers with a less
technical focus may skip the material on web services. The impatient reader,
who already knows what backward chaining is, may even jump straight into

xiv Preface

Chapter 7, which contains the RulePatterns pattern language. This chapter is
intended as a stand-alone reference. Here too, the introductory sections (7.1
and 7.2) may be of no interest to people who already possess a sound
knowledge of the idea of pattern languages.

While the scope of this book is broad and intended to cover the gamut of
topics pertinent to a move to service oriented architecture and business rules
management, it does not attempt to duplicate unnecessarily the work of other
authors. Notably, there is scant consideration given to such issues as analytics,
business rule maturity models, tying business rules to other deliverables,
integration of the business rules approach with proprietary methods such as
RUP or non-proprietary methods such as that of Halle (2002). These, I feel,
are either already adequately dealt with in other texts or deserve a treatment
separate from the one given here.

Acknowledgements

Although it contains much original material, this book is largely a survey
of other people’s work and could not have been written without that work.
I would like to acknowledge the contribution of these other authors. Also,
many of the ideas contained were honed in discussions with my colleagues
at Trireme and participants in various conferences and seminars. In par-
ticular, at EuroPLoP 2006, Ademar Aguiar, Jon Bennett, Frank Buschmann,
Alexander Fülleborn, Marina Hasse, Michaelis Hadjisimou, Kevlin Henney,
Lise Hvatum, Maria Kavanagh, Alan Kelly, Klaus Marquardt and Martin
Schmettow all made very helpful comments on some of the patterns presented
in Chapter 7. Conversations with members of staff at some of my clients,
whom I may not identify here, also provided invaluable insights and helped
me keep my feet on the ground; thanks to you too, you know who you
are.

Special thanks are due to Derek Andrews for his contribution to Chapter 2
and to him, Clive Menhinick and Hubert Matthews for many interesting and
sometimes formative discussions. The remarks of several anonymous referees
were very helpful too. Of the reviewers whose names I do know, I especially
want to thank Barbara von Halle, Tony Simons, Ron Ross and Paul Vincent
for their comments and kind suggestions for improvements. I have tried to
incorporate them as best I could.

I am grateful to the Business Rules Group for permission to reproduce their
seminal Business Rules Manifesto as Appendix A.

The team at Wiley were a joy to work with on this project. I don’t know
the names of all the production and other back-room workers there but I can
express my profound thanks to all of them and to my editors, Drew Kennerley
and Sally Tickner.

Preface xv

Even with all this help, the responsibility for any mistakes or omissions is
entirely mine. If you can get past any of these that remain, then I do hope
you find the book entertaining as well as merely informative. I would be most
interested to read any comments you may have.

Ian Graham
Balham, August MMVI

(ian@trireme.com)

C H A P T E R

1

Aligning IT with Business
I have not kept the square, but that to come

Shall all be done by the rule.

William Shakespeare (Antony and Cleopatra)

Businesses continue to strive for shorter time to market and to lower the
cost of developing and maintaining computer applications to support their
operations. Business rules management technologies can play an important
role in this.

Well, if you believe that, you’ll believe anything. You are already thinking
‘Another silver bullet!’ But stay with me for at least another few paragraphs,
whilst I try to convince you that it may actually be worthwhile to read further.

When I started writing this book, this chapter had the provisional title of
‘Why Business Rules?’ or some such. As I started laying out the reasons,
it became clear that I was ducking the main issues facing the world of IT
(information technology) by thus restricting my focus. So I asked myself ‘Why
are we doing all this?’

According to Standish (1995; 2004), around 66% of large US projects fail,
either through cancellation, overrunning their budgets or delivering software
that is never put into production. Outright project failures account for 15%
of all projects, a vast improvement over the 31% failure rate reported in the
first survey in 1994, but still a scandal. On top of this, projects that are over
time, over budget or lacking critical features and requirements total 51% of all
projects in the 2004 survey. It is not incredible to extrapolate these – frankly
scandalous – figures to other parts of the world. What is harder to believe is
that our industry, and the people in it, can tolerate such a situation. Clearly we
should be doing something differently. The Standish surveys also looked into

1

2 Chapter 1

the reasons why people involved in the sample projects thought such projects
fail. The reasons given – in descending order of importance – were:

■ lack of user involvement;
■ no clear statement of requirements;
■ no project ownership;
■ no clear vision and objectives; and
■ lack of planning.

The first four of these relate strongly to the need for better requirements
engineering and point to the developer-centric culture of many IT development
organizations, a culture highlighted by Alan Cooper (1999) and others, and
familiar to those of us who have worked in or with corporate IT over a
long period. Too often, developers expect users to learn their language – often
nowadays in the form of UML diagrams. In today’s fast-moving competitive
environment this will not work. Project teams must develop languages that
can be understood by users and developers alike: languages based on simple
conceptual models of the domain written in easily understood terms. Business
process modelling approaches of the sort pioneered by Graham (2001) and
business rules management systems both have a rôle to play in this critical
challenge for IT in the 21st century.

Furthermore, the level of abstraction at which we work is far too low. IT
departments are often culturally and technically miles away from the concerns
and thought processes of the customers they serve. The problem is, thus, far
broader than the need for business rules management; the real problem we
have to solve is how to align IT practice with business need.

To believe that adopting a business rules management system on its own
will solve this problem is nothing short of naı̈ve. Business rules management
is only a part of the solution. To align IT with business we must also con-
sider innovative approaches to requirements engineering and service oriented
architecture. Whilst its focus remains on business rules, this book is about all
these issues.

Briefly – because the next chapter will be devoted to a detailed discus-
sion – service oriented architecture (SOA) is an architectural concept in
software design that emphasizes the use of combined services to support
business requirements directly. In SOA, resources are made available to ser-
vice consumers in the network as independent artifacts that are accessed in a
standardized way. SOA is precisely about raising the level of abstraction so
that business processes can be discussed in a language understood by business
people as well as IT folk. Business rules are about aligning IT with the business
too. It is to them we now turn.

In this chapter, after a short look at the history of the idea and technology
of business rules management systems (BRMS), we examine the features and
responsibilities of a BRMS, and then the benefits of and business drivers for

Aligning IT with Business 3

adoption of the technology. We list typical applications and indicators of the
need for a BRMS.

In subsequent chapters we will relate business rules to the concept of
service oriented architecture, look at different approaches to and philosophies
of business rules management, cover the key technical features of a BRMS
(including inter alia knowledge representation and inference techniques) and
discuss requirements engineering, appropriate development methods and
processes. Next we try to distil this knowledge into a prototype pattern
language.

1.1 Historical Background

The first talk of business rules management emerged from discussions in the
database community as long ago as the late 1980s, notably in a journal called
The Database Newsletter – although the term was used as early as 1984 in an
article in Datamation.

However, there is an older tradition in the artificial intelligence (AI) commu-
nity going back, arguably, to EMYCIN, the first so-called expert system shell.
MYCIN (Shortliffe, 1976) was an expert system that could diagnose infectious
diseases of the blood – with some success too. MYCIN was not, in any sense,
a business rules management system; its rules were pretty much hard coded
and concerned a fairly esoteric domain: medicine. EMYCIN (Melle et al., 1981)
was ‘empty’ MYCIN: MYCIN with the rules taken out and two significant
mechanisms. First, rules on any suitable domain (including business domains)
could be typed in and run under the control of the same logic used by MYCIN.
Secondly, an EMYCIN application could be asked to explain its conclusions
when asked ‘How?’ or ‘Why?’ I will explain how all this works in a later
chapter. For now, notice only that EMYCIN separated business rules from
both data and the control logic that enabled conclusions to be reached, and
this is a key principle of modern business rules management systems. Further-
more, the rules were entirely declarative (unconnected statements rather than
the interdependent lines of a computer program); another key principle of the
business rules approach.

The first implementations of business rules in databases were more limited
in several ways, the first being that rules were usually implemented as stored
procedures written in procedural and proprietary extensions of declarative
SQL. Other rules, notably those for referential integrity, were implemented
in the database system itself, but nothing more complex was to succumb
to this approach. The next step forward took some time. Active databases
incorporated triggers: if/then rules that caused updates dependent on the
values entered into the database. But even triggers did not offer the flexibility
of EMYCIN’s general if/then rules.

4 Chapter 1

As an example of the gulf between the two traditions, I recall attending
the British launch of Sapiens (still a major player in the BRMS marketplace
today) in around 1989. I have a fairly low tolerance for sales pitches, but I was
aroused from my slumbers when told that the product (basically a database
and 4GL) was object-oriented and rule-based. As the technical presentation
wore on, it became clear that the ‘objects’ were merely relational tables; by the
end nothing much had been said about rules.

‘Can you give me an example of a rule?’ I asked.

‘Of course. All employees must be over 16.’

‘No, I mean a proper rule with an ‘‘if’’ and a ‘‘then’’.’

The speaker paused for a second. ‘OK, then. If you are to be an employee
then your age must be greater than or equal to 16.’

I decided to hold my peace, and went away rather unimpressed.

The point here is not just that salesmen can sometimes be rather uneco-
nomical with buzzwords, but that there is a misunderstanding about what
constitutes a rule (and, indeed, an object in this particular case). I regarded the
example given as a range constraint on an attribute, rather than a rule. What
is evinced is a lack of common terminology among the two camps.

Consider the following (very slightly edited) dialogue between MYCIN and
a human physician.

>Is the patient’s illness with ORGANISM-1 a hospital
acquired infection?

>WHY?
[i.e. Why is it important to determine whether or not

the infection with ORGANISM-1 was acquired while the
patient was hospitalized?]

>This will aid in determining the category of ORGANISM-1.
It has already been established that

[1.1]the gram stain of ORGANISM-1 is gramneg, and
[1.2]the morphology of ORGANISM-1 is rod, and
[1.3]the aerobicity of ORGANISM-1 is facultative

Therefore, if
[1.4]the infection with ORGANISM-1 was not acquired
while the patient was hospitalized

then
There is strongly suggestive evidence (.8) that
the category of ORGANISM-1 is enterobacteriaceae

ALSO:
There is weakly suggestive evidence (.1) that
the identity of ORGANISM-1 is pseudomonas-aeruginosa

Even ignoring the specialized terminology, it should be clear that the
implied rule is far more complex than a constraint saying that staff entered

Aligning IT with Business 5

in the database must be over 16. We will see many examples of similarly
complex rules in more familiar domains as we proceed. Furthermore, we will
encounter more complex constraints that involve more than one attribute,
object or database table.

The first step towards a reconciliation between these two camps came
with Ron Ross’s (1994) Business Rule Book, to be followed by his several subse-
quent publications that show that he is aware of both traditions, though mainly
rooted, originally, in the database world. Ross founded Business Rule Solutions
in 1997 to focus on applied business aligned models (strategy, process, vocab-
ulary, rules, etc.) that would be completely independent of any IT tradition.

In 1995, a group of IT practitioners produced the GUIDE Business Rules
Project Report, which also clarified the territory, though remaining database
centred. The manifesto of the (now better informed) database-centred approach
was finally published by Chris Date (2000). In the same year, the Business
Rules Group published the first version of the Business Rules Manifesto, which
established the ground rules for what constitutes a BRMS and the principles
of the business rules approach. By 2002, Barbara von Halle, another database
guru, had published the first comprehensive method for applying the approach
and Tony Morgan became the first AI expert to publish a book on the subject.

In the interim, products evolved. Some of them were extensions of database
or repository products, others evolved from expert systems shells. We will
look at some of them later.

As I write, it seems to me that there is now enough maturity in both
theory and practice for commercial organizations to apply the business rules
approach, along with mature object-oriented modelling techniques, better
requirements engineering and the philosophy of service oriented architecture,
to the critical problem of aligning IT with business goals and practices.

1.2 What are Business Rules?

Most early definitions (e.g. Appleton, 1984) conflate business rules with
database constraints. Ross (1987) is more general, defining a business rule
as a rule or policy that governs the behaviour of the enterprise and dis-
tinguishes it from others. Elsewhere (1994), he defines a rule as a ‘discrete
operational business policy or practice’, and insists that a rule is a declara-
tive statement expressed in ‘non-technical’ terms. Of course some business
domains are replete with technical jargon, so perhaps ‘non-IT’ is what is
intended. The declarative point is key. Declarative is the opposite of procedu-
ral. In a procedural rule language the order of execution of the rules matters;
in a declarative language the outcome is the same whatever execution order is
selected. Date (2000) makes the same point, insisting that rules convey ‘what
not how’.

6 Chapter 1

Halle (2002) sees rules as conditions that ‘govern a business event so that it
occurs in a way that is acceptable to the business’. Date (2000) makes it clear
that these ‘business events’ are to be viewed as events that result in an update
to a database; the rules are there to ensure that rogue updates are not allowed.
Date too insists on the declarative nature of rules; he sees rules as predicates
(statements that are true or false) concerning the database domains.

The GUIDE project (Hay and Healy, 1997) saw a rule as defining or con-
straining some aspect of a business and ‘intended to assert business structure,
or to control or influence the behaviour of the business’. Such a rule ‘cannot be
broken down’ without the loss of important information; i.e. rules are atomic.
But GUIDE too deliberately restricted its scope to row 3 of the Zachman frame-
work (Zachman, 1987); i.e. to ‘specific constraints on the creation, updating
and removal of persistent data in an information system’. However, there
is a major acknowledgement of the rôle of inference. GUIDE said that facts
could be derived by mathematical calculation, deductive inference and even
induction (i.e. data mining). It went so far as to say that each of these three
derivation methods is ‘itself a kind of business rule’.

The Business Rules Group, taking on the mantle of GUIDE, has given
various revisions of the definition such as: ‘a directive that is intended to
influence or guide business behaviour . . . in response to risks, threats or
opportunities’. More importantly, the Business Rules Group has published
the Business Rules Manifesto (reproduced as Appendix A). The manifesto
provides principles, rather than a definition, insisting that rules are atomic,
declarative, logically well-formed, separated from processes, procedures and
technology and, critically, written in business terms.

In what is probably one of the best and most sensible and practical books
yet on business rules management, Morgan (2002) defines a business rule as ‘a
compact statement about an aspect of a business [that] can be expressed in terms
that can be directly related to the business, using simple, unambiguous language that’s
accessible to all interested parties: business owner, business analyst, technical
architect, and so on’ (emphasis added). One focus in this book will be on the
ease of expression of rules and the suitability of available products for business
owners, business analysts, as well as on their technical features.

It is difficult to fault any of the above definitions, except if one were to
criticize them in terms of scope and emphasis. I can find little or nothing
to disagree with in the Business Rules Manifesto (BRM). To me, Morgan’s
definition seems to capture the essence of the notion best. However, there is
one issue unaddressed so far.

All these definitions emphasize one business. Open business on the web,
closer customer relationships, and collaborative ventures all indicate a need
to share business rules. Some rules could be about more than one business.
Some rules could be imposed by one business on another (e.g. taxation rules).
Some rules might be better shared with customers – perhaps in the form of
explanations (a BRM principle). Taking this into account and picking up some

Aligning IT with Business 7

points from all the definitions, here is my definition for the purposes of this
book, based most chiefly on Morgan’s.

A business rule is a compact, atomic, well-formed, declarative state-
ment about an aspect of a business that can be expressed in terms that
can be directly related to the business and its collaborators, using sim-
ple unambiguous language that is accessible to all interested parties:
business owner, business analyst, technical architect, customer, and so
on. This simple language may include domain-specific jargon.

The term ‘well-formed’ comes from logic and needs explanation. The rules
must be executable on a machine if they are to be of much use in a business rules
management system. This implies that they must be convertible into statements
in some formal logic: statements that are well-formed with respect to that logic.

One corollary of the declarative principle is that business rules do not describe
business processes; they do, however, constrain what processes are permissible.

Business rules are statements expressed in a language, preferably a subset
of a natural language such as English. I see two clear kinds of statements that
must be distinguished: assertions and rules. Assertions or facts have the form:
‘A is X’ or ‘P is true’. These are equivalent forms; e.g. I can convert the former
into ‘‘‘A is X’’ is true’. Simplifying slightly, until later in this book, rules have
the equivalent forms: ‘If A then X’; ‘X if A’; ‘When A then X’; and so on. Here
X can be a fact or an action.

We can see from Table 1.1 that rule statements can be classified. Date, Ross
and Halle all offer useful classification schemes, but I do not want to be so
specific here.

Table 1-1 Examples of statements and their types

Eeyore is a donkey. Assertion
Computers come in blue boxes. Assertion
NetMargin = 2,000. Assertion
Bill Gates is wealthy. Assertion
If the computer’s box is not blue then paint it blue. Action rule
To paint something: acquire funds, visit shop, buy paint,

paint article.
Procedure

Wealthy people are always tall and handsome (if Z is
wealthy then Z is tall and handsome).

Rule

NetMargin = Revenue – Costs. Procedure or Rule
Employees must be over 16. Range constraint or Rule
A borrower may borrow up to 6 books. Cardinality constraint or Rule
A borrowed book must be owned by the library that the

member belongs to.
General constraint or Rule

If any employee has a salary greater than the MD then set
the MD’s salary to the maximum of all employee’s
salaries.

Trigger rule

8 Chapter 1

Statements are always statements about something. Ross refers to these
somethings as terms. Other authors refer to the vocabulary of the domain or
even the domain ontology.

Strictly, ontology is the philosophical science concerned with what exists:
the science of Being. Here, though, it is used to mean the model of the
domain that we work with, including the things we can discuss, their prop-
erties and how they relate to each other. I will take the view in this book
that the domain ontology is precisely an object model, usually expressed by
a UML type diagram; but more on that later. Some readers might like to
think of the ontology as the database schema – at least for the time being.
The ontology tells us what we are allowed to discuss when we write rules.
Without a sound ontology the rules are meaningless, and any attempt at
writing them in natural language is certainly doomed. This means that
we must modify our definition slightly. We can do so by adding just one
sentence.

Business rules are always interpreted against a defined domain
ontology.

Having defined what business rules are, there is still much more to say
about them, such as how they may be linked together to derive new facts
(inference), how they are best written (rule structure) or how they are to be
discovered (knowledge elicitation). We will return to these topics (and more)
in subsequent chapters. For now, let us take a look at how rules may be
managed.

1.3 What is Business Rules Management?

Business rules management is the practical art of implementing systems based
on the business rules approach. This can be done in many ways, but the
most economical is to use a business rules management system. In addition,
there will be some process adopted for managing and organizing projects and
conducting tasks such as rule authoring, rule maintenance, and so on. We will
return to such issues later.

Let us start with business rules management systems.
BRMSs have the following features and responsibilities:

■ Storing and maintaining a repository of business rules that represent the
policies and procedures of an enterprise.

■ Keeping these rules (the business logic) separate from the ‘plumbing’
needed to implement modern distributed computer systems.

Aligning IT with Business 9

■ Integrating with enterprise applications, so that the rules can be used for
all business decision making, using ordinary business data.

■ Forming rules into independent but chainable rulesets and performing
inferences within and over such rulesets.

■ Allowing business analysts and even users to create, understand and
maintain the rules and policies of the business with the minimum of
learning required.

■ Automating and facilitating business processes.
■ Creating intelligent applications that interact with users through natural,

understandable and logical dialogues.

The idea that the rules are stored in a repository is a critical one. If we
are to manage rules there seems no alternative to storing them in some sort
of central database. Furthermore, storing the rules in a layer separate from
both applications and from the various databases that may exist in a real
organization gives obvious maintenance advantages. We might even argue
that centralizing the rules makes them more readily reusable. However, there
is an opposing force: that of the need for reuse of the objects in our domain
model. If the rules (and indeed rulesets) are not encapsulated within the
objects that they constrain, then those objects are incomplete and, if reused,
may function incorrectly.

Date (2000) also argues that, ideally, rules should be part of the database but
then, rather reluctantly, concedes that storing the rules in a separate layer gives
the advantage of DBMS-independence. Contrariwise, Bruce (1992) points out
that treating rules separately ‘avoids the debate over which object (or objects)
should encapsulate the rules’. This is indeed a hard problem sometimes, and
I will return to the issue in subsequent chapters. All design problems concern
the resolution of contradictory forces such as the ones referred to: reuse versus
independence. In Chapter 7, I present some patterns aimed at resolving these
forces. For now, assume that rules live in a repository and are managed
thereby.

The business drivers for the adoption of BRMSs are as follows:

■ Current software development practice inhibits the rapid delivery of new
solutions and even modest changes to existing systems can take too long.

■ Accelerating competitive pressure means that policy and the rules
governing automated processes have to be amenable to rapid change.
This can be driven by new product development, the need to offer
customization and the need to apply business process improvements
rapidly to multiple customer groups.

■ Personalizing services, content and interaction styles, based on process
types and customer characteristics, can add considerable value to an
organization’s business processes, however complex. Natural dialogues

10 Chapter 1

and clearly expressed rules clarify the purpose of and dependencies
among rules and policies.

■ In regulated industries, such as pharmaceuticals or finance, the rules for
governance and regulation will change outside the control of the
organization. Separating them from the application code and making
them easy to change is essential, especially when the environment is
multi-currency, multi-national and multi-cultural.

■ Even in unregulated industries, companies subject to the Sarbanes-Oxley
Act are required to make their business processes (and thus the rules that
they follow) visible. If such rules are scattered through multiple
applications, duplicated (consistently or otherwise) in different places
and embedded in procedural code, this becomes a costly and nigh
impossible exercise.

■ Business rules and processes can be shared by many applications across
the whole enterprise using multiple channels such as voice, web, and
batch applications, thereby encouraging consistent practices.

Using BRMSs should decrease development costs and dramatically shorten
development and maintenance cycles.

Typical applications of BRMS technology include these:

■ Automating procedures for such things as
☞ claims processing
☞ customer service management
☞ credit approval and limit management
☞ problem resolution
☞ sales

■ Advice giving and decision support in such fields as
☞ benefits eligibility
☞ sales promotions and cross selling
☞ credit collection strategy
☞ marketing strategy

■ Compliance with
☞ external and legal regulations
☞ company policy

■ Planning and scheduling of
☞ advertising
☞ timetables and meetings
☞ budgets
☞ product design and assembly

■ Diagnosis and detection of
☞ medical conditions
☞ underwriting referrals

Aligning IT with Business 11

☞ fraud (e.g. telephone or credit card fraud)
☞ faults in machinery
☞ invalid and valid data

■ Classification of
☞ customers
☞ products and services
☞ risks

■ Matching and recommending
☞ suitable products to clients
☞ strategies to investors.

Business rules arise from the objects that one encounters in a business and
their interrelationships. These ‘business objects’ may be found in documenta-
tion, procedure manuals, automation systems, business records, or even in the
tacit know-how of staff. It is these objects that are modelled by our domain
ontology objects.

Morgan (2002) identifies the following indicators of the need for a business
rules management system:

■ Policies defined by external agencies.
☞ Government, professional associations, standards bodies, codes of

practice, etc.
■ Variations amongst organizational units.

☞ Geography, business function, hierarchy, etc.
■ Objects that take on multiple states

☞ Order status, customer query stage, etc.
■ Specializations of business objects

☞ Customer types, business events, products, etc.
■ Automation systems

☞ Business logic embedded and hidden within existing computer
systems

■ Defined ranges and boundaries of policy
☞ Age ranges, eligibility criteria, safety checks, etc.

■ Conditions linked to time
☞ Business hours, start dates, holidays, etc.

■ The quality manual
☞ Who does what, authorization levels, mandatory records, etc.

■ Significant discriminators
☞ Branch points in processes, recurring behaviour patterns, etc.

■ Information constraints
☞ Permitted ranges of values, objects and decisions that must be

combined or exclude each other.

12 Chapter 1

■ Definitions, derivations or calculations
☞ Transient specialization of business objects, proprietary algorithms,

definitions of relationships.
■ Activities related to particular circumstances or events

☞ Year-end, triggering events, conditional procedures, etc.

If any of these concerns are familiar, then your organization may well be a
candidate for a BRMS.

1.4 Why use a Business Rules
Management System?

As I have pointed out, according to Standish (1995; 2004) around 66% of large
US projects fail. Clearly we should be doing something differently.

Another key statistic relevant to the failure of IT in the modern world is
the cost of maintenance. It is widely estimated that well over 90% of IT costs
are attributable to maintenance of existing systems rather than to their devel-
opment. This is one of the reasons that object-oriented and component based
development is so attractive: when the implementation of a data structure
or function changes, these changes do not propagate to other objects. Thus
maintenance is localized to the changed component(s) or service(s). However,
this benefit does not extend to changes to the business rules if they are scat-
tered around the application or tightly bound to interface definitions. If the
interface changes – as well as the implementation – the changes will propagate
and maintenance will be very costly.

To overcome this we need to separate the definition of policy from
implementation and code detail. BRMSs facilitate this. Ideally, the rules are
subdivided into modules that are encapsulated in individual objects, includ-
ing so-called ‘blackboard‘ objects, which are visible to all objects that have
registered an interest in them. Such blackboards encapsulate global or organi-
zational policy, while rulesets that pertain to specific classes (such as clients or
products) can be stored (at least conceptually) within those objects for better
reuse.

The separated rulesets need to be maintained and kept under version
control. This implies that a good BRMS will store rulesets centrally in a
repository. As we shall see later, the apparent contradiction between the need
for encapsulation and centralization can be resolved using patterns, notably the
policy blackboard and encapsulate a reference patterns (cf. Chapter 7).

We think that a good BRMS should allow applications to be deployed in a
service oriented architecture (SOA). The rule engine should therefore present
itself as a service to applications and applications should be deployable
themselves as services (e.g. as web services).

Aligning IT with Business 13

Returning to the linguistic gulf that too often separates developers from
their customers, we need ways of writing the rules that are understandable
to users. Ideally, this would be pure natural language, but unfortunately it is
impossible (in principle, I believe) for computers to understand unstructured
human discourse. Our speech is too larded with cultural referents and ellipsis.
There are four possible solutions to this problem:

1. Make business people learn computer-understandable languages like
Java or UML. The language can be textual or graphical but it must be
computer executable.

2. Invent a computer language that looks like natural language.

3. Provide user-friendly interfaces that generate rules in a way that is
natural to business people.

4. Restrict usage to the subset of natural language needed to discuss a
particular domain.

In our opinion, the first strategy is both arrogant and doomed. But it is
currently the norm. The last three strategies all require the construction of a
vocabulary or domain ontology: a model of the things and concepts under
discussion and the connexions among them. It turns out that this is much the
same idea as that of an object model in UML. However, there are more or less
user-friendly flavours of UML, ranging from approaches that use UML like
a language describing a Java program to really quite language-independent
styles. For now, suffice it to say that most people’s conceptual model of their
subject area does not fit comfortably into the object model of any programming
language. UML can be used to describe the former, but it may also be used
to describe more natural conceptual models based on, say, semantic networks
(see Chapter 4, Section 4.2.1 for an explanation).

Thus, modern corporations will need to adopt development styles that fit
their development culture. This will substantially affect the type of BRMS
product that they choose.

1.5 The Benefits

The benefits of adopting a business rules management system may be sum-
marized as follows:

■ Faster development.
■ Faster maintenance, which is particularly relevant in service oriented

architectures, where the maintenance of a rules component is addressed
outside of the wider IT maintenance context.

■ Clearer auditability.
■ More reusable business logic.

14 Chapter 1

■ Greater consistency across the enterprise.
■ Better alignment and understanding between business and IT.

However, business rules management systems alone will not suffice. They
need to be implemented side by side with business-oriented requirements
engineering, best practice in object and component modelling and, I believe,
service oriented architecture. It is to the latter topic that we turn in the next
chapter.

And there are a few pitfalls. There can be technical problems in debugging
a system with thousands of rules. Large, badly segmented rulesets become
increasingly difficult to manage. This is because rules are sometimes invented
in restricted contexts which do not consider all the background assumptions
explicitly. As more rules are added to handle particular or exceptional cases,
this can affect the global consistency of the ruleset and the ability to select
which rules should fire. These problems are best addressed by paying attention
to sound requirements engineering practices, solid architectural patterns, the
dangers of potential ‘entropy’ in rulesets and conflict resolution strategies
(such as most-recent, least-recent, refractoriness; cf. Jackson, 1986).

1.6 Summary

Software engineering practice has not delivered on its promises and needs to
change.

The problem we need to solve is broader than just business rules manage-
ment; the real problem is how to align IT practice with business need.

There are two traditions underpinning the business rules approach: database
theory and AI.

A business rule is a compact, atomic, well-formed, declarative statement
about an aspect of a business that can be expressed in terms that can be directly
related to the business and its collaborators, using simple unambiguous
language that is accessible to all interested parties: business owner, business
analyst, technical architect, customer, and so on. This simple language may
include domain-specific jargon. Business rules are always interpreted against
a defined domain ontology.

Business rules management systems separate the rules from data and control
logic and maintain them in a repository. Rules are grouped into rulesets, and
inference over and within rulesets is both possible and transparent.

BRMSs have applications across all industries and many types of business
problem.

Businesses strive for shorter time to market and lower development and
maintenance costs. Business rules management technologies can play an
important rôle in this. Using BRMSs together with better requirements engi-
neering and business modelling within the context of SOA should decrease

Aligning IT with Business 15

development costs and dramatically shorten development and maintenance
cycles.

1.7 Bibliographical Notes

The seminal works on the business rules approach are probably those by Ross
(1987; 1994; 2005), Date (2000), Halle (2002), and Morgan (2002).

I have assumed in this chapter that the reader is familiar with certain well-
known developments in IT. If any terms are in fact unfamiliar, Graham (2001)
contains a discussion of database terminology and introduces the Zachman
framework. It also contains useful background on object modelling and my
approach to requirements engineering.

C H A P T E R

2
Service Oriented Architecture

and Software Components
with Derek Andrews

It is to be all made of sighs and tears; –
It is to be all made of faith and service; –

William Shakespeare (As You Like It)

In this chapter we digress slightly, in order to locate the business rules
approach, within the context of service oriented architecture (SOA), the mod-
ern, more flexible approach to structuring decentralized IT systems. We will see
that many of the ideas and techniques of SOA carry over directly to the business
rules approach, and the adoption of SOA and BRMS together will let businesses
deploy or integrate new applications far more easily. One of the key points of
this chapter is that SOA, like business rules, is about raising the abstraction
levels of interfaces: interfaces that must support the business, not the system.

The examination of any engineering discipline must start by looking at its
history, in the hope of determining trends and learning from the mistakes of
the past. Programming computers used to be easy, although producing high
quality software was never so and remains a key challenge. Over five decades,
programming has evolved into a much more complex activity, and the goal of
producing good software is as elusive as ever.

In the 1950s, it was a simple matter to persuade an electronic brain (as
they were then dubbed) to add up some numbers and print them out or,
provided that you knew the mathematics, compute the cosine of an angle. The
invention of high level languages such as FORTRAN, ALGOL and COBOL
made such tasks even simpler. However, there was a double price to pay.
Firstly, you had to choose the right language for the job; COBOL doesn’t

17

18 Chapter 2

know much about trigonometry. Secondly, the poor programmer has to know
that the COS function is in the language’s library. Then came databases,
removing the need to worry about much of the complexity of data storage
and management – provided that you knew the language and, indeed, the
theoretical basis of the database. At the same time we saw the advent of fourth
generation languages (4GLs) that made programming easier still. But, here
too, there was a price; such languages were predicated on relatively fixed data
structures. Just as we wouldn’t choose COBOL to calculate sines, we would
not choose a spreadsheet to write a computer game.

By the mid 1990s, it was clear that the future of computing was synonymous
with the idea of distributed computing. Life suddenly got much harder. Now
the programmer not only programs, but does so within an environment that
requires the use of a bewildering array of pre-written components supplied
within an architectural framework such as .NET or J2EE. During this evo-
lution, the dream of the 4GL largely evaporated, outside of the world of
database management anyway. 4GL programming was largely superseded by
programming in object-oriented 3GLs such as C++, C# or Java.

The move to component architectures raised the stakes in terms of software
design too. The complexity itself means that good modelling of the logical
structure of systems becomes critical. The banner of component-based design
(CBD) is raised in the battlefield of computing. Szyperski’s (1998) ground-
breaking book told us how to program with components. Sims (1994), D’Souza
and Wills (1999), and later Cheesman and Daniels (2000), began to show us
how to design for component frameworks. Much of this work seemed to say
that CBD was a major advance over object-oriented methods and superseded
the latter, but there were dissenting voices (including my own) that took
the view that earlier work had merely deviated from pure object-oriented
principles and that CBD was merely OO ‘done right’ and, in fact, the current
commercial frameworks were encouraging a very non-OO approach to design
by separating coherent business objects into process layers, data layers, etc.
Typical of such dissenters were Pawson and Matthews (2002).

Add to all this the emergence of new technologies such as grid computing,
peer-to-peer computing, web services and agent-based systems, and we have
a recipe for a goulash of staggering complexity.

The only way to integrate these views and maintain good design disciplines
seems to be to regard components and, indeed, all objects as suppliers or
consumers of services. Indeed, systems based on a service oriented architecture
(SOA) could be said to be the natural next step in software development. If we
look back again at the history of software development, we see at the start that
programs were written to solve a particular scientific problem; next programs
were written to help with business: programs were written to read, process
and put data out in a batch environment. Online systems followed; these were
for clerks to work with, usually driving a legacy system adapted from batch to
handle work in real time. The introduction of the world wide web led to online

Service Oriented Architecture and Software Components 19

systems for customers who could then use a system directly, rather than using
it indirectly through a clerk. The natural consequence is the online system for
anybody (customers, people, partners, other businesses), not necessarily with
any human computer interface of the old type.

Business rules management technology dovetails neatly – and essen-
tially – into the SOA approach. The change in philosophy needed to produce
systems that support the business is leading to new business opportunities,
a different way of developing systems and doing business. However, if our
main goal is to align IT better with business, then SOA alone is not enough.
We need to separate the business rules from the code to achieve this. In other
words, SOA without BRMS is like a runaway train with no wheels; it will soon
grind to an ignominious halt.

We now look at the philosophy of SOA and outline the business drivers for
and the benefits and pitfalls of adopting it.

2.1 Service Oriented Architecture
and Business Rules

Service oriented architecture is an architectural concept in software design that
emphasizes the use of combined services to support business requirements.
In SOA, resources are made available to service consumers in the network
as independent artifacts that are accessed in a standardized way. Many
definitions of SOA identify it with the use of web services using standards
such as SOAP (originally Simple Object Access Protocol) and WSDL (Web
Services Description Language – pronounced wuhzdle). However, it is possible
to implement SOA using any service-based technology. Though built on
similar principles, SOA is not coextensive with web services, the latter being a
collection of technologies and standards, such as SOAP and XML. The notion
of SOA is quite independent of any specific technology.

Critical to this notion of services is their loosely coupled character; service
interfaces are independent of their implementations. Application developers
or system integrators can build applications by composing one or more
services without having to know the services’ underlying implementations. For
example, a service can be implemented either in a .NET or J2EE environment,
and the application consuming the service can even run on a different platform
or be written in a different language.

Consider, for example, someone enquiring about the parts needed to con-
struct a floggle and their costs. The service might respond with something like
‘You need six widgets @ 6p and one 6 mm toggle @ £1.20. The total cost is
£1.56. All items are currently in stock.’

The service meets the need of this type of customer well, but it should be
clear that there are at least three underlying services, concerned with bills of

20 Chapter 2

materials, pricing and stock. It is almost certainly more flexible to implement
these services as separate components and aggregate them into higher level
services like the one described.

We can note three further features of SOA:

■ SOA services have self-describing interfaces in platform-independent
documents. In the case of web services, these documents are presented in
XML, and WSDL is the standard used to describe the services.

■ SOA services communicate with messages using a formally defined
language. Consumers and providers of services typically exist in
heterogeneous environments, and consumers communicate with the
least possible knowledge about their provider. Messages between
services can be viewed as if they were business documents. In the case of
web services, communication is via XML schemata (also called XSD).

■ Ideally, SOA services are maintained in a registry that acts as a directory
listing. Applications can then look up the services needed in the registry
and invoke them as required. In the case of web services, Universal
Description, Definition, and Integration (UDDI) is the standard used for
service registry definition.

Each SOA service may have a quality of service (QoS) associated with it.
Typical QoS elements include security requirements, such as authentication
and authorization, reliable messaging, and policies regarding who can invoke
services. However, more business-oriented service level agreements can also
be important. Consider a financial pricing service that gives current stock
prices based on current trading in the market. There are two components that
implement the same service interface. One is from Reuters – a well-established
and reputable vendor – and the other is supplied by Honest John’s Prices Inc.
Do you care which implementation you take? Of course you do, if reliability
is an issue. But SOA is implementation independent, so you shouldn’t have
to care. The solution is to include a QoS factor in the service interface that
measures the ‘reputation’ of the supplier1. Of course, when the services are
provided in house the quality may be inferred, and these considerations do
not apply.

Service oriented architecture structures software systems in the following
style:

• Distributed enterprise application servers provide a collection of services
(or transactions).

• By various incentives (which may include quarterly bonuses), developers
are encouraged to build systems using this collection of services to
supply most of the functions of new applications; roughly speaking we
assemble new applications by plugging together existing services.

1We are indebted to John Daniels for this example.

Service Oriented Architecture and Software Components 21

• These units of transaction can be relocated, load-balanced, replaced,
security-applied, etc.

One of the ideas behind component based development is to scale up the
object oriented philosophy of encapsulation, interfaces and polymorphism
to the component level – a component is just a big object, designed and
developed with the same care and attention given to identifying classes, their
responsibilities and their collaborations. This approach can be further extended
to a service oriented system by dividing the system into a set of components,
each of which supplies a set of business services. Done intelligently, this leads
to the system being built from a set of loosely connected components, many of
which are ripe for reuse, or even better – sharing.

Because of the nature of components, we can try and factor other decisions
into their design as well as just responsibilities and collaborations. If we try for
a layered architecture (always a good idea) at the lowest level we can identify
components that supply business utility services. These components supply
utility services that are useful across a family of businesses. For example
an address book, a catalogue, or a component that deals with interest rates.
This type of component encapsulates few or no business rules, and can be
categorized as being ‘function-like’. By function-like we mean that they behave
as a look-up table might, indexed by a key, or as a mathematical function – a
particular input will (nearly) always supply the same answer. A key such as zip
code and building number should yield a unique address. A book catalogue
should, for a given ISBN, produce the details of the relevant book, and such
details do (or should) not change. For interest rate calculations, given a period,
interest rate and principle amount; the result should not change (a real interest
rate calculator component would not be that simple, but the principle remains
the same). These components are, by their nature, very stable and should be
reusable within a particular business area. This type of component extends the
old idea of a FORTRAN code library, but brings it up-to-date.

At the next level up are components that encapsulate business objects:
parties, places or things. These components would, for example, manage cus-
tomers (or even better people or companies, one of whose rôles is customer),
locations for a parcel delivery company, or book copies. These components
are still relatively stable in the sense that once written, they tend to have
only minor modifications made to them later: usually the need to add
additional information or roles. They are re-usable, or shareable, within a
particular company. The interface to them is basically Create-Read-Update-
Delete, suitably renamed – for a library member the services would be join
and resign, lots of query operations to do with being a member of a library
and operations to change details, such as a library member’s address or
their name if this is requested when they get married. It may look as if
such components might only encapsulate a single type; but even in a sim-
ple example, the component managing members in a library system may

22 Chapter 2

have as many as 10 different types in it, and a component containing cus-
tomer details would be very much larger. Business rules are usually found in
these components – hence reusability is likely to be restricted to a particular
business area.

At the top level we can define components that manage business processes;
these contain objects that record events such as a book loan or a reservation
for a title. Business objects will play particular rôles in a business process
event, and thus appear in the record of that event. For example, in a library
a person plays the rôle of a borrower in a book loan and a reserver in a
reservation and as a library member in the library. The rôles link to, and
represent, business objects. Business rules about the processes can be held
in the corresponding process component. The component managing loans
would know about the length of a loan, and the maximum number of books
that can be borrowed at one time. A process component is less reusable than
the other two types as it contains business rules that govern the process.
These components are less stable; they tend to change quite frequently as the
organization thinks of better and different ways of conducting its business.
Even these can be made easier to write and maintain if they can be split
into two parts, a generic description of a particular business process together
with a part that tailors the description to a particular business process by
providing the business rules the restrict the general approach. This latter
part should be written and developed as a plug-in. Returning to the library
example, the loan component is about lending books to library members, but
with care can be refactored to be used in any organization that does loans
(books become lendables and library members borrowers). The business rules
about the business process can be turned into plug-ins and can be changed as
needed.

Looking at any business process, one part is about the order in which
we do things, and the other is about under which conditions we do things:
you can only reserve a horror movie if you are over 18, you cannot buy
life-insurance if you are over 100, you cannot have a loan if you are an
un-discharged bankrupt. These later business rules can be encapsulated in a
separate part of the component. To introduce generality into the first part we
can allow more general order in which we do things and impose business rule
to restrict this. Consider the business process of making a sale; our business
rules may demand a prescribed order for the activities that make up a sale as
shown in Figure 2.1 (a). This ordering could be weakened to that illustrated in
Figure 2.1 (b).

The latter allows the activities that make up the business process to be done
in any order, or even in parallel. Consider a Christmas club, where we pay
for goods before we finally obtain them, and a ‘try-before-you-buy’, where
they are delivered before being ordered. Business rules are used to enforce
the previous order for new or unreliable customers; reliable and well-known
customers could benefit from more liberal régimes.

Service Oriented Architecture and Software Components 23

(a)

order invoice pay deliver

(b)

order

invoice

pay

deliver

Figure 2-1 Sales processes.

With the breakdown into three types of component2, it is now possible to
examine the build, buy or wrap decision. COTS (Commercial Off-the-Shelf)
components are more likely to be utility or business object components,
since these components include few or no business rules, and are thus likely
to be more general. New application areas managing business processes in
an organization are more likely to be built in house rather than bought
off the shelf, as these are likely to include rules which are peculiar to the
organization. Legacy systems tend not to have layers corresponding to the
three component types, but have process, objects, rules and utility services
mixed together. Wrapping legacy systems in a component is wrapping legacy
business processes and rules – a sure way of perpetuating old-fashioned ways
of doing business. Wrapping the legacy at the utilities or business object level,
if these types of services can be teased out, is a better idea. Wrapping at the
business object component level is necessary; wrapping legacy at the business
process layer is difficult and is also wrong; it is most likely that this is the
part that will change the most. Old stovepipe systems encapsulate their own
business rules, and these rules may conflict with other stovepipes, so trying to
combine them is likely to lead to problems – an insurance company may wish
to offer a package of mortgage, term insurance convertible to life insurance and
medical insurance, and an endowment to pay off the mortgage, and might find
that the legacy rules are such that only one person in a million is eligible; this
package may need some weakening of the individual rules for each financial
package.

2This discussion refers implicitly to Peter Coad’s (1999) ‘colour’ patterns, where he distinguishes
the recurring object types: PartyPlaceThing (green), Rôle (yellow) and MomentInterval (pink).
We prefer to call the latter type Episode. Coad’s insights are core to one of the patterns in
Chapter 7: build a type model (4).

24 Chapter 2

In the long run, if the company is made up from a lot of different compa-
nies that have merged, then there may be many versions of the same core
component (e.g. customers of the different companies). A strategy needs to be
developed to merge all of these into a group of components, each covering a
core type. The first thing to do is to get the business rules out of the legacy
systems so it is only data that are being merged – not data plus business rules.

Having said all this, it must be admitted that it is just as easy to construct
a weak or dysfunctional SOA as it is to mess up any other kind of com-
puter system. Also, quality is much more of a problem; any errors will be
visible globally. If your services are no good, your reputation will suffer and
your services will lie unused. Worse still, badly dysfunctional services may
attract litigation. Another danger is basing a SOA on proprietary product line
architecture and thus preventing unforeseen variation.

The route to SOA involves supporting business goals by supplying services
to the users of the system so that business can be conducted more easily; it
involves the infrastructure to support those services, both from the application
and its platform. To do this, it is necessary to understand the business. This
cannot be done by just looking at the system users and their use cases; the net
must be cast wider. To supply a set of services it is necessary to understand
the business and find the real users of the system, and these are not usually the
people sitting in front of a keyboard and screen. The real users of the system
want to achieve a goal, and a computer system is just a tool to help to achieve
that goal. SOA is about designing and developing systems that supply services
fit for the purpose of helping users attain their goals.

Decentralized computing provides greatly increased flexibility for both
business and IT, but it also creates a danger: business decisions may be incon-
sistent across applications. BRMS provide a way of managing the decision logic
centrally and independently, even where the rules apply locally to different
‘zones’ within an organization. The key is the use of a repository to store the
rules and a rule engine to apply them correctly in the context of a particular
application or service. Thus a BRMS can act as a mediator between service
oriented applications and the legacy; it smooths the interactions between
applications and acts as the decision management component for applications
that are implemented as a set of services. These services interact with a decision
management service which incorporates a rule engine; this, in turn, has access
to the repository. As the intent of each service is distinct, so too is the service’s
use of rules. Two services might use a common rule, but both may have unique
rules or processes related to that rule. Using a BRMS allows reuse of rules
across services. This, in turn, can speed development and ease maintenance
even more than the adoption of SOA on its own, precisely because the services
are easier to configure; when the business changes the rules can be changed
without need to recast the services or architecture at the code level.

Service oriented architectures and business rules management systems
are an essential component of modern agile businesses. They vastly reduce

Service Oriented Architecture and Software Components 25

the problems associated with the evolution of complex and volatile busi-
ness strategies and policies. SOA and BRMS are parallel and complimentary
technologies.

A good BRMS should allow applications to be deployed in a service oriented
architecture. The rule engine should therefore present itself as a service to
applications and applications should be deployable themselves as services
(e.g. as web services).

There are well known and understood technologies to support SOA. The
use of these encourages, but does not guarantee, systems that supply services.
SOA is not just about using the right tools and infrastructure, there is much
more to it than that.

2.1.1 Business Drivers, Benefits and Pitfalls
The drivers for SOA are manifold. Perhaps the most striking is the history
of failure of large IT projects referred to in Chapter 1, where we saw that
maybe two-thirds of everything we do in IT goes awry. We need better
project management. Here the news is good because the Standish surveys
report steady improvement over the decade from 1994 to 2005. We need
better requirements engineering too, but there is little convincing evidence
of dramatic improvement here. In addition, evolving or poorly understood
requirements point to the need to involve the business more closely in service
definition and delivery. SOA is one way of moving closer to this goal. Evolving
technology and platforms can also hit maintenance costs. Defining platform
independent services through SOA should mitigate this tendency by providing
a baseline of more stable definitions.

At the time of writing, the main focus of SOA adoption is ‘behind the
firewall’. Therefore, many of these considerations do not apply, but as the
number of resources available on the web grows like Topsy, it becomes
increasingly difficult to know if the service that you need is out there or not.
SOA, as we have described it, makes it possible to search for available services
and components much more readily. Finally, SOA is necessary for business-
to-business transactions (B2B) on the web. In the short-to-medium term, of
course, B2B links will be set up with great care and through negotiation by
people – not by machines trawling cyberspace and matching parameters.

SOA proffers several significant benefits to its adopters. The ability to plug
in new services without disrupting existing software, modularity based on
business concepts rather than technical models, the ability to share and connect
services across organizational units, companies and geographical areas. Most
importantly, it can bring us closer to supporting business goals, especially
when combined with a business rules approach, as we shall see. Adopting
SOA, like business rules, encourages the separation of the concerns of business
versus those of the infrastructure. With a well-designed SOA you can add
value to your own business by doing things better and using other people’s

26 Chapter 2

services, and add value to other peoples’ business by adding your services,
thus sharing your savings with them.

Defining components as services also offers the possibility of contracting
development out to third parties with better control over the results. If we add
web services to this picture, the benefits of web delivery being well known by
now, we can envisage immediate gains.

2.2 Service Implementation using Components

Component Based Development (CBD) is a sister technology to SOA; they are
orthogonal, but sympathetic concepts; it is possible to have one without the
other, but they best go hand-in-hand to produce component based systems
that provide business services. For all practical purposes, service oriented
architecture depends on component based development.

Component based design is aimed, like object-orientation, at improving
productivity by offering a better chance of reuse through better modularity.
If it is done well, we can build large, complex systems from relatively small
components. If combined with an agile development process and if there has
been sufficient investment in components, this can lead to a faster development
cycle.

A software component is an object that is defined by an interface and a spec-
ification. An object is something with a name (identity) and responsibilities
of three kinds: responsibilities for remembering values (attributes); responsi-
bilities for carrying out actions (operations/methods); and responsibilities for
enforcing rules concerning its attributes and operations (often referred to as
constraints). An interface is a list of the services that an object offers. A type is
such a list plus the rules that the object must obey (its specification). Contrast
this with the notion of a class. A class is an interface with an implementation.
A class has instances; a component has implementations. So what’s the dif-
ference between a class and a component? Not much! Two things distinguish
components. First, components are generally ‘bigger’ than classes; but this is
not a distinction in principle. More importantly, components are delivered in
the context of a framework within which they can interact: a ‘component kit’.

Figure 2.2 shows part of the type specification of a queue component3.
We can easily think of several ways to implement this type: as an array, as a

linked list, etc. Sticking to arrays, there are still choices to make. We could use
the implementation illustrated in Figure 2.3, where we maintain one pointer
called ‘last’ and shuffle the values up to the front of the array and decrement
the pointer by 1 when a ‘leave’ occurs. When there is a ‘join’ event, all we have
to do is increase the ‘last’ pointer value by 1. Thus, length = last + 1.

3We are indebted to Alan Wills for this example.

Service Oriented Architecture and Software Components 27

Queue
length: integer
join
leave
join increases length

by 1
leave decreases

length by 1

Figure 2-2 A specification.

B C D E F G

A B C D E F G

B C D E F G

leave

leave

last

last

n0

Figure 2-3 Implementation as an array with one pointer.

Alternatively, we can utilize the implementation shown in Figure 2.4, where
we have to maintain two pointers but save some time on the shuffle operation.
In this scenario, length = last – first (mod n).

Here, n is the maximum queue length in both cases. The first element in the
array is element 0.

So, we can interpret the queue as a component that can be implemented in
multiple ways; but we could also interpret it as a component offering three
services. A queue allows queuers to join and leave the queue and offers a
service to retrieve the length of the queue at any time (except in the middle
of a join or leave operation). Each implementation has its own algorithm for
computing this retrieval of length, but each of these must satisfy the two rules
in the specification. So, components look very much like service interfaces.

Thus, SOA can be viewed as a philosophy that drives the development of
components by defining their interfaces clearly and in a way that relates to
real needs. CBD then packages the services for development and maintenance,
often using technology such as J2EE, .NET, CORBA and so on; although CBD
is not necessarily about component middleware of this type. SOA and CBD
both encourage the separation of specification and implementation.

Also, note that component specifications are almost always described using
rules, as above. This is equally true of services. Rules of the type given above

28 Chapter 2

A B C D E F G

A B C D E F G

leave

lastfirst

first last

A B C D E F G H

A B C D E F G

join

lastfirst

first last

n

n

Figure 2-4 Implementation as an array with two pointers.

constrain the relationships among services; joining or leaving a queue changes
its length.

Components, when delivered, must be documented and provided with a
test harness. The documentation must state at least the following:

1. What the component expects of the environment into which it is placed:
other components and services that must be present; their QoS
parameters; etc.

2. Which services the component can be expected to provide: its
specification.

3. Which business rules the component must conform to.

Another observation, coming both from work on component design methods
and from the exigencies of current component frameworks, is that it is
useful to classify components and organize the architectural layers around the
classification.

Date (2000), Cheesman and Daniels (2000) and Andrews (2007) all identify
a difference between general components and core components: objects or
concepts that ‘really’ exist in the domain. Consider the potential components
needed for building administrative systems for public libraries.

Clearly, Book is a core component, although we might profit from includ-
ing a generalization of it such as Lendable item. How about Member? No!
Membership is a rôle component; the core object is Person. Membership is an
association between people and libraries. Perhaps we should generalize the
concept of library too, perhaps using Fowler’s (1996) party pattern. A library
is a kind of organization which is, in turn, a kind of party. People are also
parties. Another apparent core concept is the idea of a loan but, here too, there

Service Oriented Architecture and Software Components 29

BookLoan

Library

Person

Membership

Party

Organization

0..6

0..*

0..*

0..*

1

0..*

1..*

Reservation Title

Figure 2-5 Some components for a library system.

are advantages in realizing that loans represent not things but a key business
process of the library; a process component.

Figure 2.5 offers a UML type diagram representation of some of the com-
ponents in a library. The cardinality constraints represent a particular kind of
business rule. 1..* against Book is interpreted as the rule ‘A library owns at
least one and possibly many books’. 0..6 against Loan means that ‘A person
need have no loans but is not permitted more than 6 (at any one time)’. But
there is another rule that is not shown on the diagram. We certainly do not
want people who are not members to be able to borrow. This kind of rule is
very common; whenever there is any kind of cycle in a UML class diagram
then there is a potential rule lurking. Here are some of the rules that might be
implicit in this diagram:

■ The person borrowing a book must be a member of the library that owns
the book.

■ A reservation must be for a title that describes a book owned by the
library.

Note that neither of these rules need be true (i.e. apply): interlibrary loans;
purchase on reservation. So, perhaps the rules are more complex:

■ The person borrowing a book must be a member of the library that is a
member of the same interlibrary loans organization as at least one library
that owns that owns a copy of that book.

30 Chapter 2

■ A reservation must be for a title has describes a book owned by the
library unless there are four of more reservations for the same title, in
which case the library will order one copy of that title.

There is a pattern here, our first in this book. The idea of patterns will be
covered fully in Chapter 7, but bear with us whilst we present a thumbnail
sketch of it.

Pattern 11 ASSOCIATION LOOPS CONCEAL RULES

Context You are trying to discover business rules (5) and
have completed part of building a type model (4).
You know that you must write the cardinality con-
straints as rules (12).

Problem How can you be sure that you have not missed any
rules implicit in the type model?

Example Refer to Figure 2.4. Start with a person. Do they have
a loan? If yes choose one. Every loan is for a unique
book that has a unique title. Does the title have an
outstanding reservation against it? If yes, go back to
the person you started with. Does that person have a
reservation? If so, is it for the same title? Perhaps the
rule is: ‘A member may not reserve a title which they
have already borrowed a copy of’.

Solution Look for cycles (loops) in the type diagrams. Start at
every type in the loop, choosing a generic instance of
that type, and follow the associations to another type.
Ask if each route brings you to the same instance.
Write down the rule that says it does.

Resultant
context

The rules you have written down may not be true,
so now ask the business (13) and assign rules to
components (14).

Words set in small capitals represent other patterns: patterns that we shall
encounter later in this text.

So, working with component models reveals business rules. In the same
way, service specifications reveal rules and are incomplete without them.
Component models are a good way to round out the specification of services.

Component modelling is a crucial step on the road to good service oriented
architecture. Modelling should encompass business matters and not just data
and functional models of the software encouraged by many current UML
tools and practices. As we shall see in Chapter 7, models must look beyond
the system boundary and encompass all stakeholders, although models often

Service Oriented Architecture and Software Components 31

need to map to the platform architecture (.NET, J2EE, etc.) also. Models must
always include business rules and constraints.

Business goals are supported by use cases. The type model is the vocabulary
needed to express the goals of use cases. The pattern language of Chapter 7
begins with patterns that express this. We first establish the business
objectives (1), then build a business process model (2) using use cases and
focusing on their goals or postconditions rather than any notion of ‘steps’. The
use case goals are the services. As part of this we establish the use cases (3),
discover business rules (5) and build a type model (4).

Our requirements model needs to supply the software service specification:

■ What business goals does it meet?
■ What does it do?
■ What information does it provide and require?
■ What are the business rules?
■ What are the quality requirements?
■ What constraints and rules must be obeyed?
■ Are there any interface dependencies?
■ Who can use each service or component?
■ What will it cost?

2.3 Agents and Rules

Agent technology has its roots in the study of distributed artificial intelligence,
although the popularity of the approach has had to wait for more mundane
applications in mobile computing, mail filtering and network search. Along
with this plethora of new applications there is a great deal of very confusing
terminology facing anyone attempting to understand the technology of intelli-
gent agent computing. We read many conflicting and overlapping terms such
as Intelligent Agents, Knowbots, Softbots, Taskbots and Wizards. Also, there
are writings on network agents that are not true agents in the sense of most
of the above terms. Furthermore, there are several competing definitions of an
intelligent agent in the literature.

Russell and Norvig (1995) characterize an agent as ‘anything that can
be viewed as perceiving its environment through sensors and acting upon
that environment through effectors. A rational agent is one that does the
right thing’. A report from Ovum (Guilfoyle and Warner, 1994) tightens this
slightly: ‘An agent is a self-contained software element responsible for exe-
cuting part of a programmatic process, usually in a distributed environment.’
Luck and McBurney (2005) say that agents are ‘autonomous, problem-solving
computational entities’ that can operate in ‘dynamic and open environments’.

32 Chapter 2

From this viewpoint, agents are components that, rather than being invoked
directly, can make choices among their permitted actions and interactions, as
assigned by their designers and owners. An intelligent agent makes use of
non-procedural process information – knowledge – defined in and accessed
from a knowledge base, by means of inference mechanisms. But a more com-
pelling definition comes from Genesereth and Ketchpel (Riecken, 1994): ‘An
entity is a software agent if and only if it communicates correctly with its peers
by exchanging messages in an agent communication language.’ This is a most
important point if agents from different manufacturers are to meet and coop-
erate. Kendall et al. (1997) say that agents are objects ‘that proactively carry out
autonomous behaviour and cooperate with each other through negotiation’,
which further supports this view.

Agent communication languages (ACLs) perform a similar rôle to object
request brokers or web services protocols like SOAP, and may be implemented
on top of them. ACLs are necessary so that agents can be regarded as distributed
components that need not know of each other’s existence when created. There
are two kinds of ACL, procedural ones such as General Magic’s Telescript,
and declarative languages such as the European Space Agency’s KQML/KIF.

One might add that an agent is an entity that can sense, make decisions,
act, communicate with other entities, relocate, maintain beliefs and learn. Not
all agents will have all these features, but we should at least allow for them.
One way to do this is to classify agents according to the level of features they
exhibit; in order of increasing complexity and power these are:

■ Basic software agents;
■ Reactive intelligent agents;
■ Deliberative intelligent agents, and
■ Hybrid intelligent agents.

It is common to apply the description ‘agent’ to quite ordinary code mod-
ules that perform pre-defined tasks. This is an especially common usage in
relation to macros attached to spreadsheets or database system triggers and
stored procedures. Such ‘agents’ are usually standalone and have no learning
capability, no adaptability, no social behaviour and a lack of explicit control.
The term is also applied to simple email agents or web macros written in PERL
or Tcl.

Reactive intelligent agents represent the simplest category of agent where the
term is properly applied. These are data-driven programs; meaning that they
react to stimuli and are not goal oriented. They perform pre-defined tasks but
may perform symbolic reasoning, often being rule-based. They are sometimes
able to communicate with other agents. They may have learning capability. At a
macro level they may sometimes exhibit explicit control, but there is no explicit
micro-level control. They cannot reason about organization. Homogeneous
groupings of such agents are common. Examples of reactive intelligent agents

Service Oriented Architecture and Software Components 33

include monitor/alert agents encoded as a set of knowledge-sources or rules
with a global control strategy. Service-oriented BRMS components often fall
into this category

Deliberative intelligent agents are mainly goal-driven programs. They can
have the ability to set and follow new goals. They typically use symbolic
representation and reasoning; often using a production rule approach. They
typically maintain a model of their beliefs about their environment and goal
seeking status. They may be mobile and able to communicate and exchange
data (or even goals) with other agents that they encounter. Deliberative agents
may have learning capability. They can reason about organization and are
able to perform complex reasoning. Their intelligence is programmed at the
micro level at which there is explicit control. Heterogeneous grouping of these
agents is possible. Data retrieval agents that will fetch and filter data from a
database or the internet are typical examples of this kind of agent.

According to some authorities (Kendall et al., 1997) this is the weakest
permissible use of the term agent. Weak agents on this view are autonomous,
mobile, reactive to events, able to influence their environments and able to
interact with other agents. Strong agents have the additional properties of
storing beliefs, goals and plans of action, learning and veracity, although there
is some dispute over the meaning of the latter property.

Hybrid intelligent agents are a combination of deliberative and reactive
agents. Such agents can be mobile and may try actively and dynamically to
cooperate with other agents. If they can also learn, they are strong hybrid
intelligent agents. Such agents usually contain (or may access) a knowledge
base of rules and assertions (beliefs) and a plan library. An interpreter enables
the agent to select a plan according to its current goals and state. When an
event occurs a plan is selected (instantiated) to represent the agent’s current
intention.

It should now be easy to see that there are three prerequisites for agent
computing: components, business rules and an ACL.

2.3.1 Agent Architecture
Adding rules to the interfaces of components has the useful side-effect
of enabling us to model many intelligent agents and multi-agent systems
without any special purpose agent-based modelling machinery. Agents are
autonomous, flexible software objects that can respond to changes in their
environment or context, engage in ‘social’ acts via a common agent commu-
nication language and be proactive in the manner of the Intellisense agents in
MS Office, for example.

Intelligent agents are intelligent in the sense that they embody some kind
of expertise or the ability to learn. This expertise may be encoded as business
rules, in which case the agent must have access to an inference engine to
process them. Learning algorithms are usually, of course, procedural in nature

34 Chapter 2

Controller

Agent

Message queue

Persistent
knowledge

Rules
Concepts
Attributes
Plans

Transient
knowledge

Goals & Plans
Beliefs
Assumptions
Resources

Message

Message

Message

Message Bus

Post office

Figure 2-6 One possible architecture for an agent.

and may be based on decision branching (e.g. ID3), neural nets or genetic
algorithms.

Agents need to communicate with users and with each other. As we have
mentioned, the best way to do this is via a standard agent communication
language. Unfortunately, such a universal standard is not yet agreed, so
that designers are often forced to create one or work within a proprietary
environment. The promise of SOA, especially in the light of web services, as
we shall see, is that the ACL can be based on accepted industry standards such
as SOAP and WSDL.

We can generalize about the basic architecture that most agent systems
share. Figure 2.6 shows a typical architecture. Here, each agent has a controller
that stores or can access an inference engine and problem solving strategy. The
agent encapsulates two kinds of knowledge in its knowledge base: persistent
and transient. The persistent knowledge often takes the form of attributes
and methods that represent its ontology or type model, but the methods
may be coded non-procedurally; Prolog perhaps or a BRMS rule language.
The agent may also store knowledge about the rôles that it plays in the
overall agent organization and about its plans. Plans, which are fixed, are to be
distinguished from those that vary during execution, the latter being part of the
agent’s transient knowledgebase along with its current assumptions, beliefs,
acquaintances and short-term goals. Agents communicate via a message queue
and deliver messages to post offices on the network which, in turn, deliver to
other agents, systems or users. Actual agent-based systems vary considerably
but share this basic approach in outline at least.

One of the main reasons for the adoption of component technology is the
move to distributed architectures. But n-tier architectures are often beset with
severe network bandwidth problems. Using mobile agents can reduce the

Service Oriented Architecture and Software Components 35

amount of network traffic. The mobility of agents means that, when it is more
efficient, we can send the program across the network rather than a request to
retrieve unfiltered data. Smart agents can be used to personalize systems for
individual needs and skills, which has the effect of reducing the cognitive and
learning burden on these users. Agents that can learn, adapt and exchange
goals and data can be used to speed up information searches, especially across
networks or the internet.

The agent model is a model of distributed problem solving. There are
several approaches to the co-ordination of distributed co-operating agents.
These include centralized control, contracting models, hierarchical control via
organizational units, multi-agent planning systems and negotiation models.
These are not discussed further here, but one type of strategy is especially
important for systems involving multiple, co-operating agents that each apply
specialized knowledge to help solve a common problem. A common architec-
ture for such applications is the ‘implicit invocation’ or blackboard architecture
(Buschmann et al., 1996). This becomes important for BRMS, as we will see in
Chapter 7.

It should be apparent that adding rulesets to components is all that is
necessary to make them into agents. Forward chaining (data-driven) rulesets
enable reactive agents and backward chaining (goal-driven) régimes support
deliberative agents. Because each object can contain more than one ruleset and
each ruleset may have a specified régime, hybrid agents can also be built. Of
course, learning abilities would not normally be represented as rulesets but,
more likely, by operations – or a mixture of the two.

Repositories of business objects become, effectively, the domain ontology,
extending the concept of a data dictionary, not only by including behaviour in
the form of operations but by encapsulating business rules in an explicit form.

Intelligent agents may have to operate in the presence of uncertainty, and
uncertainty comes in many guises: probability, possibility and many more.
Modelling systems that restrict the logic in which rules or class invariants are
expressed to standard predicate logic or first order predicate calculus (FOPC)
are too restrictive. A better approach allows the designer to pick the logic used
for reasoning: FOPC, temporal logic, fuzzy logic, deontic logic (the logic of
obligation or duty), etc. Just as a ruleset has an inference régime, it has a logic.
In fact the régime and the logic are intimately related. For example, standard
fuzzy logic implies (usually) a one-shot forward chaining strategy that treats
the rules as if they all fire in parallel. Unfortunately, current BRMSs offer scant
support for uncertainty.

2.3.2 Applications of Agents
Agents have been used to monitor stock markets and trade shares automat-
ically, to find and buy cheap flights and to collect data on a user’s use of a

36 Chapter 2

computer. They have evident uses in e-commerce where there are purchas-
ing agents that can find the best price for a product, such as a book, across
multiple web sites. An agent system handles malfunctions aboard the space
shuttle. The White House uses e-mail agents to filter thousands of requests
for information. MIT has built agents to schedule meetings. Sample applica-
tions of agent technology to date include data filtering and analysis, process
monitoring and alarm generation, business process and workflow control,
data/document retrieval and storage management, personal digital assistants,
computer supported cooperative working, simulation modelling and gaming.

Agents in current systems perform information filtering, task automation,
pattern recognition and completion, user modelling, decision making, infor-
mation retrieval, and resource optimization based on negotiation (e.g. in air
traffic control), routing.

Other current applications include:

■ planning and optimization in supply-chain management;
■ program trading;
■ battlefield command and control simulation and training;
■ network management and process monitoring (of networks and of

business processes).

Another area where agent computing is becoming influential, at least as
a modelling metaphor, is in business process modelling and re-engineering.
The focus in most work on BPR is on process and this is as it should be.
However, as Taylor (1995) has pointed out, an exclusive obsession with
process can be dangerous because business depends on the management
of resources and the structure of the organization as well as on effective
processes. Thus, any approach to business process modelling needs to be able
to model all three aspects: resources, organization and processes. It turns out
that the agent metaphor when combined with an object-oriented perspective
on systems analysis provides an effective solution to this modelling problem.
Furthermore, modelling a user’s responsibilities with an intelligent agent can
often reduce the cognitive dissonance between the user’s mental model of a
system and its actual structure.

Components with rulesets support the modelling and design of intelligent
agents and systems, but agents are also key to modelling business processes
and reducing the cognitive dissonance between models of the world and
system designs – an aim shared (we hope) by anyone implementing SOA.

Any agent worthy of the name provides a service. In the context of SOA, these
services must relate to business services. But agents may also be consumers of
services. In that sense, agent-based computing extends the ideas of SOA. Now
let us look at some technologies that exist today and can be used to construct
SOAs, and that may one day be the basis for a universally accepted standard
for ACLs.

Service Oriented Architecture and Software Components 37

2.4 Service Oriented Architecture and Web
Services

Web services provide a standardized way of interoperating amongst appli-
cations, regardless of the platforms they are running on. They realize SOA
in a very practical way, using concrete agents that communicate by passing
messages that conform to the standard protocols. The environment is open,
in that agents can leave or join at will without disrupting the whole. Agents
can act on behalf of service owners, to ensure contracts are met and relevant
business rules enforced, or subscribers, to locate relevant services, negotiate
contracts or deliver the results of service invocations.

Web services provide one possible infrastructure for SOA and indeed agent-
based computing. Just as one can use SOAP without understanding SOA, one
can adopt SOA without using SOAP, etc., but one cannot do SOA without
good services.

Services are about using other (other peoples’ and your own) systems as
part of your own, these other systems offer functions, services, that you can
use – your system will collaborate with these systems to achieve a goal. If
disparate, distributed systems written in different programming languages
are to communicate and collaborate with each other, they will need some sort
of communication medium and a way of speaking to, and understanding,
each other: a common language. A global communication protocol already
exists: the internet, which is a mechanism for moving bits around. The first
layer of abstraction built on top of this basic mechanism is for moving data
around using TCP/IP. On top of this abstraction we can build web services;
here the stuff that is moved around is XML and the mechanism used is
intranet/extranet/internet. Building on top of this has many advantages; to
use web services, there is no need to change the way that the infrastructure is
used, web services represent just another application, and the existing internet
protocols and infrastructure can easily be used; security applications, such as
firewalls, will not become a problem.

Having got a pipe, some basic infrastructure, the web and XML, we need a
language to describe the format of the messages and a mechanism to manage
the interchange of messages. Since we have a distributed system, we also need
to know where to look for things; these services are supplied by the following:

■ WSDL (Web Services Description Language);
■ SOAP (Simple Object Access Protocol);
■ UDDI (Universal Description, Discovery and Integration).

A simple model will explain the functions of these various elements of web
services. If we think back to before computers and the internet were central
to communication, business could be done with letters carrying information

38 Chapter 2

The eShop
Mains
Street
Elecnet
12345

a customer

their home

a city

1578

Order

delivery address:

invoice address:

qty item code price

Figure 2-7 A simile of web postal services.

(the XML bit) and a PTT to deliver the letters (the web bit). To make business
easier we might add some additional rules and services.

The postal service may define valid envelope sizes and where the stamp is
placed, where the ‘to’ and ‘from’ addresses are written on the envelope, and
where you post a letter – such standard will enable them to efficiently process
your letter and speed its delivery to the correct address. To do business with
another company, we can look up details of the company in either the yellow
or white pages. Yellow pages classify businesses by type, white by their name.

To do business efficiently by post it would also be useful to have details
of how to do business with the company. Information that describes what
envelopes you should use, details of any forms you will need to complete
(for example what needs to go on an order), any replies you might expect
to get (the format of their invoice and delivery note) – an advanced postal
service might publish these in a different coloured directory, say green pages.
As a user using the directories, you fill out the necessary form or write the
appropriate letter, put it in the envelope and post it to the address found in
the directory and possibly await a reply if the rules tell you to expect one. The
simile is illustrated by Figure 2.7.

UDDI is about the rules of the business including its whereabouts and how
you contact it and what information needs to be exchanged to do business.
WSDL is about the information you need to supply using various forms
and letter formats in an exchange with the business; this is described in the
business directory green pages. SOAP is about defining the rules of the post
office. SOAP is a very simple postal service, if you need a more services such
as recorded delivery, proof of posting, tracking of your letter, insurance and

Service Oriented Architecture and Software Components 39

receipt of delivery you need more rules; this is what ebXML or BIZTALK are
about – but these are not part of this discussion.

XML

In addition, we may well use XML, the acronym for eXtensible Markup
Language, which is designed to structure data by marking individual items
with tags that hint at what each item represents. The format of a particular
XML document is described by a Document Type Definition (DTD) or in an
XML schema (leading to the claim that XML is designed for defining XML
documents). Thus an XML document with its DTD or XML Schema is designed
to be self-descriptive.

XML is a language for communicating instances of abstract syntax (and
for defining those abstract syntaxes). The concept of abstract syntax has been
around for nearly 40 years; this is where the information being captured is
separated from the concrete syntax used to write the information down. Of
course, we need to write the abstract syntax down, but it is at a higher
level of abstraction – we represent the information as a tree. XML is a flattened
representation of a tree. Consider a simple example, in Figure 2.8, representing
an if-then-else statement using abstract syntax.

This description will work for any language that has a traditional if-then-
else statement; the keywords are left out; but we still have a representation
of the information content of the statement. In XML we could represent an
if-then-else statement, thus:

<ifThenElse>
<BooleanExpression>
...

</BooleanExpression>
<then>

<statement> ... </statement>
<statement> ... </statement>
...

</then>
<else>

...
</else>

</ifThenElse>

IfThenElse

Boolean Expression

StatementList Statement

1

1
0..1

then

else

test

*

Figure 2-8 If-then-else as a UML type diagram.

40 Chapter 2

It can be seen that XML can be used to encode objects, attributes and links,
to flatten a collection of objects, their attributes and links into a form suitable
for sending around the internet. Using XML, we can pass data around the
internet as character strings that encode objects; and with SOAP we can call
methods in distributed objects passing the structured data as arguments.

Note that an XML document does not do anything, it is just information
marked with XML tags; do not run away with the idea that there are any
semantics embedded in this information – that is encapsulated in the software
that sends or receives the XML document; the software will have an under-
standing of what the information is about. The following example is a name
and an address written using XML:

<address>
<person>
<firstname>Derek</firstname>
<surname>Andrews</surname>

</person>
<no>356</no>
<street>Main Road</street>
<town>Glen Magna</town>
<county>Leicestershire</county>
<postalcode>LE34 7NH</postalcode>

</address>

An address has information about a person and where they live. An address
has the house number, street, town and county – a fairly standard layout
for an address in the UK, and fairly self-explanatory: it is self-descriptive.
However, there are limitations. If you believe that this XML document does
have some semantics, consider the dilemma faced by someone asked to supply
address information to an American company. They may be asked to supply
the following data:

<address>
<person>
<givenname>Derek</givenname>
<familyname>Andrews</familyname>
</person>
<buildingno>356</buildingno>
<street>Main Road</street>
<city>??Leicester??</city>
<state>??England??</state>
<zip><state code>LE</statecode>
<zipnumber>??34 7NH??</zipnumber>
</zip>
</address>

We have little problem with the person part, but is the city ‘Leicester’,
the postal city for ‘Glen Magna’? What do I supply for the state? Is it

Service Oriented Architecture and Software Components 41

‘Leicestershire’, but that is a county, and I know there are counties in the
USA. . .Is it ‘The East Midlands’, the area I live in, or is it ‘England’ which
could be considered a rough equivalent to state as it is the next thing up from
a county, and the state of the UK is made up from the countries of England,
Wales, Scotland and the province (not a country) of Northern Island. There are
even more problems with the zip code; I will assume that I can use LE as the
equivalent of the state code, but the rest of the post code is not numeric, and
is meaningless as far as the UK encoding goes. The American company and
I do not agree on the interpretation of the XML tags. It is not enough just to
invent tags and hope that their names provide a meaning, the semantics must
be given as well.

A subtler example is the following information interchanged by two hotels
in a hotel chain about room occupancy:

<roomdetails>
<roomno>34</roomno>
<roomtype>double</roomtype>
<occupant>Jo Smith</occupant>

</roomdetails>

Further investigation reveals that the message format only allows a room
to have only one occupant no matter how many people can sleep in it – in
this example we have a double room. What is the explanation? You need to
know that the hotel chain doesn’t care how many people are staying in a
room; it only wants to know who is responsible for paying for it, the occupant.
Providing both the sender and the receiver of this message are aware of this,
there is no problem, but this information cannot be deduced from the XML
alone, you need to know about the business and its rules.

XML can be used to exchange data between two incompatible systems. In
this case it will be used a standard format that both ends of the transaction can
understand and can translate their representation of the data to and from. In
fact a message standard can be expressed in XML for many systems to exchange
data, though they all will need to agree on the tags and the meaning of the data
associated with those tags. As XML is character based, there is an additional
advantage that one of the machines that can understand the data is the human
brain. One of the advantages of XML is that we can extend a message format
by adding additional tags to mark the additional information carried in the
message. Existing applications will ignore the additional information; new
applications can recognize and use it. Since the information is encoded using
text, with XML, plain text files can be used to store data. XML can also be used
to store data in a database. Applications can be written to store and retrieve
information from either text files or database, and generic applications can be
used to display the data – for example the XML can be translated into XHTML
and displayed using a browser.

42 Chapter 2

When deciding how information is to be encoded with XML, users of
that particular piece of XML must agree on the names of the tags, their
structuring (nesting) and most important the meaning of the data marked
with a particular tag. From the above example it should be noted that the name
of the tag is not enough for this, though it does help. Any one taking part
in the interchange must have a shared (possibly dynamic) vocabulary, which
includes the meaning of any terms (tags) used in a conversation.

SOAP

Middleware software such as CORBA, .NET and J2EE supply some sort of
Remote Procedure Call mechanism (RPC), but it is not secure and there are
compatibility problems communicating between different programming lan-
guages and different middleware, each must be supported by the mechanism.
There is a requirement for a mechanism that avoids these problems: one based
on HTTP would work since this is supported with browsers and servers and
by the internet. SOAP is a communication protocol for exchanging information
between applications; it wraps up a document and moves it over the internet.
A SOAP document is encoded using XML. A SOAP method call is a HTTP
request-response that conforms to the SOAP rules; think of it as being the
procedure call mechanism for a service that uses a WSDL definition that gives
the name of the service and describes any parameters that are needed.

A SOAP message looks approximately like this, leaving out some of the
more complex parts.

Information to help with understanding and routing the
request to the server:

<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">
<soap:Header>
...
...
</soap:Header>
<soap:Body>
...
...
<soap:Fault>
...
...
</soap:Fault>

</soap:Body>
</soap:Envelope>

Service Oriented Architecture and Software Components 43

If the Header element is present, it is the first part of the Envelope.
This header contains application specific information which is about any
bureaucracy surrounding the service such as details of the transaction it
belongs to where two or more services need to be processed together (or not at
all). Other services such as authentication, encryption used, any payments
that are due and any other additional information that may be needed
can also be placed here. This allows additional information to be added
over time without breaking the original specification. The Body element is
required and contains the actual SOAP message intended for the ultimate
destination; it contains the name of the procedure and the arguments of the
procedure call in programming terms. An error message is carried inside
the optional Fault element. It is the contents of these three fields that are
described in the UDDI using WSDL. It should be noted that because of the
way SOAP is designed, its use is not restricted to use over the internet, it
can also be used over other transport mechanisms such as email and message
queues.

WSDL

WSDL is the acronym for Web Services Description Language. WSDL is an
XML-based language which is used to describe a web service’s capabilities
by providing information about the business including its internet address,
services provided and the message formats. In programming terms WSDL is
the procedure declaration and SOAP is the procedure call mechanism. WSDL
is an integral part of UDDI, an XML-based worldwide business registry. WSDL
is the definition of the procedure call parameter names and types, but more
general and expressed in XML; structured data can be used as parameters,
rather than just simple data values.

Web services can use business services, but not necessarily the other way
around; they are at different levels of abstraction. Just because you expose an
API to the world as a set of web services, it does not mean you have SOA.

The format of a WSDL document follows:

<definitions>
<types> Definitions of the data types that will be used in the

messages – these are machine- and programming
language-independent.

. . .

</types>
<message> Definitions of the messages that will be transmitted; these can
. . . be parameters with input separated from output or document

descriptions (parameters in a procedure declaration).
</message>

44 Chapter 2

<portType> What operations and function will be performed by the web
. . . service; these will refer to message definitions in

the<message>section to describe function signatures: the
operation name, input parameters, and output parameters.
(C.f. the procedure name and parameters – the WSDL
equivalent of a Java interface.)

</portType>
<binding> Specifies binding(s) of each operation in the portType section,
. . . describes how the messages will be transmitted – the

communication protocols to be used by the web service and
further information about the operations defined in
portType – these will be specific to the underlying web
protocol used for exchanging the SOAP messages (there are
three recommended protocols: HTTP, HTTP GET/POST,
SOAP/MIME).

</binding>
</definitions>

UDDI

UDDI is short for Universal Description, Discovery and Integration. It is
an XML-based directory that enables businesses to list themselves on the
internet so they can be found by other businesses. A UDDI entry for a business
providing web services consists of three main components that define what the
businesses are, where they can be found on the internet and how the businesses
can interact with each other over the internet. It is the web equivalent of a
telephone directory with both yellow and white pages, together with additional
information store in ‘green’ pages.

An entry in the white pages provides the basic contact information about a
company, such as the business name, address and contact information. These
may also provide a unique business identifier, such as Dun & Bradstreet’s
D-U-N-S number; these are unique nine-digit sequences for uniquely identi-
fying a business. The white pages allow customers and business partners to
discover business services based upon the business name.

An entry in the yellow pages describes the business services using different
categories (e.g. being in the manufacturing or the software development
business, as per a yellow pages telephone directory). This information allows
others to discover business services based upon its category. For example, a
service might be categorized as an ‘Online Store’ service and at the same time
be categorized as a ‘Book Store’ service.

An entry in the green pages provides technical information on the behaviour
and use of the business services that are offered, and any support functions
supplied. Green pages in UDDI are not limited to describing XML-based Web
services used over the internet, but any (electronic) business service offered

Service Oriented Architecture and Software Components 45

by a business. This includes phone-based services such as call-centres, E-mail
based services such as technical support for a product, fax-based services such
as a fax to E-mail service, etc. Information such as the service location, the
category to which this service belongs, and the specification for the services
can all be found in the green pages.

A UDDI directory is designed to be interrogated by SOAP messages to
provide access to WSDL documents that describe the protocol bindings and
message formats required to use listed web services. These descriptions are
encoded using XML. It should be noted that UDDI does not necessarily have
its services described in WSDL for use by a SOAP call, other protocols can be
used – for example a fax service would have described the protocol used by
the fax, and email the type of messages supported (plain text or HTML for
example).

Of the few companies that have pioneered service oriented architecture,
fewer still have succeeded. Often they have proceeded by wrapping their
existing systems so that they present themselves in the form of lots of web
services. They end up with a business process (or application) layer that makes
hundreds of very low level calls through the bus to the web service interfaces of
the legacy systems. These point-to-point connections give immediate payback
and get the job done, but at the expense of the creation of a vast amount of
‘spaghetti’ – far, far worse than when the same was accomplished by running
wires between boxes.

This approach leads to:

1. Thousands of low level interfaces;

2. Brittle topology;

3. Poor extensibility;

4. Poor understandability and maintainability;

5. No reuse; and

6. Absolutely none of the promised benefits of SOA.

What is needed is an abstraction layer of business services (typically realized
by components) that sit in the no-man’s land between business and IT – and
are understandable to both. These can then be reused and extended in line
with changing business goals and priorities.

These services must be specified rigorously, not just in terms of XML
schemata but also in terms of their process behaviour.

A possible acid test for SOA might be this. Give an executive director a pen
and the back of an envelope, and ask her to draw boxes to represent the major
services she uses to deliver the organization’s business goals, to say which
boxes are services provided by people and which by IT, and to describe how
the services talk to each other – all at the highest level. We suspect that few
companies are at that level of SOA maturity.

46 Chapter 2

If SOA is limited to bottom-up, convenience grouping of low level API
services, understood only within the IT department, business people will
understand none of it; nor will the IT dept be any clearer on overall business
goals and strategy.

SOA, done properly, will both provide and be based on a common language
for business and IT. Then, existing and future systems can be discussed
readily – using the names of the business services – the names of the boxes on
that envelope. Service orchestration can then be done in business terms at the
highest levels: I want this login service, this stockcheck service, etc.

2.5 Adoption Strategies

How does one build a world class rule-based, service oriented architecture?
Moving from your current approach to software development to one geared
towards an SOA approach will involve some changes. Building a business
model is too often avoided as it is seen as extra, non-productive work. RUP
(Kruchten, 1999) suggests writing lots of descriptive use cases as part of the
requirements process. Both of these attitudes need to be changed. To find
services, you need to understand the business, and a quick way to understand
the business is to build a business model. Use cases are usually interpreted as
being about developing the user interface, and the real user of the system is
frequently not the person in front of the keyboard and screen. Thus we are
interested in finding the real users of the system and their goals; then we can
supply the services that will help them achieve those goals.

Moving from a business model to a working CBD/SOA system is a new
skill to be developed, and using existing resources in a SOA involves careful
development work. An architecture has to be designed and developed, and
modified as experience is gained. Higher quality will need to be built into the
software, as it may be seen outside the business or originating department. All
these considerations will affect the way systems are developed and maintained.
Our approach is broadly as follows.

As a first step, build high-level, abstract models of the business goals,
business processes and business entities and concepts with the aim of:

■ integrating different parts of the business;
■ identifying reusable components that provide services;
■ identifying the business rules that must be obeyed by these components;
■ identifying common services and specifying them; and
■ identifying the reuse of legacy systems.

Think about re-engineering the business, contracting out some services,
contracting in others and especially doing new things by using other peoples’
services. The slogan should be ‘stop doing old, unprofitable things’.

Service Oriented Architecture and Software Components 47

Next, turning to the question of architecture, try to match your technology to
the services defined. Then focus on business processes. Look for easier and new
ways of doing business – reduce the number of business rules. Adopt agile
development processes. Standard processes are not adequate. You will need
additional or different tasks in the process, a different type of specification.

Adopting a BRMS will assist in the transition to SOA because service-based
and legacy applications can be coupled using the BRMS as the common
decision engine. In the transition period, decision logic is gradually extracted
from the legacy and replaced with calls to the rule service (together with some
code to interpret the responses). In this way, the legacy can be incrementally
replaced by services. Most major BRMS vendors provide wizards for setting
up a rule service using web services.

2.5.1 After SOA
‘We have SOA, what are the benefits we should be seeing?’ SOA, if done prop-
erly, should lead to more efficient business process, better process modularity
and even business process reuse, but you must focus on the business and not
the software.

‘We have adopted SOA and have developed one or two successful systems;
now what?’ Are there any additional advantages? Since the services are
about the business, and the business rules have been isolated in an appropriate
component, it is easier to change the way the business works. Services supplied
by other businesses can be absorbed into our own, if appropriate, and services
we supply can be given to other businesses. Business rules can be simplified,
and the way the business does its work can be changed for the better. Building
SOA based systems encourages an understanding of the business and the way
it works, this can lead to changing the business.

Existing legacy systems can be analysed and wrapped to supply services
and, using some well-understood techniques, evolved into the new business
structure. There are also techniques for replacing legacy systems over long
periods so as to not impact the business.

As the emphasis is on modelling the business, by building a business
(analysis, requirements) model (a Computation Independent Model using
OMG terminology), the development team are in a position to investigate
and exploit MDA, leading eventually to even cheaper and faster software
development.

We can illustrate the importance of getting the interface right and the
importance of emphasizing business services with the following example.
Consider the problem of refuelling an airliner between flights at an airport. A
clerk will use information about the flight (number of passengers, destination,
cargo, plane type etc.) to calculate the optimal fuel load and send an order to
the fuel company to refuel the plane with the necessary amount of aviation fuel
when the plane arrived. Even if the order is placed electronically, it is likely

48 Chapter 2

to be placed some time before the refuelling is actually needed as the airline
company has no idea of the availability of the fuel trucks; this is the problem
of the oil company. In order for this to happen, the airline company will need
to use estimates of the aircraft load from passenger and cargo bookings. Their
requirement is to know fuel requirements ahead of time so they can schedule
the trucks and necessary staff. There are two problems here: the software
will be written for the clerk to use to work out the necessary fuel needs (the
clerk may be automated and send an email order, but this does not change
the problem). However, the real user of the system is not the clerk, it is the
guy refuelling the plane, he needs to know how much fuel to load, this is
what this part of the airline business is about. A service oriented interface
will be about loading the correct amount of fuel onto the plane, nothing else;
it is not about a conversation with the clerk as to airline type, destination,
load, etc.

The message here is that you need to get outside of the system boundary
to identify services. The system boundary tells you the services the interface
designer wants, not the real user (who may not be the person using the
computer – think call centre, the real user is the customer on the end of the
telephone, not the call centre clerk!).

By writing detailed use cases we are concentrating on the user interface
rather than what is happening in the real world, we are focussing on the
solution rather than on the problem. Frequently this traditional approach
leads to lots of documentation of the use cases, and little understanding of the
business; detailed use cases are about the design of the user interface – this is
an activity that we can leave until later. There is a need to do the description
at a level that provides both understanding and provides a basis for detailed
development of the HCI later. We need to move our perception up a level – at
an abstract level we are interested in the goals of the business so we can
supply business services that help in achieving these calls. The real user will
need to be supported with services; the system user is supported by a user
interface – low level stepwise use cases are about defining the system user
interfaces.

Use cases define the interaction of the actors with the system, but the real
user of the system may be far outside the system boundary. For example,
in a library example: the library users want a reservation to be fulfilled
when it is their turn in the queue of members waiting for a particular book.
When they return a book, they want the transaction recorded so they are
no longer responsible for the book they were loaned. Our library members
are not that interested in the actual loan being recorded – though the library
is very interested in that particular transaction. Thus the purpose of the
system is to make certain that the business of the library is run properly. We
should be interested in the goals of the real-user who can vary between the
customer and the business, the goal of any actors using the system are not
usually relevant for finding system services. There is a further advantage,

Service Oriented Architecture and Software Components 49

Application based services
support this interface

Service Oriented
Architecture is about

this interface

real user user system

Figure 2-9 The provenance of services.

if we write the system with services in mind we can consider all sorts of
interesting changes. Sometimes the real users are actors – customers buying
goods online – and it is still better to find their goals, not the system’s. As
suggested by Figure 2.9, there needs to be a change of emphasis – we need to
understand the needs (goals) of the real user and supply services that help to
satisfy those needs.

The way to identify business services is not by analysing the use of the
system by an actor, but by analysing the business. As Graham (2001) points
out, a transaction in a business is usually carried out as a conversation between
two or more parties who are interested in some sort of joint goal – making
a sale, obtaining a book on loan. It is the goal of the conversation that is of
interest to us, this is the service and it is this that we will supply machine help
with.

With a service oriented approach, the move from the real user using
the system through an intermediary to using the system directly should be
straightforward; just changing the user interface should be the maximum
amount of work that needs to be done. More exciting changes can be made
with a service approach, there is a possibility of changing who does what.
Suppose you request services from a supplier. For example, returning to the
problem of refuelling an aeroplane at an airport. The current approach is likely
to be ordering the requisite amount of fuel from the fuel company. An extreme
approach would be to get the oil company to fill the plane as necessary with a
bonus of the oil company sharing any cost saving with the airline. This could
lead to just in time refuelling, where the optimal amount of fuel is loaded
on the plane by the oil company, and the airline managing the optimum
cargo/passenger mix. In a more general case, we move from a client/supplier
approach to a partnership approach or even a consumer/supplier approach
with the supplier driving the business with the incentive of profit sharing. The
migration from one approach to the other is easily managed if we have services
which are about the business rather than services that are about the interfaces.
We can also see with the migration of control that there are cost savings that

50 Chapter 2

can be made, and these can be shared with partners as an incentive to move in
this direction.

Generalizing, we are moving along the following delegation of control: from
the client being in control to the service provider being in control, with these
intermediate possibilities:

1. Do exactly this for me.

2. Will you do this for me? Here is the information you will need to work
out what I want.

3. Will you do this for me? Here is access to the information you will need
to work out what I want.

4. Do this for me when I need it – I will tell you when. Ask for any
information you need to work out what I want.

5. Do this for me when I need it; ask for any information you need to work
out what I want and when I want it.

If the original system was set up correctly to supply services, this migration
of control from the client to the service provider is reasonably straightforward.
The service provider can move to a just in time service with some negotiation
with the client about fuel versus plane load.

One way of testing for SOA at a global scale has already been given, on a
smaller scale we can look at the messages that pass between actors to confirm
a conversation, these are the messages we need to model in our system, since
one of the participants in a conversation is likely to be replace by a machine.

If you have a paper system with clear understanding of the information
flowing around, it is much easier to re-organize things to improve productivity
or to take advantage of new business opportunities. The same principle holds
for computer based systems.

In a nutshell, low coupling and high distribution give the service provider
control; high coupling and low distribution (SOA) give the client control.
Ultimately, if SOA is implemented well, the real user may be willing to do
more work; and share the cost saving with the IT function.

2.6 Summary

We looked at the nature of SOA and its connexions with BRMS. They have in
common the aim of raising the level of abstraction closer to the concerns of real
business users; the real user not the IT department or administrative users;
systems for the business, for employees, for customers or for suppliers; systems
for the real user not the ‘user’. SOA provides services that help people perform
tasks that deliver them value. BRMS goes further and separates the rules from
the code. Without BRMS, SOA is less effective and harder to maintain. SOA
starts with business objectives and processes and focuses on a reusable service

Service Oriented Architecture and Software Components 51

level abstraction layer. Rules are parts of its specification. Components are
grouped into services during design.

We saw that CBD was a very natural way to design for SOA and met
some analysis patterns that are relevant to SOA, CBD and BRMS. SOA, CBD
and BRMS are complementary technologies. We also saw that rule based
components could be regarded as intelligent agents.

SOA is not the same as web services but the latter is one way to implement
it. Beware of low level calls in the middleware, leading to a spaghetti of
low-level point-to-point connexions. Don’t start with wrappers; don’t start
with technology.

Let us put all this together. SOA, BRMS and CBD, used together offer
potentially tremendous business benefits. In future we may see the technology
broaden out into intelligent agent architectures that unite and enrich all these
technologies. Web services have an important rôle to play as an implementation
technology and may provide the basis for future ACLs.

Lastly, we considered the issues facing adopters of SOA.

2.7 Bibliographical Notes

The fundamental ideas of component-based development were described,
from different points of view and emphasis, by Sims (1994), Szyperski (1998),
D’Souza and Wills (1999), Cheesman and Daniels (2001) and Graham (2001).
Andrews’ forthcoming book (2007) focusses on the design of component-based
systems and service oriented architectures and, in particular, extends the ideas
of John Daniels and Alan Wills in the form of the Catalysis II method.

There is a large literature on agent-based computing and intelligent agents.
Notable works, from our present point of view, include Farhoodi (1994), Ferber
(1995) and Graham (1998; 2001).

The internet is a source for many discussions on and (competing) definitions
of service oriented architecture.

C H A P T E R

3

Approaches to Business Rules
Who shall decide, when doctors disagree?

Alexander Pope (Moral Essays)

There have been three fundamental schools of thought on business rules. As
we saw in Chapter 1, the most prevalent comes from the database tradition,
but the oldest springs from work on artificial intelligence. More recently,
people interested in object modelling and formal methods have begun to pay
attention to business rules in the context of UML specifications. This chapter
takes a brief look at these competing but overlapping approaches, and tries
to establish a workable synthesis and some guidelines on how to select an
approach and a product supporting it.

Which approach is best? There is no simple answer; it depends on the nature
of the problem. So, who shall decide? The users, guided by the nature of the
problem, sound architectural vision and patterns based on experience and best
practice: they should decide.

3.1 Database-centric Approaches

Looking back at some of the articles written in the late 1980s and early 1990s
in journals such as Database Newsletter, one is tempted to suspect that the
only business rules of interest to the database community are very simple
ones involving cardinality constraints and simple arithmetic computations;
inference is hardly mentioned. However, this narrow view has matured and

53

54 Chapter 3

broadened as business rules management systems have evolved into mature
products.

The most consistent and compelling argument for the database-centric
approach comes from Chris Date (2000). He argues that business rules are
there to ensure that the facts represented in the database cannot be corrupted
by updates that violate the rules. Whenever, an update is performed the rules,
including all inferences from them, are checked and, if violated, the update is
aborted.

Date argues that progress in computing is about raising the level of
abstraction. I agree. Both business rules, object modelling and – as we saw
in Chapter 2 – SOA are all about raising abstraction levels. Next he argues that
declarative is better than procedural description. Again, I mostly agree. But
then he goes on to conflate declarative descriptions with executable specifica-
tions. I think this is a misunderstanding. There is no reason why an executable
specification cannot be described procedurally. In fact, when dealing with
computations in domains such as engineering or actuarial work, it is often
more natural for the business users (engineers, actuaries, scientists, etc.) to
express themselves procedurally. It is also a moot point whether certain UML
problem descriptions are procedural or not, especially when the approach
to executable specification is based on MDA or other approaches to code
generation. For example, are finite state machines declarative or not? The
scholastically inclined could argue this point alongside the activity of placing
angels on the head of a pin. We shall not do so here.

So let us stick with this rather beguiling view of incorruptible databases as
a justification of business rules. Date’s position depends entirely on what is
known as the Closed World Assumption (CWA); this is the assertion that every
tuple or instance in a database represents a true fact. If it’s in the database,
it’s true; and if it isn’t, then it is false. One consequence of adopting this view
of databases is that, as Date has argued elsewhere (1983), one must not allow
null values in databases. Not only are there multiple interpretations of the
meaning of a null value (unknown, missing, etc.), but a null indicates a truth
value other than ‘true’ or ‘false’ and the CWA no longer makes sense without
substantial modification.

As I have said, the CWA is beguiling; if we add business rules to the update
mechanism, there can never be an error in our business records. This will
please any red-blooded data administrator who no longer has to fret about
those pesky users sticking duff records in the database. However, from the
viewpoint of the requirements engineer, the situation is less clear. As Michael
Jackson has pointed out over and over again (1995; 1998; 2001), one of the
challenges in specification is allowing for the situation when the computer
model of the world (the database) gets out of synch with the actual world.
Anyone who has been the victim of identity theft or who has been given a
faulty credit rating will attest to the importance of this problem. The trouble
is that, in the best of all possible worlds, the CWA is rarely valid. ‘Ah yes,’ I

Approaches to Business Rules 55

hear you protest, ‘but if we have all the rules in place then no dodgy data can
ever get past them to soil our pristine records.’ My response is merely to say
that, however good a specifier you might be, you will never know all the rules,
except for domains where the human factor is severely absent. No, we need a
business rules environment that acknowledges that the database may contain
falsehoods.

On the other hand, preventing gross update errors is certainly a worthwhile
benefit; business rules should be part of the data or object model.

Date, like most authors on the subject, offers a classification of rules (based
on one proposed by Jim Odell) into various kinds of constraint and two kinds
of ‘derivation’: computation and inference.

There are some dangers here. First, whilst it is often inadvisable, it is always
possible to recast constraints into if/then form. Once that is done, inferences
can be executed and the constraints chained. I think that it is better to drop
the distinction between inference rules and constraints and to concentrate on
differences between what a rule or constraint refers to. For example, the age
range constraint that we met in Chapter 1 refers to a single attribute (date of
birth), and is best represented by restricting the domain of the attribute (to
dates that give ages over 16). This is no different in principle to restricting the
domain to non-negative reals, for reals that we need to perform square roots
upon. On the other hand, constraints that refer to more than one attribute are
often best thought of as rules, e.g. ‘If the delivery address is different from the
invoice address then . . . ’

The distinction between computations and inferences is important, but not
for the reasons that Date, and others like him, give. He regards computations
as declarative statements, but this is not so in general. He conveniently gives
examples with no brackets; but even the simplest formula for the straight line,
y = m.x + c, cannot be understood without seeing its implicit procedurality;
the reader must know that the TIMES function must be applied before the
ADD function – otherwise the formula has a different meaning.

Calculations are inherently procedural.

The whole point about business rules is that we are trying to make life
easier for the user. Obfuscating the procedurality of computations does not
help one iota with this. Sometimes, for example it helps understanding to
compute and deliver computations in stages (showing the ‘working’). In this
way, we might show monthly spend in a spreadsheet above a row showing
cumulative monthly spend. Clearly the top row must be (logically) computed
first. For a more complex example, consider the symbolic solution of integral
equations. When I learnt this at school at the age of 16 or 17, we had to grasp
that some equations could only be solved using the substitution of a (usually

56 Chapter 3

trigonometric) function for one of the variables. It goes like this: first guess at
a suitable function, then try it, applying standard antidifferentiation formulae;
if this fails, try another function. This cannot be done except if it is done
procedurally.

Now, there is nothing in this view that says that computations cannot be
handled as part of a BRMS solution. But it seems to me sensible to make a
strong distinction between knowledge that is fundamentally procedural and
rules that are entirely declarative. We shall return to this point in Chapter 4.

Given the view that business rules are primarily there to guarantee database
integrity, Date is tempted to assert that rules should be part of the database.
Indeed, the rules for domain constraints almost always are, and things like
range constraints (single row rules) should probably be. However, as Date
concedes, there are advantages in keeping business rules quite separate from
the database engine. The first is what he calls DBMS independence: the rules
can be applied to data stored by DB2, Oracle, Sybase, etc. But more importantly,
keeping the rules in a separate central repository means that the rules can be
maintained independently of data, applications and infrastructure.

From the SOA angle, a database management system can be regarded as a
service. It is a better service if all updates are mediated by business rules, but
there is no reason why the application of the rules cannot be hived off as a
separate service which is called on update.

One final methodological point characterizes the database-centric view on
business rules. Designers taking this view will, as Date recommends, start with
the data model or, more generally, an object model. That is to say, they create
an object model or start with an existing one before writing the rules. These
rules can then refer to any entities in that model. Some BRMS products, such
as ILOG JRules, encourage this by allowing the user to import a data model
from existing Java code. As we will see in the next chapter, rules do not make
sense unless they are based on an object model. However, as we shall also see,
it is possible to write the rules and then extract the implicit model.

In general, the database-centric approach plays down the rôle of inference
and emphasizes the non-expert nature of rules. It encourages designers to
base the rules around the data model and, thus, assumes that such a model is
constructed prior to explicating the rules. It is most appropriate in domains
where automated decision making is not important but data integrity is.
However, the risk here is that it may be difficult to predict whether automated
decision making will or will not be important in the future.

Of all the products in the BRMS sector, it seems to me that Sapiens and
Versata are the ones most closely aligned with this viewpoint, although this
is not to say that other BRMS products cannot be used to build database-
centric applications nor that products like Versata cannot be used outside the
database-centric paradigm.

Approaches to Business Rules 57

3.2 GUIDE and the Business Rules Group

Starting up between 1989 and 1993, the GUIDE project set out to define and
categorize business rules. Like Date, GUIDE includes computations as a kind
of derivation rule. The final project report (Hay and Healy, 1997) presented
a metamodel of business rules. The GUIDE approach extended the database-
centric approach by placing more emphasis on rule independence (relative
to databases) and on inference. It has provided a benchmark for all existing
BRMS products.

The mantle of the GUIDE project was taken over by the Business Rules
Group from 1997. The group evolved from a project team within GUIDE. Its
initial focus was on business rules that could be implemented directly in IT
systems; i.e. row 3 of the Zachman Framework (Zachman, 1987).

Later, the focus broadened to include the business perspective as well as
the information system and technology perspectives. In 2002, it published its
most influential work: the Business Rules Manifesto, a pithy statement of the
principles of rule independence, reproduced here as Appendix A.

In 2000, it published a second work dealing with one important aspect of
business rules from the business (Zachman ‘row 2’) perspective: the motivation
behind the rules. The group has contributed to the OMG Business Semantics
of Business Rules (BSBR) initiative. In 2005, the group’s Semantics of Business
Vocabulary and Business Rules (SBVR) was accepted by the OMG to move
into the finalization stage of the OMG standardization process.

The Business Rules Group continues to provide a benchmark for work on
business rules and BRMS products.

3.3 Using UML and OCL to Express Rules

Since the earliest days of object modelling, sagacious methodologists have
acknowledged that business rules must be recorded. Building on the same
entity-relationship modelling techniques as the database-centric approach,
they all insist that cardinality constraints should be recorded on class diagrams.
More general constraints, however, are usually consigned to separate docu-
mentation or written as free text on diagrams. In UML, ‘notes’ are often used,
but the idea is essentially the same: scribble the rules on the class diagrams.

From a business rules perspective, this will not do.
For one thing, it violates the key design principle of object encapsulation,

which is necessary to maximize reuse; objects should encapsulate everything
they need to be reused – including the rules that apply to them. But here is
a dilemma. We also want rules to be reusable as independent entities, which
indicates that rules and objects should be stored separately. A related point
is that, thinking of SOA and viewing components as providing services, we

58 Chapter 3

must insist that components come equipped with the rules that they conform
to. The very first article of the Business Rules Manifesto insists that rules are
first class citizens.

This is the same dilemma that Chris Date wrestled with: do we store the rules
‘in the database’ or do we opt instead for rule independence? Certainly, all
BRMS products go for the latter. So, do we thus abandon all hope of component
reuse? I present one possible answer to this question in the form of a pattern in
Chapter 7, where I show that it is possible to encapsulate ‘references’ to rules
while still maintaining the actual rules in a central repository.

There is a further problem with rule encapsulation: some rules refer to
many objects. Again the solution is given as a pattern in Chapter 7: policy
blackboard (18).

In their seminal work on Catalysis, D’Souza and Wills (1999) emphasize that
many business rules may be discovered by examining ‘loops’ in UML type
diagrams. We saw this already in Chapter 2 (Figure 2.5), but let us consider
another example, as shown in Figure 3.1.

Airlines operate regularly scheduled routes, such as BA735, and these occur
as multiple flights; an instance of such being ‘BA735 on 2008/02/29’. They also
employ pilots who, in turn are qualified to fly only certain models of aircraft,
such as the Airbus A720E or Boeing 777. There are two loops in this diagram.
As a result we can identify at least three potential business rules. To find the
first, consider the aircraft identified by the code G-LAPM. Map this to one of
the flights that uses it, say ‘BA735 on 2008/02/29’. Now map this flight to its
assigned pilot, which might be Jane Bloggs. Now go the other way round the
loop: G-LAPM is a Boeing 777. Mapping along the remaining association, is
Jane qualified to fly this type of plane? This suggests the potential rule:

■ Every flight must be captained by a pilot who is qualified to fly the plane

This can be rewritten in OCL as:
■ Flight :: captain.qualified to fly –> includes (plane.model)

Note the rather ugly syntax of ‘–> includes’; ugly, that is, if you are not a
C++ programmer. It stands for set membership and can be thought of as a
backwards epsilon: ‘�’.

The other rules might include:
■ The captain must be employed by the same airline that operates the flight.
■ The take-off and landing airports must be different (no joy rides).

The question now is which type specifications (components) should encap-
sulate the rules. My instinct suggests that the first rule belongs to a description
of Flight (as indeed the OCL quantifier suggests) because Flight already encap-
sulates the information needed to check the rule’s validity: plane and captain.
The second rule seems to belong to Airline, on the same grounds. For the third
rule, it is as plain as a pikestaff that the rule must belong to Route; otherwise
each airport would have to store knowledge of other airports.

Approaches to Business Rules 59

Flight Pilot

Plane PlaneModel

*
qualified_to_fly

*

*

*

*

1 uses

captain

1

1

flies

Route

*

Airline

*
employs

operates

*

Airport

take-off landing

**

Figure 3-1 A type diagram with three loops.

We can use a pattern to help make this kind of decision: put rules at the
many end of associations.

While rules discovered in this way are usually multi-attribute constraints,
it is possible that they might be better regarded as business rules and made
subject to inference. For example, suppose that we know that CheapoJet has
a policy of only employing 747-qualified pilots and only using 747s on Irish
routes. Then we can deduce, or infer, that flight CJ142 from Brest to Cork is an
OK flight with respect to our first rule. It is extremely uncommon for UML
and OCL practitioners to think in this way and cast their rules accordingly.

While we can always express constraints and rules in OCL and rules in OCL
are at least guaranteed to be well-formed and thus be implemented, expressing
them in this way may present a barrier to business people understanding them.
Expressing the rules in (a subset of) natural language is generally the preferable
approach, although it is sometimes a good idea to check that each rule can be
expressed in OCL or some other formal language. Implementing and testing
the rule in a BRMS also can provide a check on ‘well-formedness’.

3.4 Business Rules Management Systems
and Expert Systems

The third and oldest approach to business rules management is that associ-
ated with so-called ‘expert’ or ‘knowledge-based’ systems. As discussed in
Chapter 1, such developments are ultimately descended from the EMYCIN
shell. During the 1980s a number of expert system shells appeared as products
and there was a flurry of interest in the technology, partly fuelled by the

60 Chapter 3

Japanese state’s investment in what they called their Fifth Generation Com-
puting project and the reactive programmes in other parts of the world, such
as the British Alvey Project and Europe’s ESPRIT.

After some early commercial successes, interest in the technology waned
and, by the 1990s, ‘expert systems’ was a label to be most studiously avoided
by anyone in sales or marketing. It was widely reported that expert systems
had not ‘lived up to expectations’, and many believed that this was due to lack
of visibly successful applications. Nevertheless, from that time to this, expert
systems technology has crept in to hundreds of everyday IT applications and
consumer devices.

Expert systems are used in controllers for railway trains, washing machines,
‘shake-free’ video cameras, vacuum cleaners, software wizards, program
trading systems, email spam filters, video games, and many more mundane
and familiar items. But, of course, you never hear about it.

So, if valuable applications do exist, why the stigma? In working with
this generation of the technology, I found that the architecture of most
commercial products was monolithic and, ultimately, unstable. Most shells
required that an application ran entirely within the shell or its run-time system.
The commonest approach then required developers to write rules that were
then compiled, thereby generating the variables and other data structures
needed by them. When object technology emerged into the commercial arena,
it proved difficult or impossible to integrate rule processing with object-
oriented programming. Interest therefore shifted away from expert systems as
a development technology. A few pioneering vendors, like the French company
ILOG, did come up with rule engine architectures that were compatible
with the object-oriented approach but, at that point in history, they had
to struggle against generally negative market perceptions. Other companies
whose products had emerged from a LISP culture, such as Neuron Data, were
able to deal with objects due to their similarity with the ‘frames’ of artificial
intelligence (AI) (Bobrow and Winograd, 1977). However, it was a battle and
we have had to wait for the business rules movement to see this technology
return into the daylight.

ILOG and Neuron Data focused on componentizing their products and
we now see their direct descendents as full-blown, mature, repository-based
BRMSs in the form of ILOG’s JRules and Fair Isaac’s Blaze Advisor.

So, is there a difference between an expert system and a business rules
management system?

Barbara von Halle (2002) answers ‘yes’. She argues that expert systems only
address esoteric or complex decision problems – like the medical diagnoses
of MYCIN – and that rule execution is not ‘tied to database activities’. Both
these statements are untrue in general. Many of the expert systems that I built,
helped build or was privy to in the 1980s were quite unesoteric and sometimes
database-centric. A tourist board offered a decision aid to help visitors select
a restaurant for the evening. A white goods retailer scheduled its customer

Approaches to Business Rules 61

service visits. A bank scanned its database for potentially fraudulent credit
card transactions – a typical rule was ‘if there are multiple purchases of similar
power tools over a short period then fraud is indicated’. Hardly esoteric or
complex knowledge! An insurance office used an expert system to assess
fire risks using rules that involved checking such arcane things as whether
there were enough fire extinguishers in the staircases. Credit authorization,
compliance in unit trust dealing, sales forecasting, computer capacity planning,
loan advice; the list goes on. I never worked in a single domain that required
the knowledge of anyone with a Ph.D.

Halle identifies three other characteristic features that distinguish expert
systems from BRMSs:

■ Expert systems use an inference engine that can chain rules together.
■ In an expert system, there are usually ‘hundreds or thousands of

inference rules’ that may need to be executed to arrive at a decision.
■ Expert systems can handle uncertainty.

The first two of these are clearly related, so let us look at them together.
Nearly all modern BRMS products include an inference engine nowadays:
Blaze Advisor, Haley Rules, JRules, Versata, to name but four leading ones.
And, as Fair Isaac’s Paul Vincent (private communication) stresses: ‘We
compete strongly on our ability to process thousands of rules per second in
high transaction environments.1’ Other vendors tell me the same thing.

Thus, I assert, four of Halle’s five distinctions do not stand up to scrutiny,
although I admit that there are expert systems that operate in esoteric domains
and which would not be within the focus of the average BRMS vendor. I
also concede that many business rules may be applied without the need for
inference. But her last point is right – well, almost right.

None of the leading BRMS products available today and known to me has
any sophisticated facilities for managing uncertainty. Blaze Advisor uses a
proprietary technique called ‘scorecards’, which we will look at later in this
book, but uncertainty management is not a feature of any of the other products.
It seems that the customer just doesn’t need it. We will return to uncertainty
management in Chapter 4 but, for now, there is one point worth making. While
the raison d’etre of BRMS is not uncertainty using mathematical probabilities
or fuzzy logic, all current systems can handle one form of vagueness. Consider
the following business rule (paraphrased from Ross, 2003):

An order must be shipped by premium service if
the order is a rush order and
the order includes hazardous materials and
the customer is a platinum customer and
the order destination is remote.

1My paraphrase.

62 Chapter 3

This rule (or its syntactic equivalent) could be executed by any BRMS. But it
brims with uncertainty. What is a ‘rush’ order? What does ‘hazardous’ mean?
How far away is ‘remote’? There are two ways to resolve such vagaries; either
the user puts in an estimation of the order as rush or not, or the database
includes some arbitrary definition of rush such as ‘delivery requested within
three days of order’. In the former case, the uncertainty is captured by the
crisp category ‘rush’, based on the user’s vague perception and crisp decision
of the boundary between urgency and normality. In the latter case, the same
conversion of vague to crisp is done when the three-day definition is laid down
in the database. Similar remarks apply to the terms hazardous, platinum and
remote; they all capture the uncertainty of human perception in a crisp form
that first order predicate logic (or SQL) can cope with.

It may be worth noting that, when fuzzy terms are defuzzified by mak-
ing arbitrary definitions of applicable ranges, such as ‘platinum if disposable
income greater than $60,000’, then we can expect such definitions to be volatile
over time.

Apart from this point about uncertainty, Halle’s main distinction is about the
nature of ‘expert’ knowledge. In the early days of expert systems it was argued
that the main barrier to building such systems was that of eliciting expert
knowledge: the so-called knowledge engineering bottleneck; a term coined by
Ed Feigenbaum. This bottleneck is not so much to do with the esoteric nature
of the knowledge as the phenomenon of tacit knowledge: knowledge that you
don’t know you know.

One of the key points about BRMS and SOA, as I have argued, is that
we need to move the control of business systems into the hands of business
people. We need to engage users in the definition and maintenance of business
rules. The overriding assumption is that the users know the rules. In many
cases this is true, but even in seemingly mundane domains, like stock control,
much knowledge remains tacit or buried in inaccessible legacy code or out of
date documentation. I came across an interesting demonstration of this quite
recently. An acquaintance of mine works for a company that had implemented
a sophisticated stock control system and considered it such a success that,
after a year or two, the company decided that the system was so reliable
that they could dispense with the services of the human stock control clerks
who operated it. The result was that the system pared the inventory down to
statistical optimality – at levels below what the now-redundant users had ever
permitted – resulting in improved margins. However, the lack of ‘slack’ led to
several late or unfulfilled orders and the customers deserted in droves to the
‘less efficient’ competition. The lesson? The stock controllers knew something
(and something fairly obvious at that) that had not been formulated in the
rules of the system.

Tacit and expert knowledge is present in many everyday domains: stock
control, credit chasing, customer relationship management, regulatory compli-
ance, and many more. Why should we value the expertise of a clerical or manual

Approaches to Business Rules 63

worker any less than that of an industrial chemist or a physician? When I’m sick
I need the doctor, but when my central heating goes on the blink the plumber’s
knowledge and skill is just as valued. A friend of mine, the late Rob Milne,
built a very successful business by encapsulating the knowledge of skilled
artisans into expert systems that could diagnose faults in vibrating machinery.

Although some would argue that early expert systems were designed to
emulate individual human decision-making and that business rules for an
operational business process need technical support, that is more definitive
and institutional. I conclude that there are no significant technical differences
between expert systems and BRMS, although the application domains and
uncertainty management features may distinguish the two. If there is a
difference it is chiefly one of ‘mindset’. As a result, I think that the techniques
of knowledge acquisition developed in the context of early expert systems
work remain immensely valuable, especially in dealing with tacit knowledge.
We will deal with these techniques in Chapter 6. However, the business rules
movement has added considerable value; their architecture is more flexible
and robust; their emphasis on repository-based centralization of rules is
invaluable; their focus on non-esoteric domains is timely; it is good that they
have reminded us of the importance of using rules to control database updates.
The main differences, therefore, are those of emphasis and terminology.

Having said all this, I will close by making a genuine distinction between
some knowledge based systems and BRMS. Despite the exaggerated claims of
some theoreticians (e.g. Chomsky, 1980; but several others) not all knowledge
is rule based. Indeed, Collins (1990) shows that some skilled domains are not
amenable to the rule-based expert systems approach at all. Indeed, neural
networks are not built using explicit rules, but definitely contain knowledge2.
An object-oriented model contains much knowledge that is not rule-based.
Some problems are entirely computational, and it is nonsensical to recast them
as rule-based systems. A good example might be modelling the evolution of
the cosmos based on various assumptions about the amount of dark energy
in the universe, or modelling what happens in a piston chamber when a
spark ignites the petrol. We shall return to the questions of different types of
knowledge in the next chapter. For now, I want only to say that BRMS are
characterized by being based on rules. This limits the domains and problems
to which they can be applied.

3.5 Other Developments

The final piece of background that we need, before embarking on a technical
description of business rules management systems, is the work that has been

2Actually a trained neural net is equivalent to a set of fuzzy rules, but this is not widely
understood in practice.

64 Chapter 3

done on methods and process for business rules development and on stylistic
conventions for writing rules.

The most profound contribution on method comes from Barbara von Halle
(2002), whose book remains the definitive work on the subject. Despite my
quibbles with her (above) on expert systems, I cannot fault much of her
methodological work, except to say that (precisely because of her attitude
to expert systems and focus on the database-centric view) she misses out
many of the methodological guidelines that are needed for effective knowl-
edge acquisition and requirements engineering in the context of a BRMS
project. Chapters 6 and 7 represent my attempt to fill this gap. I refrain from
presenting organizational patterns that duplicate Halle’s work, although it
would be an interesting project to recast and rework her ideas in the form of
patterns.

Halle’s method recommends a phased approach reminiscent in some ways
of RUP; there are five phases and each one addresses four needs, to sepa-
rate, trace, externalize and position rules for evolution. The scoping phase
involves developing a plan for rule management, establishing the business
context and purpose and laying down an IT architecture. The planning phase
includes tasks for analyzing, designing, implementing, integrating and test-
ing rules and establishing standards and a repository. The discovery phase
includes extremely useful guidance on such matters as how to run facil-
itated workshops, how to write rules, how to interpret use cases, where
to look for rules in existing documentation, and so on. The analysis phase
looks at existing and alternative business processes and revisits objectives;
it also refines the rulebase. Finally, the fifth, design, phase implements the
rules and applications using them; usefully, natural language versions of
the rules are used as the basis for error messages. The method focuses
strongly on data analysis as well as business rules. As yet, Halle’s work is
the only major contribution to methodology for business rules management
systems.

Apart from Halle, two other authors have made major contributions to
the question of how to phrase rules to make them clear. Ross (2003) presents
a very detailed classification of rules types and extensive guidance on how
to formulate and express rules in English. Morgan (2002) also gives much
useful guidance on rule formulation. Although the guidance in these works is
undoubtedly valuable, practical considerations lead me to think that I would
not always have time to apply the methodological guidelines with any rigour
on a real project. What one can do is absorb the principles implicit in the
guidelines; principles such as:

■ Rules must be declarative.
■ Rules must not contain ‘noise’ (or ‘fluff’ to use Ross’s term).
■ Logical connectives (‘and’, ‘or’ and even more especially ‘not’) should be

used with great care or eliminated.

Approaches to Business Rules 65

■ Ambiguous terms are not allowed.
■ And so on.

One pattern that emerges most strongly from this work is that it is almost
always better to write the consequent first. That is to say, rather than
writing the rule in IF . . . THEN . . . format (with the antecedent clause first),
write it with the conclusion (the consequent clause) first. So rather than ‘if rain
is forecast then take an umbrella’, we would prefer something like ‘take an
umbrella when rain is forecast’.

3.6 Standards, Directions and Trends

The area of business rules management is evolving rapidly. The BRMS product
vendors continue to play leapfrog with respect to performance, usability and
features. We can expect to see strong competition based on each product’s
ability to process thousands of inferences more rapidly than its counterparts.
Similarly, vendors will want to ensure that rules can be created easily by
non-technical business analysts – or even users – as well as programmers.

It has been suggested that business rules engines, instead of being stan-
dalone product offerings, may become incorporated directly into J2EE or .NET
application servers. There is some evidence for this trend; BEA built a rule
engine for security and personalization; IBM has a simple engine in WPS,
Microsoft has rules in WWF, Oracle has a rule engine based on Jess; JBoss is
packaging Drools; etc. However, no application server vendor has yet done a
convincing job of broadening their offering to cater for business users. Nor do
they seem to have a very deep understanding yet of the business rules lifecycle,
as opposed to the traditional IT development cycle. Such developments may
not mature until the 2010s. They will need to offer mature products that can
probably only be gotten through acquisition, the barrier to entry being set
fairly high by existing products, especially in terms of performance.

At the time of writing there are several initiatives aimed at producing and
agreeing standards for business rules. In 2005, the Business Process Man-
agement Initiative (BPMI.org) and the Object Management Group (OMG)
announced the merger of their business process management standards activi-
ties. The combined group, the Business Modelling & Integration Domain Task
Force (BMI DTF), continues work on the BPMI’s Business Process Modelling
Notation (BPMN) standard for business modelling, and the Business Moti-
vation Model (BMM) contributed by the Business Rules Group. Separately, a
standard defining the Semantics of Business Vocabulary and Business Rules
(SBVR) is underway.

It may, in passing, be worth mentioning another proposed standard for
webservice-based descriptions of business processes. BPEL4WS (or just BPEL)
is the result of collaboration between IBM, BEA Systems, Microsoft, and others.

66 Chapter 3

It provides a language and notation for the formal specification of business
processes and business interaction protocols. In doing so, it extends the Web
Services interaction model and enables the latter to support business transac-
tions. However, BPEL does not recognize the notion of activities performed by
users or any kind of independent activity; everything in BPEL is a web service
operation, not an activity or work unit. Given the view of SOA presented in
Chapter 2, this seems to be a serious restriction.

The SBVR metamodel specification is designed to support interchange of
business vocabularies and rules amongst organizations. SBVR is designed for
use by business people and for business purposes independent of information
systems designs, although the actual specification is dauntingly large and
complex. It is also intended to provide the business vocabulary and business
rules underpinned by first order predicate calculus (FOPC) with a small
extension into what it calls alethic or ‘modal’ (actually deontic) logic for
transformations by IT staff into MDA PIM system designs. In most cases, such
transformations will not be fully automated. Ross’s RuleSpeak is an example
of a rule notation that complies with SBVR. Rule authoring products such as
RuleArts’ RuleXpress support the SBVR directly. The emphasis on FOPC tends
to situate the SBVR in the database-centric camp, although there is nothing in it
which prevents a broader interpretation. On this broader interpretation, SBVR
is intended to offer a business vocabulary for defining business vocabularies
and business rules in completely technology-independent fashion.

Another OMG standard concentrates on the type models that must underpin
business rules management systems. The Ontology Definition Metamodel
(ODM) aims to provide a common metamodel for a variety of knowledge
representation techniques, with a key objective of supporting the semantic
Web. It includes MOF metamodels for RDFS, OWL, Topic Maps, Entity-
Relation Diagrams, generic Description Logics in several formats, and Simple
Common Logic. The SBVR group has been coördinating with the ODM group
for some time and SBVR supports a superset of the logic supported by
ODM, and there are plans eventually for interchange between ODM/OWL
and SBVR based on an MDA mapping. OWL (Web Ontology Language) is
a web-standard language, written in XML, for processing information on the
web designed to be interpreted by computers rather than people. The term
‘ontology’ refers here to a machine-processable representation of knowledge,
designed for automated inferencing. The chief audience for the ODM is the
developers of rule engines or other tools that capture and prepare ontologies
for inference engines from other declarative forms, such as UML models
and structural business rules. In ODM ontologies, knowledge is assumed to
be monotonic; i.e. over time knowledge can be added but not removed or
contradicted. We discuss the notion of ontology further in Chapter 4.

The ODM is being developed concurrently with SBVR. The draft proposed
ODM includes metamodels of several popular knowledge representation
languages, with mappings between them.

Approaches to Business Rules 67

SBVR covers vocabularies (ontology) and business rules. It makes a strong
distinction between a concept and its expression. It does not standardize
expression but does illustrate business rule expression in three ways: SBVR-SE
(a structured English form that the standard itself uses), BRS RuleSpeak, and
ORM. Other languages and notations are encouraged.

These standards provide quite different viewpoints. ODM is to OWL as
SBVR is to things like RuleSpeak. SBVR deals with business rules, which ODM
does not cover. ODM is for ontologists (business thing analysts) and SBVR is
for business users or business rule analysts. OWL is a semantic web standard,
whereas SBVR is a business modelling standard.

It has been suggested that the definition of a reference architecture for BRMS
would be useful, but it has yet to be agreed exactly what this term signifies.

Another topic of much discussion is the issue of whether it is possible to
share rules across businesses. Although the SBVR supports this semantically,
it doesn’t have anything to say about the practical difficulties. Clearly, if rules
are stored in a repository, then they may be shared across an organization if
they are carefully crafted enough. Another way that rules may be shared (with
users) is through explanation facilities. In this way customers can consume
rules internal to the business: ‘We are rejecting your order because . . . ’ The
technology to do this has been around since MYCIN and is buried in many
of the leading products; especially those that use rete for inference. Having
said this, a bit of ‘hand crafting’ still seems advisable – to make explanations
readable. The BRMS vendors report that, at present, explanation facilities,
as used in KBS-type conversational interfaces, are little used in business rule
engine deployments, except perhaps for testing, auditing and debugging rules.
When business rule engines are used for high-performance process automation
or decision-making, complex logging at run-time of the rule executions must
usually be customized to the audit requirements of the rule service; there
is a trade-off between performance and logging detail. Therefore, most tools
provide some mechanism for turning on a logging mechanism that can later
be interpreted off-line or in a separate process. Or one may add some side-
effects to rules, to record important decisions explicitly.

The third way in which rules could be shared is one organization offers its
rules to another. ‘You can embed our rules in your process.’ The thought may
make you shiver a little. Doesn’t it correspond to the oh-so-common product
line vendor’s wisdom: ‘Our product does it right; you have to change your
business to fit our best practice.’ And there are slightly Orwellian overtones
too.

Rule sharing is an interesting area that may benefit from some standardiza-
tion in the future.

I think that uncertainty management will become increasingly important as
products mature and the range of applications to which they are applied is
extended. The range of techniques available in older expert systems products
included uncertainty management using Bayesian probability and MYCIN-like

68 Chapter 3

certainty factors. Very few expert systems shells permitted fuzzy rules (rules
using the linguistic variables of fuzzy logic) although such rules are embedded
routinely these days in consumer electronics and household durables. The fact
that the SBVR rules out fuzzy rules makes it unlikely that the major vendors
will move in this direction in the foreseeable future. Perhaps, therefore, there
is an opportunity for a small vendor in this niche market.

The most immediate changes are occurring as the BRMS vendors play
technical leapfrog with each other, improving performance, adding new
features, making it easier for non-technical staff to write rules and so on – and
eating each other up through mergers and acquisitions.

3.7 Summary

This chapter surveyed the chief different approaches to business rules. We
considered the dominant database-centric view and its evolution into the
broader church of GUIDE and the Business Rules Group. We noted en passant
that although calculations are rules, they are inherently procedural and so
need to be treated slightly differently in some circumstances. We also noted
the dependency of this view on the CWA: a flawed assumption in many
real-world situations and a dangerous one with respect to requirements
engineering.

Next, we looked at UML and the formal methods tradition and their take on
rules. We saw that rules and constraints could be found by looking for loops in
type diagrams and that rules should be encapsulated by components. Several
useful patterns emerged from this.

Thirdly, we considered the expert systems tradition and its contribution,
including its emphasis on inference rules. We demolished the prejudice that
says that expert systems are different in principle from business rules man-
agement systems although, of course, the technology and the emphasis on
management are different.

I drew attention to the work of Barbara von Halle on the development
process and that of Tony Morgan and Ron Ross on rule writing style.

Lastly, I discussed directions and trends, including emerging standards
such as SVBR and OWL, rule sharing and the controversial issue of uncer-
tainty management.

3.8 Bibliographical Notes

Tony Morgan (2002) and Ron Ross (2003) both give useful guidance on how
to write rules in a clear and standard way. Barbara von Halle’s 2002 book
is essential reading in conjunction with this text if you want to understand

Approaches to Business Rules 69

how to scope and run a business rules project. Chris Date’s highly readable
monograph (Date, 2000) is well worth reading for its profound insights into
relational database theory and practice and the rôle of business rules in that
context.

C H A P T E R

4
Business Rules Management
Technology and Terminology

Say first, of God above or man below,
What can we reason but from what we know?

Alexander Pope (Essay on Man)

This chapter presents the key scientific and technical ideas and terms needed
to understand the rest of this text. We cover several techniques for representing
and discovering knowledge and the main techniques for reasoning with it.

The knowledge representation techniques include rules, semantic networks,
object models, decision tables and decision trees. We also explain the basic
forms of inference used in BRMSs, including techniques of rule induction
and data mining. Finally, we examine the modern notion of ontology and its
significance for BRMS.

In the next chapter we will use this knowledge to gain an understanding of
current BRMS technology.

4.1 Rules and Other Forms of
Knowledge Representation

Most of us are familiar with the notion of data; that is, unstructured sets of
numbers, facts and symbols. These data can convey information only in virtue
of some structure or decoding mechanism. In the limiting case, this distinction
can be illustrated by two people who may communicate via a channel that may
only carry one message consisting of a single symbol. The datum, the symbol
itself, carries no information except in virtue of the presence of the channel,

71

72 Chapter 4

whose structure determines that the receiver may learn from the absence of
a symbol as well from its transmission. This structure is, in turn, determined
by the shared knowledge of the sender and receiver. Two points emerge from
this example. Information always has a context while data may be context
free; thus if I say ‘she shot up’ that is a datum for which I would need to
explain whether the person in question was an astronaut or a heroin addict
to convey unambiguous information. Knowledge is usually seen as a concept
at a higher level of abstraction, and there is a sense in which this is true. For
example, ‘1000’ is a datum, ‘1000 millibars at noon’ could be information about
the weather in some situations, but ‘Most people feel better when the pressure
rises above 1000 millibars’ is knowledge about barometric information and
people. The realization that much knowledge is expressed in the form of
heuristic descriptions or rules of thumb is what gives rise to the conception of
knowledge as more abstract than information.

Apart from asking what it is, epistemologists have traditionally raised
several other problems concerning knowledge, including:

■ How it may be classified;
■ How it is obtained;
■ Whether it has objective reality;
■ If it is limited in principle.

As a preliminary attempt at classification we might note that there are
several evidently different types of knowledge at hand; knowledge about
objects, events, task performance, and even about knowledge itself. If we
know something about objects such as tomatoes we will probably know that
tomatoes are red. However, we are still prepared to recognize a green tomato
as a tomato; so that contradictions often coexist within our knowledge. Object
knowledge is often expressed in the form of assertions, although this is by
no means the only available formalism and OO-style objects or frames are
particularly well suited to this purpose. Here are a few typical assertions:

1. Tomatoes are red.

2. Zoë is very lively.

3. This house is built with bricks and mortar.

Knowledge of causality, however, is expressed typically as a chain of
statements relating cause to effect. A typical such statement might be ‘If you
boil tomatoes with the right accompaniments, chutney results.’

Such knowledge is well represented by sets of rules that can be chained
together or by logical propositions within a particular logical calculus.

To perform a task as commonplace as walking requires a very complex
interacting system of knowledge about balance, muscle tone, etc.; much of
which is held subconsciously and is deeply integrated with our biological
hardware. Knowledge about cognition, often called meta-knowledge, also

Business Rules Management Technology and Terminology 73

needs to be represented when such questions as ‘What do I know?’ and ‘How
useful or complete is a particular knowledge system or inference strategy?’ are
raised. This, I hope, shows that there is no clear boundary between knowledge
and inference, as practices. Each interpenetrates the other; we have inference
with knowledge and knowledge about inference.

There are various dimensions along which knowledge can be evaluated:

■ Scope –What does it cover?
■ Granularity –How detailed is it?
■ Uncertainty –How likely, certain or plausible is it?
■ Completeness –Might we have to retract conclusions if new

knowledge comes to light?
■ Consistency –How easily can we live with its contradictions?
■ Modality –Can we avoid its consequences?

The above dimensions are all connected with some form of uncertainty. This
arises from the contradictory nature of knowledge. Knowledge presents itself
in two basic forms as absolute and relative. To understand this, consider the
whole of the history of science, which is an attempt to arrive at a knowledge
of the environment we inhabit and change our relationship with it. The
scientist develops various theories that explain the experimental evidence
and are further verified in practice. She never suspects that any theory is
comprehensively correct, at least not nowadays. Newton’s models overthrew
the theories of earlier times and were in their turn arguably overthrown
by Einstein’s. If nature exists beyond, before and apart from us then it
represents, in all its complexity, an absolute truth which is (in principle)
beyond knowledge, because nature is not in itself human and knowledge is.
To assume otherwise is to assert that nature is either a totally human construct
or that the whole may be totally assimilated by a fragment of itself. This is
not to say that the finite may not know the infinite, only that the knowledge
may only be relative. Otherwise the finite would contain the infinite and thus
become infinite itself. Thus all truth seeking aims at the absolute but achieves
the relative, and here it is that we see why all knowledge must perforce be
uncertain. This is why the correct handling of uncertainty is one of the primary
concerns for builders of knowledge-based systems of any sort.

The dimensions of knowledge mentioned above all will have some bearing
on the techniques used to represent knowledge. If we choose logic as the
representation then, if our knowledge is incomplete, non-monotonic logic will
be required in preference to first order predicate logic and, in the presence of
uncertainty, a logic capable of handling it will be required. Similar remarks
apply to inconsistent knowledge where contradiction must be handled either
by the logic or the control structure or metalogic. Modality will require the use
of a logic that can deal with necessity and possibility.

74 Chapter 4

If, on the other hand, we choose objects, frames or semantic network
representations, the scope and granularity will affect the amount of storage
we can expect to use. For this, it is useful to have some metrics. Granularity
is often measured in chunks. Anderson (1976) defines a chunk to be a learnt
configuration of symbols which comes to act as a single symbol. The passage
between levels of representation is an important theme in AI research and has
great bearing on the practical question of efficiency of storage and execution.
Generally speaking, you should choose a granularity close to that adopted by
human experts, if this can be discerned, and use chunking whenever gains are
not made at the expense of understandability.

4.1.1 Rules and Production Systems
The concept of reducing systems to a few primitives and production rules for
generating the rest of the system goes back to Post, who with Church and
Turing all worked on the idea of formal models of computers independently.
Post’s original work was concerned with the theory of semigroups, which is of
interest in algebraic models of language. Newell and Simon (1963) introduced
them in the form in which we find them in knowledge based systems as
part of their work on GPS, the general problem solver, which was an attempt
to built an intelligent system which did not rely for its problem solving
abilities on a store of domain specific knowledge, but would inter alia generate
production rules as required. For example, Marvin the robot wants to go
to Boston. He is faced with an immediate problem before this goal can be
satisfied: how to get there. He can fly, walk/swim, ride a bus or train, and
so on. To make the decision he might weigh up the cost and the journey
time and decide to fly, but this strategy will not work because he is not at
an airport. Thus he must solve a subproblem of how to get to an airfield
which runs a service that takes him close to Boston. In production rules
his reasoning so far (he hasn’t solved the whole problem yet) might look
like this:

1. If I want to go to New York then I must choose a transport mode.

2. Flying is a mode of transport which I will choose.

3. If you are at an airport then you can fly.

4. I am not at an airport.

5. If I want to be at an airport then I must choose a transport mode.

Incidentally, we should note the distinction between Marvin’s goal, being
in Boston, and his tasks, the steps to be taken to get there. All reasoning
of this nature can be equally well viewed as goal decomposition or task
decomposition. It can easily be expressed in a UML use case model.

The five statements above consist of assertions and productions, and together
these represent some of the knowledge Marvin needs to begin reasoning about

Business Rules Management Technology and Terminology 75

his problems. There are many reasoning strategies or inference methods he
can employ. For the time being, we are interested in the representation of
knowledge by production rules, as these IF/THEN constructions are known.

The left hand side, A, of a production rule of the form ‘If A then X’ is called
its antecedent clause and the right hand side, X, its consequent. It may be
interpreted in many ways: if some condition is satisfied then some action is
appropriate; if some statement is true then another can be inferred; if a certain
syntactic structure is present then some other can be generated grammatically.
In general the A and X can be complex statements constructed from simpler
ones using the connectives AND and OR and the NOT operator. In practice
only the antecedent is permitted this rich structure so that a typical production
would look like this:

IF (animal gives birth to live young AND animal suckles young)
OR location is mammal-house
THEN animal is mammal

The parentheses disambiguate the precedence of the connectives and avoid
the need to repeat clauses unnecessarily. Production systems combine rules
as if there were an OR between the rules; that is between the antecedents of
rules with the same consequent. A production rule system may be regarded
as a machine which takes as input values of the variables mentioned in
antecedent clauses and puts out values for the consequent variables. Clearly,
it is equivalent to a system with one machine for each consequent variable
unless we allow feedback among the variables. When feedback is present we
enter the realms of inference.

Production rules are easy for humans to understand and, since each rule
represents a small independent granule of knowledge, can be easily added
or subtracted from a knowledge base. For this reason they have formed the
basis of several well known, large scale applications such as DENDRAL,
MYCIN and PROSPECTOR. They form the basis of nearly all BRMS products.
Because the rules are, in principle, independent from each other, they support
a declarative style of programming which considerably reduces maintenance
problems. However, care must be taken that contradictory rules are not
introduced, since this can lead to inefficiency at best and incorrect conclusions
at worst. Another advantage that has been exploited in rule-based systems
is the ease with which a production system can stack up a record of a
program’s use of each rule and thus provide rudimentary explanations of
the systems reasoning. Lastly, productions make fairly light demands on a
processor, although relatively large amount of memory or secondary storage
will typically be required.

Precisely because they are memory intensive, production systems can be
very inefficient. Also it is difficult to model associations among objects or pro-
cesses. This makes the taking of short cuts in reasoning difficult to implement.

76 Chapter 4

The declarative style makes algorithms extremely difficult to represent, and
flow of control is hard to supervise for a system designer. Lastly, the formal-
ism – as described so far – makes no allowances for uncertain knowledge. For
these reasons, it is now becoming more common to find that knowledge based
systems use several different kinds of knowledge representation, usually a
mixture of rules, objects and procedures.

4.2 Knowledge and Inference

The question of how human beings store and manipulate knowledge is a
question we can only touch upon here. The questions of how knowledge comes
about and how it may be substantiated, what philosophers call the problem of
cognition, or epistemology, is sufficiently neglected in the existing literature
of knowledge engineering to deserve a little attention, though. We also ask
how the interconnection between knowledge and inference is mediated. In my
view, it is this relationship that leads to the need for uncertainty management
in expert systems.

Consider two important questions about the representation of knowledge.
First there was the question of how knowledge is represented in the human
or animal brain, and now there is that of what structures may be used for
computer representation. The biological question is the concern of cogni-
tive psychology and psychoanalysis, and will not exercise us greatly here.
However, the theories of psychologists and psychoanalysts have much to
offer in the way of ideas for knowledge discovery techniques. The inter-
disciplinary subject of artificial intelligence has been defined as ‘the study
of mental faculties through the use of computational models’ (Charniak &
McDermott, 1985); exactly the reverse of what interests builders of knowledge
based systems. Perhaps this is why there has been such confusion between
the fields of AI and KBS. One important point to make categorically is that
no one knows how the human brain works, and no one could give a pre-
scription for the best computer knowledge representation formalism even if
they did. Until some pretty fundamental advances are made, the best bet
for system builders is to use whatever formalism best suits the task at hand,
pragmatically.

Apart from its ability to be abstract at various levels, knowledge is concerned
with action. It is concerned with practice in the world. Knowing how people
feel under different atmospheric conditions helps us to respond better to their
moods, work with them or even improve their air-conditioning (if we have
some knowledge about ventilation engineering as well). Incidentally, it also
assumes the existence of various socially evolved measuring devices, such as
the barometer, thermometer and so on. Knowledge is a guide to informed
practice and relates to information as a processor of it; that is, we understand

Business Rules Management Technology and Terminology 77

knowledge but we process information. It is no use knowing that people
respond well to high pressure if you cannot measure that pressure. Effective
use of knowledge leads to the formation of plans for action, and ultimately
to deeper understanding. This leads to a subsidiary definition that knowledge
is concerned with using information effectively. The next level of abstraction
might be called ‘theory’.

From this point of view, inference is to knowledge as processing is to
information. Inference is the method used to transform perceptions (per-
haps via some symbolic representation) into a form suitable for re-conversion
into actions. It may also be viewed as an abstraction from practical activity.
In our experience of the world we observe, both individually and collec-
tively, that certain consequences follow from certain actions. We give this
phenomenon the name causality, and say that action A ‘causes’ percep-
tion B. Later (both in ontogenesis and philogenesis1) we generalize this to
include causal relations between external events independent of ourselves.
From there it is a short step (one originally taken at the end of the Bronze
Age) to the idea that ideas are related in a similar way; that symbol A
can ‘imply’ symbol B. This process of abstraction corresponds, according
to Piaget, to the process of child development. Historically, it corresponds
to the development of the division of labour. In other words, just as tool
making and social behaviour make knowledge possible, so the interdepen-
dencies of the world of nature are developed into the abstract relations
of human thinking; part of this system of relationships corresponding to
inference.

Of course, computers do not partake of social activity, nor yet do they create
tools (although they may manufacture and use them if we include robots in
our perception of computing machinery). As far as inference is concerned,
we cannot expect computers to encompass the richness and depth of human
reasoning (at least not in the foreseeable future). For many thousands of years
it has been convenient, for certain applications in the special sciences, to reason
with a formalized subset of human reasoning. This ‘formal logic’ has been the
basis of most western technological developments and, while not capturing
the scope of human informal reasoning, is immensely powerful in resolving
many practical problems. Thus, we are converging on a definition of inference
which will serve the purposes of knowledge engineering. Inference in this
sense is the abstract, formal process by which conclusions may be drawn from
premises. It is a special kind of metaknowledge about the abstract relationships
between symbols representing knowledge.

Many philosophers have questioned whether true artificial intelligence is
possible in principle. In my view the question is merely maladroit. Clearly,

1Ontogenesis is the origin or developmental history of the being (the individual in this sense)
and philogenesis the origin of the species. I deliberately choose these terms to remind the reader
of the ancient and famous Greek aphorism: ‘‘Philogenesis recapitulates ontogenesis’’.

78 Chapter 4

if we are able in future to genetically (or otherwise) engineer an artificial
human being there is no reason (excluding spurious religious arguments) why
the constructed entity should not be ‘intelligent’ by any normal criteria. If,
on the other hand, the question is posed as to whether electronic computers
of the type currently existing or foreseeable can pass the Turing test, then
matters are a little different. Human cognition is a process mediated by both
society and the artefacts of Man’s construction. It may well be that no entity
(be it a computer or a totally dissimilar organism from outer space) could
ever dissemble its true non-social, non-tool making character sufficiently to
deceive the testers. My belief is that artificial intelligence in this sense is
impossible, but that useful results are to be obtained by trying to achieve an
approximation.

4.2.1 Semantic Networks
A semantic network consists of a set of nodes and a set of ordered pairs of these
nodes called ‘links’, together with an interpretation of the meaning of these.
Terminal links are called ‘slots’ if they represent properties (predicates) rather
than objects or classes of objects. A frame is a semantic net representing an
object (or a stereotype of that object) and will consist of a number of slots and
a number of outbound links. Frames correspond to both classes and instances
in object modelling. This unification is explained below.

Semantic networks and object models are both used to represent knowledge
about objects and the static relationships among them rather than knowledge
about the dynamic relationships expressed by rules. Object models can express
knowledge such as ‘all healthy dogs have two eyes’. Rules can express
knowledge such as ‘if a dog starts to bark then an intruder may be present’.
These are two quite distinct kinds of knowledge. Both of them are essential in
dealing with any problem.

Semantic nets generalize object models. Classes and their instances are rep-
resented uniformly in the former whereas, in object-oriented programming,
there is a profound distinction. In both representations, we have associa-
tions (links) between classes. But in object-oriented programming inheritance
between classes and classes and between classes and instances is treated dif-
ferently. We can say that a Dog is a kind of Mammal but, when we encounter
Fido, we have to say that Fido is a Dog. Furthermore, once created, Fido is
a dog forever. He can’t ever migrate to the class of GuardDogs during his
lifetime; he’s destined to be just plain old Dog till he dies. Obviously, this
is not the way most people think or express themselves in natural language.
Because of this limitation, it is tricky to model rôles, such as guard dog or
retired person. In fact, patterns are used to get round the problem (state and
visitor usually).

The semantic network approach corresponds far more closely to common
sense. In HaleyAuthority, using an example supplied by Haley Systems, we can

Business Rules Management Technology and Terminology 79

say ‘an applicant provides an answer to a health question’. Health questions
are a kind of question. Questions have instances like ‘What is your name?’
whilst health questions have instances like ‘Do you smoke?’ or ‘Question
17’. We can also, in the same underwriting application, talk readily about
dangerous occupations specifying, perhaps, ‘Iraq security consultant’ as an
instance.

Semantic networks are thus far more expressive. Nevertheless they can be
readily (and automatically) mapped onto the Java object model.

Let us now descend from these abstract considerations and ask how com-
puters can be made to simulate reasoning.

4.3 Inference in Business Rules
Management Systems

Given that knowledge is stored in a computer in some convenient representa-
tion or representations, the system will require facilities for navigating through
and manipulating the knowledge if anything is to be achieved at all. Inference
in the usual logical sense is this process of drawing valid conclusions from
premises. In our wider sense it is any computational mechanism whereby
stored knowledge can be applied to data and information structures to arrive
at conclusions which are to be plausible rather than valid in the strict logical
sense. This, of course, poses problems in relation to how to judge whether the
conclusions are reasonable, and how to represent knowledge about how to
test conclusions and how to evaluate plausibility. Thus, we can see that knowl-
edge representation and inference are inextricably bound together, though as
opposites.

4.3.1 Forward, Backward and Mixed Chaining Strategies
Up to now we have only considered the problem of how to infer the truth
value of one proposition from another using a rule of inference in just one step.
Clearly however, there will be occasions when such inferences (or proofs) will
involve long chains of reasoning using the rules of inference and some initial
suppositions (or axioms). We now turn to the inference methods that feature
strongly in all rule-based systems and are often supplied as standard in BRMS
products.

Forward Chaining

To fix ideas, consider a system whose knowledge is represented in the form
of production rules and whose domain is the truth of abstract propositions:
A, B, C, . . .

80 Chapter 4

The knowledge base consists solely of rules as follows:

Rule 1: A and B and C implies D
Rule 2: D and F implies G
Rule 3: E implies F
Rule 4: F implies B
Rule 5: B implies C
Rule 6: G implies H
Rule 7: I implies J
Rule 8: A and F implies H

To start with, assume that the system has been asked whether proposition H
is true given that propositions A and F are true. We will show that the system
may approach the problem in two quite distinct ways. Assume for the present
that the computer stores these rules on a sequential device such as magnetic
tape, so that it must access the rules in order unless it rewinds to rule 1.

What I am about to describe is a basic forward chaining inference strategy.
This itself has several variants: we may pass through the rules until a single
rule fires, we may continue until all rules have been processed once, or we may
continue firing in either manner until either the conclusion we desire has been
achieved or until the database of proven propositions ceases to be changed
by the process. A little thought shows that this gives at least four different
varieties of forward chaining. This will become clearer as we proceed.

The assumption is that A and F are known to be true at the outset. If we
apply all the rules to this database the only rules that fire are 4 and 8 and
the firing of rule 8 assigns the value true to H, which is what we were after.
Suppose now that rule 8 is excised from the knowledge base. Can we still
prove H? This time only rule 4 fires, so we have to rewind and apply the rules
again to have any chance of proving the target proposition. Table 4.1 shows
what happens to the truth values in the database on successive applications of
the rules 1 to 7.

So, H is proven after five iterations. Note, in passing, that further iterations
do not succeed in proving any further propositions in this particular case. Since
we are considering a computer strategy, we need to program some means by
which the machine is to know when to stop applying rules. From the above
example there are two methods; either ‘stop when H becomes true’ or ‘stop
when the database ceases to change on rule application’. Which one of these
two we select depends on the system’s purpose; for one interesting side-effect
of the latter procedure is that we have proved the propositions B, C, D and G
and, were we later to need to know their truth values, we need do no more
computation. On the other hand, if this is not an important consideration we
might have proved H long before we can prove everything else.

It should be noted that we have assumed that the rules are applied ‘in
parallel’, which is to say that in any one iteration every rule fires on the

Business Rules Management Technology and Terminology 81

Table 4-1 Naı̈ve forward chaining.

Iteration number

Proposition 0 1 2 3 4 5 6 7

A T T T T T T T T
B T T T T T T T
C T T T T T T
D T T T T T
E
F T T T T T T T T
G T T T T
H T T T
I
J

basis that the data are as they were at the beginning of the cycle. This is
not necessary, but we would warn of the confusion that would result from
the alternative in any practical applications; a knowledge-based, and thus
essentially declarative system, should not be dependent of the order in which
the rules are entered, stored or processed unless there is some very good
reason for forcing modularity on the rules. Very efficient algorithms, notably
the rete algorithm, have been developed for this type of reasoning.

These strategies are known as forward chaining or data directed reasoning,
because they begin with the data known and apply the rules successively to
find out what results are implied. This strategy is particularly appropriate in
situations where data are expensive to collect but potentially few in quan-
tity. Typical domains are loan approval, financial planning, process control,
scheduling, the configuration of complex systems and system tuning.

In the example given, the antecedents and consequents of the rules are all of
the same type: propositions in some logical system. However, this need not be
the case. For example, for the industrial control applications the inputs might
be measurements and the output control actions. In that case it does not make
sense to add these incommensurables together in the database. Variations on
forward chaining now include: ‘pass through the rules until a single rule fires
then act’; ‘pass through all the rules once and then act’.

Backward Chaining

There is a completely different way we could have set about proving H, and
that is to start with the desired goal ‘H is true’ and attempt to find evidence
for this to be the case. This is backward chaining or goal directed inference. It
is usual when the only thing we need to do is prove H and are not interested
in the values of other propositions.

82 Chapter 4

Backwards chaining arises typically in situations where the quantity of
data is potentially very large and where some specific characteristic of the
system under consideration is of interest. Most typical are various problems of
diagnosis, such as medical diagnosis or fault finding in electrical or mechanical
equipment. Most first generation expert system shells were based on some
form of backward chaining, although some early production rule languages
such as OPS5 used forward chaining.

Returning to our original eight rules, the system is asked to find a rule that
proves H. The only candidate rules are 6 and 8, but 6 is encountered first. Let
us ignore rule 8 for the present. At this point we establish a new subgoal of
proving that G is true, for if we can do this then it would follow that H were
true by modus ponens. Our next subgoal will be to prove that D and F are true.
Recall that we have told the system that A and F are true, so it is only necessary
to prove D. The whole proof proceeds as shown in Figure 4.1.

The observant reader will have noticed that we could have proved H in one
step from rule 8. The point is that rule 8 was not reached and the system could
not know in advance that it was going to be quicker to explore that rule than
rule 6. On the other hand, if the original line of exploration had failed (suppose
rule 4 was deleted) then the system would have had to backtrack and try rule
8. Figure 4.2 illustrates the proof strategy more pictorially.

Backward chaining can thus be viewed as a strategy for searching through
trees built in some solution space. The strategy we have described is usually
called depth-first search in that context. We now look at other strategies.

Mixed Strategies

We have looked at two fundamental forms of inference, forward and backward
chaining. In practice, most reasoning is a mixture of at least these two.

Trying to prove H
Try rule 6
Trying to prove G
Try rule 2
F is true, trying to prove D
Try rule 1
A is true, trying to prove B
Try rule 4
It works. B is true
Backtrack to trying rule 1
Trying to prove C
Try rule 5, it works C is true
Apply rule 1, D is true
Apply rule 2, G is true
Apply rule 6, H is true
Goal achieved; stop.

Figure 4-1 Proof by backward chaining or recursive descent.

Business Rules Management Technology and Terminology 83

H

G

D

B C

B

F

F

F

A

(Rule 6)

(Rule 2)

(Rule 1)

(Rule 4) (Rule 5)

(Rule 4)

Figure 4-2 A proof tree. Propositions in boxes are those found in the database (i.e. those
known to be true).

Given some initial assumption, we infer a conclusion by reasoning forwards
and then apply backward chaining to find other data that confirm these
conclusions. Alternatively, we start with a goal, backward chain to some
plausible reason and then forward chain to exploit the consequences of this
new datum. This is often called opportunistic chaining or, less succinctly,
‘backwards reasoning with opportunistic forward chaining’, because the data
directed search exploits the consequences of data as they become available
‘opportunistically’. This method is commonly found in the better BRMS
products. Another way of looking at it is to observe that every rule becomes
a demon.

Rete

There have been several attempts to construct computer languages specifically
for knowledge representation. The best known, early languages were probably
KRL (Bobrow and Winograd, 1977) and OPS5 (Forgy, 1982). The basic form
of representation in OPS5 is production rules. OPS5 first achieved notoriety
because it was used in the highly successful XCON system, which was used
by Digital Equipment Corporation (DEC) to configure orders for VAX
computers. The fact that a large chunk of XCON, concerned with database
access, was written in the procedural language Bliss32 is rarely mentioned, but
that does not change the fact that the knowledge incorporated in the system
is the key to its success. DEC’s success rate in the configuration task increased
by a factor of more than two, resulting in huge savings. Even more important

84 Chapter 4

is that XCON enabled DEC to maintain its distinctive policy of delivering just
what the customer asks for, however non-standard. The maintenance of the
OPS5 rulebase was in fact a vastly costly operation, because of the continual
updates in the product range.

Rete is a very efficient mechanism for solving the difficult many-to-many
matching problem in artificial intelligence. Rete is an algorithm that evaluates
a declarative predicate against a changing set of data in real time. Consider
an SQL select statement that executes a WHERE clause to find matching rows.
Rete uses a progressive relational join to update a view of matching rows. As
rows are added to any table, it’s evaluated against the predicate and mapped
into or out of the matching view.

Rete is much more efficient at determining the relevance of rules, given
particular data, than the equivalent nested if/then/else or select/case con-
structs. The greater the number of rules, the greater rete’s advantage over
procedural code. This applies to rule execution. Of course, writing the
rules is also far more efficient in a BRMS. These two points are critical in
leading modern corporations to considering BRMS technology as a viable
next step.

When a rulebase becomes large, the naı̈ve algorithm for forward chaining
illustrated in Table 4.1 can become very slow because few changes are made
to the facts in working memory at each cycle. Rete compiles the rules into a
network of predicate tests, inferences and actions. The rete network modifies
itself after each rule firing, so that unneeded rules do not fire. For further details
of rete see, for example, Russell and Norvig (1995). Each product reviewed
here has a proprietary improvement on the basic published algorithm. These
improvements are largely responsible for the variation in performance of the
three rule engines. The three engines all also modify basic rete to permit
backward and mixed chaining.

4.4 Data Mining and Rule Induction

The other principal mode of inference is induction. Broadly, induction enables
us to infer new rules from collections of facts and data. The word ‘induc-
tion’ has two senses: the Aristotelian sense of a syllogism in which the major
premise in conjunction with instances entails the generalization, or the sense
of empirical generalization from observations. A third sense, the principle
of mathematical induction, need not concern us here. It is with the second
sense we shall be concerned. Most authorities talk about induction in terms of
probabilities; if we observe that sheep on two hundred hillsides all have wool
and four legs, then we may induce the generalization ‘all sheep have wool and
four legs’. Every observation we then make increases the probability of this
statement being true, but never confirms it completely. Only one observation

Business Rules Management Technology and Terminology 85

of a shorn, three-legged merino is needed to refute the theory. From our point
of view, this cannot be correct. There are many kinds of uncertainty, and
it can be said equally that our degree of knowledge, belief or the relevance
of the rules is what is changed by experience rather than probability. The
obsession with probability derives (probably) from the prevailing empiricist
climate in the philosophy of science; experience being seen only as experiments
performed by external observers trying to refute some hypothesis. Another
view is possible. The history of quantum physics shows that we can no longer
regard observers as independent from what they observe. Experience takes
place in a world of which we humans are an internal part but from which
we are able to differentiate ourselves. We do this by internalizing a repre-
sentation of nature and checking the validity of the representation through
continuous practice. However, the very internalization process is a practice,
and practice is guided by the representation so far achieved. From this point
of view, induction is the process of practice that confirms our existing theories
of all kinds. The other important general point to note is that the syllogism
of induction moves from the particular to the general, whereas deductive and
abductive syllogisms tend to work in the opposite direction; from the general
to the particular.

The probabilistic definition of induction does have merit in many cases,
especially in the case of new knowledge. It is this case that current computer
learning systems always face. In nearly every case, computer programs which
reason by induction are presented with a number of examples and expected to
find a pattern, generalization or program that can reproduce and extend the
training set.

Suppose we are given the training set of examples shown in Table 4.2. The
simplest possible algorithm enables us to infer that:

IF female
THEN analyst

IF male AND (blue eyes OR grey eyes)
THEN programmer

IF brown hair AND brown eyes
THEN operator

Table 4-2 Training set.

Name Eye colour Hair colour Sex Job

J. Stalin blue blonde male programmer
A. Capone grey brown male programmer
M. Thatcher brown black female analyst
R. Kray brown brown male operator
E. Braune blue black female analyst

86 Chapter 4

However, the addition of a new example (brown eyes, brown hair, female,
programmer) makes the position less clear. The first and last rules must be
withdrawn, but the second can remain, although it no longer has quite the
same force.

The first attempts at machine learning came out of the cybernetics movement
of the 1950s. Cybernetics, according to its founder Weiner (1948), is the science
of control and communication in animal and machine. Several attempts were
made, using primitive technology by today’s standards, to build machinery
simulating aspects of animal behaviour. In particular, analogue machines
called homeostats simulated the ability to remain in unstable equilibrium;
see Ashby (1956). Perceptrons (two-layer neural nets) are hinted at in Weiner’s
earliest work on neural networks, and, as the name suggests, were attempts to
simulate the functionality of the visual cortex. Learning came in because of the
need to classify and recognize physical objects. The technique employed was
to weight the input in each of a number of dimensions and, if the resultant
vector exceeded a certain threshold, to class the input as a positive example.
Neural network technology has now overcome an apparent flaw discovered
by Minsky and Papert (1969), and impressive learning systems have been built.

Rule based learning systems also exist. Quinlan’s interactive dichotomizer
algorithm, known as ID3, selects an arbitrary subset of the training set and
partitions it according to the variable with the greatest discriminatory power
using an information theoretic measure of the latter. This is repeated until a
new rule is found, which is then added to the rule set as in the above example
on jobs. Next the entire training set is searched for exceptions to the new rule
and if any are found they are inserted in the sample and the process repeated.
The difficulties with this approach are that the end result is a sometimes
huge decision tree which is difficult to understand and modify, and that the
algorithm does not do very well in the presence of noisy data, though suitable
modifications have been proposed based on statistical tests.

One of the problems with totally deterministic algorithms like ID3 is that,
although they are guaranteed to find a rule to explain the data in the training
set, if one exists, they cannot deal with situations where the rules can only
be expressed subject to uncertainty. In complex situations, such as weather
forecasting or betting – where only some of the contributory variables can be
measured and modelled – often no exact, dichotomizing rules exist. With the
simple problem of forecasting whether it will rain tomorrow it is well known
that a reasonably successful rule is ‘if it is raining today then it will rain
tomorrow’. This is not always true, but it is a reasonable approximation for
some purposes. ID3 would reject this as a rule if it found one single counter-
example. Statistical tests, however useful, require complex independence
assumptions and interpretative skills on the part of users.

A completely different class of learning algorithm is based on the concept
of adaptation or Darwinian selection. The general idea is to generate rules at
random and compute some measure of performance for each rule relative to

Business Rules Management Technology and Terminology 87

the training set. Inefficient rules are deleted and operations based on the ideas
of mutation, crossover and inversion are applied to generate new rules. These
techniques are referred to as genetic algorithms.

Genetic algorithms are also closely related to neural nets as pattern clas-
sification devices. Genetic programming is a form of machine learning that
takes a random collection of computer programs and a representation of some
problem and then ‘evolves’ a program that solves the problem. It does this by
representing each program as a binary vector, or string, that can be thought
of as a chromosome. The chromosomes in each successive sample can ‘mate’
by crossing over portions of themselves, inverting substrings of their bodies
and mutating at random2. Programs that score well against some objective
function that represents the problem to be solved are allowed to participate
in the next mating round and, after many generations, there is a good chance
that a successful–but not necessarily optimal–program will evolve.

None of the products considered herein offer any sort of rule induction
facility. However, there are several products on the market that do and we
envisage some benefit from taking the output from such systems and offering
the resultant rules to a BRMS.

4.5 Techniques for Representing Rules

In all BRMS products, rules are represented as sentences, usually containing
the words if and then. Morgan (2002) recommends a better style aimed at
removing ambiguity, making relationships explicit, avoiding obscure termi-
nology, removing wordiness, and so on. His style is remarkably close to natural
language. He ends up preferring forms such as

A loan may be approved
if the status of the customer is high and the loan
is less than 2000

unless the customer has a low rating

to

if the customer status is high and the loan is less than
2000 and the customer does not have a low rating

then approve the loan
if the customer status is high and the loan is less than

2000 and the customer has a low rating
then don’t approve the loan

2Given two binary strings (representing chromosomes) 110101 and 111000, their crossover (at
the fourth place) could either be 110000 or 111101. Crossing over at the first place corresponds to
choosing one of the original strings.

88 Chapter 4

In some products there are representations alternative to rules. We now
consider two of these.

4.5.1 Decision Trees and Decision Tables
Decision Trees

Behavioural science has evolved several theories as to how people reach
decisions. Such descriptive theories usually conclude by stating that managers
do not make decisions on a purely rational basis. To help managers improve
their decision making, however, a normative theory such as decision analysis
is required. Decision analysis consists of three principal stages:

1. Determine problem structure and objective function (desirable outcome
and measure thereof);

2. Assess uncertainties and possible outcome states and their
consequences;

3. Determine a ‘best’ strategy for achieving a desirable outcome.

A decision problem is characterized as one of selecting one from several
options so as to maximize some function of possibly many variables, attributes
or criteria. The naı̈ve formulation is to organize these into a table of options
against attributes. Many methods are available to achieve the requisite selec-
tion: maximizing, minimaxing, regret and so on. The disadvantage of decision
analysis of this kind is that complex problems are sometimes oversimplified
by it, a method of overcoming this will be considered in due course. The
so-called modelling school of decision analysis would attempt to construct a
more explicit model of the relationships, usually as a decision tree such as the
one in Figure 4.3.

Open
structure

Closed
structure

Seismic
test

Drill

Do not
drill

Oil

No oil

Oil

No oil

?

Drill

Do not
drill

Drill

Do not
drill

Oil

No oil

Figure 4-3 The oilman’s problem.

Business Rules Management Technology and Terminology 89

In most professions and businesses, decision making takes place in an envi-
ronment where the cost of obtaining precise information is unjustifiably high.
In recognition of this fact the classical theories of decision analysis, operational
research and decision theory make extensive use of normative statistical tech-
niques. The decision problem is either a question of choosing an optimal course
of action, such as the ideal mix of ingredients in animal foodstuffs, subject to
constraints such as lowest cost and some requisite nutritional value, or it is
concerned with generating a plausible set of alternatives. It is the first case,
which has received most attention. A decision problem, in this latter sense,
is given by stating a set of options, a set of states, a transformation which to
every pair consisting of a state and an option returns a new state representing
the consequence of choosing that option, ceteris paribus. Since the null option
(do nothing) is always included, this provides a model of the evolution of
the system to which may be added feedback and/or feedforward control of
options.

Thus, we see that cybernetics becomes a special case of decision theory, and
indeed many of the mathematical techniques are held in common. In addition,
decision models include a utility function, which represents the ranking of
outcomes with regard to their desirability in a given context. This function
is analogous to the metrics required for homeostasis in cybernetic systems.
In the cases where decisions can be made in the presence of certain data, the
techniques of operational research, such as linear and dynamic programming
and systems dynamics, are the most commonly used. This leaves us with
essentially only one tool: the decision tree. A decision tree is merely a hierarchy
showing the dependencies between decisions. It is a shorthand description of
some aspects of the general decision model whose chief value is to clarify our
thinking about the consequences of certain decisions being made. However,
with the introduction of probabilities the decision tree becomes a powerful
tool.

To see this, consider a very simple example. If one wishes to open a sweet
shop, one must decide where it is to be located. There are, let us suppose,
three options: near a school in an expensive suburb, in the busy high street or
opposite a playground in a deprived inner city area. Let us call these options
A, B and C. To each of these we can assign a probability of financial success,
based on basic cost/revenue calculations and the history of similar ventures.
In each case, however, there are other decisions to make, such as how much
to invest in stock. Suppose the options and probabilities of success are as
displayed in Figure 4.4, where X, Y and Z represent these other decisions.

Combining the probabilities shows that option C is the most likely to
succeed, despite the fact that on the basis of the first level of decision it
was the worst option. Exploring the decision tree further might change the
position again. Enhancements of this application of probability theory have
proved most effective in attacking a wide range of decision problems. It is

90 Chapter 4

A B C

Open shop

X Y Z X Y Z X Y Z

0.7 0.8 0.6

0.70.7 0.7 0.90.9 0.90.40.5 0.3

Figure 4-4 A decision tree with probabilities.

also possible to use certainty factors in place of probabilities, in which case the
arithmetic is different.

In many cases the branches of a tree will be annotated with and followed
when particular ranges of values hold for a variable. For example we might
set a particular credit limit for a client with annual income in the range 50,000
to 100,000.

Decision Tables

Decision tables represent the same knowledge and rules as decision trees in a
tabular format. For example, Table 4.3 is equivalent to a ruleset stating:

If card type is ‘‘Standard’’
then discount code is 1
unless age is between 18 and 30

If card type is ‘‘Standard’’ and age is between 18 and 30
then discount code is unknown

If card type is ‘‘Gold’’
then discount code is 2
unless age is between 31 and 40

If card type is ‘‘Gold’’ and age is between 31 and 40
then discount code is 1

If card type is ‘‘Platinum’’
then discount code is 3
unless age is between 31 and 40

If card type is ‘‘Platinum’’ and age is between 31 and 40
then discount code is 1

We can see that the techniques of rule induction discussed above may be
applied to extract the rules from the table automatically. We can also generate
a table from a ruleset.

The main problem with decision tables is that they grow unmanageably
large when there is a large number of conditions in the rulebase. Even in the
example above, where this is not the case, six rules translate to 72 table entries.

Business Rules Management Technology and Terminology 91

Table 4-3 A decision table.

Min age Max age Card type Discount code

18 30 Standard
18 30 Gold 2
18 30 Platinum 3
31 40 Standard 1
31 40 Gold 1
31 40 Platinum 1
41 50 Standard 1
41 50 Gold 2
41 50 Platinum 3
51 60 Standard 1
51 60 Gold 2
51 60 Platinum 3
61 70 Standard 1
61 70 Gold 2
61 70 Platinum 3
71 120 Standard 1
71 120 Gold 2
71 120 Platinum 3

Their advantage arises when the organization already holds the knowledge in
this form: pricing charts, rate tables, etc.

There is a cruder approach that regards each row in the table as a separate
rule; so that row two would correspond to a rule stating:

If card type is ‘‘Gold’’ and age is between 18 and 30
then discount code is 2

Clearly this approach gives as a larger number of rules – one for each
row – and the rules will be hard to read and understand. We characterize
the approach as row-oriented decision tables. Rule subsumption checks may
allow the author to tidy up the resultant rulesets, but we think the induction
approach is far sounder. It is better to use a data mining system to extract rules
from decision tables and feed them into a BRMS.

4.6 Uncertainty Management

To arrive at a decision in the presence of absolute certainty with respect to
all the relevant facts and considerations is a luxury rarely afforded to human
beings. Assumptions must be made about data values that are not available,
about events which may or may not have occurred, and about consequences
likely to flow from a given decision. Many of these assumptions may be made
unconsciously or subconsciously. Some may be made explicitly, with whatever
degree of justification may be adduced. Mathematics may be prayed in aid of

92 Chapter 4

some assumptions made on statistical bases. Otherwise, rules of thumb and
accrued experience serve as a guide.

In business, there are many sources and kinds of uncertainty including
random events, experimental errors, errors of measurement, uncertainty in
judgement, lack of evidence or lack of certainty in evidence.

Classic expert systems used three methods of handling uncertainty:

■ vague terms (linguistic labels) in the type model;
■ Bayesian probabilities; or
■ certainty factors.

More rarely, some used a fourth method: fuzzy logic. Current BRMS
offerings do not major on uncertainty management. For most of them the only
method is that of using vague terms in the type model. In this crudest of
methods, we ascribe true of false values to terms that are inherently vague. For
example, if my physician knows a rule that states ‘Prescribe a pain killer if pain
is severe,’ then she might ask me ‘Is the pain severe or slight?’ Alternatively,
she might press on the affected region of my body and judge the severity of
the pain from the intensity of my reaction. Either way she will have to assign
a truth value to the attribute ‘severe’. There is judgmental uncertainty, but it is
concealed by the labels and left up to the humans to estimate.

In systems based on Bayesian probability, inference is predicated on Bayes’
theorem:

Prob{X is A} = Prob{Y is B|X is A}.Prob{X is A}
Prob{Y is B}

One interpretation of this formula is to say that new evidence modifies the
previously believed probability of some event or hypothesis. The revised (or
a postiori) probability in the hypothesis is the prior (or a priori) probability,
multiplied by the ratio of the conditional probability of the event occurring
given the hypothesis as true to the overall probability of the event occurring.
This is the method used by most email spam filters.

The key point of the Bayesian approach is not that its results differ from
classical probability theory in situations where both approaches may be taken,
but rather that it allows us to form a priori probabilities for hypotheses in
situations where detailed knowledge does not allow us to establish strict,
objectively determined odds. In this sense, the Bayesian approach is about
belief in the likelihood of outcomes rather than mere probability.

Certainty factors are also about belief but not about likelihood. The technique
was at the core of MYCIN, but there have been several variants of it. The
simplest assigns a numerical measure of belief in any fact or rule between – 1
(false) and +1 (true). Uncertain terms in the premise are combined: ANDs
are computed as minima and ORs as maxima. This is essentially the same
mechanism used in fuzzy set theory as well. These numbers may be combined
under inference too. For example, suppose we know these rules:

Business Rules Management Technology and Terminology 93

1. If the engine will not turn over
then the battery is flat {0.6}

2. If the horn will not sound
then the battery is flat {0.9}

Assuming both pieces of evidence to be present, Shortliffe’s formula, as used
in MYCIN, would give an accrued belief in the hypothesis of a flat battery of
0.96.

Fuzzy logic enables us to conceive of rulesets such as the following:

1. Our price should be low
2. Our price should be about 2*direct.costs
3. If the opposition.price is not very high then

our price should be near the opposition.price

The machinery of fuzzy logic allows this formal language to look very much
like English, but this is not natural language; it is compilable code. To make it
work we need to set up definitions of fuzzy sets like ‘low’ and ‘high’ for the
‘linguistic variable’ Price as illustrated in Figure 4.5 (a and b). The fuzzy sets

Price
0

1

Price
0

1

Price
0

1

Price
0

1

Low High

(a) Low (b) High

(c) About D (d) Low and about D

D D

Very high

Price
0

1

(e) Not very high = 1 - HIGH^2

High

Very high

Not very high

Price
0

1

(f) Low and about D and near O1

O1

X

Figure 4-5 Fuzzy sets, hedges and connectives.

94 Chapter 4

are defined as vectors over the scale of relevant prices for, say, washing
powders. ‘Very’ is an operator that takes the square of every point of the curve
representing the fuzzy set. The result ‘very high’ is shown in 4.5 (b) too. The
words: ‘our’, ‘should’ and ‘the’ are noise words and ignored by the compiler.
‘Be’ is a synonym for ‘is’.

As the variable Price increases from zero, the truth value of ‘low’ falls
off; eventually ‘high’ begins to become true, until we reach maximum
truth at some point. The rules also contain the hedges: ‘about’, ‘near’,
‘not’ and ‘very’. The set ‘very high’ is usually computed as the square
root of ‘high’. To get ‘not’, subtract the truth value from one. ‘Near’ and
‘about’ are synonyms and are usually represented as a bell-shaped or tri-
angular fuzzy set either side of the crisp number concerned; D in the
Figure 4.5(c).

The above rules are quite realistic in the context of fast moving consumer
goods marketing. We want the good to be cheap and affordable; but we also
want to cover costs and make a profit (rules 1 and 2). Given a direct cost of 13,
the fuzzy mathematics of this would take the intersection (i.e. the minima) of
‘low’ and ‘about 26’; this is marked as X in Figure 4.5(d).

Statement 1 in the policy means that the price should be as compatible as
possible with ‘low’; i.e. the price ought to be exactly zero. This contradicts
the assertion that it should be twice direct costs; a result of the need to
turn a profit based on experience. The remarkable thing is that the fuzzy
policy will automatically resolve this contradiction by taking that price that
gives the maximum truth value for the intersection of the fuzzy sets. This is
labelled X in Figure 4.5 (d). The peaked intersection now represents an elastic
constraint, or feasible region, for price. Figure 4.5 (c) shows the fuzzy set ‘about
2*direct.costs’.

Rule 3 must now be interpreted. We take an actual value for opposition
price, O, and compute how true ‘not very high’ is for it. This truth value is T.
The fuzzy inference rule is interpreted as truncating the output fuzzy set ‘near
opposition’ at the level T. We now arrive at the result by taking the union of
‘low and about D’ with this truncated set. D stands for ‘2*direct.costs’ here.
Finally, if we want an actual value for Price rather than a fuzzy set, we must
defuzzify. In this case, we choose the mean of maxima method to do this.
Figures 4.6 (b) and (c) illustrate that there are two cases. As the value of T
exceeds the maximum truth in the feasible region there is a sudden jump in
output from R2 to R1. This models exactly what happens in real life; decision
output is discontinuous. In process control, smooth output is required and the
centre of moments defuzzification rule would be used.

The purpose of this example is to show how fuzzy rules, used to capture
business policy, can be made to provide quite precise, although perhaps
non-linear and complex, models of behaviour.

Business Rules Management Technology and Terminology 95

(c) Case 2: Ti < max A(b) Case 1: Ti > max A

(a) Ti is the truth of NOT VERY HIGH for Oi

Price
0

1

Not very high

O1 O2

T1

T2

Price
0

1

R1

T1

Price
0

1

R2

T2

Figure 4-6 Fuzzy inference.

Sometimes, even when a BRMS cannot deal with uncertainty, it may be used
in conjunction with other software that can. For example, predictive models
(e.g. score models, neural net models, generated decision trees, etc.) can be
generated by Fair Isaac’s Model Builder analytics tools and either mapped
to rules (e.g. as a decision tree) or plugged into a ruleflow (e.g. a neural
net model). In this way, the decision lifecycle may be stated, for example, as
follows:

1. Create a decision tree for defining a business strategy as a part of a
decision ruleflow.

2. Execute this multiple times in production.

3. Use the production data (decisions and their later consequences) in
Model Builder to define a new or refined decision tree.

4. Replace the original tree with a new one and test against old data; run it
alongside for comparison, or just replace it.

5. Iterate as needed.

The only other way that a BRMS can appear to deal with uncertainty is to
rely on the uncertainty inherent in natural language.

96 Chapter 4

4.7 Ontology and Epistemology: the Rôle of
Object Modelling in Natural Language Processing

There are, arguably, four basic branches of Philosophy: Epistemology, Ontol-
ogy, Ethics and Aesthetics. All other branches of Philosophy, such as the
Philosophies of Politics or Language, draw on these disciplines to some extent.
All of them are relevant to system development.

Epistemology concerns what we know. Some knowledge can be expressed
as procedures, rules and relationships. Epistemology includes the science of
method: Methodology. Ontology, sometimes called Metaphysics, concerns
what exists: what are the objects in our world. Aesthetics is clearly relevant to
ergonomics and usability. Ethics or Moral Philosophy enquires into whether
the systems we build are useful, legal or morally sound.

Business rules management systems cannot be built without paying atten-
tion to both rules (epistemological facts) and the objects that these rules refer to.
In recent years, computer scientists have come to use the uncapitalized word
‘ontology’ to mean the objects and concepts within a domain of discourse; thus
the domain ontology. There has been much research on the topic of ontologies,
but all we need to know here is that a type model or a semantic network can
be used to represent any domain ontology that we are likely to need in the
context of a business rules management system.

Like many other people in the field, I believe that getting a computer
to understand completely free-form natural language is impossible. This is
so because understanding a sentence requires context and much context is
socially generated; e.g. it may rely on such thought processes as sympathy or
‘putting oneself in someone else’s position’. Until computers become social
creatures, therefore, they cannot be intelligent enough to understand natural
language. In particular, any attempt to represent rules in natural language
will fail unless there is a well-constructed model of the objects and concepts
in the domain, their attributes and relationships. This type model or domain
ontology provides the business vocabulary that the rules can use to talk about
a problem. Furthermore, there must be a link between the type model and the
rule language. As a matter of fact, the same applies to use cases, which cannot
be interpreted with a type model to provide the vocabulary.

All BRMS products require that you build such an object model or database.
The only questions are the order in which you create the models (rules first
or objects first) and the degree of integration of the models. In practice, this is
best done iteratively. If you already have a database or object model, you can
express the rules (and indeed the use cases) in terms of it. But you may also
elicit rules that use terms not yet in the vocabulary; this will lead to changes to
the type model.

One approach, used in early expert systems shells, is to create the objects
automatically by parsing or compiling the rules. This leads to an impoverished,

Business Rules Management Technology and Terminology 97

flat object model that often can’t distinguish objects from their attributes and
makes it difficult to attach methods or rulesets to objects, and is complex
to interface to existing business data. A better approach is to create a good,
packaged and layered component model separately from the rules. This is
usually not a trivial task, and many organizations do not yet have sufficiently
advanced component modelling skills.

Date, Halle, Morgan, Ross and the Business Rules Management Group all
talk about ontologies as ‘fact models’. In their terminology, terms are objects
(i.e. classes or instances) or attributes of objects and facts are associations
amongst objects, including specialization or aggregation associations. We will
stick with the term ‘type model’. In particular, Halle legislates that such fact
models should be ‘devoid of methods’. This is an error. While we do not want
the business rules buried deep in the object model, there is no way that we
want the more mundane procedures that define types elevated to the level
of business rules. For example, we would not wish to promote the rules of
arithmetic that define real numbers of dates to the level of business rules.

If natural language processing is to be attempted, we need to do two
additional things. The model needs to reflect the way people think about
objects and the way they construct sentences to talk about them.

The way normal people think about objects is not quite the same as
the semantics of a C++ or Java object model. For example, in rule-based
applications, rôles are important concepts and, in real life, instances often
change rôles or adopt multiple rôles; I can be a student and an employee.
For this reason a modelling approach based on semantic networks is more
appropriate than one based on the semantics of programming languages. Such
a model, however, must be translatable into code.

To capture the rich and varied way people construct sentences to talk about
objects, we have a choice: either restrict the syntax or teach the machine how
to understand a wide range of phrasing. Both approaches have advantages.
A well-designed formal syntax can look like English and is quick and easy
to type once you know it. A parser can warn you if you have violated the
syntax or referred to an object that doesn’t exist. However, the rules may look
strange to the untutored eyes and it is impossible to just pick up rules written
by business experts and just drop then into the application. On the other hand,
natural language phrasings need to be made explicit by the knowledge base
creator and this takes time and effort. The reward for the extra effort is that
practically anyone can now add or change rules with the domain.

That last caveat is important; the system has to know about a particular
domain. The object model and the phrasings constitute the limits of the system’s
knowledge. An old joke illustrates this point well. A clever artificial intelligence
programmer taught his system to use metaphor, so that it understood the
sentence ‘Haste is needed because time flies like an arrow.’ The first user he
demonstrated it to typed ‘A screen is needed because fruit flies like a banana,’
and crashed the system.

98 Chapter 4

4.8 Summary

This chapter presented the basic theories of knowledge representation, infer-
ence and uncertainty in knowledge and rule-based systems.

4.9 Bibliographical Notes

Hayes-Roth et al. (1983) provide a good introduction to expert systems. Morgan
(2002) gives a simple introduction to first order predicate logic. Both he
and Ross (2003) give extensive advice on how to formulate and phrase
rules. Graham and Jones (1988), though long out of print, is one of the
very few works to provide extensive coverage of the use of fuzzy logic to
express business rules.

C H A P T E R

5
Features of Business Rules

Management Systems
It is a capital mistake to theorize before you have all the evidence.

Sir Arthur Conan Doyle (A Study in Scarlet)

I have already quoted Tony Morgan’s succinct definition of a business rule.
It is worth repeating: ‘A compact statement about an aspect of a business
[that] can be expressed in terms that can be directly related to the business,
using simple, unambiguous language that’s accessible to all interested parties:
business owner, business analyst, technical architect, and so on’. Morgan,
because he has a long track record in artificial intelligence, assumes that these
rules are embedded in a régime that can link them together; a key component
of any BRMS.

In much other work, the implicit definition is much more fuzzy. Many writ-
ers, coming – as they usually do – from a database background, see business
rules as little more than database constraints or even simple formulae.

The formula margin = revenue – direct.costs is not a rule. It is a statement
of identity. It could even be regarded as a procedure for computing margin,
as can many algebraic equations of this sort. Rules in BRMSs are characterized
by being non-procedural; they state what is true, not how to compute it.
Having said this, it is quite right that a modern BRMS should allow formulae
to be stored alongside the rules in the repository. I merely want to make the
distinction because there are many cases where it is both clearer and more
efficient to implement calculations in conventional source code.

The mavens of UML mostly see business rules as coextensive with the idea
of OCL-type statements and, of course, they are not completely wrong in this.
Indeed, I would agree that a business rule is exactly a logically valid statement

99

100 Chapter 5

concerning the objects in the domain that must always be true1. However,
what this view misses is the idea that rules interact. Even simple facts can
interact. If I, for example, tell you that the writer of this book has grey eyes
and that Ian Graham is the author of this book, now you know these two facts.
But what if I were to ask you ‘What colour are Ian Graham’s eyes?’

Of course, you know the answer. But I haven’t told it to you. You inferred it!
Similarly, from two rules that say ‘if you overeat then you are likely to

become obese,’ and ‘obese people often die young,’ you may infer the obvious,
dismal, if reassuringly probabilistic conclusion.

So, a BRMS has to support automatic inferencing, as well as rules and facts.
Rules and facts are the easiest to formalize.

A rule is a statement that has, or can be transformed into, the form IF x
THEN y, where x and y can be of the form A is P and—or B is Q and—or . . . but
y can also be an instruction to do something: an action. An example might
help.

If an applicant’s socioeconomic group is A and the applicant is not married then
send the luxury dating brochure

This is written in fairly plain English. In a conventional rule language it is
likely to be a little more opaque of expression – something like

If Applicant.SEG is ‘‘A’’ and Applicant.married is FALSE then ‘‘Send luxury
dating brochure’’ is indicated.

As we have already seen, business rules need not always follow the if/then
form, but may be specified in different formats that are not as closely linked
to the underlying rule-engine implementation or syntax. Business rules often
tend to use the deontic (must or must not) form to express constraints or
inferences. For example:

■ An order must not be invoiced before dispatch.
■ The luxury dating brochure should be sent to an unmarried applicant

whose socioeconomic group is A.
■ An applicant for credit must be at least 18 years of age.

Morgan (2002) gives a great deal of useful guidance on how to phrase
rules, preferring the above form to the ‘if . . . then . . . ’ form imposed by many
products. Ross (2003) gives similar guidance in the context of his RuleSpeak.

1The Object Management Group is, at the time of writing, in the process of extending UML to
address business rules, with standards such as Business Semantics for Business Rules and the
Production Rule Representation (the latter being co-developed by IBM, Fair Isaac and ILOG
amongst others).

Features of Business Rules Management Systems 101

In this chapter, we will look at the features of business rules management
systems, the technical terms and issues and some of the leading BRMS
products. The features we are interested in include the following.

■ Architecture.
■ Integrating with enterprise applications.
■ Knowledge representation.
■ Inference strategies.
■ Forming rules into independent but chainable rulesets.
■ Creating intelligent applications that interact with users through natural,

understandable and logical dialogues.
■ Allowing business analysts and even users to create, understand and

maintain the rules and policies of the business.
■ Rule repositories, versioning, etc.

We also apply three of these products to a simple application.

5.1 The Components and Technical Features of a
BRMS

BRMSs are related (both intellectually and commercially) to the expert systems
products of the 1980s. To understand them it helps to know a little about their
origins, although current BRMS products have come a long way since then and
are equally influenced by database considerations, as we saw in Chapter 3.

Rule-based or ‘expert’ systems, sometimes called knowledge-based systems,
are computer systems that can give advice or make decisions in a narrowly
defined area at or near the level of a human expert. There are two kinds of
such systems: systems that take decisions, which are chiefly process controllers
and applications such as financial program trading systems, and systems that
act as decision support systems, giving advice but not making autonomous
decisions. This definition is couched in terms of what expert systems do.
More importantly, rule-based systems are defined by how they do it: by their
architecture. The most important architectural feature is that knowledge about
a problem (in the form of rules, say) is stored separately from the code that
applies the knowledge to the problem in hand. This applies equally to BRMSs.
Some early expert systems jumbled up facts, data, procedures and rules
in the knowledge base whereas modern BRMSs usually maintain a cleaner
demarcation between business rules and business data. The rulebase is seen
as acting upon the database (including metadata).

The repository of chunks of knowledge in a BRMS is referred to as the rule
base or knowledge base and the mechanisms which apply the knowledge

102 Chapter 5

Knowledge Base

Inference Engine

Figure 5-1 The architecture of a business rules service.

to the data presented to it as the rule engine or inference engine. This
characteristic architecture is illustrated in Figure 5.1.

It is now widely accepted that there are essentially four components of a
business rules management system. Firstly, the underlying environment of
symbol and value manipulation which all computer systems share and which
can be thought of as the programming languages and support environment;
editors, floating point processors, data structures, compilers, etc. The grey
area in Figure 5.1 represents this. Secondly, we have the structure of the
knowledge base itself, including methods of representation and access, and
then there must be some techniques for applying the knowledge in a rational
manner to the problem at hand. This third element is the inference engine,
which chains the rules together to reach valid conclusions. Usually, this is
done non-procedurally, but some BRMS also provide other methods whereby,
for example, ruleset execution can be handled by a faster approach such
as procedural rule firing. The fourth element is the repository, in which
the rules are stored and from which they may be manipulated, versioned,
shared, managed and so on. Figure 5.2 shows the rule (or decision) service
in a broader architectural context, emphasizing the separate character of the
repository (from which rules may be imported into the rule service) and the
probable presence of a database or databases that must be coupled with the
business rules in applications. Note also that, nowadays, we may use a separate
rule authoring package. We will see examples of this later in this chapter.

The knowledge base and the inference engine are separated from one
another to facilitate maintenance. After all, in most cases rules and policies
will change over time and one does not want to rewrite the inference engine
(the program code) whenever a new rule is added.

The knowledge base usually contains different kinds of knowledge; typically
these include knowledge about objects, procedures and causal relationships.
Knowledge about objects is usually stored in the form of an object model, XML
schema, data model or semantic network. We discussed object knowledge in
Chapter 4 under the heading of ontologies. Procedural knowledge may be
represented as rules but could be Java methods, Excel macros and so on. Some
business procedures can also be represented with rules.

Features of Business Rules Management Systems 103

Rule authoring service

Rule engine
(decision service)

Repository

Business
services

Infrastructural services,
including persistence service

(not rule-based)
Database

Figure 5-2 The architecture of a business rules management system.

5.1.1 Rules
Knowledge about causal relationships is usually stored in the form of rules of
the form ‘IF A THEN X’. Unlike the if/then statements found in conventional
languages like Java, COBOL or C++, rule languages in are typically declarative
or equivalently non-procedural; that is, the order in which the rules are written
is not important. These rules work on knowledge about entities or objects. As
we have said, another important way to represent knowledge is as procedures,
as found in conventional languages. There are various other ways to represent
knowledge, but rules, procedures and objects are the main ones used in
business rules management systems at present.

In all BRMS products, rules are represented as sentences, usually contain-
ing the words if and then. Morgan (2002) recommends a better style aimed
at removing ambiguity, making relationships explicit, avoiding obscure ter-
minology, removing wordiness, and so on. His style is remarkably close to
natural language. He ends up preferring forms such as

A loan may be approved if
the status of the customer is high
and the loan is less than 2000
unless the customer has a low rating

to

if the customer status is high and the loan is less
than 2000

104 Chapter 5

and the customer does not have a low rating
then approve the loan

if the customer status is high and the loan is less
than 2000

and the customer has a low rating
then don’t approve the loan

Most commercial BRMS products support the second style of rule writing;
only a few, such as HaleyAuthority, provide completely natural support for
the first. Blaze Advisor, as we shall see, offers a completely different approach
in the form of its Rule Maintenance Applications. These allow the creation
of custom rule maintenance forms that allow users to interact using any
format of rule presentation considered appropriate to the business situation.
Another approach used, for example in JRules, is to let the developer create
‘verbalizations’ for the object model to make rules more readable. Default
verbalizations allow one to use phrases like ‘the contract is completed’ rather
than just ‘contract is completed’.

5.1.2 Rule Templates
Rule templates are design patterns for rules. In many circumstances, a rule
might be applicable to several data. In such cases, rule templates allow for the
creation of rules with empty slots to be filled in later. A business rule template
represents a partially defined business rule that contains placeholder slots for
missing information. Templates can be used to create multiple rules with a
similar structure, where only the value filled in the slots varies. Rule templates
save time when writing rules and help to enforce a standard, readable rule
writing style.

5.1.3 Rule Syntax Checking
A good BRMS will offer facilities for checking the rule syntax in real time, as
the rules are entered. With structured rule languages, it is useful if the syntax
checker highlights keywords, variable and values using different colours.
There should be clear links between the object model and the rules. All
the modern products that I have tried have excellent syntax checking and
debugging facilities.

5.1.4 Procedures and Algorithms
Some knowledge is distinctly procedural. For example, we cannot compute
our tax liability unless we first know our income and expenditure.

Features of Business Rules Management Systems 105

Rule representation can be very cumbersome when the knowledge to be
stored is procedural. Examples include mathematical and financial computa-
tions. A good BRMS will offer the ability for rulesets to invoke procedures and
for procedures to call upon rulesets to execute and return values.

5.1.5 Ruleflows
Ruleflow mechanisms within BRMSs let the designer specify that knowledge
modules or tasks be carried out in a particular order. These tasks may be
rulesets, functions or entire ruleflow modules. Such a feature is essential for a
good BRMS.

5.1.6 Decision Tables and Decision Trees
In some products, there are alternative representations to rules for if/then
knowledge. We consider two of these: decision trees and decision tables.
Decision trees represent the rules pictorially, as a tree structure. This may be
a useful aid to debugging or communication between users and developers
or analysts, but is not usually how business users visualize their knowledge.
Decision tables represent the same knowledge and rules as decision trees in a
tabular format.

The main problem with decision tables is that they grow unmanageably
large when there are a large number of conditions in the rulebase. The approach
gives a larger number of rules – one for each row – and the rules will be hard to
read and understand. We characterize the approach as row-oriented decision
tables. Rule subsumption checks may allow the author to tidy up the resultant
rulesets, but we think a rule induction approach is far sounder. It is better to
use a data mining system to extract rules from decision tables and feed them
into a BRMS.

We looked at decision trees and tables in more detail in Chapter 4. The
main advantage of decision tables arises when the organization already holds
the knowledge in this form: pricing charts, rate tables, etc. However, this
advantage largely evaporates when the rules can access the same data in the
form of lookup tables.

5.1.7 Inference
An inference engine offers one or more means of applying knowledge to
data. The most common strategies are known as backward chaining and
forward chaining. Backward chaining or goal-directed reasoning is typical of
product selection, diagnostic or advice giving systems. It involves deriving a
plausible reason for some given fact. For example, given the fact ‘the patient
has spots’ a medical expert system might reason that the patient could have
been among young children recently since young children often have measles

106 Chapter 5

and measles causes spots. Forward chaining or data-directed inference takes
all data present and attempts to discover as much as possible by applying as
many rules as possible to them, or filling as many frame slots (object attributes)
as possible. This is typical of process control and scheduling applications. It
is also typical of many ‘form filling’ applications, such as tax credit or loan
approval. Most rule-based systems involve a mixture of backward and forward
chaining and other strategies to reduce blind search.

Implementing forward chaining efficiently is hard since, when a rulebase
becomes large, naı̈ve algorithms for forward chaining become very slow
because few changes are made to the facts in working memory at each cycle.
The rete algorithm is a very efficient mechanism for solving this problem.
Rete (Latin: net) is much more efficient at determining the relevance of rules,
given particular data, than the equivalent nested if/then/else or select/case
constructs. The rete network modifies itself after each rule firing, so that
unneeded rules do not fire. The greater the number of rules, the greater rete’s
advantage over equivalent procedural code. This applies to rule execution. Of
course, writing the rules is also far more efficient in a BRMS. Refer back to
Chapter 4 for more details on rete and inference strategies.

Most of the leading commercial rete-based products offer support for back-
ward, forward and mixed chaining using the rete algorithm. Each product
has a proprietary improvement on the basic rete algorithm. These improve-
ments are largely responsible for the variation in performance of rule engines.
The engines must all also modify basic rete to permit backward and mixed
chaining.

5.1.8 Uncertainty and Explanation
Two other features, which separate rule-based systems from other computer
systems, are that they can often

■ incorporate qualitative or judgemental reasoning and manage
uncertainty;

■ provide an explanation of their reasoning.

If the last two features are both present, rule-based systems can offer
multiple conclusions ranked by a measure of confidence. Both features, if
required, tend to increase the cost of system building and may, in some
circumstances, imply additional complexity in defining the business rules.
Built-in explanation facilities are useful debugging aids, but are rarely suitable
for user enquiries. Useful facilities for explanation of the system’s reasoning
to users must usually be hand crafted.

Reasoning about uncertainty adds to the complexity of a system, and the
knowledge acquisition associated with specifying it, but permits it to tackle
more complex problems.

Features of Business Rules Management Systems 107

There are several techniques for managing uncertainty, the most common
being:

■ Reasoning explicitly using verbal labels for uncertain terms
■ Truth maintenance systems
■ What-if facilities
■ Certainty factors
■ Bayesian probability
■ Fuzzy sets

No current major BRMS product offers sophisticated uncertainty manage-
ment or the last three uncertainty management techniques. Blaze Advisor
offers a scoring system based on the idea of scorecards, which can be regarded
as a certainty factor variant.

HaleyAuthority relies on uncertain linguistic constructs, such as ‘may be’
and ‘could’. With most other products, it is a matter of choosing attribute
names that imply uncertain value ranges; e.g. terms such as ‘risk averse’.

Most of the major BRMS products support truth maintenance well. A truth
maintenance system keeps track of dependencies among sentences and allows
the rule engine to retract assertions in a consistent way. This takes account
of the kind of uncertainty we face when, over time, things we once believed
true become false (cf Russell and Norvig, 1995). Truth maintenance can help
improve the explanation facilities offered by a BRMS. What-if is handled in the
testing environments of BRMS products or could be coded into any application
that relies on a rule engine.

Chapter 4 discussed knowledge representation, inference, and uncertainty
management in much more detail. It also included more detailed material on
such topics as decision tables, rule induction and data mining, explanation
facilities and semantic networks.

Explanation and Help Facilities

Imagine a conversation between a life assurance salesman and a potential
client. The rep takes the customer’s personal and financial details and enters
them in to the BRMS application on her laptop. She then asks a few well-chosen
questions. At the end of this, she announces ‘Thank you for your frankness,
Mr Suzuki. I think the best product that we can offer you is a life policy linked
to an investment in gilt-edged government bonds. That will provide you with
adequate death benefit to cover your wife’s needs and provide for your son’s
education and marriage costs.’

‘Thank you, Diana, but I don’t understand why.’

‘Well, you told me that you are only 27.’

‘That’s right.’

108 Chapter 5

‘That is quite young in this context and we have a rule that says – No, look,
I can show you.’

She swivels her knees so that he can see the display on the laptop. ‘See?
This rule here.’

Mr Suzuki slides his spectacles up his nose and reads.

A bond linked policy is recommended for a client
if the client is averse to risk and young

‘OK; but what made you think I’m averse to risk? I never said anything
about that.’

‘We think that people with young children are usually averse to risk,
because they want to protect their interest in as safe a way as possible.
Look, here’s the rule.’ Diana presses a function key.

A client is averse to risk if the client has children

‘Ah! So, I understand now. What will the growth projection look like?’

The sale is nearly closed and both Diana and Mr Suzuki are pretty sure that
the recommendation is a good one.

On a technical level the BRMS has fired a ‘best product’ ruleset, given the
recommendation (bond) and printed an elaboration of the benefits (stored as
explanation text perhaps). When asked, it unwinds the rule stack and shows
which rules have fired.

Several BRMS products I have looked at offer this kind of rule trace in test
mode. The same information is available to the applications using the rules
but, in each case, it requires some programming to create an interface such
as the one used by Diana’s company. This is a shame but it is really quite
hard to design completely general-purpose user-friendly explanation and help
facilities.

We will return to this ‘best product advice’ example later in this chapter.

5.2 BRMS Products

There are many products that allow users to develop rule-based systems. Not
all of these may be classified as BRMS because some, such as the expert system
‘shells’ of the 1980s and their descendents, do not usually offer repository-
based rule management. I am also tempted to exclude a number of popular
open source solutions because they are not rule management systems. Examples
include Jess and Drools, although they could be combined with a separate
repository.

Features of Business Rules Management Systems 109

Jess is a rule engine and scripting environment written entirely in Java lan-
guage by Ernest Friedman-Hill at Sandia National Laboratories in Livermore,
CA. Jess was originally inspired by the CLIPS expert system language, but
has grown into a complete, distinct, dynamic environment of its own. Using
Jess, you can build Java software that has the capacity to perform inferences
on declarative rules. Jess is small, light, and has a fast rule engine. The Jess
language is still compatible with CLIPS, in that many Jess scripts are valid
CLIPS scripts and vice-versa. Like CLIPS, Jess uses the rete algorithm. Jess
adds many features to CLIPS, including backward chaining, working mem-
ory queries, and the ability to manipulate and reason directly about Java
objects. Jess is also a powerful Java scripting environment, from which you can
create Java objects and call Java methods without compiling any Java code.
[http://herzberg.ca.sandia.gov/jess/] Oracle has adopted and adapted Jess
as its rule engine.

Drools is an augmented implementation of Forgy’s rete algorithm tailored
for the Java language. Adapting rete to an object-oriented interface allows
for more natural expression of business rules in respect of business objects.
It is an engine for processing rete graphs and is therefore a purely forward
chaining system. Drools wraps the semantics of the normal relational rete
into an object-oriented model compatible with Java. Additionally, by mapping
to objects, domain specific languages can be created that operate upon an
application’s own object model. [http://drools.org/]

With Jess and Drools there is the problem of lack of support. Neither are
there any high-level authoring and management tools. These deficiencies may
render such tools unsuitable in many commercial environments, although the
Oracle version of Jess will clearly be supported.

Computer Associates’ CleverPath Aion Business Rules Expert is a descen-
dent of the Aion expert system shell. It is rete-based and offers a component-
based development environment. However, it has a slightly monolithic char-
acter and the rule engine is not offered as an embeddable component. Nor is it
repository-based; rules are stored as a collection of rulesets. CleverPath Aion
BRE supports decision tables, dynamic rules, and a sophisticated inference
engine. There are links to CA’s neural-net-based machine learning (i.e. data
mining) system, Neugent. [www3.ca.com/Solutions/Product.asp?ID=250]

Mindbox’s ARTEnterprise is another born-again shell and considered by
me to be monolithic rather than component-based – for all its strengths.
[www.mindbox.com]

ESI’s Logist is a purely forward chaining rule-based expert system shell
with a pseudo-natural-language interface. Typically, ESI claim, Logist is
used by organizations to offer their clients customized services, to promote
customer retention and avoid revenue leakage and billing errors. [www.esi-
knowledge.com/BR logis.asp]

As an aside, Netherlands based LibRT offers an interesting complimentary
product to any BRMS. LibRT VALENS is claimed to be the first independent

110 Chapter 5

product targeted at verifying and validating business rules created in third-
party business rules management systems. There is a known relationship with
CA’s CleverPath Aion and Blaze Advisor. [www.LibRT.com]

Corticon is a non-rete-based rule engine. It will generate web service, Java
and J2EE applications on top off existing applications but does not offer a set of
components for embedding in them. Nor is it repository based. In rete-based
engines, the best performance arises when the objects are fairly simple (the
number of attributes to be tested is small) and the number of rules is large.
However, when the item of work moving through a business process is more
complex (such as an insurance claim with all its attendant objects (policy,
injury, employer, medical bills, and litigation motions) the number of possible
variables that need to be examined by the rules becomes large. The number and
depth of association paths to be traversed is also significant. In these scenarios,
rete engines do not scale well – their agenda management phase consumes
noticeable time. Corticon integrates with Staffware, a leading business process
modelling tool and probably shines brightest for this kind of application rather
than when applied to normal BRMS problems. It is certainly a product worth
looking at. [www.corticon.com]

RulesPower from the eponymously named company co-founded in 2001
by Charles Forgy, author of the original rete algorithm, is intended to allow
business management personnel to create and maintain the business logic that
represents their business policies. However, the focus of RulesPower is on
business process modelling and there is no focus on providing the rule engine
as a component within a larger application, which is the focus of our interest.
RulesPower offers instead a good but monolithic solution to the problem of
building a BRMS. RulesPower was taken over by Fair Isaac in 2005 and its
advanced rete algorithm (rete III) is being integrated into Blaze Advisor to
enhance further the latter’s performance.

It is not the intention of this work to review all available BRMS products
but it is helpful to survey a few in order to illustrate the principles involved.
A good BRMS should

■ allow business analysts to create and modify the rules;
■ use a fully-featured repository;
■ support backward chaining;
■ allow the rule engine to be a component or service within larger

applications;
■ allow applications to be deployed in a service oriented architecture;
■ focus on business rules management (as opposed to just workflow)

problems;
■ provide good report generation facilities;
■ provide evidence of successful commercial applications;

Features of Business Rules Management Systems 111

■ be compatible with a component-based or service-oriented
architecture; and

■ offer commercial-standard professional support (thereby we eliminate
the open source products).

All the products discussed below are rete-based and exhibit the above
qualities.

5.2.1 Blaze Advisor
Fair Isaac’s Blaze Advisor Version 6.0 provides the same BRMS on 2 main
platforms, Java and .NET, with an option on the Java version allowing the
generation of COBOL code. The Java requires a (freely available) JVM to be
installed, and the latter requires Microsoft’s .NET Framework to be installed
(and recommends Visual Studio too).

The tutorial material is thorough and reveals Blaze Advisor as a mature prod-
uct with complex features; although beginning users may well not understand
the need for all of them.

Application development (viewed as ‘rule service development’) proceeds
by importing or creating objects, rulesets, functions, event rules, questions
sets, enumerations and ruleflows within a project repository. This can be done
in any order but it is natural to start with the basic object model: classes
and enumerations. These can be imported via wizards from Java, COM/.NET,
XML, or a database – plus there is a mechanism for defining your own Business
Object Model Adapter. You can create your own classes and instances too,
although Fair Isaac stresses that this is usually done for prototyping and
testing only. Once you have created the classes, you can type rules into a
ruleset window. Backward chaining requires the creation of event rules or
questions sets, which can be used to generate prompts for missing values, so
that interactive testing is possible.

An application calls upon the rule server and engine to provide a service,
such as classifying a situation or diagnosing some problem. In turn, the
rule server accesses any needed data. Rules are maintained in a repository
with features comparable with other leading products. It enables changes
to be managed for multiple concurrent users and supports workflow in
development with permissions for change management. This architecture is
summarized in Figure 5.3.

The rule syntax has moved on a lot since the days of Nexpert Object, and we
find a good compromise between natural language syntax and formal syntax,
similar to that of JRules (see Section 5.2.3 below). Business users, though, are
protected from the actual rule syntax as they use rule maintenance applications
that access the repository directly in maintenance mode.

Blaze Advisor offers three different ways to address the rule authoring
problem:

112 Chapter 5

Customer
profiles

Enterprise
data

Industry
data

Application Rule
engine

API

Rule repository (XML, LDAP, JDBC)

Blaze Advisor
development

Web-based rule
management
applications

Figure 5-3 Blaze Advisor architecture.

■ An English-like Structured Rule Language (SRL) for expressing the rules,
as well as any data patterns or local classes and instances.

■ Decision trees, decision tables and scorecard models, which are graphical
or tabular ways of creating rules.

■ Rule Maintenance Applications (RMA), which are customizable
web-based rule authoring interfaces that can be generated directly from
Blaze Advisor.

The SRL is an object-oriented programming language designed to make
writing and reading business rules seem English-like. It has the features of a
programming language, and is intended for use by programmers (as well as
‘‘technical business analysts’’ who are not averse to tasks like programming
Excel macros) to create the entities, control the execution flow, and perform the
operations required by the rule service. However, it also provides a syntax for
authoring rules that is understandable (i.e. readable) by people with little or no
programming background. The Blaze Advisor IDE (a proprietary interactive
development environment) includes a set of editors that simplify the creation
of SRL entities, and generate much of the syntax. Normally, programmers use
the IDE to develop the data model and execution flow, and then provide the
business user with access to edit specific rulesets. This access can either be
through direct editing of the SRL, the use of ruleset metaphors, or through an
RMA. Regardless of which is used, the business user’s edits are compiled along
with any other SRL to produce the executable rule service, which is either a
project that is loaded by the runtime Rule Server, or in the case of COBOL
output, compilable COBOL code. The SRL syntax falls a long way short of
natural language, but I found it fairly easy to read. Writing rules in it requires
knowledge of the object model’s structure and variable names. Developers can
also choose to write templates for rules, which are used by the RMA Generator
wizard to provide an interface for business users. This interface follows the
philosophy that typing any formal language is too much to expect a busy

Features of Business Rules Management Systems 113

business person to achieve, and instead displays the parameters that make up
the rule within any text – or indeed, HTML construct – that the user needs.
This can obviously be much closer to natural language syntax. The assumption
is that developers are available to learn how to create rule templates and RMA
forms.

Building an RMA involves abstracting from the rules to create more generic
rule templates within which the user may select values, ranges, objects and
so on. A template contains value holders and contents. Each value holder
specifies a particular type of value, or enumeration list of values. The contents
contain standard rules and includes embedded placeholders. Each placeholder
refers to a value holder. The value defined by the value holder will be inserted
into the contents to replace the placeholder. Sets of values corresponding to the
value holders are stored in separate repository items called instances. When
an instance is resolved, the result is a set of rule entities.

A template can be as simple as a single statement that exposes a single value
for editing such as ‘‘theCustomer.age > [minimum age]’’. Templates can get
quite complex too. They can include multiple value holders, and can define
complete rule entities or even multiple entities. In addition, a value holder can
hold multiple values of the same type. A value holder can also refer to another
template. In such a case, a placeholder for the value holder will resolve into a
resolved instance of the referred template. This permits flexible, hierarchical
structures that support precise control over what can and cannot be edited.
For example, a ruleset template could contain a value holder referring to a
rule template that defined a particular form of a rule. The rule template could
in turn contain value holders pointing to various code templates that define
particular conditions and actions that are valid for the rule.

RMAs are generated from the rule templates within a web browser.
Creating a rule template requires a careful reading of the tutorial and some

practice. You can copy the text of a rule into the content section of the template
and then replace the parts that need to be modifiable with placeholders. On
the other hand, generating a crude RMA from the template was relatively
straightforward.

Blaze Advisor provides good facilities for entering rulesets as row-oriented
decision tables. It also has a useful graphical decision tree representation.
The latter does not support probabilistic trees. Uniquely, Blaze Advisor offers
‘scorecards‘: a special form of table that lets the system reason using additive
scores. For example, in a credit scoring application, we may score professional
and skilled occupations more highly than unskilled ones. These scores can
be combined with other factors such as outstanding mortgage liabilities to
arrive at a final score for credit-worthiness. This is the mechanism used by
Fair Isaac for the credit scoring applications which the company is well known
for, especially in the USA. Other applications include fault diagnosis and sales
promotion targeting. Entering textual ‘reason codes’ for each score makes

114 Chapter 5

the method auditable. The score model metaphor provides a limited way of
handling probabilistic rules.

There is a built-in library of mathematical and financial functions and there
is a complete procedural language supporting most familiar programming
constructs. This language is at a higher level than Java, giving Blaze Advisor
(in my opinion) a slight edge on products that use unadorned Java for this
purpose. Business rules are written in a structured if/then syntax. Rulesets
execute under a rete-based inference engine, or may be selected to run in a
procedural fashion (‘sequentially’) if the rules do not need to be declarative
or to chain with one another. There is also a licence option for a ‘‘compiled
sequential’’ mode, in which the rules are compiled to Java or .NET bytecode
as appropriate, although this is transparent to the user and still allows for rule
changes to be made to a running rule server as necessary. Another licence
option is the aforementioned COBOL output. The rulesets, together with
procedures and functions, can be chained procedurally or ‘orchestrated’ using
ruleflows. Blaze Advisor lets you group your rules into functional rulesets,
and then lets you control the sequence in which rulesets are called by using
a ruleflow. Ruleflows are displayed using a proprietary, but clear, graphical
notation.

The product supports different policy and rule expression formats: if/then,
constraints, declarative definitions. Rules can use Java-style dot notation or
more English-like, business-friendly constructs (aliases for attributes), or both
interchangeably. Rule templates are supported well.

Effective dates and times can be stated for each rule.
Rule inheritance is Blaze Advisor’s approach to rule subsumption. Any

rule can refer to any other rule, in which case it inherits the referred rule’s
conditions. This is used, for example, in the decision tree metaphor. Rule
inheritance saves development time and leads to cleaner rulebases, but it can
be dangerous when used improperly. However, Blaze Advisor is a tool that,
when used properly, can help companies focus on the important things in
business life.

A good analysis tool supports conflict resolution: potential rule conflict.
Rules whose actions do not change values in the same ruleset are identified as
candidates for, more efficient, procedural execution. Infinite loops within the
rules are detected automatically. An HTML conflict report can be produced
and printed. The AnalyzeRuleService test picks up rulesets that do not cover
the state space.

Blaze Advisor’s Business Object Model Adapters (BOMA) provide a com-
mon business object representation against which to write rules. In this way, a
rule that is written against a Java entity can also be used against a .NET entity.
Then, at runtime, you pass corresponding Java objects, COM objects, COBOL
copybook entries, database records, or XML documents to the rule engine, and
the BOMA automatically maps them to the correct types of business objects.

Features of Business Rules Management Systems 115

Rule developers using SRL can use a full range of debugging facilities
including stepping through rules, setting breakpoints on any internal or
external data item referenced in the rules, viewing cross references and
execution traces, and monitoring performance. The development environment
can also be used to debug a rule service transaction taking place on a remote
server.

There are localized versions of the IDE for Japanese, French, German,
Italian, Korean, Portuguese, Spanish and Chinese (Simplified and Traditional),
including all menu items, error messages, and pop-up help windows. Also,
all strings support Unicode, so that item names can be in the appropriate
language.

Blaze Advisor offers good compliance with standards, such as JavaBeans,
EJB, COM+/DCOM, W3C XML and CORBA (the OMG’s Common Object
Request Broker Architecture).

It is relatively easy to deliver an application into most architectures, includ-
ing thin clients. There are built-in wizards, called Quick Deployers, that
generate the necessary client code to invoke the Advisor Rule Server. Options
include vanilla J2EE as well as specializations for IBM Websphere, BEA
Weblogic, Oracle and Sun application servers, as well as a variety of different
deployment types such as EJB, Message-driven Beans, Web Services, as well
as plain old embedded code. Naturally, the .NET version only deploys to .NET
environments, but that includes C# and Visual Basic interface generation. All
versions, including generated COBOL, share the same repository, for greater
rule consistency. The Quick Deployer also configures the rule server’s config-
uration file, as this component is not so much programmed via an API but
configured via XML. Rule servers can manage multiple rule services, and in
turn multiple rule engines (called ‘agents’) can be configured for rule services
to provide multi-user scalability. A separate deployment component called a
Deployment Manager can coordinate rule updates to a live rule server.

Blaze Advisor provides an internal versioning and access control mecha-
nism. In addition to providing a rule check-in/check-out repository, Blaze
Advisor allows you to have several versions of the rules for different appli-
cations and permits control over who has access to which rule or rulesets.
New in Version 6.0 is improved ownership control, ruleset segmentation and
release management. Customizable management properties and queries for
both technical and business users further enhance rules maintenance applica-
tions. New ‘‘best practice’’ documentation helps guide repository design for
best performance and maintainability. IBM has certified that Blaze Advisor
is optimized across all of its major platforms, including IBM iSeries, pSeries,
xSeries, and zSeries.

Another key feature of Version 6.0 is the integration of the Innovator
Workbench with the rule builder product. This gives better integration of
features such as decision tables and scorecards and makes the interface to
RMAs more transparent.

116 Chapter 5

The things I like most about this product are its interactive testing facilities,
making backward chaining far easier to realize, good rule analysis features
and its general level of tool integration and ease of use. Also, the RMA is
a very sensible alternative to natural language rule authoring, in the right
circumstances.

As someone with considerable experience of building systems using the
older expert systems shells, I felt immediately at home with Blaze Advisor.
I was able to use the product to get sample applications up and running within
a relatively short time. A less technically inclined business analyst might have
struggled more with the design interface. Therefore, Blaze Advisor is not really
suitable for environments where business users need to get closely involved in
the creation and maintenance of business logic unless there are development
resources available to create a custom rule interface. The rules can then be
presented to users in a non-technical way via generated browser pages. If one
takes the view that natural language is not always the best way for busy users
to enter rules, then Blaze Advisor’s web-based rule interface (the RMAs) is a
very attractive alternative. Such a view is reasonable in situations where the
rules have complex interrelationships, or where the users have no desire to
enter rules in their raw form.

Blaze Advisor is a mature product with good integration features and is
capable of addressing many BRMS situations. Good tuning facilities can be
applied to improve performance (for example, procedural rules execution is
possible). Future versions will also benefit from the adoption of Forgy’s fast
rete III algorithm. Blaze Advisor shines in the number of tools it offers to
programmers.

Related Fair Isaac Products

Founded in 1956, Fair Isaac is a company that focuses on the provision of
decision support and analytics software. Blaze Advisor integrates with Fair
Isaac’s other tools. For example, Model Builder for Decision Trees helps define
strategies such as for marketing campaigns, and once defined, the resulting
decision tree can be imported into Blaze Advisor. Model Builder for Predictive
Analytics is a data mining and analysis tool whose analytic models can be
executed in a Blaze Advisor ruleflow. Decision Optimizer is aimed at resource
allocation problems in the style of linear programming. Blaze Advisor can
invoke these models when complex calculations are required. Blaze Advisor
also provides rule-based services for Fair Isaac’s vertical-market solutions
for loan originations (TRIAD), fraud detection (FALCON), debt recovery
(PLACEMENTS PLUS), and others. A custom Blaze Advisor solution for the
ACORD insurance standard, already deployed in some insurance carriers
in the US, and SmartForms – which adds a fourth deployment platform
for business rules developed with Blaze Advisor: XML-based web forms
(XForms) – have both been announced. SmartForms automates data validation

Features of Business Rules Management Systems 117

by caching rules on the client using XForms technology, and is an important
addition to Blaze Advisor’s capabilities.

5.2.2 HaleyRules and HaleyAuthority
Haley Systems Inc. (formerly The Haley Enterprise) specializes in rule-based
and case-based reasoning technology. Software from Haley is embedded in
a variety of commercial software packages and applications. The company
was established in 1989. Its core products are HaleyRules, which is a fast
rete-based rule engine, and HaleyAuthority, a natural language rule authoring
system that generates code for HaleyRules. HaleyAuthority was originally
called Authorete (but always pronounced Authority) to emphasize its support
for rete.

HaleyRules uses a rule language called Eclipse, a sophisticated descendant
of the CLIPS language, which is in turn a descendant of OPS-5. Eclipse provides
an extended version of the CLIPS rule language syntax using a proprietary
version of the rete algorithm to support both forward and backward chaining.
It is implemented in a layered architecture for maximum development and
integration flexibility. It includes an extensive programming interface for ANSI
C and Visual Basic to libraries at each level of its layered architecture, and is
encapsulated in and integrated within C++ as Rete++. It is also available as
Agent OCX for COM integration with OLE automation under Windows and
as an ActiveX control that supports Microsoft COM, Visual J++ and Internet
Explorer. There is no connection whatsoever with IBM’s Eclipse IDE.

HaleyRules is embedded in every copy of HaleyAuthority but may be
purchased separately. Haley’s rule engine has a very small footprint when
implemented (1,000 rules use less than 1Mbyte). The engine can run in less
than 4 MB of RAM. It has even been ported to a Palm Pilot and other PDAs.

HaleyAuthority is a Windows application (thus no JVM is required), but it
does have a Web Services component as well. HaleyRules is available both as a
pure Java implementation and a C-based implementation with out-of-the-box
interfaces for integration with Java, .NET, C++ and Visual Basic applications.
The availability of native and Java implementations enables Haley to support
a wide range of platforms and application scenarios.

The files that are deployed for testing are the same files that would be used
within an application. Typically, HaleyRules is embedded in an application or
server side process and API calls are used to initialize the engine and give it
the HaleyAuthority generated files to load. HaleyAuthority does not produce
applications; it generates the logic (rules) that can be accessed by applications
through the use of the HaleyRules engine. HaleyRules has a clever knowledge
base loader that only loads what has changed, thus reducing the impact of
changes on users.

One powerful feature of HaleyAuthority is its automatic generation of
integration or glue code. It also has code import functionality that allows you

118 Chapter 5

Business
analyst

Haley
Authority

Create
rules

Rules
repository

Haley
Rules

Deploy

ApplicationDatabase

Developer
User

Run

Create

Figure 5-4 Haley architecture.

to import an XSD or, say, a Java object model and map the elements of the XSD
or the object model to its concept model which is defined in business terms.
HaleyAuthority then generates the glue code that enables the rule engine to
invoke the object model at runtime. In the case of the XSD, XML requests
conforming to the XSD can then be directly asserted into HaleyRules, which
does the processing. This means that there is no need to write code to parse the
XML – the engine does it. This facilitates the integration of existing applications
with little programming. Another use of this capability is that you can write
rules that orchestrate interactions among existing implementation objects.

The Haley product architecture is depicted in Figure 5.4
Unlike products that use multiple structured syntaxes, HaleyAuthority

enables you to enter your rules in plain English. Uniquely, HaleyAuthority
generates executable logic from business requirements and policies expressed
in natural language (currently only English). This is very helpful in helping
you avoid errors. I could not get away with entering any ambiguous rules:
rules that other products will tolerate at the syntactic level. What you do is
type a rule such as

An annuity is recommended for a client if the client is averse to risk and the
client is retired

or

An application should be referred if the applicant is a smoker

Then you need to teach HaleyAuthority what the statement means by
defining the ontology: the concepts and relationships (vocabulary) used in it.
This is done in a quite non-technical way compared to other BRMS products;
it does not require programming knowledge or a prior implementation of
objects in Java or .NET. The disadvantage of this approach is that it may

Features of Business Rules Management Systems 119

make linking to an existing database more complex. Of course, if there are
multiple sources of business data, this complexity is ineluctable, as any data
warehousing project will testify. When HaleyAuthority ‘understands’ a term,
that part of the statement appears in bold type. Starting with the concept of an
application, you create an entity with that name and another called applicant
that is a specialization of a person. You also create smoker as a kind of person.
The feel is much more like a semantic net than a Java object model, although a
Java object model is generated automatically behind the scenes.

Now you have to define relationships for being referred and smoking. Simple
pop-up dialogues guide you to create a referred relation with application as a
‘rôle’. Notice that you do have to understand basic entity modelling concepts,
like the difference between many-to-one and one-to one relationships, but this
isn’t too much to expect of a business analyst, I think.

Next, define any phrasings for the relation that you want to be able to use,
in this case: an application should be referred. To do this, you specify that
the phrasing uses the modal verb should and the past participle of to refer
with the auxiliary verb be. Not too hard, providing you have some inkling
about English grammar. Now to populate the world with smokers you create a
relation using is as the verb and giving smoker the ‘syntactic grammatical rôle’
of direct object and applicant that of subject. And you’re done. HaleyAuthority
understands the rule.

The more rules you create, the quicker this process gets as the semantic
model becomes more complete. Furthermore, it’s much more natural than
having to start with an object model, say in Java, and any attempt at sloppy
thinking or ambiguity is soon detected by this tool. HaleyAuthority uses an
internal expert system for parsing and semantic processing of statements in
real time on a word-by-word basis. HaleyAuthority also suggests valid choices
as a sentence is being defined.

As an example of the clarity of thought that HaleyAuthority insists on from
its user, when I wanted to say ‘if a client has any children’ I had to decide if
child was a concept related to client (a client has a child) or having children
was a property of a person. This indicates that some training and practice
would benefit most users.

One downside is the terminology that HaleyAuthority uses: ‘grammatical
rôle’ seems to stand for case (in the grammatical sense) and (in other places)
HaleyAuthority talks about the ‘–ing verb form’ rather than what I have
always called the present participle. On the other hand, you soon get used to
it and the user interface is superb; I really like being able to drag one concept
over another to create a relation between them. Like most native speakers
of English, my only non-superficial knowledge of grammar was acquired by
trying to learn foreign languages. HaleyAuthority assumes at least a basic skill
level in this respect. On the other hand, it assumes no technical skills beyond
elementary entity modelling.

120 Chapter 5

The product supports different policy and rule expression formats: if/then,
constraints, declarative definitions. In addition, HaleyAuthority lets you write
general statements directly in natural language. HaleyAuthority supports
the expression of archetypes, templates, overrides and specializations and
exclusions, including the ability to specify the conditions under which an
override or exclusion should apply using applicability conditions (see below),
rule templates, and designation of statements as overrides for other statements

Although HaleyAuthority allows you to enter business rules in natural
language, it does not allow the use of any kind of punctuation, like commas
and even humble concluding full stops. If you add a stop, HaleyAuthority can’t
compile the rule. It does, however, understand the Saxon genitive apostrophe
as in: ‘A person’s mother’s niece is the person’s second cousin’. The fact
that I really could (and did) type in this last sentence and get it understood
impressed me in some ways far more than the more focused tests I have done
with this product. This definition of second cousin is hard to cope with for
a human, never mind a machine. And of course the question of punctuation
doesn’t even arise with other BRMS products, none of which go anywhere near
this level of natural language processing. So the mystery is this; if the Haley
programmers are clever enough to get the product to understand the Saxon
genitive, why can’t they just strip out the commas and stops when it parses
a rule?

Test cases can be defined using XML-based test data that represent incoming
transactions. However, it does not have any equivalent of Blaze Advisor’s
useful interactive testing facilities. To test your rules, you have to create a set
of instances of your concepts with different attributes. Since HaleyAuthority
contains embedded within it a copy of HaleyRules, it can be used to simulate
the execution of the knowledgebase – especially as it allows the use of XML
patterns representing external transactions for these simulations. It also allows
non-technical rule authors to compare test results so that they can carry
out regression tests themselves. HaleyAuthority allows these test cases to be
grouped so that automatic regression tests can be run as the rules evolve.

Debugging is supported both within HaleyAuthority at the rule level, and
within the development environment for HaleyRules, where detailed tracing
of rule execution and working memory changes is possible. HaleyRules also
provides an API for passing knowledgebase execution information to external
applications at runtime.

HaleyAuthority has very good effective date mechanisms, with the ability
to create deployment polices with future effective and expiration dates. You
can reason with concepts like tomorrow and yesterday.

The product has a repository which enables changes to be managed for
multiple concurrent users. This supports workflow in development with
rôle-based permissions for change management. The repository supports
workflow features that can be used to implement an approval process for rule
maintenance, tagging rules as ‘proposed’, ‘reviewed’ or ‘approved’. Ruleflows

Features of Business Rules Management Systems 121

are implemented by setting module (i.e. ruleset) priorities and writing rules to
control branching among the modules.

There is automatic, real-time, multiple cross-referencing of rules and con-
cepts (ontology).

With regard to the tabular representation of rules, the current version of
HaleyAuthority supports look-up tables rather than decision tables. Look-
up tables allow information to be presented to rulesets in tabular form and
reasoned with. A look-up table relates up to two sets of variable ranges
(such age ranges) to a set of actions (such as the medical tests required of an
applicant for life assurance). This has the same effect as support for decision
tables in that rule data can be captured in tabular form. It suffers from the
same disadvantage of decision tables; i.e. a large table may be equivalent to
only a few rules. However, it is a useful tool to have, and is easy to use.

HaleyAuthority includes a useful library of dates, units and quantities
and phrasings for reasoning about them. These offer improved productivity
and shorten the rule development cycle. For example, you can write rules
that mention dates and temporal concepts such as before and after, without
having to write any code to define such concepts. You can create polices with
future effective and expiration dates – deployment parameters can be directly
associated with modules. Many basic concepts are predefined and the concept
sets are extensible. For example, dollar and ton are predefined. Adding yen
and tonne is easy because they still behave as money and weight. So we can
write ‘If the unladen weight of a vehicle is more than two tonnes then the
vehicle is a heavy goods vehicle’.

Incremental development and selective deployment is helped by the ability
to make incremental additions to modules and sentences.

HaleyAuthority provides a simple deployment mechanism whereby an
authorized person can deploy the rules directly into test or production environ-
ments, without any downtime. As HaleyRules can be configured or instructed
by an application to check for any updates to the rules, it can then examine
the deployed files and only load the changes like data; that is, without need-
ing the current process to be restarted. Code generation capabilities include
integration code for invoking external object models and direct processing of
XML requests.

There is built-in support for importing data and mapping it to the business
vocabulary, usage, orchestration, and integration with external data represen-
tations and methods (XML, .NET, Java). HaleyAuthority has import wizards
to support this process. Support for XML input is direct with no need for
additional programming. It generates the integration code automatically.

There is support for dynamic or ‘hot’ deployment. The HaleyAuthority
deployment button can invoke an external script. Support for multiple con-
current knowledge bases is good too. A single instance of HaleyRules can
load multiple knowledgebases, and for each knowledgebase it can maintain

122 Chapter 5

an unlimited number of working memories subject to memory and CPU
constraints of the host platform.

There is not currently an operation-level ‘undo’ (e.g. undoing the addition
of a concept). However, rollback is supported on the knowledgebase, which
enables ‘undo’ of all of the operations performed during a session.

Haley has multiple levels for the knowledge base, as well as change man-
agement and test results.

HaleyAuthority’s nested logic syntax conforms to Morgan’s rule style guide-
lines and can dramatically reduce the size of rulesets. In an IDC report,
the following single HaleyAuthority nested statement was said to replace a
conventional if/then equivalent with 12 complex rules:

A child meets the relationship test
if the child is the taxpayer’s child
if the child is a descendant of a child of the taxpayer
if the child is a relative of the taxpayer who cared for

the child
if the child is an eligible foster child

unless the child is married
unless the child is a dependent of the

taxpayer
if the taxpayer can claim the child as

an exemption
if the taxpayer gave away the right
to claim the child as an exemption

Here is an example of just one of the twelve equivalent rules (also in
Haley syntax):

If the child is a relative and the taxpayer cared for the
child and the child is married and the child is a
dependent of the taxpayer and the taxpayer can claim
the child as an exemption
then the child meets the relationship test.

There is a point of controversy on this style of rule reduction. If you combine
multiple rules into a single rule you save space, but are you effectively ‘rule
programming’? What happens if you need to add a side-effect: another action
for one of the cases? You may need to rewrite your whole rule instead of just
modifying a single rule. Of course, HaleyAuthority does not make the choice
for you. You need to choose. In my opinion, the solution to this conundrum
is to develop domain-specific analysis patterns to assist in matching the rule
style to problem type, performance requirements, etc.

IDC also identified impressive reductions in the number of conditions and
overall words. This ‘applicability condition’ style of rule writing is a powerful
alternative to the more usual if/then style. Applicability conditions can be
dragged to other modules to save retyping them.

Features of Business Rules Management Systems 123

Custom vocabularies for HaleyAuthority are available or being developed
to support some vertical market sectors.

HaleyAuthority is significantly different from the other products in the
market. The system can really understand natural language expressions, as
opposed to systems that substitute pseudo-English in place of pseudo-code. It
is especially easy to use when making changes to the rules once the knowledge
base has been built. Features such as nested conditions and ‘unless’ clauses
serve to both make applications more efficient and reduce the overall time it
takes to develop and edit rules.

The HaleyRules rule engine offers good support for rete, forward, backward,
and mixed chaining, automatic truth maintenance and conflict resolution. It
has the ability to handle a large number of rules and large numbers of concur-
rent requests/transactions, users, and rule executions. HaleyAuthority also
supports multiple evaluation and ruleflow control strategies. The product lets
you define, maintain and organize rules into rulesets or modules. Applicability
conditions can be shared across rulesets easily by defining these at the module
level. Priorities and applicability conditions may be applied at both the module
and statement levels.

I think HaleyAuthority fits best into development environments where
business experts or non-technical business analysts need to (and are available
to) create, maintain or test the business rules that reflect evolving business
policy. This is absolutely necessary when policies change rapidly and time to
market may not be sacrificed to the application backlog. Where the users are
too busy to maintain the rules themselves, it is less suitable.

5.2.3 JRules
ILOG’s JRules is a platform for designing, implementing and managing the
business logic incorporated in enterprise applications. It is the Java version of
an older (and almost certainly slightly faster) library of inferencing and rules
management components written in C++. It has a long and respectable history
and is by now a robust and reliable offering. It runs on any platform with an
appropriate Java virtual machine.

The architecture integrates comprehensive environments for business rule
authoring and management, business rule application development, managed
rule execution and business rule testing and simulation. It caters to developers,
by enabling them to develop Java applications using their existing application
development skills. Developers can combine rule-based and object-oriented
programming to add business rule processing capabilities to new and existing
applications. It caters to policy managers, by letting them manage their rules,
once these are developed, and resources as the business evolves, and without
recourse to IT.

124 Chapter 5

JRules 6 has four modules:

■ Rule Team Server (RTS) is a scalable rule management server and
repository with a collaborative web environment for authoring,
managing, validating, and deploying business rules. It is designed for
policy managers (non-technical business experts) and offers features to
control permissions, rule level locking during editing, rule history and
versioning, as well as the ability to freeze a set of rules and rollback rule
versions to this saved state.

■ Rule Studio is an integrated development environment (IDE) for rule
applications that integrates directly into the Eclipse family of integrated
development environments, including Eclipse, IBM Rational Application
Developer and ISM Rational Software Architect. It provides rule and
application development tools with which one may create and manage
the rule vocabulary, business and execution object models and the
mappings between them, write, test and deploy business rules and
graphical artifacts (decision trees and ruleflows) and debug Java code
and business rules, all within the same environment. Rule Studio
supports deploying and debugging rulesets to the Rule Execution Server
and enables collaboration with business rule authors through its
integration with Rule Team Server.

■ The Rule Execution Server (RES) is a J2SE and J2EE-compliant execution
environment for deploying business rule SOA services to web and
application servers from IBM, BEA, JBoss, Oracle, and Apache. It
includes components for synchronous, asynchronous and web service
based invocation of business rules and includes a web administration
console. Rule Execution Server is integrated with Rule Studio and Rule
Team Server to support business rule deployment intended for both
developers and policy managers.

■ Lastly, the Rule Scenario Manager provides ruleset testing and business
simulation capabilities. It provides an integrated environment in which
the correctness of rules can be verified and wherein changes in business
policy can be simulated. Designed for customization, it can be tailored to
enterprise data stores, deployment processes and reporting requirements.

Rule Studio is a single environment for modelling, coding, debugging and
deploying rule applications, integrated into Eclipse. Developers and architects
familiar with Eclipse will thus benefit from a shortened learning curve.
System administrators and operations managers deploy, monitor and manage
business rule executions through the JRules administration web console, or
via standards-based connectivity to enterprise system management tools such
as IBM’s Tivoli or HP’s OpenView.

The modular architecture of Version 6 of JRules, illustrated in Figure 5.5,
supports a business rule management cycle that is independent of application

Features of Business Rules Management Systems 125

Rule artifact

BOM

BOM

Ruleset

Authoring

uses

uses

Execution

BOM to XOM
mapping

Native Dynamic

XOM

Java classes XML data;
Web service data

Figure 5-5 JRules architecture.

development cycles, but still allows synchronization between business rule
management and application development. Applications can be deployed as
stand-alone desktop applications or mid-tier services within a service-oriented
architecture (SOA), or as web services. The reliance on Java, while making
the technical level of the product higher, allows developers to control the
granularity of their components so that architects can design applications
or services around the requirements, rather than around the BRMS, as may
be useful in some circumstances. JRules is built on a set of Java foundation
classes that provide application programming interfaces (APIs), allowing
customization of every aspect of a business rule application.

JRules supports development teams of any size through integration with
any Eclipse supported source code control (SCC) system. In the execution
environment, support for clusters of execution servers provides horizontal
scalability.

As with all genuine BRMSs, the rule engine separates business rules from
the rest of the source code, executes them (after transformation into executable
form) and manages them within the BRMS.

In older versions, the developer approached the product using an authoring
and testing environment called Rule Builder. From Version 6.0, this is replaced
by a customized version of the Eclipse IDE: Rule Studio for Java. These provide
a graphical user interface (GUI) and several editors to write business rules
and create a business object model (BOM). The BOM classes map the natural
language syntax of the business rules to the underlying application objects,
which can be in Java, XML, or exposed as Web services. Rather than a classical
repository (to store, organize and manage the rules) JRules generates a series
of files that persist in the ILOG projects added to Eclipse. These files can then
be checked in to the same source code control (SCC) tool the development
team is using for their other code. The SCC tool becomes the repository.

126 Chapter 5

Then an object model must be created, either by defining a business object
model (BOM) or a Java object model (or importing an existing one). This is
a necessary precursor to writing rules. The repository is accessed using Rule
Team Server or may be queried using SQL. RTS has its own DBMS-based
repository, which is the repository of record for JRules rule artifacts. New
projects are published to RTS from Rule Studio through the RuleSync feature.
Then RuleSync keeps the two versions of the project synchronized on demand.
This is really quite an impressive innovation: two separate repositories for two
separate environments, synchronized on demand.

JRules provides a repository in which to organize and store the rules and a
rule engine to execute them. From Version 6 the rule engine is considered a
still vital but less visible component of the BRMS. The Rule Execution Server
is the focal point for execution. RES provides a managed execution environ-
ment, handling pools of engines running multiple heterogeneous rulesets, all
remotely monitored and controlled. The managed execution environment is a
must-have for some of ILOG’s larger customers, who expect the same visibility
and control for rule execution in the production environment that they get
for other components running on their application servers. Rule projects are
persisted in the file system by Rule Studio. This enables full integration with a
source code control repository for versioning and collaboration. Rule projects
that have been published to Rule Team Server, from Rule Studio, are then
persisted in the database layer of Rule Team Server. Applications that have
been deployed to Rule Execution Server are persisted in the persistence layer.

A JRules application consists of objects (classes and their instances) and
rules. Objects have attributes and methods. Only instances are stored in
working memory (because, in Java and C++, classes are not objects). Rules
refer to these. Related rules are grouped into rulesets. Rulesets are related to
working memory by a JRules ‘context’, which also holds the current state of the
inference process (the ‘agenda’). Inference is standard rete forward chaining:
execute all applicable rules, remove fired rules from the agenda and then loop
until no new applicable rules exist.

Rules are then created, numbered and named. A standard if/then syntax is
simplified by making relational operators and connective phrases, such as ‘less
than or equal to’ and ‘[if] all of the following conditions are true’, available
from pop-up menus.

There are several rules languages to choose from when writing rules that
can then access objects in working memory:

■ The BAL (Business Action Language) is a general purpose business rule
language with a syntax close to natural language. The BAL is designed to
cover most needs when writing business rules.

■ Decision tables, which are rules composed of rows and columns and
used to lay out in tabular form all possible situations that a business

Features of Business Rules Management Systems 127

decision may encounter. The actions to be taken in each of these
situations are specified.

■ Decision trees, the graphical equivalent of decision tables.
■ The ILOG Rule Language (IRL) is the language that can be directly

executed by the rule engine. The IRL has a Java-like syntax and is mostly
used by developers. Business rule languages, like the BAL or the TRL, can
be used by a developer to write rules. These are then translated to IRL.

■ The Technical Rule Language (TRL), which is a syntax driven form of the
ILOG Rule Language (IRL), and mainly of use to developers. From
Version 6.0, TRL is superceded by a version of IRL that operates directly
on the BOM. Most users will not be aware that TRL even exists.

JRules provides support for creating a customizable business rule language,
using its Business Rule Language Definition Framework (BRLDF). This enables
languages to be defined in XML files. The Business Rule Language Definition
Framework (BRLDF) can be used to develop a custom business rule language.
The BRLDF sits on top of the token model, which can be used for advanced
customization. It seems to us that there is a considerable amount of effort
involved in creating a custom business rule language.

The relationships among these rule languages are shown in Figure 5.6.
The Business Object Model is translated into the XOM (eXecution Object

Model) which can access Java instances and XML data. The rule engine works
on this. To write business rules in Rule Studio you must first have a BOM
defined. Alternatively, ILOG Rule Language (IRL) can be used by developers.
The BOM defines the classes and methods to which the business rules will be

Rule
engine

Rule languages

Rule authoring Rule execution

IRLBRLDF

TRL

Decision
tables

BAL

Custom business
rule languages

Figure 5-6 JRules languages.

128 Chapter 5

applied and maps the ‘natural language’ syntax of the business rule language
to these classes.

Based upon my experience, the skills needed to use the business rule
language are beyond those of a typical knowledge engineer, business analyst
or policy manager – unless that person is closely coupled with an IT developer,
who must continually be on hand to change the BOM in advance of authoring
or updating the rules.

When the business rules have been written and tested they are translated
into ILOG Rule Language, which is the language understood by the rule
engine. During the translation of business rules into execution rules, the BOM
classes are translated into XOM classes. Execution rules are business rules that
have been translated into IRL for execution in the rule engine.

The classes available to the rule engine in the XOM and can be dynamic
or native in nature. The XOM classes are said to be native if they originate
from an existing Java object model or dynamic if they originate from XML
schemas or Web service schemas. To execute a ruleset, it must first be parsed
by a rule engine instance. The XOM classes provide the rule engine with the
data required to evaluate the business rules.

Data sources to be converted into objects for inclusion in the XOM may be
XML, a web service, Java objects, databases, or any combination of them.

There are good debugging facilities, and consistency checking features let the
rule author identify broken or redundant rules. Rule templates are supported
to aid rapid rule editing. A template can be based on any rule language, such
as the BAL or the IRL. A template library contains a set of templates and a
BOM that defines the vocabulary of these templates.

The product supports different policy and rule expression formats: if/then,
constraints, declarative definitions. Rules can also be entered in the form of
row-oriented decision tables, which is sometimes useful if the knowledge is
presented in this way. However, not every knowledge engineer likes this form
because of its ‘verbosity’: each row in a table is a rule, but a single rule (with
ANDs or ORs) can correspond to several rows. In practice, decision tables
get far too large to be practical for realistically sized rulebases. However, this
feature is useful if one’s raw data are presented in a suitable tabular form.

If you need to extract the rules, rule subsumption checks can be use to
tidy them up. Rule subsumption detects relationships between rules and helps
debug the rulebase. A business rule is said to subsume another if the conditions
of the subsumed rule are included in the conditions of the subsuming rule.
Thus, if the antecedent of one rule says ‘if X is greater than 20 then do A’ and
another says ‘if X is greater than 10 then do B’, then the second rule subsumes
the first. We need to correct the first rule to read ‘if X is between 10 and 20 then
do A’.

Rules can be written in English, French and Japanese and embedded in
web services. There are good rule query facilities. Time related conditions and
actions can be included in rules, but rule history information is limited. Once

Features of Business Rules Management Systems 129

written, the rules can be deployed – using the APIs – to either J2EE or JSE
environments.

On deployment, instances are inserted into working memory either using
keywords within rules or from the application, using this kind of syntax:

mycontext.insert(customer);

To execute we need to call the following method on IlrContext object:

myContext.FireAllRules();

The rete algorithm and any custom code now handle the execution.
The repository handles versioning, permissions, change history, persistence

and locking. It also provides a query service that allows one to query business
rules using any rule property, including user-defined properties such as
business rule author, effective/expiration date, and business rule status. You
can also query on classes, attributes and methods referenced in the rules.
Queries are written using the Business Query Language (BQL). BQL is a
language derived from the BAL tailored for querying rules. BQL has SQL-like
syntax. Standard management queries can be created.

Ruleflows allow the developer to define the execution order of rulesets. A
ruleflow is defined by a diagram (reminiscent of a UML activity diagram) that
defines a sequence of tasks (rulesets, other ruleflows or functions) that solve
a particular problem or execute a business process. It consists of tasks and
transitions between these that define their chaining. A transition can have a
guard, which must be true for the transition to be allowed. Rule execution is
controlled by task properties, which can be set by the user. These properties
determine:

■ the rule ordering, using static or dynamic priorities or following a
user-defined sequence;

■ the rule firing strategy (e.g. fire all eligible rules, or fire one rule and
stop); and

■ the execution algorithm (rete or sequential bytecode generation for
optimal performance).

JRules conforms with current and emerging Object Management Group
(OMG), Java Community Process (JCP), and World Wide Web Consortium
(W3C) standards.

JRules is a sound product with a rich range of tools and features for
developing business rules management systems. On a purely technical level,
most business rule applications can be built using this product. However,
it failed to pass my tests for usability by non-technical business analysts.
Much of the documentation is largely written in terms that can only be fully
appreciated by Java programmers. The business analyst is protected from
this to some extent but, I feel, not nearly enough. In older versions of JRules

130 Chapter 5

the two rule languages and the translation between them was confusing for
the analyst new to the product, as is the distinction between the BOM and
XOM to this day. In other words, JRules sacrifices simplicity to its powerful
architecture. Fortunately, from Version 6, the BAL can be used by both the
technical and business teams. The IRL is still there but is unlikely to be used
by new adopters.

JRules is most suitable for use within projects where considerable technical
skills are on call. Even though business analysts can use elements of Rule
Studio, to make this possible will require a significant amount of customization
by IT professionals and a deal of tuition. To be fair, Rule Studio is intended for
developers; it is RTS that is meant for business analysts and policy managers.
Thus my remarks apply to rule creation rather than rule maintenance.

JRules will sit comfortably in developer-centric organizational cultures,
especially where Java and J2EE constitutes the prevailing development envi-
ronment and the flexibility offered by the open Java-based architecture is
considered an important benefit. If users are to maintain the rules, the extra
effort needed to customize the rule language using the BRLDF should be
planned for.

Related ILOG Products

ILOG also supplies constraint logic programming tools. These are more spe-
cialist and aimed at a particular kind of artificial intelligence search problem
where the knowledge is stored in the form of constraints. Inference then pro-
ceeds by backward chaining over the constraints and applying mathematical
algorithms to search for feasible solutions. Typical applications include plan-
ning and scheduling, resource allocation, transport and logistics, and circuit
design and verification. We do not consider constraint programming further
in this book.

5.2.4 PegaRULES and Versata
PegaRULES from Pegasystems Inc is a BRMS with good Java integration and
full repository management. In the same spirit as Blaze Advisor, it offers
HTML-based rule forms to help build and maintain rules. It provides a
standardized classification of rule types, including:

■ declarative rules, which compute values or enforce constraints as data
change;

■ decision tree rules, which perform inference on if/then-type statements;
■ integration and transformation rules that are intended to streamline

interfaces to the legacy; and
■ process rules to deal with the receiving, assignment, routing and tracking

of work.

Features of Business Rules Management Systems 131

The rule engine is proprietary but, so far as I can establish, is similar
to the rete-based approached of the other products covered here. One is a
little sceptical when the company literature describes forward chaining as
‘procedural logic’, but the product has a reputation that belies this faux pas.

Valid and effective dates for rules may be specified.
PegaRULES comes from a business process modelling tradition, and one

of the company’s leading products is Process Commander, which is a BPM
system built on top of and integrated with the PegaRULES rule engine,
although most users use packaged applications rather than the raw Process
Commander.

PegaRULES is worth considering, especially when a BPM application is
contemplated.

Versata is another BRMS product that appears to meet most of our criteria,
although only certain types of rules (decision rules) are subject to rete infer-
encing. Its focus is on database-oriented applications. In addition to decision
rules, Versata defines three other kinds of rule:

■ Process Rules describe sequences of activities or workflow. These rules
are typically used to coordinate the work of people and systems in
conjunction with the other rule types.

■ Transaction Rules are mostly static, behavioural features of the
underlying components and objects, used to automate business
transactions. These rules represent constraints, derivations, validations
and actions.

■ Data Rules enforce database integrity under update and represent
choices in respect of policies about persistence, caching, access, etc. Data
rules should help to ensure consistency and optimization.

Like JRules, the development environment is built on top of the Eclipse
IDE and provides Java-based development and interoperability with other
Eclipse tools. It exploits the Eclipse Modelling Framework for metadata, and is
compliant with the XML Metadata Interchange, making it possible to integrate
with other corporate metadata. The workbench also contains tools such as Java
editors and debuggers and integrates with source code control systems. The
repository is centralized, and stores both rules and metadata required for rule
development. It uses XML to help tool and model interoperability.

In common with many other BRMS products, Versata supports decision
tables, English-like rule expression, and graphical workflow depictions.

Versata emphasize their database focus using a graphic similar to that
shown in Figure 5.7, which treats data and transaction rules as distinctly non-
inferential – an emphasis with both conceptual and performance implications.
The implication is that only Versata covers all these kinds of rule. Of course,
other vendors would counter by saying that there is no reason why data
and transaction rules should not be treated as inference rules, and that

132 Chapter 5

Data
rules

Transaction
rules

Process
rules

Decision
rules

Static

Dynamic

Centralized Distributed
or delegated

Other rete-based
BRMSs

Process-focused
BRMSs

Figure 5-7 Versata rule types.

optimizations can overcome any performance problems. However, if your
application is data-intensive (to use Versata’s own phrase) there may be some
advantage in keeping such rules conceptually separate.

5.3 A Simple Application

In this section we look at a small application designed to test the features
typically required of a rule-based application. The sample application scenario
is this. A life assurance company employs sales representatives who visit
potential customers in their homes. The reps have laptops or PDAs on which
they can perform various financial calculations to do with disposable income,
requirements for retirement income, death benefit, school fees, marital outlays,
etc. The problem is to add to this an application that can recommend the best
type of product for a particular client, based on both the numerical data and
more ‘soft’ factors, such as their personal aversion to or preference for taking
risks with their money.

Here are the rules for our simplified life assurance advisory system as they
might be in an actual business policy or requirements statement.

The system needs to recommend a best policy for each client.
An annuity is best for clients that are retired and risk averse. An endowment

policy is best for clients that are young and not averse to risk. An equity-linked
policy is recommended if the client is a mature adult and is risk prone or at
least neutral about risk. A bond-linked policy is recommended for a client that is
averse to risk unless the client is retired. In any case, we assume that a client is
averse to risk if the client has one or more children.

Features of Business Rules Management Systems 133

It would normally be good practice to use a more consistent style and
sentence structure. The second paragraph might be clearer if written as
follows:

An Annuity is recommended for a client if the client is retired and is risk averse.
An Endowment policy is recommended for a client if the client is young and is
not averse to risk. An Equity linked policy is recommended for a client if the
client is a mature adult and is prone to risk or is neutral about risk. A Bond
linked policy is recommended for a client if the client is averse to risk unless the
client is retired. A client is averse to risk if the client has children.

The classic approach is to invent some simple pseudocode, readily under-
standable to most technically savvy knowledge engineers, such as this:

Goal = Client.bestProduct
If Client.status is ‘retired’

and Client.preference is ‘riskAverse’
then Client.bestProduct is ‘Annuity’

If Client.status is ‘young’
and Client.preference is not ‘riskAverse’
then Client.bestProduct is ‘Endowment’

if Client.status is ‘matureAdult’
and Client.preference = ‘riskProne’ or

client.preference = ‘riskNeutral’
then Client.bestProduct is ‘EquityLinked’

If Client.preference is ‘riskAverse’
then Client.bestProduct is ‘BondLinked’

If Client.children: > 0
then Client.preference is ‘riskAverse’

Note that backward chaining will be required to resolve this ruleset. In a
procedural language we would have to put the rule about children first, in
order to avoid asking for preference unnecessarily.

Implicit in these rules is the ontology given by the UML type diagram in
Figure 5.8. Note that the association is irrelevant to the ruleset, but that it
implies a business process wherein, after advice is given, an actual policy may
be purchased.

5.3.1 The Application in Blaze Advisor
First, we have to set up the types, as in Figure 5.8, but this is really easy to do.
Here is how the rules came out in the Blaze Advisor SRL rule language:

if client.status is retired
and client.preference is riskAverse
then {client.bestProduct is ‘‘Annuity’’, return

134 Chapter 5

Client

name
children
status
preference
bestProduct

newClient

BondLinked AnnuityEndowment EquityLinked

Policy

0..*
1

assures_life_of

Figure 5-8 Vocabulary for the life assurance adviser ruleset.

client.bestProduct}.
if client.status is young

and client.preference <> riskAverse
then {client.bestProduct is ‘‘Endowment’’, return

client.bestProduct}.
if client.status is matureAdult

and (client.preference = riskProne or
client.preference = riskNeutral)

then {client.bestProduct is ‘‘EquityLinked’’,
return client.bestProduct}.
if client.preference is riskAverse

then {client.bestProduct is ‘‘BondLinked’’, return
client.bestProduct}.
if client.children > 0

then client.preference is riskAverse.

Note that the syntax is quite a long way away from our original statement
of the rules in English. However, it is only little changed from my crude
pseudocode, except for the need to include the return statements. It looks a
little more like a programming language than the original; but it is a fairly easy
language to learn for a technically competent knowledge engineer or business
analyst. Using SRL’s alternative syntax would also have allowed me to write
in a different style, for example:

if client’s status is retired
and client’s preference is riskAverse
then {client’s bestProduct is ‘‘Annuity’’,
return client’s bestProduct}.

There are still five rules. The equivalent of the goal statement is two ‘event
rules’ as follows:

event rule getStatus is

Features of Business Rules Management Systems 135

whenever status of a Client is needed do { it.status =
promptEnumerationItem(status, ’’What is the client’s
status?’’)}

event rule getChildrenNumber is
whenever children of a Client is needed do {
it.children = promptInteger(‘‘How many children has the
client?’’)}

event rule getPreference is
whenever preference of a Client is needed do {
it.preference = promptEnumerationItem(preference,’’What
is the client’s risk preference?’’)

The ‘it’ object is the current instance (this in Java; self in Smalltalk). This is
looking a bit like programming but it’s not that frightening. Of course, we
had to create the attributes of a Client class and two enumeration lists. The
only other programming was the creation of a main routine to test the rule
execution. Here it is:

client is a Client.
print (‘‘A few questions about the life to be
assured...’’).

client.bestProduct = apply matchingRules(client).
print (‘‘The best product for this client is ‘‘
client.bestProduct).

Here are the results of test executions, showing that backward chaining is
working exactly as expected:

A few questions about the life to be assured...
Question: What is the client’s status?
Answer: retired
Question: What is the client’s risk preference?
Answer: riskAverse
The best product for this client is Annuity

A few questions about the life to be assured...
Question: What is the client’s status?
Answer: matureAdult
Question: What is the client’s risk preference?
Answer: dontKnow
Question: How many children has the client?
Answer: 2.0
The best product for this client is BondLinked

A few questions about the life to be assured...
Question: What is the client’s status?

136 Chapter 5

Answer: matureAdult
Question: What is the client’s risk preference?
Answer: riskNeutral
The best product for this client is EquityLinked

A few questions about the life to be assured...
Question: What is the client’s status?
Answer: retired
Question: What is the client’s risk preference?
Answer: riskProne
Question: How many children has the client?
Answer: 0.0
The best product for this client is unavailable

The last result merely shows that the ruleset does not cover the state space
and that more rules would be needed in a live application.

However, it should be noted that rules 2 to 3 were given a higher priority
than rules 1 and 4. If we relax this and also move rule 4 to the beginning
of the list of rules, then rule 4 fires first and we get an erroneous result of
BondLinked for a retired and risk averse client. In other words, rule order can
have an effect that may not be obvious prior to debugging. Against this, the
ability to assign priorities to individual rules is a powerful tool in the hands of
analysts who know what they are doing.

5.3.2 The Application in HaleyAuthority
The approach of HaleyAuthority is quite different, in that one can start with
writing the rules and work back to the ontology. Also, the rules come out
in much plainer English. One is able to write statements as sentences almost
identical to the more structured version of the original policy. My first version
came out like this:

BestProductRules
Statements:

An Annuity is recommended for a client only if the client
is averse to risk and the client is retired

An Endowment policy is recommended for a client only if the
client is young and the client is not averse to risk

An Equity linked policy is recommended for a client only if
the client is a mature adult and the client is prone
to risk or is neutral about risk

A Bond linked policy is recommended for a client if the
client is averse to risk unless the client is retired

A client is averse to risk if the client has children

Features of Business Rules Management Systems 137

As I familiarized myself with the product, I soon discovered a more struc-
tured way to write and present the rules, as follows:

BestProductRules
Statements:

An Annuity is recommended for a client
only if : the client is retired
only if : the client is averse to risk

An Endowment policy is recommended for a client
only if : the client is young
only if : the client is not averse to risk

An Equity linked policy is recommended for a~client
only if : the client is a mature adult
only if : the client is prone to risk or is neutral
about risk

A Bond linked policy is recommended for a client
if : the client is averse to risk
unless : the client is retired

A client is averse to risk
if : the client has children

We have used the ‘applicability condition’ rule style here. There are three
kinds of applicability condition: ‘if’ conditions are OR-ed and ‘only if’ con-
ditions AND-ed. ‘Unless’ conditions are self-explanatory and help to make
rulesets (modules) more concise.

Realizing this I went back to Blaze Advisor and corrected one of my rules to
read as follows:

if client.preference is riskAverse
and client.status is not retired

then {client.bestProduct is ‘‘BondLinked’’, return
client.bestProduct}.

The and/not construction is used here instead of ‘unless’.
As explained in Chapter 6, writing rules in HaleyAuthority is guided by

Haley’s knowledge acquisition method:

1. Identify the decisions to be made;

2. For each decision write the policies or rule logic and indicate any
exceptions or qualifications;

3. Define the business vocabulary and phrasings that HaleyAuthority
needs to know about in order to understand and interpret the rules that
you have defined;

4. Test and simulate your rules incrementally as you go.

138 Chapter 5

This makes the applicability condition style very natural.
Note that the first rule can also be written (as above) as:

An annuity is recommended for a client if the client
is averse to risk and the client is retired

In fact, if you type this in, HaleyAuthority suggests the next permissible
words as you type.

Rule execution transcripts for a few test cases were put out by the system as
follows:

Test Case: Clapton
Execute: condition 10: the client is a mature adult.
Execute: condition 11: the client is prone to risk or is
neutral about risk.
Execute: statement 9: An Equity linked policy is recommended for a client.

Test Case: Idle
Execute: condition 4: the client is retired.
Execute: condition 15: the client has children.
Execute: statement 14: A client is averse to risk.
Explanation: [client] 32 is averse to risk
Execute: condition 17: the client is averse to risk.
Execute: condition 20: the client is retired.
Execute: condition 5: the client is averse to risk.
Execute: statement 3: An Annuity is recommended for a client.

Test Case: Jong
Execute: condition 7: the client is young.
Execute: condition 17: the client is averse to risk.
Execute: statement 12: A Bond linked policy is recommended for a client.

Test Case: Leach
Execute: condition 4: the client is retired.
Execute: condition 5: the client is averse to risk.
Execute: condition 17: the client is averse to risk.
Execute: condition 20: the client is retired.
Execute: statement 3: An Annuity is recommended for a client.

Test Case: Redhand
Execute: condition 7: the client is young.
Execute: condition 8: the client is not averse to risk.
Execute: statement 6: An Endowment policy is recommended for a client.

All the results are as expected.
In many BRMS products, priorities can be set for rule modules. This enables

the analysts to control the order of execution. In Blaze Advisor, for example,
priorities can be set at the individual rule level, giving some finer control but
at the risk of complexity. To do this in HaleyAuthority, one has to write rules
about the priorities in the same natural language style as the main rules. One

Features of Business Rules Management Systems 139

approach to this, in the above example, is as follows. First, deduce possible or
allowable conclusions and then write explicit policies about such preferences.
Another approach is to use unless conditions, but still using a representation
that is aware of preferences.

The first approach might write policies such as ‘An annuity may be (could
be) recommended for a client’. Subsequent policies may state:

A bond linked policy is recommended for a client
only if: An annuity may not be recommended for the

client
only if: A bond linked policy may be recommended to

a client

The second approach would generalize to the understanding that certain
products are preferred to others, but still distinguishes between what ‘may be’
and what ‘is’. For example:

An annuity is preferred to a bond linked policy
if: An annuity may be recommended for a client

A product is recommended to a client
only if: the product may be recommended for the client
only if: no product is preferred to the first product

Either of these approaches may be employed to convey the additional
desired knowledge that certain products are ‘more applicable’ or ‘preferable’
under certain circumstances. The approach is slightly wordy but very clear in
meaning and less prone to error.

5.3.3 The Application in JRules
To set up the same application in JRules required a little more effort and some
knowledge of programming. JRules requires the creation of an object model as
a pre-requisite to creating the rules. You can either import a Java or UML model
to create an XOM or create the BOM classes and set their properties using the
editor and wizards. This involves naming classes and attributes and providing
more English-like alternative names or ‘verbalizations’. This ‘vocabulary’ is
automatically generated from the BOM and can then be manually adjusted
to optimize the natural language ‘look and feel’. Where an RMA might be
required in Blaze Advisor, this gives the option of a readily readable and
customizable natural-language-like rule syntax. It was quite easy to create
the six objects of Figure 5.8 and the attributes of Client. The rules can now
be written using a ‘guided’ editor. This produced errors in relation to the
subtypes of Policy, until I went back and declared the four policy types as

140 Chapter 5

members of Policy and gave the latter a domain of type ‘static references’. Then
I had to declare each of these members as ‘static’ and ‘final’. Then my rules
compiled. Here’s how they came out:

if the status of the client is "Retired"
and the preference of the client is "Risk Averse"
then set the best product of the client to Annuity;

if all of the following conditions are true :
- the status of the client is "Young"
- the preference of the client is not "Risk Averse"
then
set the best product of the client to Endowment;

if the status of the client is "Mature Adult"
and any of the following conditions is true :
- the preference of the client is "Risk Prone"
- the preference of the client is "Risk Neutral"
then
set the best product of the client to EquityLinked;

if the preference of the client is "Risk Averse"
then set the best product of the client to BondLinked;

if the children of the client is more than 0
then set the preference of the client to "Risk Averse";

Note the variation in rule style, which I have done to show what is possible
rather than to illustrate good style. Note also the terminating semicolons; they
are necessary – just like in Java! In Rule Team Server the situation is better; the
semicolons are invisible when authoring rule artifacts.

As with Blaze Advisor, testing the rules required writing a main routine;
but the syntax of Java was needed to create test instances using the Java ‘new’
keyword. There is another way to do this, involving use of an ‘assert’ dialogue
to set up attribute values. Individual rules can be tested in Rule Studio without
the need to deploy them, but there must be a XOM present to do this. After
my tests, all the results came out as expected.

By this point, I had formed a number of impressions about JRules. It was
clearly up to doing the job I had in mind. I could see that, with sufficient
effort, I could build sophisticated and complex applications. Though not quite
natural language, the rules looked a bit friendlier than they did in the Blaze
Advisor SRL but the object model looked a bit more complex, which the need
to use terms like ‘static’ and ‘final’. And there was no way to avoid building
a XOM, which requires some knowledge of Java. This wasn’t a tool that you
could just give to non-technical people. Even with the advantage of the UML
graphical editor (which none of the other products boast), only someone who
was comfortable with Java would take to it naturally. For a typical business
analyst, set up time would be longer than that with Blaze Advisor or, indeed,
HaleyAuthority. On the other hand for a Java developer, the environment is
natural and very friendly.

Features of Business Rules Management Systems 141

5.4 Usability Issues

Usability is as important for business rules applications as it is for any other
kind of application. As always the user experience will be improved by the
use of strong metaphors and the illusion of direct manipulation of objects.
Metaphors like the desktop or filing cabinets still work. Standard and custom
icons can still be used to represent objects. Bear in mind that the user must be
able to learn by exploration, and that the interface should be consistent both
across this application and with other applications in use.

It is in the area of consistency where BRMS interfaces raise some special
issues. We must write rules in a consistent and understandable style. The
way the interface works will depend to the product(s) you have selected. In
Blaze Advisor you will probably use an RMA to control much user interaction.
Therefore, plan to spend some time on the usability design and testing of your
RMAs. In Haley Authority you will pay more attention to interacting via the
rules themselves. In JRules you may also create Java applications to handle
interactions, giving you great freedom to design. ILOG’s new verbalization
technology, which helps generate a vocabulary of natural-language business
terms from the business object model, also allows users of the Rule Team
Server to interact directly with the rules.

Products, such as JRules and Versata, that use Eclipse as their IDE benefit
from transfer effects when used by developers already familiar with Eclipse.
For example, JRules Rule Studio plug-ins for Eclipse adhere strictly to the
default style and usage patterns defined by Eclipse.org.

In any case, base error messages on the rules that you have stored. Try to base
other interactions on the rules too. Try to use grammatically correct forms of
language. Avoid acronyms and abbreviations; they slow the reader. If possible,
use (good) punctuation; it too speeds reading and removes ambiguity.

Usability must be tested. Set time and resources aside for this too.
A few of the patterns in Chapter 7 refer to usability issues.

5.5 Summary

Modern BRMS products separate rules from application code and store them
in a repository. A separate inference engine can be applied to chain the rules
together and deduce new facts. Procedures may also be stored as rules in the
repository. Most products allow rules to be phrased in ways different from the
standard if . . . then . . . form. Products vary in the degree to which rules can be
expressed in a form close to natural language. Some offer alternative ways for
users to author rules, often using devices like web forms.

A good BRMS should:

■ allow business analysts to create and modify the rules;

142 Chapter 5

■ use a fully-featured repository;
■ support backward chaining;
■ allow the rule engine to be a component or service within larger

applications;
■ allow applications to be deployed in a service oriented architecture;
■ focus on business rules management (as opposed to just workflow)

problems;
■ provide good report generation facilities;
■ provide evidence of successful commercial applications;
■ be compatible with a component-based or service-oriented

architecture; and
■ offer commercial-standard professional support.

Most products offer facilities for rule syntax checking, rule templates,
ruleflows and decision tables; some also offer equivalent decision trees. All
products support forward chaining inference, most of them utilizing some
version of the rete algorithm; most also support backward and mixed chaining.
No current major BRMS product offers sophisticated uncertainty management
or inference under uncertainty. It is quite hard to design completely general-
purpose user-friendly explanation and help facilities, though this can be done
with many products.

Of the dozen or so available BRMS offerings, we have looked at only a few in
any detail. What emerged was that different products are suitable in different
organizational cultures and application development scenarios. Products must
be evaluated in the light of this, as explained further in Appendix B.

Usability is as important for business rules applications as it is for any other
kind of application .

5.6 Bibliographical Notes

Up to date information on BRMS products may be found on the various
companies’ websites and in the reports of industry analysts.

C H A P T E R

6

Development Methods
You know my methods. Apply them.

Sir Arthur Conan Doyle (The Sign of Four)

Adopters of BRMS technology are well advised to follow documented devel-
opment methods. There are two particularly significant areas where methods
are important in this context: methods for knowledge acquisition and analysis;
and methods for component, service and system development. In addition,
standards are now emerging concerning the style in which rules are to be
written.

6.1 Knowledge Acquisition and Analysis

Just as requirements engineering is both difficult and critical for the success
of any computer system, one of the hardest and most crucial problems in the
development of rule-based systems is knowledge acquisition: the process of
discovering the knowledge assets of the organization. These may be found
in documentation, but are often locked up in the heads of domain experts
and other staff. Business analysts will need to learn a repertoire of knowledge
elicitation techniques to implement BRMSs successfully.

There are several informal knowledge acquisition techniques that have been
used successfully:

■ Informal, structured and focused interviews. Informal interviews are the
most obviously straightforward type of knowledge elicitation
procedures. However, their lack of structure can be wasteful of time, so

143

144 Chapter 6

that advance preparation can pay dividends. This leads to the notion of
structured and focused interviews, wherein there is more of a plan.
However, experience has shown that in informal interviews, the meeting
often seems to be going badly until a critical point is reached. Then a
great deal of knowledge pours forth in the last 10% of the available time.
This shows that relaxing the interviewee is as important as preparation,
and that one must always be prepared for the unexpected.

■ Presentations by experts.
■ Verbal protocols are transcripts (written or taped) of sessions wherein the

analyst asks a domain expert what she is doing and why. The situation
should be a natural one for the expert and consumes minimal expert
time. The method is particularly effective when cases have been selected
in advance and can reveal considerable detail. However, the questioning
can interfere with the task, especially if it is normally performed under
pressure; the expert may adopt an uncharacteristically systematic
approach. Also, it can take a long time to analyze the protocols. During
analysis it is useful if the expert is available to clarify points that are not
obvious from the transcripts.

■ Observational studies can only be undertaken in certain circumstances, but
do help the analyst to break free from preconceived ideas and find out
what experts actually do, rather than what they say they do. They also
provide information on the sequence in which activities or tasks are
carried out, the rôles adopted by actors and any time constraints on tasks.
On the down side, observational studies are time-consuming and
expensive.

■ Questionnaires are rarely used in knowledge elicitation exercises, but the
(pseudo-) science of psychometrics places heavy reliance on the way that
questionnaires objectify certain traits; so their use should not be ruled
out, especially when expertise is widely distributed geographically. In
the latter case, questionnaires may reveal local variations in the
applicability of the rules or their boundary of competence (35).
Normally a list of questions will be prepared as part of an interview plan
anyway, and it may be useful to give experts advance notice of the
questions – to allow preparation. If multiple users are to be consulted a
questionnaire will save time, but this will only work if a few face-to-face
sessions are carried out as well.

■ Simulation and prototyping. One form of simulation has the expert pretend
to be a machine in conversation with the analyst. In another, the expert
sets problems for the team to solve, acting as experts under supervision.
Or an artificial test case is fed gradually to an expert whose responses are
carefully monitored. One of the aims of simulation is to overcome
potential post facto rationalizations of knowledge; i.e. dissembling or

Development Methods 145

saying that you did something for reasons that were not present in your
mind at the time that you actually did it, but emerged as rational in
hindsight. As BRMS products become more friendly and powerful, it
becomes possible to knock out quick prototype systems based on elicited
rules. These can be shown to experts for comments. This usually reveals
errors and omission more quickly and effectively than any amount of
formal checking of paper-based models of the knowledge.

■ Introspection – when the analyst asks ‘How would I do that?’–is used as a
last resort and has the obvious dangers.

■ Background reading on the subject will almost always help, if only to
familiarize analysts with the terminology of the domain. Sometimes, a
great deal of the knowledge is available from written material such as
procedure manuals, and these often contain many of the business rules in
explicit form. Many analysts jump at the chance to build systems in this
way. Of course, if you read (and practise) enough, you are on the way to
your own expertise.

■ Becoming an expert yourself is a viable option if the domain is not too
esoteric or skill intensive.

There are also a few more formal techniques:

■ Probes are open questions based on the question words: what, why,
when, where, how and who. There are five types of probe. A definitional
probe asks ‘What is a . . . ?’ A directive probe asks ‘Why is that?’ or uses
the word ‘how’. An additive probe is used when you say something like
‘Go on.’ A mode change probe could be a question like ‘How would your
colleagues view that?’ or ‘Can you give a more concrete/abstract
example.’ Mode change probes are thus all about scope, viewpoints and
generalization (inheritance). A reflective probe involves saying the
equivalent of ‘What you’re saying is . . . ’ In that case you are far better
off when the expert replies ‘No, I didn’t mean that.’ A ‘Yes’ doesn’t give
you the chance to ask ‘Why?’

■ Teachback generalizes the reflective probe. The analyst absorbs knowledge
from users, an expert or experts and then make a presentation of that
knowledge to the people from whom it was elicited or their peers. The
hope is that errors of understanding will be uncovered in this way.

■ Kelly grids emerged from psychoanalytic studies of how people construe
their personal situations. The main technique is rarely used and concerns
how knowledge is ranked in terms of clarity or importance. However,
there are subsidiary techniques that are very useful for eliciting the
structure of object knowledge (laddering, triads) and revealing latent
concepts in the ontology. (Cf. ask for the opposite (34).)

■ Data mining or rule induction was mentioned in Chapter 4. It is very
useful for eliciting business rules that are implicit in the history of

146 Chapter 6

transactions, especially when these have been recorded in a database.
Induction can provide a useful ‘first stab’ at the rules, but depends on the
analyst’s ability to structure the problem well; i.e. to decide what the
decision categories and significant variables are. The induced rules will
usefully benefit from manual refinement and reorganization.

■ Workshops generalize interviews and are generally to be preferred over
them in terms of efficiency and thoroughness, as discussed in run a
workshop (27).

Several of the above techniques are distilled into patterns in Chapter 7,
notably patterns 25 to 35.

In general, no one technique will be enough on its own. A good analyst will
bring a toolbox of techniques to every interview or workshop and be prepared
to use the most appropriate ones.

Following knowledge elicitation, the analyst must produce a model of the
knowledge, usually in the form of text and diagrams. The model will consist
of a type model (the ontology) and rules organized into rulesets around the
type model. There may also be decision trees and tables, activity diagrams,
use case models and so on. Again, Chapter 7 contains several patterns to help
with this organization. Here too prototyping may throw useful light on the
model’s completeness and correctness.

The whole process of knowledge elicitation and analysis is as much art as
it is science. Perhaps in no cognate field of systems analysis will the cunning,
creativity and insight of the analyst be tested so thoroughly.

None of the tools considered in Chapter 5 offer specific knowledge acquisi-
tion facilities, but the natural language facilities, of the products will help to
widen the knowledge acquisition bottleneck. However, in each case, business
analysts will still have to mine the object knowledge to create the object model.

Organizations adopting such products will almost certainly need training
and – even better – mentoring on knowledge acquisition techniques. Propri-
etary and published knowledge acquisition methods, such as KADS (Gardner
et al., 1998), may be used.

Haley Systems publishes a knowledge acquisition method specific to
HaleyAuthority. It includes advice and procedures for breaking the rules
up into modules that I think could be better represented as patterns: do the
analysis rules before the action rules, do the validation rules early
on, distinguish possible from final actions. I will subsume these under
more general patterns: define a rule-writing style (23) and write the
consequent first (24). The company recommends the following procedures.

1. Identify output decisions.

2. Create analysis statements that make recommendations in a medium
priority module.

3. Create statements that lead to actions in a low priority module.

Development Methods 147

4. Create a module to handle exceptions in a high priority module.

5. Write applicability conditions for each module, showing the
circumstances under which each conclusion is true.

6. Ensure that the conditions match the consequences of other rules where
appropriate.

Writing rules in HaleyAuthority is also guided by Haley’s knowledge
acquisition method:

1. Identify the decisions to be made;

2. For each decision write the policies or rule logic and indicate any
exceptions or qualifications;

3. Define the business vocabulary and phrasings that HaleyAuthority
needs to know about in order to understand and interpret the rules that
you have defined;

4. Test and simulate your rules incrementally as you go.

This makes the applicability condition style very natural. This method leads to
a natural order of questioning domain experts. It could be used in conjunction
with almost any BRMS.

We have considered knowledge elicitation and knowledge analysis from
the viewpoint of extracting and structuring rules around a type model or
ontology. Another aspect of knowledge analysis concerns the type of inference
(if any) that will be used to chain the rules together.

It is important that the analyst understands how the rules will be used in
groups; i.e. what kind of problem is being solved. The use case analysis should
reveal tasks of the ‘solve problem’ type. The way you interrogate experts
will vary according to the problem type. The KADS method (Gardner et al.,
1998) identifies over twenty different problem types and supplies flowcharts to
guide knowledge acquisition for each one of them. The problem types include
analysis types and synthesis types. Analysis types involve the manipulation
of existing data or concepts, so that new components may be derived of new
relationships discovered. Examples of analysis types include:

■ classification problems;
■ suitability assessment;
■ alarm monitoring;
■ fault diagnosis; and (closed related to diagnosis)
■ repair.

Synthesis types aim to generate new concepts or components from applying
the rules. Typical of these are:

148 Chapter 6

• planning (e.g. creating a school timetable or meeting schedule);

• electronic circuit or computer network design;

• configuration; and (arguably)

• forecasting.

The problem type will not only affect the method of knowledge acquisi-
tion, but may also give a guide as to the type of chaining that will be the
most appropriate inference method. To over-simplify, analysis problem types
tend to indicate backward chaining as the primary inference method, while
synthesis types point to forward chaining.

Figure 6-1 shows, as an example, the KADS problem solving template for
the problem type it calls ‘heuristic classification’: classification where rules of
thumb are used. The bubbles are knowledge acquisition processes and the
rectangles are artifacts used or produced by the processes.

Determining the inference method involved in solving a problem implicitly
involves choosing the logic to be used. The conventional assumption is that
FOPC is the logic, whether the inference method is forward or backward
chaining. However, when uncertainty is present in the problem or the rules,
this may not be the case. Perhaps a modal, deontic or temporal logic is needed
to describe the problem solving strategy adequately. Or perhaps even fuzzy
logic would be better. The classic application of fuzzy logic is process control,
although it has application to various business decision problems. Not only
is the inference method of fuzzy logic quite different from FOPC. The rule
of inference (fuzzy modus ponens) is different from standard modus ponens
and forward chaining is a one-shot affair; i.e. all the rules fire in parallel; so
that the efficiencies of the rete algorithm are quite irrelevant. Furthermore,
the defuzzification step of the inference method used for process control is
different to the one used for business decision-making applications.

These questions are addressed by patterns 36 to 38 in the RulePatterns
language presented in Chapter 7.

Data abstraction

Abstract Specialize

Heuristic
match

Data

Hypothesis

Solutions

Figure 6-1 A KADS problem solving template.

Development Methods 149

6.2 System Development

It is not the purpose of this book to regurgitate all the good advice about
systems development methods published elsewhere. However, I do want to
emphasize that a business rules application needs to apply such methods just
as rigorously as any other project.

All the BRMS products we have covered are compatible with published
system development methods and we think that, in general, they are more
compatible with agile methods. Within such methods, a microprocess for
component based development is beneficial and we recommend Catalysis
for this purpose (D’Souza and Wills, 1999). Any adopted method must also
include a knowledge acquisition component.

The earlier patterns in the RulePatterns language distil an agile approach to
system development that is compatible with BRMS development. The chiefest
relevant patterns are as follows:

• Establish the business objectives (1).

• Business Process model (2).

• Establish the use cases (3) [includes Catalysis techniques].

• Build a type model (ontology) (4) [includes Catalysis techniques].

• Discover business rules (5).

• User centred service structure (6) [SOA focused projects].

• Timeboxes (7).

• Gradual stiffening (8).

• Automated testing (9) [XP influenced].

Strong involvement by business users militates against developer-centric
methods such as RUP or XP. However, taking good ideas and fragments from
these methods may well be appropriate. For example, we like the XP-like
idea of writing test cases for every ruleset and using the tests to control
system evolution. Also, the choice of product will affect the method selected.
The method appropriate for a business rules management system like Blaze
Advisor or JRules proceeds as follows:

1. Knowledge acquisition

2. Translation of policy into rule format

3. Programming the application

4. Validation

5. Programming the environment (glue code)

6. Production.

HaleyAuthority eliminates some of these steps using automatic .NET or
Java code generation from the rules, as follows:

150 Chapter 6

1. Knowledge acquisition

2. Validation

3. Programming the environment (glue code)

4. Production.

Once again, we see the strengths of systems like HaleyAuthority in non-
developer-centric cultures. In other cultures, the abbreviated method may
throw up problems.

If using Versata, Sapiens or similar, one might well proceed from an initial
data modelling exercise and structure the knowledge acquisition around that
model, as recommended by Date (2000).

The repository must record the rule authors and maintain permissions. You
would not create a database application and then allow any Tom, Dick or Harry
to change the data it stores or alter the schema. If the business rules are hidden
in the application code then it is normal to put that code under source code
control to prevent unauthorized updates. But if the rules are stored separately
and in smaller chunks than would be the case for a conventional application,
then the rules or rulesets need to have identified owners who are responsible for
making or authorizing changes. At a minimum, one must assign a knowledge
base administrator and set up review and authorization procedures involving
rule authors. See determine ownership and permissions (22) and choose
rule maintenance régime (40) in Chapter 7.

6.3 Halle’s Guidelines

Barbara von Halle (2002) is the most notable author to have presented a
complete system development method aimed at BRMS projects. Her method
consists in a six-phase waterfall that can be ‘done incrementally’. Its phases
are Scope, Plan, Discover, Analyze, Design and Deliver. Orthogonal to these
phases are four ‘tracks’: Technology (i.e. technical architecture), Process (i.e.
use cases, business processes, etc.), Rules and Data. Within the data track
things like the ontology are established as well as any underlying databases
or mappings to existing systems. Each phase is divided into detailed task-like
steps. Most usefully, each step contains one or more pattern-like ‘guidelines’.
For example, The ‘do initial research’ step of Scoping contains a guideline that
says ‘Consider reading the last two years’ annual reports’.

The Analyze phase is broken down into subphases for analyzing data, rules
and processes. In rule analysis we have steps like ‘make each rule atomic’ with
the guideline ‘make sure each rule has only one result’. This, of course, may
not be the most natural thing to do when a rule triggers multiple procedures;
but it does suggest a good discipline. It is for this reason that I suggest that
the guidelines are pattern-like; they may be ignored if the circumstances (the

Development Methods 151

context) justify it. Many of Halle’s guidelines for rule analysis overlap the
advice on rule style discussed in Section 6.4.

Halle’s method differs from other methods in several ways. Of course,
rule execution is separated from applications and core process flows, and
rules and processes are thus much easier to change. She sees pulling out
rule considerations from those concerning data and applications as a benefit,
whereas I think there are cons as well as pros, especially in relation to
data. While the separate focus on rules (as opposed to applications) must
be beneficial, developing the ontology separately from the rules may be
fraught with dangers: notably the danger of basing the rules on an inadequate
component (and therefore service) model – which often is a legacy model.
Another difference is an emphasis on wrapping core process flows around
rule dependencies; the idea of which is to help refine and vary the sequences
of user interactions based on the rule dependencies.

Halle’s method is a very valuable contribution, and especially so for its
guidelines, but there is a lot of it to read. It lacks, somehow, a notion of
saliency and may appeal to the sort of management that places more emphasis
on having a detailed, fully documented system development method than
on instilling good but simple principles into the members of development
teams. One motivation for this book is to present the simplest possible
guidelines for developing a BRMS. This is not to say that the reader will not
benefit from reading Halle’s excellent book (I have not reproduced every jot
and tittle of its advice herein), but that the pattern format is more readily
memorable.

The method contains most valuable advice under the heading of rule
management. As an example of how such advice can be ‘patternated’, choose
rule maintenance régime (40) is an attempt at a condensation of this
guidance.

6.4 Rule Style Guidance

There are two well-known published sources offer advice on rule writing
style: Morgan (2002) and Ross (2003). Their advice is distilled in pattern 23, in
the next chapter.

Ross categorizes rules into rejecters, permissions, producers and projectors.
Rejecters address database integrity and disallow any action that violates them
in real time. Permissions are merely their flip side. Producers, by contrast,
derive new data when an action or event occurs. Ross sees this kind of rule
as a function or computation, as opposed to an inference. He calls inferences
and triggers ‘projectors’. A fourth category, ‘suggesters’, involves relaxing the
hard-and-fast nature of rules; such rules delegate to humans the authority to
decide if a rule applies.

152 Chapter 6

Ross’s guidelines may be summarized as follows.

■ Rules must be unambiguous and refer to the vocabulary (terms and
facts). [Lots of his rules are special cases of this one.]

■ Rules should be non-procedural and avoid references to how, when and
where the rule is enforced or to who enforces it.

■ A rule should be clearly written and possible to achieve.
■ No redundant words (fluff).
■ Remove plural nouns, events as subjects and imperatives.
■ Write the consequent first instead of starting with ‘if’.
■ Avoid ands and ors. [See below.]
■ Write computations as separate rules and break down rules with

complex logic.

RuleSpeak builds on these principles and Ross’s classification by providing
a set of rule templates or sentence patterns. These patterns mandate that
rules should use a certain restricted vocabulary; so that the word ‘must’
appears somewhere in every rejecter rule, as does ‘may’ in every permission
rule. Logical connectives (and/or) are avoided in favour of constructions like
‘one/all of the following are true’. Recall from Chapter 5, how JRules supports
this idea. RuleSpeak nominates specific words to deal with time, such as
‘before’ and ‘by’.

RuleSpeak also includes guidance on when and when not to use decision
tables.

Morgan also provides dos and don’ts and rule templates. He divides rules
into computations, basic constraints and list constraints. In addition, he gives
templates for definitions (classifications and enumerations). Of course, his
guidance on rule construction overlaps with Ross’s to some extent. It may be
summarized as follows.

■ Rules must be unambiguous and refer to the vocabulary (terms and
facts).

■ Write computations as separate rules and break down rules with
complex logic.

■ Define terms exactly (not too widely or narrowly).
■ Make associations explicit, as in ‘Every project should be managed by a

project manager.’
■ Avoid vague phrasings such as ‘there may be . . .’
■ Don’t use permissions.
■ Avoid padding. [Same as no redundant words.]
■ Write the consequent first instead of starting with ‘if’.

Development Methods 153

■ Avoid ands and ors.
■ Remove plural nouns, events as subjects and imperatives.
■ Rules should be non-procedural and avoid references to how, when and

where the rule is enforced or to who enforces it.
■ A rule should be clearly written and possible to achieve.
■ Look out for rules that overlap, duplicate or merely rephrase each other.

Patterns 21, 23 and 24 in Chapter 7 refer to the above guidance more or less
obliquely.

In Section 5.3, we saw that there was a range of options for expressing
the following rule statement concerning a simplified life assurance advisory
system.

The system needs to recommend a best policy for each client.
An Annuity is best for clients that are retired and risk averse. An Endowment

policy is best for clients that are young and not averse to risk. An Equity linked
policy is recommended if the client is a mature adult and is risk prone or at
least neutral about risk. A Bond linked policy is recommended for a client that is
averse to risk unless the client is retired. In any case, we assume that a client is
averse to risk if the client has one or more children.

First we moved to a more consistent style and sentence structure, as
follows.

An Annuity is recommended for a client if the client is retired and is risk averse.
An Endowment policy is recommended for a client if the client is young and is
not averse to risk. An Equity linked policy is recommended for a client if the
client is a mature adult and is prone to risk or is neutral about risk. A Bond
linked policy is recommended for a client if the client is averse to risk unless the
client is retired. A client is averse to risk if the client has children.

Then we wrote the rules in a vendor neutral style using the ‘consequence
first’ styles recommended inter alia by Ross and Morgan:

An Annuity is recommended for a client if the client is retired and is risk averse.
An Endowment policy is recommended for a client if the client is young and

is not averse to risk.
An Equity linked policy is recommended for a client if the client is a mature

adult and is prone to risk or is neutral about risk.
A Bond linked policy is recommended for a client if the client is averse to risk

unless the client is retired.
A client is averse to risk if the client has children.

154 Chapter 6

Note that this is exactly the same as the preceding version with only the
addition of line breaks between rules. We also gave the ‘if/then’ form and
noted that there are an infinite number of ways to phrase a ruleset. This is one
reason why it is so important for every organization to adopt a standard format.
We saw too in Chapter 5 how the rule style could be affected by the technology
used, giving the above ruleset as implemented in Blaze Advisor, JRules and
HaleyAuthority. What your standard style is may then be influenced by the
implementation technology to be used, but must reflect the culture and style
of the organization. By default we would recommend the ‘consequence first’
style, as above.

However, some rulesets may be easier to write and understand in if/then
form. For example, here are some rulesets from a different domain, tax benefits
assessment. Note the variations in style.

Disqualification policies

The taxpayer does not qualify for the EITC if the taxpayer is filing Form 2555

or the taxpayer is filing Form 2555-EZ

or the taxpayer’s filing status is married filing separately

or the taxpayer’s SSN is not valid

or the taxpayer’s total earned income is $0

or the investment income is more than $2600

or the taxpayer’s AGI is not less than the applicable income limit for the
taxpayer

or the taxpayer has 0 qualifying children and the taxpayer is at least
25 years old

or the taxpayer qualifies as a nonresident alien

or the taxpayer’s age is less than 65 years and the taxpayer has 0 qualifying
children

or the taxpayer’s total earned income is not less than the applicable income
limit for the taxpayer

The taxpayer qualifies as a nonresident alien if

the taxpayer was not a citizen of the United States for the entire tax year

or the taxpayer was not a resident alien of the United States for the entire
tax year

The taxpayer does not qualify for the EITC if a taxpayer is claimed as
a dependent

or the taxpayer’s filing status is married filing jointly and the taxpayer’s
spouse is claimed as a dependent

or the taxpayer is a qualifying child

Development Methods 155

or the taxpayer’s filing status is married filing jointly and the taxpayer’s
spouse is a qualifying child

or the taxpayer did not reside in the United States for more than 6 months

and the taxpayer has 0 qualifying children

Qualifying children

If a person does not pass the age test then the person is not a qualifying
child of the taxpayer

If a person does not pass the relationship test for a second person then the
first person is not a qualifying child of the second person

If a person resided with a second person for less than 6 months then the
first person is not a qualifying child of the second person

If the SSN of a person is not valid then the person is not a qualifying child
of a taxpayer

Relationship Test

If a person that is not married is a son or daughter or descendent thereof of
a person then the first person passes the relationship test for the second
person

If a person can be claimed as an exemption by a second person then the
first person passes the relationship test for the second person

If a person that is married is a son or daughter or descendent thereof of a
second person and the first person can be claimed as an exemption by
the second person then the first person passes the relationship test for
the second person

If a person is a sibling or descendent thereof of a second person and the
second person cared for the first person as a child then the first person
passes the relationship test for the second person

If a person that is not married is a sibling or descendent thereof of a person
then the first person passes the relationship test for the second person

If a person that is not married is an eligible foster child of a person then the
first person passes the relationship test for the second person

Age Test

A person that was totally disabled permanently passes the age test

A qualifying child that is less than 19 years old passes the age test

If a person was a fulltime student and the person is less than 24 years old
then the person passes the age test

156 Chapter 6

Applicable income limit

The applicable income limit for the taxpayer is the EITC income limit by
children for the taxpayer unless the taxpayer is filing jointly

If the taxpayer has 0 qualifying children then the EITC income limit by
children is $11,230

If the taxpayer has 1 qualifying child then the EITC income limit by
children is $29,666

If the number of qualifying children of the taxpayer is more than 1 then the
EITC income limit by children is $33692

The applicable income limit for the taxpayer is the EITC income limit by
children plus $1,000 if the taxpayer is filing jointly

Recommendations

The taxpayer qualifies for the EITC unless the taxpayer does not qualify for
the EITC or an answer to a question is required

Information Requirements (people)

If a person does not have an SSN then the SSN of the person is required

Information Requirements (taxpayer)

The filing status of the taxpayer is required A if the taxpayer does not have
a filing status

The marital status of the taxpayer is required if the taxpayer does not have
a marital status

The number of qualifying children of the taxpayer is required if the
taxpayer does not have a number of qualifying children

The SSN of the taxpayer’s spouse is required if the taxpayer is filing jointly
and the taxpayer’s spouse does not have a SSN

The SSN of the taxpayer is required if the taxpayer does not have a SSN

The age of the taxpayer is required if the taxpayer does not have an age

Some of these rules look a little stilted because the knowledge engineering
process has massaged them into a certain style. For example, a rule that
reads

If a person does not have an SSN then the SSN of the person is required was
almost certainly converted from

The SSN must be filled in.
or some such phrase. But many of the rules are pretty much what the domain

expert would have said or written. So, adopt a standard style but be prepared

Development Methods 157

to vary it to fit in with the product you are using and the style of expression
used by your subject matter experts and users.

6.5 Summary

Techniques for knowledge acquisition and analysis must be added to system
development methods for BRMS. As well as data analysis and object modelling
techniques (to establish the ontology) these may include the following.

■ Informal, structured and focused interviews.
■ Presentations by experts.
■ Verbal protocols.
■ Observational studies.
■ Questionnaires.
■ Simulation and prototyping.
■ Introspection.
■ Background reading.
■ Becoming an expert.
■ Probes.
■ Teachback.
■ Kelly grids.
■ Data mining or rule induction.
■ Workshops

Different BRMS products require slightly different approaches to knowledge
acquisition.

Knowledge acquisition involves determining inference methods – as well
as the rules and ontology. Inference methods are closely related to problem
types. If uncertainty is involved in the problem type, this too will affect the
choice of inference method.

The developers of a BRMS system must pay attention to best practice in sys-
tem development and the corpus of knowledge about object-orientation, data
modelling, component based development and service oriented architecture.
Chapter 7 presents several patterns to this effect. Barbara von Halle’s method
contains much excellent guidance on good system development practice in the
specific context of BRMS.

It is a good idea to write the natural language version of rules in a consistent,
standard, readable and concise style. Ron Ross and Tony Morgan’s guidance
is worth paying careful attention to.

158 Chapter 6

6.6 Bibliographical Notes

I am not aware of a really good general text on knowledge elicitation and
analysis. I still refer to the excellent short monograph by Margaret Wellbank
published privately by BT (1983). Graham (2001) gives extensive guidance
on how to organize and conduct workshops. It also contains an appendix
describing fuzzy logic and fuzzy inference. Graham and Jones (1988) give
even more detail on fuzzy inference.

Halle (2002) presents her system development approach for BRMS projects.
Morgan (2002) and Ross (2003) are essential reading on rule style. You will
also need to refer to the documentation of your selected BRMS product(s) on
these matters.

C H A P T E R

7
A Pattern Language for BRMS

Development
By different methods different men excel;

But where is he who can do all things well?

Charles Churchill (Epistle to William Hogarth)

This chapter presents a distillation of the advice and guidance to be found in
earlier chapters of this book, in the works of other authors on the subjects of
business rules management systems and software development and upon the
practical experience of myself and my colleagues. The idea is not to present
a normative method, but to give nuggets of commonly understood wisdom
that the developer can use or discard or adapt, according to the concrete
circumstances that she faces. In this way the language helps the developer
generate a solution to a concrete problem. This distillation is done in the form
of a small pattern language broken into two parts: Sections 7.3 and 7.4. To help
understand this language and the patterns that comprise it, we must start by
reviewing the basic ideas of patterns and pattern languages. Readers already
familiar with these ideas may skip directly to Section 7.3.

7.1 What are Patterns?

The idea of a design pattern has been influential in software development
since about the mid 1990s. Design patterns are standard solutions to recurring
problems, clearly named to help people discuss them easily and to think about
design. They have always been around in computing, so that even such old

159

160 Chapter 7

terms as ‘linked list’ or ‘recursive descent’ are readily understood by people
in the field.

Patterns are abstract solutions to problems that recur in different contexts
but encounter the same mutually opposing forces each time. The actual
implementation of the solution varies with each application. Patterns are not,
therefore, ready-made solutions. They are often represented by commonly
recurring arrangements of types and the structural and dynamic connections
between them. Perhaps the best known and useful examples of patterns occur
in application frameworks associated with graphical user interface building
or other well-defined development problems. In fact, some of the motivation
for patterns came from the apprehension of already existing frameworks that
led people to wonder how general the approach was.

Software developers took the idea of patterns from architects of the built
environment. Victorian builders used huge pattern books to design houses
with their clients. These books contained pictures of ornamented windows,
doors, cornices, fireplaces and other architectural features. They would go
through these illustrations selecting the styles and discussing the consistency
of their choices. The result is a surprisingly wide-ranging stock of Victorian
housing, much of which is pleasant to inhabit to this day. Software patterns
are closely related to the idea of software architecture.

Software patterns are most useful because they provide a language for
designers to communicate in. Rather than having to explain a complex idea
from scratch, the designer can just mention a pattern by name and everyone
will know, at least roughly, what is meant. This is how designers in many
other disciplines communicate their design ideas. In this sense they are an
excellent vehicle for the collection and dissemination of the anecdotal and
unquantifiable data that must be collected before we can see real advances in
the processes of building systems.

There are two different views of patterns; both of which have value. To
examine these we must first look at the roots of the patterns concept that lie
outside the domain of software development.

Patterns are associated with the radical architect of the built environment,
Christopher Alexander. From the beginning of his career Alexander was driven
by the view that the vast majority of the building stock created since the end of
World War II (which constitutes the great majority of all construction works
created by human beings in the history of the species) has been dehumanizing,
of low quality and lacking all sense of beauty and human feeling. In his earliest
publication, Alexander (1964) presented a powerful critique of modern design
contrasting the failures of the professional self-conscious process of design with
what he called the unselfconscious process by which peasants’ farmhouses,
Eskimos’ igloos and the huts of the Mousgoum tribesmen of the Cameroon,
amongst others, create their living spaces. In the latter, ‘the pattern of building
operation, the pattern of the building’s maintenance, the constraints of the
surrounding conditions, and also the pattern of daily life, are fused in the

A Pattern Language for BRMS Development 161

form’, yet there is no concept of ‘design’ or ‘architecture’, let alone separate
designers and architects. Each man builds his own house.

Alexander argues that the unselfconscious process has a homeostatic (i.e.
self-regulating) structure that produces well-fitting forms even in the face of
change; but in the self-conscious process this homeostatic structure has van-
ished, making poorly-fitting forms almost inevitable. Although, by definition,
there are no explicitly articulated rules for building in an unselfconscious
process, there are usually a lot of unspoken, unwritten, implicit rules that
are sustained by culture and tradition. These traditions provide not only the
bedrock of stability but a resistance to all but the most urgent changes – usually
when a form ‘fails’ in some way. When such changes are required, the sim-
plicity of life itself and the immediacy of the feedback (since the builder and
homeowner are one and the same) mean that the necessary adaptation can
itself be made immediately. Thus the unselfconscious process is characterized
by quick reactions to failures combined with resistance to other changes. This
allows the design process to make a series of minor, incremental adjustments
instead of spasmodic global ones. Changes have local impact only, and over a
long period of time; the system adjusts subsystem by subsystem. Since these
minor changes happen at a faster rate than does the culture, equilibrium is
constantly and dynamically re-established after each disturbance.

In the self-conscious process, tradition is weakened or becomes non-existent.
The feedback loop is lengthened by the distance between the ‘user’ and the
builder. Immediate reaction to failure is not possible because materials are
not close to hand. Failures for all these reasons accumulate and require far
more drastic action because they have to be dealt with in combination. All the
factors that drive the construction process to equilibrium have disappeared in
the self-conscious process. Equilibrium, if reached at all, is unstable, not least
because the rate of cultural change outpaces the rate at which adaptations can
be made.

Alexander does not seek a return to primitive forms, but rather a new
approach to a modern dilemma: self-conscious designers, and indeed the
notion of design itself, have arisen as a result of the increased complexity
of requirements and sophistication of materials. They now have control over
the process to a degree that the unselfconscious craftsman never had. But the
more control they get, the greater the cognitive burden and the greater the
effort they spend in trying to deal with it, the more obscure becomes the causal
structure of the problem that needs to be expressed for a well-fitting solution
to be created. Increasingly, the very individuality of the designer is turning
into its opposite: instead of being a solution, it is the main obstacle to a solution
to the problem of restoring equilibrium between form and context.

Alexandrian ‘theory’ is currently expressed in an 11-volume-strong literary
project that does not include the 1964 work. Eight of these volumes have been
published so far. The ninth volume in the series, The Nature of Order, is eagerly
awaited as it promises to provide the fullest exposition yet of the underlying

162 Chapter 7

theory. A common theme of all the books is the rejection of abstract categories
of architectural or design principles as being entirely arbitrary. Also rejected
is the idea that it is even possible to design successfully ‘very abstract forms at
the big level’ (Alexander, 1996). For Alexander, architecture attains its highest
expression, not at the level of gross structure, but actually in its finest detail:
what he calls ‘fine structure’. That is to say, the macroscopic clarity of design
comes from a consistency; a geometric unity holds true at all levels of scale. It
is not possible for a single mind to imagine this recursive structure at all levels
in advance of building it. It is in this context that his patterns for the built
environment must be understood.

Alexander et al. (1977) presented an archetypal pattern language for con-
struction. The language is an interconnected network of 253 patterns which
encapsulate design best practice at a variety of levels of scale, from the siting
of alcoves to the construction of towns and cities. The language is designed
to be used collaboratively by all the stakeholders in a development, not just
developers. This is predicated, in part at least, on the assumption that the
real experts in buildings are those who live and work in them, rather than
those who have studied architecture or structural engineering. The patterns
are applied to the construction sequentially; each state change caused by the
application of a pattern creates a new context to which the next pattern can be
applied. The overall development is an emergent property of the application of
the pattern language. The language therefore has a generative character: it gen-
erates solutions piecemeal from the successive addressing of each individual
problem that each of the patterns addresses separately.

Waist-high shelf (pattern number 201 in the language) proposes the
building of waist-high shelves around main rooms to hold the traffic of objects
that are handled most, so that they are always ready to hand. Clearly the
specific form, depth, position and so on of these shelves will differ from house
to house and workplace to workplace. One common realization is the hall
table that we throw our keys onto when we return from work each day. The
implementation of the pattern creates, therefore, a very specific context in
which other patterns such as thickening the outer wall (number 211) can
be used since Alexander suggests the shelves be built into the very structure
of the building where appropriate, and using things from your life (number
253) to populate the shelves. It may be interesting to note that patterns can
have negative as well as positive effects (which is why they are sometimes
referred to as antipatterns). Thieves often steal the keys off waist high shelves
using a long hook pushed through the letterbox. Thus armed, they can enter
your home or steal your car!

The pattern that, more than any other, is the physical and procedural
embodiment of Alexander’s approach to design, however, is pattern number
208, gradual stiffening, wherein he argues that the fundamental philosophy
behind the use of pattern languages is that buildings should be uniquely
adapted to individual needs and sites; and that the plans of buildings should

A Pattern Language for BRMS Development 163

be rather loose and fluid, in order to accommodate these subtleties. Recognize
that you are not assembling a building from components like an erector set, but
that you are instead weaving a structure which starts out globally complete,
but flimsy; then gradually making it stiffer but still rather flimsy; and only
finally making it completely stiff and strong.

In the description of this pattern Alexander invites the reader to visualize a
50-year-old master carpenter at work. He keeps working, apparently without
stopping, until he eventually produces a quality product. The smoothness of
his labour comes from the fact that he is making small, sequential, incremental
steps such that he can always eliminate a mistake or correct an imperfection
with the next step. He compares this with the novice who with a ‘panic-
stricken attention to detail’ tries to work out everything in advance, fearful
of making an unrecoverable error. Alexander’s point is that most modern
architecture has the character of the novice’s work, not the master craftsman’s.
Successful construction processes, producing well-fitting forms, come from
the postponement of detail design decisions until the building process itself so
that the details are fitted into the overall, evolving structure.

Alexander’s ideas seem to have been introduced into the software commu-
nity first by Kent Beck and Ward Cunningham. In a 1993 article in Smalltalk
Report, Beck claimed to have been using patterns for six years already, but the
software patterns movement seems to have been kicked off by a workshop
on the production of a software architect’s handbook organized by Bruce
Anderson for OOPSLA’91. Here met for the first time Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides – a group destined to gain notoriety
as the Gang of Four (GoF). Gamma was already near to completion of his
PhD thesis on ‘design patterns’ in the ET++ framework. He had already been
joined by Helm in the production of an independent catalogue. By the time
of a follow-up meeting at OOPSLA in 1992, Vlissides and Johnson had joined
the effort and, sometime in 1993, the group agreed to write a book that has
been a best seller ever since its publication in 1995. In fact, outside the patterns
movement itself, many in the software development industry identify software
patterns completely and totally with the GoF book.

However, the 1991 OOPSLA workshop was only the first in a series of
meetings that culminated first in the formation of the non-profit Hillside
Group (apparently so-called because they went off to a hillside one weekend
to try out Alexander’s building patterns) and then the first Pattern Languages
of Programming (PLoP) conference in 1994. PLoP conferences take place in
various places around the world annually.

A characteristic of the way in which patterns are developed for publication
in the patterns movement is the so-called pattern writers’ workshop. This is a
form of peer-review that is loosely related to design reviews that are typical in
software development processes, but more strongly related to poetry circles.

While the GoF book has won deserved recognition for raising the profile of
patterns, for many it has been a double-edged sword. The GoF patterns form

164 Chapter 7

a catalogue of standalone patterns all at a similar level of abstraction. Such
a catalogue can never have the generative quality that Alexander’s pattern
language claims for itself and, to be fair, the Gang of Four freely admit that
this was not the aim of their work.

The GoF book includes 23 useful design patterns, including the following
particularly interesting and useful ones.

■ Façade. Useful for implementing object wrappers: combines multiple
interfaces into one.

■ Adapter. Also useful for wrappers: converts interfaces into ones
understandable by clients.

■ Proxy. Mainly used to support distribution: creates a local surrogate for a
remote object to enable access to it.

■ Observer. This helps an object to notify registrants that its state has
changed and helps with the implementation of blackboard systems.

■ Visitor and State. These two patterns help to implement dynamic
classification.

■ Composite. Allows clients to treat parts and wholes uniformly.
■ Bridge. Helps with decoupling interfaces from their implementations.

Some cynics have claimed that some of the GoF patterns are really only
useful for fixing deficiencies in the C++ language. Examples of these might
arguably include Decorator and Iterator. However, this very suggestion
raises the issue of language-dependent versus language-independent patterns.
Buschmann et al. (1996) (also known as the Party of Five or PoV) from Siemens
in Germany suggest a system of patterns that can be divided into architectural
patterns, design patterns and language idioms. They present examples of
the first two categories. Architectural patterns include: Pipes and Filters,
Blackboard systems, and the Model View Controller (MVC) pattern for
user interface development. Typical PoV design patterns are called:

■ Forwarder Receiver;
■ Whole Part; and
■ Proxy.

The reader is advised by the PoV to refer to all the GoF patterns as well. The PoV
book can therefore be regarded as an expansion of the original catalogue, not
merely through the addition of extra patterns, but by addressing different levels
of abstraction too. The whole-part pattern is exactly the implementation of
the composition structures that form part of basic object modelling semantics.
In that sense, it appears to be a trivial pattern. However, since most languages
do not support the construct, it can be useful to see the standard way to
implement it. It is a rare example of an analysis pattern that maps directly
to an idiom in several languages: a multi-language idiom. The best known

A Pattern Language for BRMS Development 165

source of idiomatic (i.e. language-specific) patterns is Jim Coplien’s book on
advanced C++, which predates the GoF book by some three years (Coplien,
1992). C++ ‘patterns’ (the book does not use the term) that Coplien presents
include:

■ Handle class, used to encapsulate classes that bear application
intelligence;

■ Reference counter, managing a reference count to shared
representation;

■ Envelope-letter permits ‘type migration’ of classes;
■ Exemplar enables the creation of prototypes in the absence of delegation;
■ Ambassador provides distribution transparency.

Whilst experienced programmers will feel immediately familiar with many of
these patterns, almost everyone will recognize the ideas behind caches and
recursive composites. These too can be regarded as design and/or analysis
patterns. Cache should be used when complex computations make it better
to store the results rather than recalculate often; or when the cost of bringing
data across a network makes it more efficient to store them locally. Clearly
this is a pattern having much to do with performance optimization. It is also
worth noting that patterns may use each other; this pattern may make use of
the observer pattern when it is necessary to know that the results need to be
recalculated or the data refreshed.

The above examples indicate that a standard pattern layout may be bene-
ficial, and many proponents (though not the GoF) adopt a standard loosely
based on Alexander’s work: the so-called Alexandrian form. This divides
pattern descriptions into prose sections with suitable pictorial illustrations as
follows – although the actual headings vary from author to author.

■ Pattern name and description.
■ Context (Problem) – situations where the patterns may be useful and the

problem that the pattern solves.
■ Forces – the contradictory forces at work that the designer must balance.
■ Solution – the principles underlying the pattern and how to apply it

(including examples of its realization, consequences and benefits).
■ Also Known As/Related patterns – other names for (almost) the same

thing and patterns that this one uses or might occur with.
■ Known uses.

Actually this deviates quite a lot from Alexander’s presentation, as we shall
see later.

The overwhelming majority of software patterns produced to date have
been design patterns at various levels of abstraction, but Coad et al. (1992;
1997) and Fowler (1997) introduced the idea of analysis patterns as opposed

166 Chapter 7

to design patterns. Fowler’s patterns are reusable fragments of object-oriented
specification models made generic enough to be applicable across a number
of specific application domains. They therefore have something of the flavour
of the GoF pattern catalogue (described in that book’s subtitle as ‘elements
of reusable object-oriented software’), but are even further removed from
Alexander’s generative concepts. Examples of Fowler’s patterns include:

■ Party: how to store the name and address of someone or something you
deal with;

■ Organization structure: how to represent divisional structure;
■ Posting Rules: how to represent basic bookkeeping rules;
■ Quote: dealing with the different ways in which financial instrument

prices are represented.

Apart from systems development, there has also been interest in developing
patterns for organizational development (Coplien, 1995; Coplien and Harrison,
2005). These authors apply the idea of patterns to the software development
process itself and observe several noteworthy regularities. These observations
arose out of a research project sponsored by AT&T investigating the value
of QA process standards such as ISO9001. They were able to identify the
commonly recurring key characteristics of the most productive organizations
and develop a 42-strong pattern language to aid the design of development
organizations. Included in the language are patterns such as these:

■ Conway’s Law states that architecture always follows organization or
vice versa;

■ Architect also implements requires that the architect stands close to
the development process;

■ Developer controls process requires that the developers own and
drive the development process, as opposed to having one imposed on
them;

■ Mercenary Analyst enables the ‘off-line’ reverse engineering and
production of project documentation;

■ Firewall describes how to insulate developers from the ‘white noise’ of
the software development industry;

■ Gatekeeper describes how to get useful information in a timely manner
to software developers.

A typical application of such organizational patterns is the combined use
of gatekeeper and firewall in, say, a situation where a pilot project
is assessing new technology. The software development industry excels at
rumour mongering, a situation fuelled by the practice of vendors who make

A Pattern Language for BRMS Development 167

vapourware announcements long in advance of any commercial-strength
implementations. Over-attention to the whispers on the industry grapevine,
let alone authoritative-looking statements in the trade press, can seriously
undermine a pilot project. Developers lose confidence in Java, say, because
of its reputation for poor performance or a claimed lack of available tools.
Yet, at the same time, some news is important: for example, the publication of
Platform 2 for Java. A solution is to build official firewalls and then create a
gatekeeper rôle where a nominated individual is responsible for filtering and
forwarding the useful and usable information as opposed to unsubstantiated
scare stories, junk mail and even the attention of vendors’ sales forces.

More interesting than the individual patterns themselves, however, is the
underlying approach of Coplien’s language, which is much closer to the
spirit of Alexander’s work than anything to be found in the original GoF
or PoV books, for example. First, since its very scope is intercommunication
between people, it is human-centred. Second, it is explicitly generative in
its aim. Coplien argues that while software developers do not inhabit code
in the way that people inhabit houses and offices, as professionals they are
expert users of professional processes and organizations. Therefore, just as
Alexander’s language is designed to involve all the stakeholders of build-
ing projects (and, above all, the expertise of the users of the buildings) so
process designers have to base themselves on the expertise of the victims
of formal processes: the developers themselves. Coplien’s attempt to create
an avowedly Alexandrian pattern language seems to push the focus of his
patterns away from descriptions of fragments of structure (as is typical in the
GoF patterns) much more towards descriptions of the work that has to be
done. In going beyond mere structure, Coplien’s patterns have much more of
a feel of genuine architecture about them than do many other pattern types
available.

In fact, it is clear that from common roots there are two polarized views
of patterns abroad today. One view focuses on patterns as generic structural
descriptions. They have been described, in the UML literature especially,
as ‘parameterized collaborations’. The suggestion is that you can take, say,
the structural descriptions of the rôles that different classes can play in
a pattern and then, simply by changing the class names and providing
detailed algorithmic implementations, plug them into a software development.
Patterns thus become reduced to abstract descriptions of potentially pluggable
components. A problem with this simplistic view occurs when a single class
is required to play many rôles simultaneously in different patterns. The other
view regards them simply as design decisions (taken in a particular context,
in response to a problem recognized as a recurring one). This view inevitably
tends toward the development of patterns as elements in a generative pattern
language. This is the approach taken in this book.

168 Chapter 7

7.2 Why a Pattern Language?

The debate about the character of software patterns (‘parameterized collabo-
rations’ versus ‘design decisions’, pattern catalogues versus pattern languages)
both reflects and affects debates about software architecture. That rela-
tionship was highlighted by Coplien’s guest editorship of IEEE Software
magazine (Autumn 1999), a special issue on software architecture in which
Coplien republished Alexander’s keynote talk to the 1996 OOPSLA conference.
In his editorial, re-evaluating the architectural metaphor, Coplien identified
two fundamental approaches to software development: the ‘blueprint’ or ‘mas-
ter plan’ approach versus that of ‘piecemeal growth’. Coplien suggests that the
immature discipline of software architecture is suffering from ‘formal envy’
and has borrowed inappropriate lessons from the worlds of both engineering
and the built environment. Symptoms of the crisis are the separation of the
deliverables of architecture from the artifacts delivered to the customer and
the reification of architecture as a separate process in a waterfall approach
to software development. Following the architects of the built environment,
Alexander and Ludwig Miles van der Rohe, Coplien argues strongly that the
Devil is in the details, and that clarity at the macro level can only be judged
by whether it incorporates the fine details successfully. He further asserts
that the object experience highlights what has been important all along: that
architecture is not so much about software, but about the people who write
the software.’

As Coplien quite rightly points out, the patterns movement has always cel-
ebrated the otherwise lowly programmer as the major source of architectural
knowledge in software development. Beyond that, he recognizes the deep
character of the relationship between the code’s structure and the communica-
tion pathways between the people developing and maintaining it. In doing so,
Coplien argues, patterns have taken software development beyond the naı̈ve
practice of the early days of objects, which fell short of its promise because it
was still constrained by a purely modular view of programs, inherited from
the previous culture. Further advance requires liberation from the weight of
‘the historic illusions of formalism and planning’.

Richard Gabriel has suggested that there are two reasons why successful
software development is in reality piecemeal growth. First, there is the cog-
nitive complexity of dealing not only with current but possible future causes
of change, which make it impossible to visualize completely a constructible
software program in advance to the necessary level of detail with any accuracy
(Gabriel, 1996). Second, there is the fact that pre-planning alienates all but the
planners. Coplien, Gabriel and the entire patterns movement are dedicated to
developing practices that combat this social alienation. In doing so they impart
a profound social and moral obligation to the notion of software architecture.
In the face of these stark realities the only alternative to piecemeal growth is the

A Pattern Language for BRMS Development 169

one once offered by David Parnas: fake the blueprints by reverse engineering
them once the code is complete.

Essentially, the difference between a pattern language and a pattern cata-
logue is that, in the latter, the patterns stand alone as useful pieces of advice.
In the former, the patterns are coupled together in such a way that sequences
can be built to help practitioners solve concrete problems, each pattern, when
it is applied changes the context in which it arose and supplies a context for
the application of other, downstream, patterns. Don’t forget: the patterns tell
you to consider a particular solution to a problem and the forces at work when
it arises; they do not tell you exactly what to do. You create the solution.

7.3 The RulePatterns Language – Part I

The language presented here is divided into two major sections, represented
by the two navigation charts of Figures 7.1 and 7.2. Figure 7.1 presents some
general process patterns (indicated by the grey background) and patterns for
requirements, process and architecture, followed by patterns specifically for
finding, writing and organizing business rules. Figure 7.2 presents patterns for
knowledge elicitation and (again shown against a grey background) patterns
for application development and product selection. Within each section the
patterns are further classified according to their function.

Pattern numbering is continuous across these sections to emphasize its
rather arbitrary nature. The pattern’s numbers have no significance except to
provide a convenient reference. Each section starts with a map of that section of
the language, which provides a high level overview of the section and provides
primary navigation. The maps, although not the sections, may overlap slightly.
In these maps, the patterns are classified into abstract, concrete and terminal
patterns as shown by their colour coding.

Abstract patterns represent the codification of principles and are shown in
grey. There is not always a context for such a principle; it’s just always a useful
one and informs the way downstream patterns are applied and interpreted.
Concrete (white) patterns are patterns in the usual sense, and we discuss
their structure in detail below. Finally, some patterns are terminal with this
language. Of course, abstract patterns are never terminal.

A pattern being terminal does not mean that design thinking stops with
it – merely that the language considers the further design issues as beyond its
scope or ambitions. The other cases where the language terminates abruptly
usually concern areas of some complexity that, in my opinion, are deserving
of a pattern language in their own right, as will be noted. Where such pattern
languages exist, this is indicated diagrammatically by an unnumbered rounded
rectangle with a dotted background and by a reference in the appropriate
pattern text(s).

170 Chapter 7

The simplest way to use the language is to consider pattern number one
(establish the business objectives) first and then follow the links to the
other patterns. It is best to have a concrete problem in mind when doing this.
Eventually you will reach patterns that are terminal (represented in black on
the diagrams). You should also try to construct sequences (or sublanguages)
to deal with specific design problems or specific kinds of development.

Rules are made to be broken. The patterns in this chapter may be regarded
as rules for successful design, but it is better to think of them as providing
suggestions, guidance and checklists of things not to forget to think about. If
you do find yourself treating the patterns as rules then pause. Always consider
the likely effects of breaking the rules and ensure that you understand the
rules that you are going to break and the justification for doing so.

Each pattern is presented using the same layout, semantic structure and
typographical conventions. These are very closely based on the structure pio-
neered by Alexander et al. (1977). The pattern number and name are presented
first followed, optionally, by a list of alternative names – all in a black header.
The alternatives, if present, are labelled aka (also known as) in the same header.
Next comes what many people call a sensitizing image: a picture or diagram
concerning, supporting or illustrating the pattern. In many cases this has been
omitted for brevity.

After the sensitizing image we present the Context in which one would
normally encounter the pattern. This section usually gives the names of
patterns that one has already used or considered. This is separated from the
body of the pattern by three tildes, thus:

∼∼∼

Next, the Problem is stated in bold text. For the discussion of the forces that
are at work and the way the pattern deals with them we return to plain text;
i.e. text of the sort you are reading in this paragraph. This section may include
quite diverse types of commentary and explanations. Where appropriate we
highlight known uses of the patterns. Where this is omitted it is because the
known uses are so obvious as to not need stating or because they have been
intrinsic to the description of the forces and related discussion.

Once the discussion is complete, I state or summarize the recommended
solution in bold text. This section is highlighted in the margin with the word
Therefore. This completes the body of the pattern; so we again delimit it with
three tildes.

The next section describes the Resultant context and, unless the pattern
is terminal, will include the names of the patterns that one may consider
applying next. This information is partly represented in Figure 7.1 by the
arrows. Interpret these arrows as meaning ‘supplies a potential context for’.

Following Alexander again, I have classified the patterns according to my
degree of confidence in them. The pattern’s ‘star rating’, shown next to its name,

A Pattern Language for BRMS Development 171

1. Establish the

business objectives

3. Establish

the use cases

2. Business

process model

7. Timeboxes
9. Automate

testing

10. Usability

Testing

8. Gradual

stiffening
6. User-centred

service structure

4. Build a type

model (ontology)

5. Discover

business rules

13. Ask the business

11. Association loops

conceal rules

12. Write the

constraints as rules

14. Assign rules

to components

16. Policy blackboard
17. Store rules in a

repository

18. Encapsulate

a reference

19. Determine

security model

21. Follow

standards

22. Determine ownership

& permissions

23. Define a rule-

writing style

24. Write the

consequent first

15. Base error

messages on rules

Rule Object

Patterns

20. Separate

volatile rules

Concrete &

Terminal

Abstract

pattern

Concrete

Pattern

Key

External

Patterns

Process
patterns

UI Patterns

Figure 7-1

indicates this. Three stars means that I am totally convinced of the pattern’s
efficacy, having used it or seen it used successfully on many projects. Three stars
may also indicate that there is some solid theoretical justification of the pattern
in the literature and folklore of the subject. If there are no stars it means that I
think this is a good idea but would like people to try and see. One and two stars
are interpreted on the scale between these extremes in the obvious manner.

The lengths of the patterns vary. Partly, this reflects knowledge and experi-
ence of the patterns and therefore confidence in them. However, sometimes a
short pattern merely reflects the fact that it is easy to describe and understand.
In some cases the pattern is short because either a longer version of the pattern
has already been published or an expanded version might be considered useful.

In Figures 7.1 and 7.2, rounded rectangles represent patterns and an arrow
from pattern P1 to pattern P2 is to be interpreted as meaning ‘P1 possibly
generates a context for applying P2 and indicates that the designer should
consider applying P2 whenever she has applied P1’. Double headed arrows
further suggest that a group of patterns will normally be considered iteratively
and in parallel.

172 Chapter 7

7.3.1 Patterns for Requirements, Process
and Architecture
Some of the following patterns apply equally well to projects other than BRMS
projects; but they are important – and too often ignored – patterns, so I include
them in the language, noting any BRMS-specific or SOA-specific points.

Pattern 1 ESTABLISH THE BUSINESS OBJECTIVES ***

Context You are embarking on a business solution and system
development project that may or may not involve
business rules. There are very few, if any, that will not.

∼∼∼
Problem How can you be sure that the system will be fit

for purpose and that project management can be
both successful and agile in response to evolving
requirements?

Forces Many development methods encourage developers to
start analysis with use case modelling or, at best, give
little concrete advice on how to tie development to
business goals. This can lead to dysfunctional results,
unused systems or loss of focus during develop-
ment. Furthermore, as requirements evolve during the
project, there can be disputes over which use cases have
priority for implementation before the next timeboxed
delivery date.

When you decide to use timeboxes (4) to control
iterative development you can only negotiate sensibly
on evolving requirements if you have consensus on the
things that will not change during the project.

Prioritizing objectives according to some scheme
such as ‘Must have, Should have, Could have,’ often
presents difficulties because stakeholders insist that
their favourite objective is a ‘must’ until discrimination
is lost completely and the priorities are worthless. An
objective numerical ranking can be achieved by pair-
wise comparison of the objectives, but this can be very
time-consuming. It is quicker and just as practically
effective to let workshop participants vote, preferably
from two points of view.

Example For example, give each person red and blue stickers to
the tune of two-thirds of the number of objectives and

A Pattern Language for BRMS Development 173

let them place the stickers next to the objectives on a
flipchart. Red might represent the view of the organiza-
tion, while blue represent individual (or departmental)
preferences. Next one may add the results (blue and
red) together and open a discussion to ensure that there
is a consensus on the priorities so computed.

A longer version of this pattern can be found in
Graham (2003a). It should also be noted that there
are other ways to approach the problem of business
objectives, and therefore competing patterns may exist.

Therefore Run a stakeholder workshop to establish the busi-
ness objectives. There will typically be between 7
and 30 such objectives. Ensure each objective can
be measured numerically and objectively; otherwise
reject or reword it. Now assign numerical priori-
ties to the objectives. The quickest way to do this
is by voting and consensus-building discussion. Fix
the objectives and priorities for the duration of the
project.

Involve as many stakeholders as possible. Make
sure that potential users are represented. Find a good
facilitator. Agree a mission statement to give context
to the objectives.

Resultant
context

Once the objectives and priorities are fixed you can
safely move on to construct a business process model
(2). Refer to run a workshop (27).

Pattern 2 BUSINESS PROCESS MODEL **

Person

request
check in

check out

Receptionist

pay bill

Hotel Management
System

check in

factory
visit

wake up

Alarm
clock

174 Chapter 7

Context You have established the business objectives (1) and
fixed their priorities. You are probably also committed
to a service-oriented approach.

∼∼∼
Problem How can you ensure that the development will take

account of current or re-engineered business practices
and procedures? The needs of stakeholders that are
not direct users of the system must be understood – as
well as those of the ‘actors’ in a conventional use case
model. Do the processes, as they mostly will, involve
any explicit or latent business rules?

Forces The philosophy of service-oriented architecture empha-
sizes that our focus must be on the real user as well
as the user who actually interacts with the system;
a conventional use case model tends to focus on the
latter.

There are two notational styles commonly used
to represent business processes. In UML terms, we
have activity diagrams or use case diagrams available.
Activity diagrams are often useful but they can grow
unmanageably large very quickly, often because they
attempt to incorporate business rules (as conditionals,
etc.) or because they model system activities. Also, they
do not show ‘who does what’ very clearly; in that sense
they are ‘disembodied’.

Use case diagrams tend to remain manageably con-
cise and are ideal for emphasizing the contract-driven
nature of business. Stating contracts for each conver-
sation that occurs in a process can lead directly to
statements of business rules. At a minimum, the pre-
and post-conditions of the conversations (represented
as use cases) always have a rule-like nature.

Known uses The image above is meant to suggest that actors in use
case diagrams should be stereotyped to look like what
they represent; if it is a factory, make it look like one.
This helps communication in workshop situations and
beyond.

This technique has been used successfully on hun-
dreds of projects known to me around the world over
thirteen years or so. A longer variant of this pattern
can be found in Graham (2003a).

A Pattern Language for BRMS Development 175

Therefore Understand first the network of agents and com-
mitments that make up the business. Specify the
conversations that take place at an appropriate level
of abstraction, so that they are stereotypes for actual
stories. Get people to tell these stories. Eliminate
conversations that do not correspond to business
objectives (or discover the missed objective). Ensure
every objective is supported by a conversation.

Emphasizing the contracts that subsist in the busi-
ness processes will assist in identifying business
rules both now and later in the project.

Draw a rich picture of the whole of each busi-
ness process. Use cases can be used in this picture to
represent goal-oriented conversations between actors
(including users, non-users, events and artifacts).
Ensure that you discuss possible changes to the pro-
cess, leading to a ‘before’ and ‘after’ process model.
Use stereotypes in the rich pictures that are meaning-
ful to the business stakeholders present.

∼∼∼
Resultant
context

Now establish the use cases (3) in the context of the
proposed system and the business processes defined.
Understanding who the real users are will provide the
correct context for building a user-centred service
structure (6).

This pattern is normally applied iteratively, in par-
allel with all the patterns in the group numbered 2–5.

Pattern 3 ESTABLISH THE USE CASES ***

Context You have constructed a ‘before’ and ‘after’ business
process model (2).

∼∼∼
Problem How can you specify the behaviour of a system and

the services it must provide?

Forces Use case modelling is a very well-known technique.
However, current practice tends to produce over-
complex use cases with far too much detail. Jacobsen,
Fowler and Cockburn all give ‘templates’ for use cases,
which exacerbate this tendency to ‘over-document’

176 Chapter 7

although, to be fair, I think Cockburn did not intend to
encourage their (mis)use.

Theoretically, use cases are completely determined
by their pre- and post-conditions. There is really no
need to specify them further, apart from the need to
state what should happen when the use case encoun-
ters an unrecoverable (i.e. fatal) exception. Recoverable
exceptions are new, reusable use cases. No steps! No
alternative paths!

The second problem with current practice is the use
of the semantically ambiguous ‘‘extends’’ association,
which tends to over-complicate and enlarge models.
It is better to dispense with it and define exception
handling by separate use cases, to which error han-
dling messages are delegated. (See Graham (2001) for
details.)

Known
Uses

Basically, use case modelling focuses on the function-
ality of systems as opposed to their data structure.
Rule-based methods (e.g. Date, 2002; Halle, 2002) tend
to start with the data model. The danger in that
approach is that the service structure becomes data-
centred rather than user-centred. Much experience
says that a method that starts with functionality is
both sounder and easier to understand.

Use case modelling is a well-established technique
for systems development and is part of most main-
stream methods for object-oriented and component
based development. A longer version of this pattern
can be found in Graham (2003a).

Therefore Extract the use cases from the conversations in the
BUSINESS PROCESS MODEL (2). Write post-conditions for
each use case. Compare the vocabulary of the post-
conditions to the type model. Write use cases in
stimulus–response form. Do not constrain the user’s
ability to perform steps in any particular sequence.

Use cases are ideal for high level specification
but they must be formulated at the right level of
abstraction. Very detailed use cases are an impedi-
ment to clear understanding. To avoid superfluous
detail, define use cases by ONLY their pre- and post-
conditions and, if necessary, remarks on what will
happen if there is a non-recoverable error during

A Pattern Language for BRMS Development 177

execution of the task. Write separate use cases to
describe how to recover from other types of error.

Write explicit rules based on the pre- and post-
conditions (the use case goals).

Ensure the use cases remain cross-referenced to the
business objectives and that they inherit the priorities
of the latter.

∼∼∼
Resultant
context

Build a type model (4) by explicating the vocabulary
needed to express the pre- and post-conditions. If you
have rules, ensure that they are executable and based
on the type model. Group the use cases into sets that
can be implemented together; base your timeboxes
(14) on these prioritized sets. Use the use case model to
define tests and automate testing (9).

This pattern is normally applied iteratively, in par-
allel with all the patterns in the group numbered 2–5.

Pattern 4 BUILD A TYPE MODEL (ONTOLOGY) ***

Context You have established the use cases (3) and written
their post-conditions. These statements or rules make
no sense without a vocabulary: an ontology that gives
the statements meaning.

∼∼∼
Problem How can you get a computer to interpret use cases

and rules?
Forces Getting a machine to understand natural language

statements is either impossible or quite beyond any
known science. Therefore, we must help the machine
by providing an ontology that gives precise meaning to
the statements we use in rules or use cases. A UML type
model is an ideal way to do this, although semantic
networks may also prove valuable.

Known
uses

Type modelling is a standard technique for software
development, although there are variations in its prac-
tice. It is assumed here that a theoretically sound
method such as Catalysis (D’Souza and Wills, 1999;
Andrews, 2007) or UML components (Cheesman and
Daniels, 2000) is the basis for type modelling. It would
be inappropriate to reproduce all the details of how to
do type modelling here. A few remarks will suffice.

178 Chapter 7

In the context of SOA and CBD it is a good idea to distin-
guish core (kernel), role and process (association) com-
ponents – Date (2000), Cheesman and Daniels (2000)
and Andrews (2007) all agree on this point. Core objects
will be stored in lower architectural layers whereas rôle
and process objects tend to be about specific applica-
tions. Also Coad’s (1999) colour patterns are often very
useful in making similar architectural decisions. We
discussed them fleetingly in Chapter 2.

Catalysis includes several subpatterns such as map
to existing database (which concerns retrievals from
legacy systems). These are worth getting to know.

Most BRMS products provide some level of auto-
mated support for this process. Haley Authority walks
the user through the construction of the minimal type
model needed to interpret the rules. JRules allows
developers to import existing Java object models or
UML models. At a minimum, all products will fail
to compile rules in the absence of an adequate type
model.

Therefore Read all the rules that you have discovered and the
post-conditions of all the use cases. Define types
that represent the vocabulary of these statements.
Some terms may be attributes of the types. Record
how types are associated and note any cardinality
constraints.

∼∼∼
Resultant
context

The type model will contain many business rules, some
explicit, some hidden. We need to discover business
rules (6). These two patterns may be applied in any
order and their use will be iterative in most cases. That
is, you can write the rules before type modelling or vice
versa.

This pattern is normally applied iteratively, in par-
allel with all the patterns in the group numbered 2–5.

Pattern 5 DISCOVER BUSINESS RULES

Context You are building a business rules management system.
You have established the use cases (3). You may
have already built a type model (4).

∼∼∼

A Pattern Language for BRMS Development 179

Problem How can you discover business rules based on the
type model? How can you find rules in other ways?

Forces The forces at work here depend on how you have
arrived at this juncture. Since you have a use case
model, the obvious starting point is to rewrite the use
case post-conditions as rules. For example, the post-
condition of a simple business process such as a sale
is ‘The vendor has the money and the buyer has the
goods’. The corresponding rules might be written as
follows.

A sale may be recorded if both of the following are
true:

■ The Vendor’s stock of money has increased by the
price of the Good

■ The Buyer has the Good.

You can also find rules by examining the type model.
Otherwise, you must consider interviews, data mining,
workshops and various knowledge elicitation tech-
niques.

Therefore Rewrite the use case post-conditions as rules.
If there is no type model at the outset, you must use

various knowledge elicitation techniques to discover
rules. These are covered by the following patterns:

PLAN INTERVIEWS (25)

FILLED-IN FORMS (26)

RUN A WORKSHOP (27)

STRUCTURED INTERVIEW (31)

FOCUSED INTERVIEW (32)

PROBES AND TEACHBACK (33)

ASK FOR THE OPPOSITE (34)

BOUNDARY OF COMPETENCE (35)

If there is a type model then we may also proceed as
follows. First realize that ASSOCIATION LOOPS CONCEAL

RULES (11). Then rewrite any cardinality constraints
as rules WRITE THE CONSTRAINTS AS RULES (12)).

Now BUILD A TYPE MODEL (4) or modify the exist-
ing one based on the terms used in the new rules
discovered. Next apply:

180 Chapter 7

DETERMINE INFERENCE MODEL (36) if applicable

DETERMINE UNCERTAINTY MODEL (37) if applicable

CLASSIFY YOUR APPLICATIONS (38)

∼∼∼
Resultant
context

This is a link pattern that leads to the patterns listed
above, in the Solution.

This pattern is normally applied iteratively, in par-
allel with all the patterns in the group numbered 2–5.

Pattern 6 USER-CENTRED SERVICE STRUCTURE

real user user system

Context You are building a rule-based application within a
service-oriented architecture. You have defined a busi-
ness process model (2).

∼∼∼
Problem How can you ensure that the services and components

that are provided are pitched at the right level of
abstraction?

Forces All too often, developers focus their attention on imple-
mentation concerns, and thus arrive at a design mindset
at far too low a level of abstraction compared to the
needs of business users. They focus on technical col-
laborations rather than business processes; the latter
often do not – indeed cannot – involve computers. For
example, a parcel tracking system needs to understand
that a real person has to collect a parcel; the IT systems
really can’t do that.

The user that actually operates the computer is often
not the ‘real’ user, in the sense of the person who gains
the business benefit. Designing the system around use
cases (in the conventional sense of actions at the system
boundary) will lead to a system that does not serve
the real users and whose services are not bundled
appropriately for use.

A Pattern Language for BRMS Development 181

Therefore Focus on the ‘real’ user and upon use cases that
represent business process that may occur away from
the system boundary. Focus on what users want to do,
rather than how they want to do it. Where possible,
capture this essence in the form of business rules.

∼∼∼
Resultant
context

Since you have a clear idea about who the various
kinds of users are, both real and hands-on, you can
now begin to determine the security model (18).

Pattern 7 TIMEBOXES ***

Context You have completed a BUSINESS PROCESS MODEL (2), a
use case model and begun to extract a type model
and some business rules. Now you have to ensure
timely delivery of an application that meets current
requirements as closely as possible.

∼∼∼
Problem Time pressure fights against both robustness and the

need to respond to changing business requirements
during a project. However, timely delivery is nearly
always a critical success factor.

Forces The time-box technique imposes management control
over ripple effects and uncontrolled iteration. Control
is achieved by setting a rigid elapsed time limit on the
iterations and using a small project team. Furthermore,
a time-boxed project has a usable (but perhaps incom-
plete) system as both the end-point of the process and
its deliverable. Partial delivery enables benefits (often
financial benefits) to be obtained earlier than waiting
for an entire system to be delivered. There is no distinc-
tion between production, evolution and maintenance
as with conventional approaches, which usually ignore
maintenance costs during project justification.

Timeboxes should be based on coherent chunks of
functionality. These will typically correspond to small
group of use cases amongst which there are technical
dependencies. Infrastructure use cases may have to be
built first, but there should be a strong emphasis on
delivering chunks that are of perceived value to the
business.

182 Chapter 7

Look for quick wins. For example, when testing your
applications there will be instances when a tester hits
a problem that surprises the developers but for which
the solution is obvious. In a similar category are fixes
that require little or no effort or those where a small
effort will have a big impact. It is important to give
such fixes a high priority and de-scope other features
accordingly.

Use the priorities to settle arguments about descop-
ing when new requirements are requested. These are
fixed for the duration of a project; the requirements are
not fixed.

A longer version of this pattern can be found in
Graham (2003a).

Therefore Divide the use cases into coherent groups, taking
into account technical constraints (e.g. client server
dependencies, supplier lead times, etc.) and business
issues (e.g. unitary business offering). There are three
possibilities.

1. Tackle the easiest area first to boost developers’
confidence.

2. Tackle the area that solves 80% of the business
need first.

3. Tackle the area with the greatest technical
challenge first.

The first approach is seldom the right one, because
there can be some nasty shocks awaiting the team
downstream and because it is not a good way to
impress users with the team’s skills. A combination
of the other two approaches is ideal. The focus too
is on the essential requirements early on, rather than
those features that the business (or the developers)
would like the system to have ideally.

Set definite delivery dates for the software and
content that implement each such group of use cases.
When deadlines seem endangered, cut functionality
instead. But don’t expect to get all the require-
ments right first time. If stakeholders request new or
changed functionality, rate its importance against the
prioritized business objectives. Negotiate on what
must be deferred to the next timebox if the new

A Pattern Language for BRMS Development 183

features are to be included. Drop use case functional-
ity corresponding to the lowest priority objectives.
Never deliver late. Don’t compromise on quality
unless there is an argument to do so based on the
objectives. Don’t allow anyone to change the objec-
tives or their priorities:

Resultant
context

Now begin to develop the application using GRADUAL

STIFFENING (15). Consider AUTOMATED TESTING (16) wher-
ever possible. Start USABILITY TESTING (17) early on.

Pattern 8 GRADUAL STIFFENING ***
aka AGILE PROCESS

Requirements and
business models

write
tests

code

review

refactor XP?

Analysis
models

user

represent

represent

traceability
(forget)

w
al

kt
hr

ou
gh

sp
ecify

review

Context You are managing the project using the discipline of
TIMEBOXES (7) and you have ESTABLISHED THE USE CASES

(3) in the context of a BUSINESS PROCESS MODEL (2) and a
set of fixed, prioritized objectives. However. . .

∼∼∼
Problem The requirements use cases and business rules may

all evolve during the lifetime of the project. How
do you respond to such developments? Should you
adhere strictly to the original plan? If not, what is
fixed and what should be allowed to vary?

Forces This is a process pattern of quite general applicability.
It is a very minor modification of the one due to Alexan-
der et al. They recommend the following procedure for
building houses:

184 Chapter 7

The fundamental philosophy behind the use of pat-
tern languages is that buildings should be uniquely
adapted to individual needs and sites; and that the
plans of buildings should be rather loose and fluid,
in order to accommodate these subtleties . . .

Recognize that you are not assembling a build-
ing from components like an erector set, but that
you are instead weaving a structure which starts
out globally complete, but flimsy; then gradually
making it stiffer but still rather flimsy; and only
finally making it completely stiff and strong.
(Alexander et al., 1977, pp. 963–9.)

In the description of this pattern the reader is invited
to visualize a 50-year-old master carpenter at work. He
keeps working, apparently without stopping, until he
eventually produces a quality product. The smooth-
ness of his labour comes from the fact that he is making
small, sequential, incremental steps such that he can
always eliminate a mistake or correct an imperfec-
tion with the next step. He compares this with the
novice who with a ‘panic-stricken attention to detail’
tries to work out everything in advance, fearful of
making an unrecoverable error. Alexander’s point is
that most modern architecture has the character of the
novice’s work, not the master craftsman’s. Successful
construction processes, producing well-fitting forms,
come from the postponement of detail design deci-
sions until the building process itself so that the details
are fitted into the overall, evolving structure. Another
characterization of the process talks about visiting the
site with the client and, after discussion just placing
stakes where the corners of the house will be and
heavy stones to mark the entrance and perhaps win-
dows. Detailed decisions, such as where to channel the
electrics, will be made much later in the project by the
appropriate craftsmen–again in constant consultation
with the client.

I think that software design should be like that too.
It is also a stance remarkably similar to that taken by
the proponents of agile processes.

Beck (2000) introduced the set of ideas called eXtreme
Programming (XP): a method that emphasizes frequent
delivery of tangible, working results. Beck called the

A Pattern Language for BRMS Development 185

approach extreme because it attempts to take com-
monplace good ideas and apply them aggressively.
For example, as he puts it:

■ If code reviews are good, review code all the time
(pair programming).

■ If short iterations are good, make them really short
(hours not months).

■ If testing is good, then everyone tests all the time.
■ If simplicity is good, then build the simplest thing

that could work.

It is an implicit principle of XP that one should listen
to the business all the time. However, some particu-
larly extreme advocates of XP take this to mean that
there is no need to establish the requirements before
coding: ‘all that matters is the code!’ These people
take the view that if you get it wrong you can change
the code easily, so why bother. This is wrong for
two reasons. First, misunderstood requirements may
not bite until the development team has moved on
to other projects. Secondly, it is hard believe Beck
when he tells us that developers with ‘ordinary skills’
can make it work – contradicting Alexander’s view on
the craft nature of good design incidentally. Take the
example of a very widely reported success story for
XP – at Chrysler. In this case there were very consid-
erably talented people on the team (including Beck
himself). Furthermore, the project followed on from
an earlier, failed project and many of the team from
that project were used. It is inconceivable to me that
these very experienced people did not have a good
grasp of what the requirements were before the project
started. XP is an excellent way of building systems
and all its techniques may be useful. However, it must
be accompanied (not necessarily preceded) by sound
requirements engineering techniques.

Taking the core ideas from XP and the patterns
we have already encountered suggests an iterative
approach to development. This process starts at the
lowest level: that addressed directly by XP, with cod-
ing. An agile process will almost certainly benefit from
extreme ideas at this level. The good ideas include the
process hinted at in the image above: write tests based

186 Chapter 7

on use cases, write the minimum code to pass the tests
(perhaps working in pairs – but you don’t have to!),
check the code in and run the automatic test harness
(this is essential), run usability tests (this is forgotten
by most XP-ers), review with the user(s), refactor and
iterate. Agility implies that this is done in very short
cycles, perhaps measured in days.

Such an approach implies that the team has mas-
tered good specification and design techniques. It
also implies that sound refactoring methods are fully
understood. The team will have read and absorbed
the techniques in, say, Martin Fowler’s book on the
subject (Fowler, 2000). However, in a. NET or Java
world, refactoring implies a lengthy build cycle. Sup-
pose that the change affects a complex web service
offering or, worse still, an application deployed on a
mobile device. Users may not be prepared to tolerate
the delay or service interruption.

Leaving aside the issues surrounding refactoring,
responding to user reviews implies a readiness to
embrace any changes requested. How can this be man-
aged without deadlines slipping? Here we get to the
stuff that the more ostrich-like XP-ers can’t see. DSDM
(Stapleton, 1997), in common with most iterative pro-
cesses, imposes project discipline with time-boxes (and
other consequences of its nine principles). This strat-
egy implies that the development team has to negotiate
with its customer about which features will be dropped
in order to accommodate the requested changes. DSDM
recommends that its MoSCoW classification of features
is the basis of such negotiations, although many of our
clients have faced difficulties in trying to convince users
that any requirement isn’t an M (must have), as I have
already pointed out. We prefer a numerical ranking.
But what do you rank: use cases? Clearly not, because
the review will often reveal new and changed use cases
as businesses evolve.

There must be some fixed points to base the negotia-
tion on. In the first place we can regard the specification
as fixed during very rapid cycles of a day of two. But
some reviews will imply changes to the spec. The
specification should therefore evolve at a slower pace,
perhaps in two-week cycles. But still we need fixed

A Pattern Language for BRMS Development 187

points for the duration of an entire project; otherwise
the time-box discipline will fail utterly.

Our solution has been to fix absolutely the business
objectives and their relative priorities at the outset
of projects: changed objectives imply a new project.
This suggests a much slower iteration rate of perhaps
6 months or more, because the objectives will typically
evolve more slowly than the requirements and may
therefore be fixed for the duration of the project to help
control runaway change requests. Note that hardly any
published method says anything about these business
objectives. In RUP (Kruchten, 1999) they are subsumed
in a ‘visioning’ statement and are given no particular
structure. The very phrase ‘use case driven’ suggests
that the use cases are the starting point. No! Business
objectives are the key fixed point in any project. Of
course they are related to the use cases in the sense that
a use case may support one or more objectives (if it
doesn’t you’re doing something very wrong!), but they
are quite different in kind from use cases.

If you think about the process in the image above,
you will see that speed of iteration increases in propor-
tion to the tightness of the representation. A business
objectives and use cases model can lead to many spec-
ifications. A specification can be designed and coded
in many ways, giving what mathematicians call a ‘rep-
resentation’. The transformation from loose to tight
representation is characterized as the selection of a
representation ‘functor’. In mathematics every repre-
sentation functor has an adjoint ‘forgetful’ functor,
which literally ‘forgets’ the details of a particular
implementation but preserves the invariants of the
specification. If you’re not a mathematician ignore the
jargon; this is just a metaphor. But it does provide
a framework for the management of iteration and
emphasizes the rôle of traceability in a good process.

A reviewed version of this pattern can be found in
Graham (2003b).

Therefore A project should start with loose design but clear
business objectives, defined use cases and types and
a sound project plan. Allow the design to stiffen
only as the application unfolds and only completely
towards the end of the project.

188 Chapter 7

Taking the core ideas from XP and the patterns
we have already encountered suggests the following
iterative approach to development:

1. Write tests based on the use cases.

2. Write the minimum code to pass the tests.

3. Release the application and solicit feedback.

4. Modify the tests as necessary.

5. Refactor the code and add new features.

6. Go to step 2.

Remember that the business objectives and prior-
ities must remain absolute fixed points. Stick to the
timebox plan already agreed. Ensure that every use
case supports at least one business objective, and that
every business objective is supported by one or more
use cases

∼∼∼
Resultant
context

Now ensure automated testing (9) is enabled and
that you do usability testing (10).

Pattern 9 AUTOMATE TESTING

Context You are using timeboxes (4) and gradual stiffening
(5) to manage the project.

∼∼∼
Problem This means frequent changes and refactoring of code

and design. How do you control the costs of such
changes while maintaining quality?

Forces This is another process pattern that could apply equally
well to non-BRMS projects.

It is a principle of XP that if testing is good, then
everyone should test all the time. XP is thus said to be
test-driven and defines simplicity as ‘just enough code
to make all the tests work’. Unit tests and key-task
tests should be based on known use cases. XP also
uses the output from its short cycles to refactor code.
Examples of refactoring include creating a superclass to
abstract common features, creating new plug-points,
splitting classes or methods into two, and renaming

A Pattern Language for BRMS Development 189

components to be more descriptive. Doing all these
things frequently relies on the presence of automated
testing tools, of course.

Fowler (1999) describes well the techniques neces-
sary for refactoring code. With a BRMS this should be
much simpler because the rules are separated from the
code and maintained and tested separately. However,
the same disciplines should be applied: write tests for
the rules and rulesets as you discover them. Retest as
new rules are added. Where inference rules are chained
there will need to be additional refactoring patterns
based on the type of inference being performed and
tests based on the comparison of test input data and
domain experts’ assessments of appropriate results.
A library of such tests should be built as application
development proceeds.

For code regression testing a number of tools is
available. There are now some products that automate
stress testing such as SafeTest (www.attenda.com). For
Java work many companies currently use Junit for unit
testing and Ant for integration tests. Junit and Ant are
described well at:

www-106.ibm.com/developerworks/library/j-ant/
Many of the leading BRMS products include facilities

for building and storing tests for rule and ruleset exe-
cution. Blaze Advisor, for example, goes beyond this
and offers interactive inference testing (see Chapter 5).

Therefore Refactor continuously; both code and rules. Use auto-
mated test tools wherever possible. Retest at every
incremental change to the code or the rules.

∼∼∼
Resultant
context

Don’t forget usability testing (10) after an incremen-
tal change. Consider other user interface patterns such
as those of Duyne et al. (2002), Graham (2003a) or
Tidwell (1999).

Pattern 10 USABILITY TESTING

Context You have established the use cases (3), built a type
model (4) and discovered business rules (5). You

190 Chapter 7

have built a version of the application and completed
some automated testing (9). However . . .

∼∼∼
Problem You just cannot test things like the understandability

of the interface, the consistency of left/right mouse
button usage, use of colour or many other aspects of
usability automatically. Also, does a business rules
approach have an impact on usability?

Forces The first part of usability testing is based on the use
cases. Users must be able to perform all key tasks
successfully and without frustration, long delays or
using tortuous navigation around the application. The
use cases help to define scripts for this kind of test. The
tests have a dual aspect: did the user accomplish the
task and did they find it easy and pleasurable to do so?

Focus groups may be useful before you begin design.
They will help to establish objectives and use cases, but
they are no substitute for usability testing. You can
start the latter as soon as you have even an outline
design in the form of hand-drawn screen mock-ups
or storyboards. Usability testing should then continue
throughout development. If you do it at the end of
the project it will be too late to fix the defects that it
uncovers.

Obviously, it is better to test with real users rather
than or as well as surrogate ones. Unfortunately, it is
not always possible to get hold of real users for the
time needed.

Business rules management systems present a spe-
cial opportunity for enhancing usability insofar as their
rules are written in natural language sentences under-
standable to the business people who use them. The
structural simplification and separation of concerns
that this implies is bound to make it easier for users to
create a mental model of how the system works and
what it does. The ability to create a mental model is a
key prerequisite for usability.

Some BRMS products, those built on top of expert
systems technology, can generate explanations in
answer to ‘how’ and ‘why’ questions. A system that
can generate a well-worded explanation of what it is

A Pattern Language for BRMS Development 191

doing (or refusing to do) is clearly going to have more
satisfied users that one that cannot.

A reviewed version of this pattern can be found in
Graham (2003b).

Therefore Consider hiring a usability consultant from outside
the organization to avoid personality or political con-
flicts.

Perform usability tests from the first prototype
continuously throughout the project. Do not con-
fuse usability tests with output from focus groups.
If formal, lab-based tests are not within the budget
then test informally with the developers as silent
observers. If you can’t get real users grab people ‘off
the street’ or from other departments or offices. Video
the session if possible. Ask people to think out loud
as they use the site. Record their comments. First ask
them to browse and react unprompted then give them
tasks based on the use cases. Record their successes
and failures. Ask them if they’re happy after a testing
session – and why. Reward them for their trouble and
ask if they would help in future.

BRMS usually contain technology that makes it
fairly easy to include explanation facilities in appli-
cations, and this can vastly improve usability, where
the rules are chained together or even when they are
stand-alone constraints that may not be obvious to all
users. It may be necessary to reword the explanations
that are generated to make them understandable to
users.

Resist the urge to add features such as help mes-
sages and explanations, in response to testers’ com-
ments, for their own sake. Instead try to remove
features that might have confused or distracted the
users.

If the testers were able to get back on track easily
after making an error then the cost of fixing it may
not be worthwhile. Fix it only if it is easy to do so.

Change-manage requests for new features as you
would in any software development project; i.e. make
sure there is a justifiable benefit.

Video the test sessions to record both what was
on the screen and the user’s actions. Record users’

192 Chapter 7

comments and try not to lead. Ask open questions
(questions that can’t be answered with a yes or a
no). Record comments. Let the developers watch –
possibly on a screen in a nearby room – but don’t let
then interfere, criticise, help or explain.

∼∼∼
Resultant
context

A business rules approach gives additional opportu-
nities to enhance usability. In particular, you can base
error messages on rules (15).

7.3.2 Patterns for Finding, Writing and Organizing
Business Rules

Pattern 11 ASSOCIATION LOOPS CONCEAL RULES ***

BookLoan

Library

Person

Membership

Party

Organization

0..6

0..*

0..*

0..*

1

0..*

1..*

Reservation Title

Context You are trying to discover business rules (5) and
have completed part of building a type model (4).
You know that you must write the cardinality con-
straints as rules (12).

∼∼∼
Problem How can you be sure that you have not missed any

rules implicit in the type model?

A Pattern Language for BRMS Development 193

Example In the image above, start with a person. Do they have
a loan? If yes choose one. Every loan is for a unique
book that has a unique title. Does the title have an
outstanding reservation against it? If yes, go back to
the person you started with. Does that person have a
reservation? If so, is it for the same title? Perhaps the
rule is: ‘A member may not reserve a title which they
have already borrowed a copy of’.

Therefore Look for cycles (loops) in the type diagrams. Start at
each type in the loop, choosing a generic instance of
that type, and follow the associations to another type.
Ask if every route brings you to the same instance.
Write down the rule that says it does.

∼∼∼
Resultant
context

The rules you have written down may not be true, so
now ask the business (8) and then assign the rules
to components (9).

Pattern 12 WRITE THE CONSTRAINTS AS RULES *

Context You have started to build a type model (4) and noticed
that association loops conceal rules (11). You may
even have asked the business (13) and found that
some of these rules are correct. However . . .

∼∼∼
Problem Some rules are written as constraints in a style that

does not fit into any BRMS. It is unclear at this stage
whether there is any interaction (inferencing) among
the constraints. How can you clarify the situation?

Forces Writing rules in the style of constraints is useful if
you want to rewrite them in OCL, as post-conditions
in a language like Eiffel, using throw and catch in a
language like Java or as database update constraints.
On the other hand it may mean that there is a conflict
of rule style with other rules elicited by other means
(cf. Part II of this language). Furthermore, it may be
hard to see if there are inferential connections between
constraints.

Example Suppose we have the constraint ‘The pilot must be
qualified to fly the type of plane assigned to the flight.’
Clear enough, but not written as a rule. Why not try this.

194 Chapter 7

A pilot may be assigned to a flight if all
of the following are all true:
A plane has been assigned to the flight;
The pilot is qualified to fly the plane
type (of the assigned plane).

In this form it is much easier to see that inferences
may be possible. Supposing we have other constraints
that say, when written as rules:

A plane may be assigned to a transatlantic
flight only if it is a Boeing 777.
A pilot may be hired only if she is
qualified to fly Boeing 777s.

If we also know the fact ‘The flight is a transat-
lantic flight,’ (which may, in turn, be inferred from
its origin and destination), then the original constraint
may be inferred to be true, eliminating the need to
check it directly in the database or prompt the user for
information.

Therefore Rewrite the cardinality and other constraints as rules
using a standard style or rule template. Look out for
possible inference patterns.

∼∼∼
Resultant
context

Now ask the business (13) to ensure the rules are (still)
correct and whether your discoveries about possible
inferences are valid. If you haven’t done so already,
define a rule writing style (23) and ensure that you
have enforced it when using this pattern.

Pattern 13 ASK THE BUSINESS **
aka EXPERT REVIEWER

Context You have discovered some rules, perhaps by exploiting
the fact that association loops conceal rules (7) or
by writing the constraints as rules (10).

∼∼∼
Problem How can you be sure that the candidate rules are

indeed veritable rules?
Forces Having written a rule after much arduous analysis

work, it is tempting to assume that it is true. This need

A Pattern Language for BRMS Development 195

not be the case. The temptation to make assumptions is
very strong. For example, if air journeys have an origin
and destination then one may jump to the conclusion
that these have to be different. Indeed, mostly this is
the case. But I remember the days when one could
board Concorde at Bradford airport, fly out over the
Atlantic for a rewarding sonic boom and then return
to – yes, you guessed it – Bradford.

Therefore A competent user or domain expert must verify every
rule. Check also that any inference chains among
rules are valid.

∼∼∼
Resultant
context

Now that you are confident that the rules are valid,
assign rules to components (9).

Pattern 14 ASSIGN RULES TO COMPONENTS *

Service

Component Service

Context You are developing a rule base. You have discovered
business rules (5), possibly from association loops
(11). You have asked the business (13) to validate
the rules. Now you need to store and manage them.
Component or service reuse is an important objective.

∼∼∼
Problem How can you maximize the reuse potential of compo-

nents and services within a business rules manage-
ment system?

Forces Note first that services are built from components and
that components, not services, are the units of encap-
sulation and reuse; components are reused, services
are shared. Service sharing is the basis of funding for
reuse, but is not the technical means of achieving it.
In turn, services may be composed (recursively) of

196 Chapter 7

other services. This is an instance of Buschmann et al.
composite pattern, as suggested by the above image.

Some rules obviously belong to component objects,
or even to attributes of objects. Attribute constraints
might include valid ranges (domains) or there could be
rules about attribute default values. Object rules might
include simple triggers (relating attributes to methods)
or complex rulesets that search for the values of sets of
attributes or even the applicable methods dependent
on the data presented to the object. If such objects are
to be reusable then we need to be able to take them out
of one system and drop them in another.

This implies that the objects should contain or
encapsulate everything they need to work properly
if relocated to a new application. These encapsulat-
ing components must include, as well as their own
attributes and methods, all references to components
and services upon which they depend (i.e. have asso-
ciations with or send messages to) and all the rules
that describe how they behave. In other words, if you
want reuse, components must encapsulate the rules
that apply to them. That way, when you share a ser-
vice or reuse a component you will get a package of
everything needed for that thing to work properly.

On the other hand, the business rules approach
recommends that rules should be stored in a central
repository for ease of management and update. Also
some rules may apply to several objects and be hard to
assign to just one. We will need some extra patterns to
reconcile these forces. But first . . .

Therefore Where possible, assign rules and rulesets to the com-
ponents that they are concerned with or constrain the
structure or behaviour of.

∼∼∼
Resultant
context

Now consider if a policy blackboard (16) is needed,
store rules in a repository (17) and encapsulate a
reference (18).

Pattern 15 BASE ERROR MESSAGES ON RULES *

Context You have elicited all or some of the rules and prob-
ably have assigned the rules to components (14).

A Pattern Language for BRMS Development 197

Usability testing (10) leads you to think about how
friendly the error messages ought to be.

∼∼∼
Problem How can you ensure that users understand the mes-

sages that the system will issue without the need for
extensive training or help facilities?

Forces Rules must be executed by machines but understood
by humans, sometimes including business analysts and
users. When an error message is generated, this is done
on the basis of the statements that the machine under-
stands. The tendency, therefore, is to present error
numbers (good to remove ambiguity in debugging)
and language that users find hard to interpret. Rewrit-
ing the messages involves extra development work. But
we have already stored the rules in a form at least close
to natural language. Why not exploit that resource?

Therefore Base as many error and other system generated mes-
sages as possible on the natural language versions of
corresponding business rules.

Use explanation facilities (that usually work by
unwinding the current rule execution stack) to answer
as many How? or Why? questions as possible. Again,
before presenting the explanations, convert the
unwound rules into their natural language equiv-
alents – as stored in the repository. If this is not
possible consider handcrafting the natural language
versions of explanations or presenting them through
purpose-written non-natural-language interfaces.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 16 ENCAPSULATE A REFERENCE *

Context You want to make your services and components as
shareable and reusable as possible but you also need
to maintain and manage the rules centrally. You have
assigned rules to components (9). Rules that apply
to more than one component have been assigned to the
policy blackboard (16).

∼∼∼

198 Chapter 7

Problem How can you enforce rule encapsulation and not end
up with a fragmented, unmaintainable rulebase?

Forces Reuse implies encapsulation, although it may be hard
to decide where to put the rules. Opposed to this,
rule independence implies a separate rule layer. If
you encapsulate you lose rule independence; if you
centralize you lose the potential benefits of component
reuse and service sharing. It seems to be a lose-lose
situation. But there is a way out. Decide where the
rules should go, but instead of storing the rules with
the components to which they have been assigned, one
can store a reference to these rules in the interfaces of
objects that should encapsulate them.

Therefore Store the actual rules in the rule repository. When you
create or specify any component, ensure that any rules
associated with it are both stored in the repository and
referenced in the specification and implementation of
that component. Perhaps implement these references
as methods that invoke the rules on the server. Do
this also for the POLICY BLACKBOARD (16).

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 17 STORE RULES IN A REPOSITORY ***

Context You have developed a rule base or discovered some
new rules. You have assigned rules to components
(14), where possible.

∼∼∼
Problem How can you make a complex system containing

many thousands of business rules manageable?

Forces The trouble with encapsulating rules is that it can
make them hard to locate. The situation is certainly
better than it would be were the rules to be embedded
in procedural code; and there are cases where a rule so
obviously ‘belongs’ to a component that it is easy to find
it – by finding the component. However, in general,
scattered rules will be hard to locate for maintenance.

A Pattern Language for BRMS Development 199

Furthermore, there are other data that we may wish to
store with the rules: author, date created, date retired,
containers that realize the rule, etc. Thus, it is natural
to consider storing all the rules and ruleset, together
with related data and metadata, in a rule database or
repository. Such a repository will ideally support full
version control too.

The repository must include rules that are not imple-
mented in a BRMS as well as those that are.

Just as we encapsulate a reference (16) when
rules are related to a component, we may even realize
the same rules in that component. When this happens
the repository must store a reference to the realization.

Morgan (2002) gives a useful list of the sort of things
that one might want to store in a repository. Halle
(2002) gives step-by-step guidance on how to go about
defining a repository, giving examples using the Usoft
and Versata products.

Therefore Store all business rules and rulesets in a version-
control-enabled repository. Include all data and meta-
data related to the rules.

∼∼∼
Resultant
context

Now determine the security model (19), determine
ownership & permissions (22) separate volatile
rules (20). Ensure that you follow standards (21)
wherever possible.

Consider the patterns in Arsanjani’s (2000) Rule
Object pattern language.

Pattern 18 POLICY BLACKBOARD *

Context You are trying to assign rules to components (14).
In some cases this is easy, but in others you face a
quandary:

∼∼∼
Problem If a rule applies to more than one service or compo-

nent, in which component should it be encapsulated?

Forces Let’s say that there are two candidate components: A
and B; and that the rule talks about both of them. If you
assign the rule to A then B ceases to be fully reusable
because if you reuse it, its rules may be left behind.

200 Chapter 7

Assigning the rule to B causes the same problem for
A. How about assigning the rule to both A and B?
This would mean you have two points of maintenance
for this rule. If you encapsulate a reference (16) and
store rules in a repository (17) then the maintenance
problem goes away; A and B only refer to a centrally
maintained rule in their interfaces. However, there may
still be a conceptual problem.

Some rules may apply to several components and,
as well as this, are naturally thought of as ‘policy’:
policy that can change as the business evolves or at
the whim of regulators or lawgivers. In such a case,
there is an additional complexity in that the new rules
may not correspond one-to-one to the old ones. In
SBVR terminology, business rules are ‘interpretations’
of policy to make them ‘actionable’ or ‘practicable’.

A policy blackboard is a central component designed
to encapsulate such a policy statement. Rules only
encapsulate a reference to these rules in the blackboard,
which in turn should encapsulate a reference (16)
and store its rules in a repository (17). In addition
to this, each component sets up an observer to the
policy blackboard. There are two variants of this. Either
the publisher (the blackboard) broadcasts all changes
to rules in which interest has been registered to the
subscribed components, allowing them to update their
interfaces or stored rules accordingly (if this can be
done) or it merely broadcasts an ‘I have changed’
message, leaving it to the subscribers to decide whether
to ask for more information and, indeed, what action
to take. To distinguish these alternative architectures
we may think of them as subpatterns: push policy
blackboard and pull policy blackboard.

It is sometimes useful, when the rules are grouped
into rulesets in a complex way, for example, to segment
the policy blackboard into pigeonholes that contain
different kinds of knowledge. Subscribing components
can register interest in whichever pigeonholes they
need to know about.

Such an approach not only makes maintenance
changes easier to understand at the business level
and implement at the technical level, it also supports

A Pattern Language for BRMS Development 201

a model of complex, cooperative decision making. For
example, services implemented as intelligent agents
can collaborate in applying the rules to a problem
they face, sharing knowledge through the policy black-
board. In that case, the blackboard component may
also need methods for handling a problem-solving
agenda – which, in turn, may be rule-based.

The alternative to pigeonholes is to divide the rules
among several policy blackboards according to the
provenance of the rules; e.g. accounting rules, stock
control rules, rules of engagement, etc. This approach
makes the blackboards themselves more reusable
(shareable), but may introduce too much complexity
or overhead in agent-based applications.

Example ‘Each pilot scheduled for a flight must be qualified
to fly the type of plane assigned to the flight,’ is a
structural constraint. It is almost inconceivable that
any policy change would reverse it – except perhaps
in Alan Sillitoe’s (1971) fictional country, Nihilon. It
is not, therefore, an obvious candidate for the policy
blackboard, although it could just about conceivably
be part of a ‘safety rules’ blackboard.

‘We may not fly more than twenty flights a week out
of Bangkok.’ ‘Our share of transatlantic flights must not
exceed 20% of total transatlantic flights.’ These rules
look more like policy.

This pattern is a specialization of Buschmann et al.
(1996) blackboard, which is, in turn, an architec-
tural generalization of publisher-subscriber (the GoF
observer pattern).

Therefore When rules refer to more than one object, consider
encapsulating them (or references to them) in one
or more policy blackboard component. This is espe-
cially indicated when there is a stated distinction
between rules that are ‘policy’ and those which
merely describe the structural relationships between
objects.

Remember, too, that it’s generally not a good idea to
have developers guessing which rules might change
and which might not; life is full of surprises.

∼∼∼

202 Chapter 7

Resultant
context

This pattern is formally terminal within this language,
although it may be related to separate volatile rules
(20).

Pattern 19 DETERMINE SECURITY MODEL

Context You store rules in a repository (17).

∼∼∼
Problem How can you prevent unauthorized or malicious

access to a business rules application?

Forces There is little that is special about BRMS in respect of
security, but it needs to be taken just as seriously as for
any other business-critical application.

It is especially the case in the context of SOA that
security is an Achilles’ heel. Each service is a potential
attack point. Until they can properly secure services
and applications, companies cannot safely implement
B2B relationships with their customers, partners and
vendors. And companies increasingly find out (some-
times the hard way) that traditional security protocols,
such as SSL, often do not provide adequate security
for multiple hop, high value and flexible SOA or web
services.

Several security models for SOA have been pro-
posed. IBM, for example, has proposed a strategy for
addressing security within a web services environ-
ment. It defines a comprehensive web services security
model that supports and integrates several popular
security models, mechanisms and technologies (includ-
ing both symmetric and public key technologies) in a
way that enables a variety of systems to interoper-
ate securely in a platform-independent manner. It also
describes a set of specifications and scenarios that show
how these specifications might be used together. A
more general SOA security model is given by Pajevski
(2004).

Therefore Establish a standard security model for all applica-
tions. Ensure that is has been followed for service-
oriented and business rules applications.

∼∼∼

A Pattern Language for BRMS Development 203

Resultant
context

This pattern is terminal within this language but relates
closely to determine ownerships and permissions
(22), which address the security of the data and the
rules themselves.

Pattern 20 SEPARATE VOLATILE RULES

aka APPLICABILITY CONDITIONS

Context You store rules in a repository (17).

∼∼∼
Problem How can you ensure that rules that are volatile (that

is, subject to frequent changes) are easy to amend
safely?

Forces If volatile rules are hidden in big rulesets they may be
hard to find when a change is required. On the other
hand, they may belong logically in such rulesets. If
they cannot be easily and logically separated out, then
one may opt to deal with the changes by specifying
exception rather than changing the base rule itself.

Applicability conditions give one the ability to spec-
ify the conditions under which an override or exclusion
should apply. Consider the following ruleset:

An Annuity is recommended for a client
only if : the client is retired
only if : the client is averse to risk

An Endowment policy is recommended for a client
only if : the client is young
only if : the client is not averse to risk

An Equity linked policy is recommended for a
client

only if : the client is a mature adult
only if : the client is prone to risk or is neutral

about risk
A Bond linked policy is recommended for a client

if : the client is averse to risk
unless : the client is retired

A client is averse to risk
if : the client has children

We have used the ‘applicability condition’ rule style
here. There are three kinds of applicability condition:

204 Chapter 7

‘if’ conditions are ORed and ‘only if’ conditions
ANDed. ‘Unless’ conditions are self-explanatory and
help to make rulesets (modules) more concise. The
other way to do this is to use the and/not construct to
represent ‘unless’. For example,

if client.preference is riskAverse
and client.status is not retired

then {client.bestProduct is "BondLinked",
return client.bestProduct}.

The applicability condition style of rule writing is
a powerful alternative to the more usual if/then/not
style. It can lead to reductions in the number of con-
ditions and overall number of words. Applicability
conditions can be shared across rulesets easily by
defining these at the module level. It is especially
appropriate for rules that are volatile which cannot be
easily separated out.

Therefore Store volatile rules separately, away from more stable
ones. Where this is unnatural, use the applicability
rule writing style and handle change by specifying
exceptions.

∼∼∼
Resultant
context

This pattern is terminal within this language but related
to define a rule-writing style (23).

Pattern 21 FOLLOW STANDARDS **

Context You store rules in a repository (17).

∼∼∼
Problem How can you maximize and facilitate communication

about business rules applications across the organi-
zation, and make such applications easy to use and
easier to develop?

Forces Standards inhibit creativity but they enhance commu-
nication within and among teams. It is also true that the
essence of all art is repetition with a difference; in other
words, adopting a standard may actually increase cre-
ativity within its framework. The precondition for this

A Pattern Language for BRMS Development 205

is that the standard must be both sensible and not
burdensome.

Of the standards mentioned in Chapter 3, BPMN,
BMM, ODM/OWL and SBVR are particularly worthy
of note in relation to business rules. But other standards
for the general field of system development will be rel-
evant too; perhaps MDA, perhaps CORBA; perhaps
ISO 9000; it will depend on your particular environ-
ment. You might base your business rules development
method on Halle (2002); some organizations have done
so. You might, instead, base it on the patterns in this
book.

The best thing to do if you want to offer some-
thing new is to consider extending a convention rather
than replacing it with an entirely new approach. There
must be a measurable benefit for you and your users
whenever you deviate from a standard.

Standards also help usability due to transfer effects as
users move between applications. See Graham (2003a)
for further details on this. If your applications have
internal conventions, stick to them rigidly on pain of
confusing developers and users.

Therefore Apply do facto and do jure standards for application
development, rule writing, ontology definition, user
interface design, repository interoperability/inter-
change and other relevant areas. If you deviate from a
standard, make sure that you can justify doing so. Pre-
fer simple (i.e. short, easily understood and remem-
bered) standards to complex ones. Prefer standards
from independent bodies to those pushed by vendors
(but beware of the latter’s influence on the former).

∼∼∼
Resultant
context

Now, as your first standard, define a rule writing
style (23) based as far as possible on proprietary,
published or emerging (say OMG) standards.

Pattern 22 DETERMINE OWNERSHIP & PERMISSIONS

Context You store rules in a repository (17). These rules
determine the way you do business. Duff ones could
jeopardize the very existence of the organization.

∼∼∼

206 Chapter 7

Problem How can you ensure that duff rules don’t end up in
the rulebase?

Forces As pointed out in Chapter 6, you would not create
a database application and then allow just anyone to
change the data it stores. If the business rules are hid-
den in the application code then it is normal to put
that code under source code control to prevent unau-
thorized updates. But if the rules are stored separately
and in smaller chunks than would be the case for
a conventional application, then the rules or rulesets
need to have identified owners who are responsible
for making or authorizing changes. At a minimum,
one must employ a knowledge base administrator and
set up review and authorization procedures involving
rule authors.

Therefore Ensure that every rule has an owner who is a business
representative or a domain expert, or both. Assign
permissions to entries in the rule repository. Treat
the rules as you would treat entries in the database
with respect to permissions and ownership. Ideally,
get a second user or expert to verify any updates to
sensitive rules. The repository should record the rule
authors and maintain permissions.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 23 DEFINE A RULE WRITING STYLE **

Context You want to follow standards (21) and make your
rules as easy to understand and maintain as possible.

∼∼∼
Problem How can you ensure that rules are readable, under-

stood, easy to maintain and (as far as possible)
complete and consistent?

Forces The guidelines given by Ross and Morgan, as discussed
in Chapter 6, may be combined as follows:
■ Rules must be unambiguous and refer to the

vocabulary or ontology: the terms and facts.

A Pattern Language for BRMS Development 207

■ Rules should be non-procedural and avoid references
to how, when and where the rule is enforced or to
who enforces it.

■ A rule should be clearly written and possible to
achieve.

■ No redundant words (fluff, noise, padding).
■ Define terms exactly (not too widely or narrowly).
■ Make associations explicit, as in ‘Every project

should be managed by a project manager.’
■ Remove plural nouns, events as subjects and

imperatives.
■ Avoid vague phrasings such as ‘there may be . . . ’
■ Avoid permission statements, where possible.
■ Write computations as separate rules and break

down rules with complex logic.
■ Look out for rules that overlap, duplicate or merely

rephrase each other.

RuleSpeak builds on these principles by providing
a set of rule templates or sentence patterns, as does
Morgan. These patterns mandate that rules should
use a certain restricted vocabulary; so that the word
‘must’ appears somewhere in every rejecter rule as does
‘may’ in every permission rule, if these are allowed.
RuleSpeak nominates specific words to deal with time,
such as ‘before’ and ‘by’.

It does not really matter whose guidelines and stan-
dards you adopt, although the influence of RuleSpeak
on emerging standards may be considered significant.
What is essential is that you do choose a standard way
of writing rules and stick to it – at least within each
organization.

Therefore Adopt and publish a standard rule-writing style and
insist that all rules stored in the repository are checked
against the rule styleguide. Ensure that guidelines
similar to those above are enforced within the style.

∼∼∼
Resultant
context

Ensure your standards take account of the write the
consequent first (24) pattern. Embed this pattern
when you choose a rule maintenance régime (40).

208 Chapter 7

Pattern 24 WRITE THE CONSEQUENT FIRST *

Context You are trying to define a rule writing style (23).

∼∼∼
Problem How can you make executable rules easier for users

and business analysts to understand?

Forces The obvious and most general way to write rules is
in if . . . then . . . form. This form translates directly into
machine understandable languages and is friendly to
developers. If also facilitates the observation of infer-
ence patterns among the rules.

However, experience has shown that business users
find it easier to articulate and read rules written with
the outcome preceding the conditions. Inference pat-
terns may still be spotted easily, and there is less
likelihood of getting mixed up about ANDs and ORs in
antecedent clauses: a common problem in developing
rule systems.

Therefore The ‘Consequent if some/all of the following ante-
cedents’ style is to be preferred over the ‘If Ante-
cedents then Consequent(s)’ style.

Avoid ANDs and ORs in rules and use the con-
structions ‘all of the following are true’ and ‘one of
the following is true’ respectively.

Avoid the word ‘not’ in relationship with ANDs or
ORs.

This approach also suggests a useful knowledge
elicitation method. Ask ‘What outcomes are possible?’
Then, for each outcome, ask ‘Under what conditions
does that happen?’ This is usually much more effec-
tive than asking ‘OK then, what are the rules?’

∼∼∼
Resultant
context

This pattern is terminal within this language.

7.4 The RulePatterns Language – Part II

The second part of RulePatterns is shown in Figure 7.2. It may be divided
into patterns for knowledge elicitation and those for product selection and
application development.

A Pattern Language for BRMS Development 209

41. Choose rule

engine

39. Classify your

culture

27. Run a workshop

38. Classify your

applications

30. Lead

user

35. Boundary of

competence

36. Determine

inference model

37. Determine

uncertainty model

Organizational

Patterns

34. Ask for the

opposite

KADS

Patterns

28. Involve all

the stakeholders

29. Ten

minute rule

25. Plan interviews

33. Probes and

teachback

40. Choose rule

maintenance regime

42. Performance

tuning

31. Structured

interview

32. Focused

interview

5. Discover

business rules

26. Filled in forms

Concrete &

Terminal

Abstract

pattern

Concrete

Pattern

Key

Application
development

and
product

selection
patterns

External

Patterns

Figure 7-2

7.4.1 Patterns for Knowledge Elicitation

Pattern 25 PLAN INTERVIEWS **

Context You are trying to discover business rules (5).

∼∼∼
Problem How can you elicit business rules and other knowl-

edge from human beings?

Forces People know stuff, lots of stuff. But sometimes they
don’t know – or can’t articulate – what they know. If
they do know what they know then all you have to do
is ask (assuming no dishonesty or hidden agendas). If
there is latent knowledge then you will have to consider
more subtle strategies as exemplified by patterns 31 to
37 of this language.

So why not just interview everyone? The trouble
is that that is an expensive, time-consuming proce-
dure. Furthermore, it is common to find that different

210 Chapter 7

people, when interviewed, give different versions of
the truth, so you end up having to go round and round
the stakeholders, confirming and clarifying points.
This suggests that running a workshop is a far better
approach. On the other hand, sometimes it is impos-
sible to get people to give up the time to travel to
a workshop. In such a case there is no choice but to
interview the stakeholders.

Interviews run better if they are planned.
The interview plan can be used to give structure to a

workshop, so any effort exerted in creating it is seldom
wasted.

Therefore Start by outlining plans for stakeholder interviews.
The plan should include clear objectives for the out-
come of the interview. Select interviewers who have
some knowledge of the vocabulary of the domain and
who can show humanity and adaptability. It some-
times helps if they have a little knowledge of business
rules technology too. Be prepared to abandon the plan
during actual interviews or workshops.

∼∼∼
Resultant
context

Before conducting expensive and time consuming inter-
views with all the stakeholders, consider running a
workshop (27). It is usual to conduct structured
interviews (31) before focused interviews (32).

Pattern 26 FILLED-IN FORMS **
aka DATA MINING

Context You are trying to discover business rules (5).

∼∼∼
Problem How can you exploit the fact that many business

rules are already documented or implicit in existing
business processes, manuals and other paperwork?

Forces Some, though seldom all, business knowledge is nearly
always written down somewhere or otherwise recorded.
Procedure manuals, legislation, existing databases and
applications, forms: all these are potential sources. You
may need an interpreter to help you understand the
content of these documents.

A Pattern Language for BRMS Development 211

Obviously, forms are more valuable if they have been
filled in with real data.

An existing database is the equivalent of a set of
filled-in forms. If one exists then data mining tech-
niques can be used to extract or ‘learn’ business rules
automatically, as we saw in Chapter 4. Data mining
uses one of three technologies: multivariate statistics,
genetic algorithms or neural networks – or sometimes
a mixture of these. We will not examine data mining
further within this language. Indeed, data mining may
well deserve an entire pattern language of its own.

Where regulatory compliance is an issue, it may be
necessary to keep an audit trail showing where the rules
have originated. If they have come from paperwork, it
might be wise to record this in the repository.

Therefore Obtain any available procedure manuals, rulebooks,
technical documentation and forms. Enlist the assis-
tance of an interpreter of these from within the
business. If you are trying to extract rules from forms
try to obtain filled-in ones. Use data mining to extract
business rules from existing databases. Always check
the rules discovered with a human expert or operative
(ASK THE BUSINESS (13)).

Consider whether the sources of rules should be
included in the repository as metadata.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 27 RUN A WORKSHOP ***

Mission

212 Chapter 7

Context You are trying to discover business rules (5) and may
have conducted or planned interviews (25).

∼∼∼
Problem How can you discover requirements efficiently, tak-

ing into account all the overlapping and possibly
conflicting views of the stakeholders?

Forces Interviews are time consuming and can lead to self-
contradictory or incomplete information. Workshops,
on the other hand, ensure that all participants have
heard at first hand the contributions of others, which
facilitates compromises where these are necessary. They
also generate a sense of shared ownership of the project
between and among the developers and users.

On-site workshops may be prone to interruption, but
an off-site location is usually more costly, and yet much
more focus and relaxation is possible for participants.

The idea is to drive through the core of the require-
ments gathering process in a very short time, and
certainly no more than a week. This implies strong,
unbiased facilitation and real-time, technically savvy
reporting of the proceedings. The facilitator acts as
both guide and interviewer as the event unfolds.

Therefore Organize and run a facilitated workshop. Try to hold
it off-site. Use a facilitator who has no stake in the
project. Appoint a skilled and enthusiastic scribe to
record models, rules, decision, and so on.

∼∼∼
Resultant
context

Before running the workshop, make sure you involve
all the stakeholders (28). At the beginning of the
session announce the ten-minute rule (29). Early on in
the session identify a lead user (30). Apply patterns 1 to
7 of this language iteratively during the entire session.

During the session consider using all or some of the
following knowledge elicitation patterns: structured
interview (31), focused interview (32), probes and
teachback (33), ask for the opposite (34), boundary
of competence (35).
Try to determine inference models (36) and deter-
mine uncertainty models (37) where applicable. Try
to classify your applications (38).

A Pattern Language for BRMS Development 213

Pattern 28 INVOLVE ALL THE STAKEHOLDERS **

Workshop Strategic Tactical Operational
participation management management management
grid and clerical staff

Sales Sales Director
National Sales

Manager

Account Managers
Regional

Managers

Sales Staff
Clerical and

Telesales Staff
Marketing Marketing Director Product Managers Marketing

Assistants
Production Distribution

Director
Production

Engineers
Warehouse

Supervisors
Machinists

Context You are going to run a workshop (27).

∼∼∼
Problem How can you maximize the workshop’s coverage of

the business area and business rules?
Forces Business people are busy, but they are the people who

have the knowledge. Not everyone affected by a pro-
posed new business rules system can always be present
at requirements capture workshops. A good and oft-
quoted example is dealers in financial trading rooms,
who are reluctant to leave their investment positions
unattended. Furthermore, events involving absolutely
everybody could be too large and unwieldy to be
managed comfortably. Therefore, some users may act
as delegates for their immediate colleagues, managers
and subordinates. In the example given, dealer man-
agement often stands in for actual dealers. The selection
of the right delegates for the task is a key determinant
of the success of the event, and the participants must
at least include representatives of both the users of the
proposed system and the development team.

The presence of key users is both more important and
potentially more difficult to organize than one might
think. Surely the identity of the correct participants
from the user side is obvious and unarguable. Not
necessarily! There are several factors to weigh.

Seniority may matter. More senior people may have
a better grasp of the wider business issues being
addressed in the workshop (or maybe just think they
do), but the devil is always in the details, and operational

214 Chapter 7

level staff are more likely to be familiar with the
detailed intricacies of operations, which will be the
things that will break a proposed system if they are not
taken into account. So we need people from different
levels of seniority – but then we need to be aware that
some people will not like to be seen to contradict their
boss in public. This is where the facilitator’s job of
setting ground rules and ensuring fair play becomes
important.

Every stakeholder present must have authority to
commit to the findings of the workshop. Ensuring that
this signatory authority is in place is a key job of the
sponsor.

The number of people present is hard to get right.
The complexity of the interactions will rise exponen-
tially with the number of participants, so life is easier
the smaller the number – and the workshop is cheaper
to run. But everyone affected by the proposed sys-
tem should be represented. In the limit, this could
mean half the company. What must be avoided is
the situation of somebody feeling later that they were
improperly overlooked. When the delivered system
has a flaw, you do not want to be told that that some
stakeholder or user was never consulted in the first
place.

Before setting up the workshop, the sponsor, project
manager and facilitator should have a prior meeting,
generally led by the facilitator, to establish the partici-
pant list. They should examine all the options in terms
of inclusions and exclusions, probe the emerging list
for weaknesses and seek to rectify them and document
the reasons for the final invitation list. It can be useful
to develop a matrix of candidates, enumerating all the
people who could conceivably attend, and then com-
pare possible combinations of candidates from the grid
in terms of the impact on the workshop’s success. Start
with the company’s organization chart, and collapse
the relevant components into a matrix where the rows
are the organizational units, the columns represent
approximate seniority levels within the organization,
and the cells contain names of logical job descriptions
and possible candidates. Note especially that this doc-
ument is not a formal deliverable, because the logical

A Pattern Language for BRMS Development 215

rôles may be the subject of discussion and change
during the workshop.

As an example, consider a system to support a new
process for product presentation, sales, order taking
and manufacturing. This would affect inter alia the
Sales, Marketing and Production divisions. A possible
workshop participation grid is shown in the above
image. One should ensure that the grid reflects the
actual organizational structure, then fill in the names
of the candidates for participation. Considering the
options, one representative for each group may make
the workshop too large. Beware of the dangers of argu-
ing that a manager can always speak for the troops as
well – because he used to be one. This may be true, but
it is difficult for people to represent their own needs sin-
cerely as well as those of someone else. The inevitable
exceptions that do occur, as with the dealers alluded to
above, should be handled with extra care and sensitiv-
ity. Otherwise, if any rôle is not to be represented at the
workshop, then there is an assumption this rôle will
not be affected by the new system – and this should be
documented. Some sensitive issues can arise if this is
a business process re-engineering project: some rôles
may disappear altogether, and asking possible victims
of reorganization to contribute enthusiastically to plan-
ning the wake may be regarded as unproductive, or
in bad taste at the very least. The aim is to produce
a participant invitation list along with a supporting
document justifying the rôles represented and not rep-
resented, and the reasoning behind the choices made.

Users should attend the entire workshop. This is
often easier said than done. Freeing people from impor-
tant work, even for a few days, can have a significant
business impact and cost implications. It is also some-
times the case that people will not wish to appear in
any way ‘dispensable’. Having people attending for a
couple of hours, disappearing for a while, then coming
back can be very harmful to the progress and ultimate
value of a workshop. The sponsor and project man-
ager must work hard with departmental managers to
ensure that a block of time is made available to run the
event as a block and not as a set of piecemeal sessions
with a floating population of participants.

216 Chapter 7

Where at all possible, the complete development team
should attend the workshop(s). The challenge is to
avoid the development of an ‘us and them’ attitude:
where the user group states its requirements, the devel-
oper group goes away and produces something with
little contact with or reference to the users. Only later do
the users have the opportunity to tell them where they
went wrong, when it is often too late to avoid project
deadline pressure freezing the mistakes into the end
product. The reason for having the whole development
team present at the workshops is to help gain shared
ownership of the system requirements: to understand
more fully the content of the formal documents they
may be dealing with later in the project.

Importantly, all developers should feel involved in
all parts of the project. Of course, someone may be
on the team because of specialist skills, because it
is known that this will be a key component of the
delivered system; but that person should not have the
feeling that their contribution is just at the level of their
own narrow specialism – they should be regarded as
significant contributors to the system as a whole.

Lastly, if the group is very large, it often helps to
organize breakout sessions whereby smaller subgroups
resolve knotty issues and report back to the main
workshop.

Therefore Involve all the stakeholders: users, IT people, cus-
tomers, legal experts, workers, managers, regulators,
different business areas, whomsoever is affected or
knowledgeable. Use the workshop participation grid
to check that coverage is complete.

∼∼∼
Resultant
context

Now classify your culture (39).

Pattern 29 TEN MINUTE RULE ***
aka TWO MINUTE RULE

Context You are starting to run a workshop (27). You need to
ensure that discussion is focused while not wanting to
restrict it so much that information is lost.

∼∼∼

A Pattern Language for BRMS Development 217

Problem How can you shut up vociferous (and possibly senior)
bores whilst ensuring that people with valuable
information to add are given free rein?

Forces Junior or diffident individuals sometimes find it diffi-
cult to contribute, and senior or aggressive ones can
easily dominate the conversation even though they
may have less to contribute. You really don’t want
long off-topic exegeses in a tightly run workshop.
However, so-called ‘war stories’ sometimes conceal
valuable gems of information, and sometimes it needs
quite a long presentation to delve into the business
rules and processes deeply enough. So exactly how
can you, as facilitator, tell the MD to shut the f*** up
without causing offence?

Therefore At the start of the workshop, announce the ground
rules. These may vary, depending on circumstances.
They might include a rule that forbids critical remarks
(typical of brainstorming workshops). But always
announce a ten minute rule: no one may speak on a
topic for more than ten minutes. Then, as facilitator,
listen to the debate and ignore this rule totally when
you feel that useful information is being added by the
speaker. Only invoke it when Mr Bigmouth wants to
show how clever and interesting he is. Invoke the
rule and offer to ‘take his issues offline’.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 30 LEAD USER **

Context You are starting to run a workshop (27). You know
that disputes and impasses will inevitably arise.

∼∼∼
Problem How can you resolve such disputes quickly in order

to move on to the next topic without bureaucratically
curtailing the discussion or upsetting anyone?

Forces In workshops, when a difficult technical issue arises
and there is a significant silence – as people think about
it – one often sees eyes turning to one person in the

218 Chapter 7

room. This person may or may not be the most senior
individual, but is clearly the focus of respect in the
group. He (or she) could be a domain expert or a user
or a skilled artisan; there are no rules for this. But he is
the guy whose shoulder is cried upon when technical or
practical issues need to be resolved. A good facilitator
keeps a weather eye open for such people. We call
them lead users or lead experts.

In a workshop, the facilitator may decide to make
the identification of the lead expert explicit, saying
something like ‘Can we agree that Emily is going to
resolve issues like this one when we can’t agree or just
get stuck – at least for this week?’ Or it may be more
prudent to keep quiet and just make sure that the lead
expert is assigned to the teams given open issues to
resolve and consulted by the project team regularly
throughout the project. This is the right strategy when
there is a danger of jealousy arising.

A lead user or lead expert should be appointed as
early as possible to resolve disputes. It will be too late to
get consensus on who the lead expert is to be after the
dispute has arisen. This person will be one respected by
other users/experts/colleagues, and need not always
be the most heavily involved in the project in terms
of time spent. The lead user corresponds somewhat
to what DSDM calls an ambassador user (Stapleton,
1997). Many users will only be consulted on an ad hoc
basis, and these then correspond to the adviser users
of DSDM.

The lead user can help resolve another force: that of
confidentiality. The group should be assured that any
tapes made will be confidential to the project team,
and that they will be destroyed after use or, if required,
returned to the lead user for destruction.

Therefore Identify a lead expert or lead user early in any work-
shop or in any project. Such a person will resolve
disputes and open issues and may also act as the
conscience and guardian of the group. It is a matter of
discretion (usually the facilitator’s) whether the lead
user is publicly acknowledged as such. Consult the
lead user regularly throughout the project.

∼∼∼

A Pattern Language for BRMS Development 219

Resultant
context

This pattern is terminal within this language.

Pattern 31 STRUCTURED INTERVIEW *

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you gain a high level overview of a business

area, process or problem domain?

Forces Structured interviews are high level. They are intended
to uncover an overview of a topic or business problem.
A structured interview should reveal the key rules,
objects and concepts of the domain. Their coverage is
‘broad and shallow’. It will result in elicitation of the
key objects and concepts of the domain, but not go
into detail. In a workshop this corresponds to running
a scoping session, where the same techniques can be
used.

The plan for a structured interview is always pretty
much the same:

■ Agree the agenda with interviewee;
■ Ask questions, put out probes (33);
■ Review progress against objectives;
■ Move on to the next topic;
■ Review and compare with plan: have the objectives

been achieved?
■ If not, arrange next interview.

Therefore Plan to execute structured interviews at the early
stages of the project. Use the same techniques in the
early parts of a workshop.

∼∼∼
Resultant
context

This pattern is terminal within this language, but
structured interviews are often followed by focused
interviews (32).

220 Chapter 7

Pattern 32 FOCUSED INTERVIEW *

Scope

Detail

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you uncover detailed business rules within

a business area, process or problem domain?

Forces Focused interviews are meant to delve into the detail
of one area of the problem space covered by structured
interviews. Their coverage is ‘narrow and deep’.

During the interview process it is essential to search
for reusable elements – the grey rectangles in the above
image. Analysts should select the area of the domain
that gives either 80% of the benefit or 80% of the
predicted complexity or reuse/sharing potential as
the first area to explore – preferably both. This cor-
responds, ideally, to about 20% of the scope of the
system.

The agenda for a focused interview depends largely
on the domain. Focused interviews will be enhanced
by applying various knowledge elicitation techniques
or patterns such as teachback (33), repertory grids,
ask for the opposite (34), task analysis – business
process model (2), establish the use cases (3) – and
boundary of competence (35).

Therefore Use a focused interview to uncover details. Use the
same techniques in the later parts of a workshop.

∼∼∼
Resultant
context

This pattern is terminal within this language.

A Pattern Language for BRMS Development 221

Pattern 33 PROBES AND TEACHBACK **

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem If you are interviewing or running a workshop and

you suddenly can’t think of the next question to ask,
is there a formula to prompt you to think of a suitable
question?

Forces It is essential in interviews of workshops that questions
are open rather than closed. Open questions do not
permit an answer such as ‘Yes’ or ‘No’ that closes
further discussion or elaboration. Probes are merely
particularly useful types of open question. Probes use
all six question words emphasized in the above image.

There are five types of probe. A definitional probe
asks ‘What is a . . . ?’ A directive probe asks ‘Why is
that?’ or uses the word ‘how’. An additive probe is
used when you say something like ‘Go on.’ A mode
change probe could be a question like ‘How would
your colleagues view that?’ or ‘Can you give a more
concrete/abstract example.’ Mode change probes are
thus all about scope, viewpoints and generalization
(inheritance). A reflective probe involves saying the
equivalent of ‘What you’re saying is . . . ’ In that case
you are far better off when the expert replies ‘No, I
didn’t mean that.’ A ‘Yes’ doesn’t give you the chance
to ask ‘Why?’

Teachback generalizes the idea of reflective probes
and involves interviewers, knowledge engineers or
business analysts presenting their understanding to
the users formally (perhaps with a slideshow) and
receiving corrections thereby.

222 Chapter 7

Therefore When the obvious question does not come to mind,
ask yourself if one of the five probes will help. Con-
sider using teachback when time permits.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 34 ASK FOR THE OPPOSITE **

AKA KELLY GRIDS, LADDERING, CARD SORTS, CONCEPT

MINING

OBJECTS
Rolls Porsche Jaguar Mini Trabant OPPOSITE

CONCEPT Royce CONCEPT
Economical 5 4 4 2 2 Costly
Comfortable 1 4 2 4 5 Basic
Sporty 5 1 3 5 5 Family
Cheap 5 4 4 2 1 Expensive
Fast 3 1 2 4 5 Slow
Context You have planned interviews (25) or decided to run

a workshop (27).

∼∼∼
Problem Are there any other ways of digging out concepts

that are not immediately present in the forefront of a
user’s or expert’s consciousness?

Forces One useful knowledge engineering technique for elic-
iting objects or concepts and their structural relation-
ships is that of Kelly (or repertoire) grids. These
grids were introduced originally in the context of
clinical psychiatry (Kelly, 1955). They are devices for
helping analysts elicit ‘personal constructs’: concepts
which people use in dealing with and constructing
their world. Constructs are pairs of opposites, such as
slow/fast, and usually correspond to either classes or
attribute values in object-oriented analysis. The second
dimension of a grid is its ‘elements’, which correspond
to objects. Elements are rated on a scale from 1 to 5,
say, according to which pole of the construct they cor-
respond to most closely. These values can then be used
to ‘focus’ the grid: a mathematical procedure which
clarifies relationships among elements and constructs.
In particular, focusing ranks the elements in order of

A Pattern Language for BRMS Development 223

the clarity with which they are perceived, and the
constructs in order of their importance as classifiers of
elements.

To illustrate, first identify some ‘elements’ in the
application. These might be components or concepts,
but should be organized into coherent sets. For example,
the set {Porsche, Jaguar, Rolls Royce, Mini, Driver} has
an obvious odd man out: Driver.

The use of the technique in its full form is not rec-
ommended. However, questioning techniques based
on Kelly grids are immensely powerful in eliciting
new concepts, objects and attributes and extending
and refining inheritance structures. There are three
principal techniques:

■ asking for the opposites of all elements and concepts;
■ laddering to extract generalizations;
■ elicitation by triads to extract specializations.

Considering the image above, we see that Sporty is
a key concept for the user concerned. Asking for the
opposite has produced not ‘Unsporty’ but the concept
of ‘Family’ cars; not the logical opposite but a totally
new concept. Thus, asking for the opposite of a concept
can reveal a totally new one.

In laddering, users are asked to give names for
higher level concepts. ‘Can you think of a word that
describes all these things: speed, luxury and economy?’
This might produce a concept of ‘value for money’. It
produces more generalizations of concepts.

Elicitation by triads is not a reference to a Chinese
method of torture but to a technique whereby, given a
coherent set of elements, the user is asked to take any
three and specify a concept that applies to two of them
but not to the third. For example, with {Porsche, Jaguar,
Mini}, top speed might emerge as an important con-
cept. Similarly, the triad {Mini, Jaguar, Trabant} might
reveal an attribute such as CountryOfManufacture or
the concepts of British and German cars. As a variant of
this technique, users may be asked to divide elements
into two or more groups and then name the groups.
This is known as card sorting, since the elements or
concepts are often written on small cards and laid on a
table for sorting into groups.

224 Chapter 7

All these techniques are first-rate ways of getting
at the conceptual structure of the problem space, if
used with care and sensitivity. Exhaustive listing of
all triads, for example, can be extremely tedious and
easily alienate users.

Therefore For every concept presented, ask for its opposite and
record the new concept if it is not a logical opposite.
For every pair of concepts or objects, ask if there is
a word that encompasses both; if there is, record the
generalization as a new concept. For every triplet of
concepts or objects, ask ‘Can you think of a feature,
attribute, operation or rule that is shared by two
of these but not the third?’ Alternatively, write the
names of all the concepts or objects on cards and ask
users or experts to sort them into groups and names
the groups. Record the group names as new concepts.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 35 BOUNDARY OF COMPETENCE

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you be sure that the rules, as stated, always

apply?

Forces Sometimes rules seem to be true because we have
limited our perception to the familiar. But there may
be unusual circumstances in which the rules cease to
be valid. The most common example of this is where
a rule is true only between defined applicable dates.
A good BRMS will have built-in facilities for handling
such time-constrained rules.

In general, one must beware of including rules that
may fail when circumstances change. Rules that work
fine for a British company may fail when it merges
with a German one. These ‘boundary conditions’ must
be made explicit in the way rules are stated.

Example Suppose the domain is gardening and that we have dis-
covered that ‘regular mowing produces good lawns’.

A Pattern Language for BRMS Development 225

The analyst should not be satisfied with this because
it does not show the boundaries of the intended sys-
tem’s competence – we do not want a system that gives
confident advice in areas where it is incompetent. We
need to go deeper. Thus, the next question asked of the
expert might be of the form: ‘why?’ The answer might
be ‘Because regular mowing reduces coarse grasses
and encourages springy turf’. What we have obtained
here are two attributes of the class Turf.

‘Why does regular mowing lead to springy turf?’
‘Well, it helps to promote leaf branching.’

Now we are beginning to elicit methods as we
approach causal knowledge. To help define the bound-
aries, ask ‘What else?’ and ‘What about . . . ’ questions.
In the example we have given, the analyst should
ask ‘What about drought conditions?’ or ‘What else
gives good lawns?’ These questioning techniques are
immensely useful.

Therefore Always ask experts for the boundaries of rule applica-
bility. Consider time, geography, culture, frequency,
previous events and so on: anything that may vary.
Make the boundary or applicability conditions explicit
in the rules statements.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 36 DETERMINE INFERENCE MODEL *

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you ensure that your business rules will be

combined in a logical, correct and efficient manner?

Forces There are basically five inference models to consider
for each ruleset:
■ No inference; each rule is treated as an isolated

constraint on database updates or method firing.

226 Chapter 7

■ Procedural execution; the rules are fired in a fixed
order, the results of each firing being passed to the
next rule to fire. This is most appropriate for even
moderately complex calculations and, more
especially, in cases where non-procedural chaining is
shown to be too slow.

■ Backward chaining to determine the value of a given
variable, term or fact. This is the method usually most
appropriate for analytic problems like classification,
matching services to needs, diagnosis and so on.

■ Forward chaining from given data, where one is
hoping to infer the values of one or more currently
unknown terms or facts. This is the method usually
most appropriate for synthetic problems like
planning, scheduling, alarm monitoring (e.g. fraud
detection) and so on.

■ Mixed chaining, where backward chaining is the
starting point but, as soon as a value is inferred, then
forward chaining proceeds to see if anything else
may be deduced. Most problem types can be handled
this way, but it can be less efficient than the pure
chaining strategies.

A good BRMS will support all the above models.
It is often the case that analysts are so happy to grab

hold of a set of rules that they forget to ask the experts
about the way they apply the rules. For example, if the
domain is fault diagnosis, a skilled mechanic doesn’t
merely know rules such as ‘If the battery is flat then
the engine will not start,’ they also have a procedure
for applying such knowledge. Typically, they might
start with the symptom and list a number of rules that
could explain it. Then they will conduct tests – usually
starting with the cheapest, which might well be the
battery. If the battery is not flat and there is fuel in the
tank, then the fitter might remove the starter motor to
see if it is jammed, and so on. The point is that you
need to go through this during knowledge elicitation
and leave it until implementation.

It may even turn out that the inference is so complex
that it cannot be represented by one of the five models
above. In that case a commercial BRMS package is
unlikely to be much use to you. As an example, if the

A Pattern Language for BRMS Development 227

problem is to recognize the faces of authorized people
entering a secure area, it is unlikely that a conventional
rule-based system will be of much use. Less extremely,
planning a school timetable is a very hard problem that
probably requires purpose built inference code.

The other factor that affects the inference model is
uncertainty. Watch out for uncertain inferences being
performed by experts.

Therefore Make sure that you understand the type of infer-
ence that is appropriate to the problem. Agree this
with your subject matter experts during knowledge
acquisition.

∼∼∼
Resultant
context

Determining the inference model prepares you to
choose a rule engine (41). You should also determine
the uncertainty model (37) and classify your appli-
cations (38) in parallel with this pattern. It is recom-
mended that you consider using the KADS ‘patterns’ or
problem types in relation to determining the inference
model.

Pattern 37 DETERMINE UNCERTAINTY MODEL *

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you be sure that the technology you propose

to use can reflect the nature of the problem adequately
where it involves some kind of uncertainty?

Forces Most BRMS products currently on sale have modest
uncertainty management capabilities. But some prob-
lems involve uncertainty in an irreducible manner. You
need to determine whether this is the case.

It is not reasonable to give here a complete list of all
the kinds of uncertainty that might be encountered in
the context of business rules. The commonest models
that have been used were discussed in Chapter 4.

■ Inference under Bayesian probability.
■ Inference with certainty factors.
■ Fuzzy logic.

228 Chapter 7

■ Verbal labels. This is the only approach supported by
all BRMS products. The inference model is a
conventional one as discussed in Pattern 36

■ Special approaches. Some products offer a proprietary
uncertainty management approach. The best known
example is Blaze Advisor’s scorecards. You will need
to determine if your problem can be handled in that
way before selecting such a product.

If the problem involves any kind of uncertain infer-
ence (other than the last two types) a normal BRMS
product will not work – at least not without massive
tweaking. You must either buy or build a more spe-
cialized product or recast the problem to get rid of the
uncertainty management aspect.

In the case of verbal labels you have to determine
who will categorize the facts. Should any special facil-
ities be provided in the user interface? For example, if
the domain is identifying poisonous mushrooms, there
might be a question about colour: ‘What shade of yel-
low is the cup?’ To help the user choose, it might help
to display pictures and ask something like ‘Is is darker
or lighter than this one?’

There is a quite different way in which uncertainty
might damage your project. It is sometimes said (I think
with some justification) that the Sarbanes-Oxley legis-
lation is vague in places and even waffley. Although
there have been business rules systems built to sup-
port this kind of regulatory compliance, there is not
much that you can do with business rules that are not
‘clear’ – in the legalistic sense of clear. In practice, what
you have to do in a case like that is write your own
clear rules, interpreting the legislation as you go. Then
just pray that the legislation really is vague enough to
encompass your concrete version of it.

Therefore Make sure you understand if your business rules
need to use uncertain inference and, if so, what
the uncertainty model is. Agree this with your sub-
ject matter experts during knowledge acquisition.
Consider whether the problem can be recast to elim-
inate the need for uncertain inferences. Rewrite any
unclear rules and check them with experts.

∼∼∼

A Pattern Language for BRMS Development 229

Resultant
context

Determining the uncertainty model may help prepare
you to choose a rule engine (41). You should also
determine the inference model (36) and classify
your applications (38) in parallel with this pattern.

Pattern 38 CLASSIFY YOUR APPLICATIONS

Context You have planned interviews (25) or decided to run
a workshop (27).

∼∼∼
Problem How can you be sure that the technology you pro-

pose to use can reflect the nature of the problem
adequately?

Forces If you have a hammer, every problem looks like a
nail: if you have a BRMS product every problem looks
like a business rules application. Well, no! Only some
problems can be solved with this technology. To make
sure that your problem is one of them, the easiest way
is to ask potential vendors for case studies that indi-
cate that they have solved similar problems before.
Alternatively, you can try to determine the problem
type abstractly, perhaps glancing at the KADS clas-
sifications. You might spot that diagnosing a broken
customer service process is ‘a bit like’ diagnosing a mal-
functioning car, or that detecting threats to compliance
is ‘a bit like’ spotting hostile incoming aircraft in battle.
In such a case it is a fair bet that your problem can be
massaged into a form that the technology can handle.

However, caution is advisable and this analysis
needs to be carried out before committing to expensive
technology purchases or spending massive effort in
design.

Therefore Try to classify the application(s) during knowledge
acquisition. Is the problem analytic or synthetic? Are
there case studies of similar problems that have been
implementedsuccessfullyusingaBRMSorotherwise?
Ask the vendors. This is an area where experienced
independent consultants may also prove helpful.

∼∼∼
Resultant
context

Classifying your applications prepares you to choose a
rule engine (41). You should also and determine the

230 Chapter 7

inference MODEL (36) and determine the uncer-
tainty model (37) in parallel with this pattern. It is
recommended that you consider using the KADS ‘pat-
terns’ or problem types in relation to determining the
inference model.

7.4.2 Patterns for Product Selection and Application
Development

Pattern 39 CLASSIFY YOUR CULTURE **

Context You involved all the stakeholders (28), so you
should be able to understand their modi operandi, cul-
ture, skills, blind spots and concerns.

∼∼∼
Problem How can you ensure that any BRMS product used or

business rules application developed will fit in with
‘the way we do things round here’ and be likely to
succeed as a result?

Forces BRMS products vary with respect to the skills and
backgrounds they assume of their users. The one rooted
in the database tradition may assume that your team
has good data modelling skills. The ones rooted in the
AI tradition may assume that you understand quite a
lot about inference strategies. Some expect professional
developers to code the rules, others envisage users or
non-technical business analysts to do this. Chapter 5
gave several examples of the range of approaches that
are current.

Given a business problem that is to be addressed
by a BRMS, you need to enumerate the technical fea-
tures that characterize the problem and match these
against the capabilities of the product, perhaps using
the approach set out in Appendix B. However, this is
not enough. The product must also be accessed against
more cultural criteria. In the spreadsheets of Appendix
B this is done by adjusting the weightings of criteria
that have a cultural dimension (as well as those of a
most technical or financial nature).

A Pattern Language for BRMS Development 231

This implies that you can decide what kind of cul-
tural environment exists (or is attainable) in your
organization.

You need to decide who writes and changes the
rules. Are users too busy to do this? Do the users just
request rule changes but not implement them? Are
the business analysts also skilled programmers? Are
developers on hand to talk with users? Will the users
enjoy their company or are they regarded as geeks?
Is there a ‘not invented here’ culture? These are the
sorts of issues that must be considered. As Appendix
B shows, different products fare well or badly when
evaluated against different cultural assumptions.

Therefore Decide who will create the rules. Decide who will
maintain them. Establish the skills available to each
group. Determine the technical culture. Is it database,
Java, mainframe, distributed, COBOL, artificial intel-
ligence, waterfall, agile, etc? Are the users computer
literate?

∼∼∼
Resultant
context

This pattern prepares you to choose a rule mainte-
nance régime (40) and choose a rule engine (41).
You will also be able to apply appropriate published
organizational patterns such as those of Coplien and
Harrison (2005).

Pattern 40 CHOOSE RULE MAINTENANCE RÉGIME

Context You have stored rules in a repository (17), deter-
mined ownership & permissions (22) and classified
your culture (39) but . . .

∼∼∼
Problem Who is to maintain the rules? How are they to be man-

aged? How can you ensure that they are consistent
across geographical areas, functional units and pro-
cesses? Can they be easily updated without danger of
duplication?

Forces The rules may exist in several forms: a natural language
form and a machine executable form at least.Some

232 Chapter 7

products will convert the former into the latter auto-
matically whilst others require a manual (coding) step.

The users can maintain the natural language version
of the rules, but only if they are not too busy. If they are,
then business analysts must be marshalled to this task.

Business analysts or developers can maintain the
machine executable rules (depending on the language
used to express them).

Rule ownership implies that owners must give per-
mission before any changes are made.

The repository must record the rule authors and
maintain permissions. Assign a knowledge base admin-
istrator and set up review and authorization proce-
dures involving authors. Halle recommends doing this
during the initial scoping phase. This administration
must define what is to be stored in the repository: not
just rules but associated data and metadata such the
business objective(s) addressed by the rule, who cre-
ated it, etc. Rôles must be clearly defined too. These
should include the administrator, analyst, and, most
importantly, a rule steward who has the ultimate say
on rule quality, use, consistency, certification and evo-
lution. They may also need to be a steering committee
(sometimes called the Rule Council) to resolve conflicts
about such issues.

It is impossible to improve rule management if you
don’t measure results.

Therefore Define strict procedures for collecting, recording,
storing, accessing and changing rules. Ensure that
people can challenge rules within this procedure.
Create a rule management function with a rule met-
rics responsibility. Create clearly defined rôles for
rule management and maintenance.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 41 CHOOSE RULE ENGINE

Context You have classified your culture (39), deter-
mined the technical features and classified your

A Pattern Language for BRMS Development 233

applications (38), and determined the inference
and uncertainty models (36,37).

∼∼∼
Problem What is the best BRMS product?

Forces In a few cases there will not be a suitable product, such
as when uncertainty is a dominant issue, and you will
have to build one or abandon the project. Otherwise
this is a classic product selection exercise. Appendix B
documents a simple, pragmatic method for choosing
between products based on the technical and cultural
issues. The material has been placed in an appendix to
keep this pattern short and readable. Other, perhaps
more rigorous, methods exist, but this one seems to
work well enough for the purpose at hand.

Therefore Adopt a standard product evaluation method. Ensure
it covers cultural as well as technical factors. After
applying the method and making a provisional deci-
sion, build a prototype of the application to identify
any issues that might arise in development. Ensure
that adequate product training for staff is provided.

∼∼∼
Resultant
context

This pattern is terminal within this language.

Pattern 42 PERFORMANCE TUNING

Context You have chosen a rule engine (41) or BRMS product
set.

∼∼∼
Problem How can you get the technology to execute tens of

thousand of rules in times acceptable to the business?

Forces All current BRMS products include features that let
users tune applications for performance.

Therefore When evaluating a BRMS, pay close attention to
its tuning facilities. Budget for applying the tuning
techniques. Consider executing slow rulesets proce-
durally. Consider re-writing complex calculations as

234 Chapter 7

conventional programs, but ensure they are linked to
the original statement in the repository.

∼∼∼
Resultant
context

This pattern is terminal within this language.

7.5 Related Patterns and Pattern Languages

The RulePatterns language refers to three external sets of patterns that may con-
tain useful guidance to the specifier or builder of a business rules management
system.

7.5.1 Arsanjani’s Rule Object Patterns
The only other pattern language concerned specifically with business rules
that I have been able to discover was developed by Ali Arsanjani (2000). Rule
Object 2001 is a pattern language with 20 or so patterns for the architecture
and design of business rules management systems. Some of these patterns
overlap (or even contradict) those in RulePatterns, but others follow on neatly
from this language at store rules in a repository (17). His patterns are
especially applicable when business rules are implemented as methods of
objects and are aimed at solving design problems that arise as rules change
and evolve.

Here, by way of example, are very brief thumbnail sketches of seven of
Arsanjani’s patterns, abstracted from his paper:

■ Rule object is based on the assumption that rules change faster than the
rest of the object that encapsulates them and recognizes that rules should
be stored centrally but still encapsulated locally. Define abstract and
concrete rule objects that allow rules to be added dynamically. Rule
objects then mediate between separated conditions and actions, applying
the rules. This pattern is very loosely related to our patterns
14 and 16.

■ Configurable workflow allows developers to modify workflow
without disrupting the software architecture. Use a domain-specific
language to model the business. Components should read in their
workflow description at startup and configure themselves dynamically.

■ Rules have state insists that state must be maintained between rule
checks and application.

■ Rules are tracked. Track the history of changes to condition/action
pairs.

A Pattern Language for BRMS Development 235

■ Rule object repository. This is approximately the same as our store
rules in a repository (17).

■ Rule access rights. Managers can create, change and manage rules.
This is related to our patterns 22 and 40.

■ Hash and cache provides efficient access to subclasses and instances as
their numbers increase.

7.5.2 KADS Patterns
The guidance to be found in published knowledge acquisition methods,
such as KADS (Gardner et al., 1998), may be useful in conjunction with
RulePatterns. In the case of KADS, its ‘patterns’ are quite different from what
normally pass for patterns; they are largely chunks of system building advice
presented as process flowcharts. However, KADS does contain a well thought
out classification of different inference and problem types, and this may be
useful after this language’s possibilities have been exhausted. Specifically,
you might refer to KADS after or during what you do when you determine
the inference model (36) or classify your applications (38). KADS was
discussed very briefly in Chapter 6.

7.5.3 Organizational Patterns
Coplien and Harrison (2005) present well researched and tested organizational
patterns in the form of two languages. These patterns will be as much use to
BRMS developers as to those working on any other kind of project. Indeed
they quote patterns 1, 2 and 8 from this language. After you classify your
culture (39), it would be as well to consider if any of Coplien and Harrison’s
patterns could be usefully applied.

A P P E N D I X

A

The Business Rules Manifesto∗
The Principles of Rule Independence

Article 1. Primary Requirements, Not Secondary

1.1. Rules are a first-class citizen of the requirements world.

1.2. Rules are essential for, and a discrete part of, business models and
technology models.

Article 2. Separate From Processes, Not Contained In Them

2.1. Rules are explicit constraints on behavior and/or provide support to
behavior.

2.2. Rules are not process and not procedure. They should not be contained
in either of these.

2.3. Rules apply across processes and procedures. There should be one
cohesive body of rules, enforced consistently across all relevant areas of
business activity.

Article 3. Deliberate Knowledge, Not A By-Product

3.1. Rules build on facts, and facts build on concepts as expressed by terms.

3.2. Terms express business concepts; facts make assertions about these
concepts; rules constrain and support these facts.

∗Copyright, 2004. Business Rules Group. Version 2.0, November 1, 2003. Edited by Ronald G. Ross.
Permission is granted for unlimited reproduction and distribution of this document under the following
conditions: (a) The copyright and this permission notice are clearly included. (b) The work is clearly
credited to the Business Rules Group. (c) No part of the document, including title, content, copyright, and
permission notice, is altered, abridged, or extended in any manner.

237

238 Appendix A

3.3. Rules must be explicit. No rule is ever assumed about any concept or fact.

3.4. Rules are basic to what the business knows about itself – that is, to basic
business knowledge.

3.5. Rules need to be nurtured, protected, and managed.

Article 4. Declarative, Not Procedural

4.1. Rules should be expressed declaratively in natural-language sentences
for the business audience.

4.2. If something cannot be expressed, then it is not a rule.

4.3. A set of statements is declarative only if the set has no implicit
sequencing.

4.4. Any statements of rules that require constructs other than terms and
facts imply assumptions about a system implementation.

4.5. A rule is distinct from any enforcement defined for it. A rule and its
enforcement are separate concerns.

4.6. Rules should be defined independently of responsibility for the who,
where, when, or how of their enforcement.

4.7. Exceptions to rules are expressed by other rules.

Article 5. Well-Formed Expression, Not Ad Hoc

5.1. Business rules should be expressed in such a way that they can be
validated for correctness by business people.

5.2. Business rules should be expressed in such a way that they can be
verified against each other for consistency.

5.3. Formal logics, such as predicate logic, are fundamental to well-formed
expression of rules in business terms, as well as to the technologies that
implement business rules.

Article 6. Rule-Based Architecture, Not Indirect Implementation

6.1. A business rules application is intentionally built to accommodate
continuous change in business rules. The platform on which the
application runs should support such continuous change.

6.2. Executing rules directly – for example in a rules engine – is a better
implementation strategy than transcribing the rules into some
procedural form.

6.3. A business rule system must always be able to explain the reasoning by
which it arrives at conclusions or takes action.

6.4. Rules are based on truth values. How a rule’s truth value is determined
or maintained is hidden from users.

6.5. The relationship between events and rules is generally many-to-many.

The Business Rules Manifesto 239

Article 7. Rule-Guided Processes, Not Exception-Based Programming

7.1. Rules define the boundary between acceptable and unacceptable
business activity.

7.2. Rules often require special or selective handling of detected violations.
Such rule violation activity is activity like any other activity.

7.3. To ensure maximum consistency and reusability, the handling of
unacceptable business activity should be separable from the handling of
acceptable business activity.

Article 8. For the Sake of the Business, Not Technology

8.1. Rules are about business practice and guidance; therefore, rules are
motivated by business goals and objectives and are shaped by various
influences.

8.2. Rules always cost the business something.

8.3. The cost of rule enforcement must be balanced against business risks,
and against business opportunities that might otherwise be lost.

8.4. ‘More rules’ is not better. Usually fewer ‘good rules’ is better.

8.5. An effective system can be based on a small number of rules. Additional,
more discriminating rules can be subsequently added, so that over time
the system becomes smarter.

Article 9. Of, By, and For Business People, Not IT People

9.1. Rules should arise from knowledgeable business people.

9.2. Business people should have tools available to help them formulate,
validate, and manage rules.

9.3. Business people should have tools available to help them verify business
rules against each other for consistency.

Article 10. Managing Business Logic, Not Hardware/Software Platforms

10.1. Business rules are a vital business asset.

10.2. In the long run, rules are more important to the business than
hardware/software platforms.

10.3. Business rules should be organized and stored in such a way that they
can be readily redeployed to new hardware/software platforms.

10.4. Rules, and the ability to change them effectively, are fundamental to
improving business adaptability.

A P P E N D I X

B
A Simple Method for

Evaluating BRMS Products
This appendix is provided in support of Pattern 41: choose a rule engine.
It presents a relatively simple pragmatic method for evaluating and com-
paring BRMS products. More sophisticated and scientifically well-founded
approaches are possible, of course, but this one has proved practical in actual
studies. We consider three anonymous products in the context of three dif-
ferent scenarios, representing three different sets of cultural and technical
imperatives and concerns.

In scenario 1, the customer is an early adopter where the users are keen to be
involved in rule creation, with the help of their colleagues in IT. The business
analysts are not typically skilled programmers, but do understand the business
and their clients well. The IT department is relatively small. The application is
a knowledge intensive extension to a larger business system. Imagine, if you
will, a sales advisory system, like the one used in the example in Chapter 5,
or a system for regulatory compliance or perhaps one for benefit entitlement.
In this scenario, therefore, the emphasis is on the ease of rule authoring and
maintenance by users or relatively non-technical business analysts.

Scenario 2 maintains the viewpoint of Scenario 1, but lays greater stress
on the level of integration with the commercial and technical environment.
Furthermore, in this scenario, rule input by users and non-technical business
analysts is not required, because the users are too busy. They will maintain
rules via custom applications, where appropriate. Scenario 2 envisages a
large, more conventional IT department where the users are available for
knowledge elicitation but do not have the time or inclination to create the
rules and the ontology themselves. There is a strong mainframe culture and
the applications must be integrated closely with the legacy. Imagine, in this
case, an application like credit card fraud detection or credit scoring where
the BRMS will be closely integrated with multiple existing databases. In this
scenario the users are busy, and do not want to interact with the rules often.
They do, however, require rule-based data validation at the time of data entry.

241

242 Appendix B

Development resources are available to create the rules and write predefined
rule maintenance applications (RMAs).

Scenario 3 abandons the emphasis on rule creation by end users and assumes
a strong commitment to a modern distributed technical architecture, such as
J2EE. In this scenario users will have a rule maintenance rôle but will not
get involved in the initial set up of the BRMS. Plenty of skilled IT people are
available to do this, with assistance from the users. However, the users are keen
to interact with the rulebase using a natural language interface rather than an
RMA. Imagine, here, an investment bank developing a credit rating system
that must integrate with an existing J2EE application suite and architecture.

The product scores in each scenario are, of course, the same but the
weightings vary from scenario to scenario, depending on the technical and
cultural imperatives given in each situation. You will be able to enter these
weightings if you have classified your culture (39).

In every scenario, support for object modelling features such as inheritance
and encapsulation is regarded as essential. All three products score well on
this. Help and explanation are limited in all three products. In each case they
can be coded in applications. Uncertainty management is also limited in all
three products.

Product P majors on natural language rule authoring and use by non-
technical staff. Product Q adopts a different approach, preferring to let users
edit rules using rule maintenance applications. Product R majors on architec-
tural flexibility and allows users to maintain but not create rules using natural
language.

The results of our evaluation of features are summarized in the multi-
attribute decision making (MADM) analyses shown in tabular form in the
following sections. Scores are on a scale from 0 to 5 with 0 meaning ‘not worth
considering at all’ and 5 being ‘as good as could be expected’.

The weightings given to each attribute reflect the needs of the particular
environment envisaged. Similar weightings would apply to many application
types such as loan or credit approval, fraud detection, eligibility screening
and so on. However, there is obviously scope for amending the weights
in particular contexts. You can easily rerun the analysis with your own
weights. The final scores are the sum of the individual scores for each product
multiplied by their weightings (SUMPRODUCT($B3:$B82,C3:C82) in Excel).
The normalized scores are arrived at by dividing the totals by the sum of the
weights (if non-zero) and are thus on a scale from 0 to 1.

Clearly, there is a subjective element involved in arrived at some of the
scores, but one should try to minimize the effect of this. In point of fact, some
of the factors that lead to product acceptance within an organization are often
subjective ones.

Bearing these points in mind, the analysis should be taken as a fairly rough
indication of which product is fittest for purpose, rather than as a definitive
description. However, with so many attributes, it is actually quite hard to bias

A Simple Method for Evaluating BRMS Products 243

the result in practice; so you can usually be quite confident of the conclusions
in terms of rank ordering.

B.1 Evaluation in Scenario 1

In this scenario, our evaluation concentrates on the ease with which a business
analyst can create a business rules management system. We are also interested
in the degree of coverage of the full development lifecycle from knowledge
capture to implementation and testing, and the level of integration of the
knowledge management tool(s) with the rule engine: the number of steps
involved, their relative complexity and the level of automation of each step.

Using Product P, users can use alternative syntactic constructs at will,
as long as the semantic aspect (the concept model) remains the same. This
provides great flexibility to users. It is also important to note that allowing
you the map an external implementation model to a business-level conceptual
model helps separate the business rules from the implementation model (in all
three products) with all the benefits that this entails. For example, as a. NET
or Java application changes, you only need change the mappings and not the
statements.

Deployment is to be on a variety of machines, from ageing (Win98 to XP)
laptops to Palm pilots and XP desktops (often to be used by the laptop/palm
users when in the office), so that the memory footprint is an issue in this
scenario. The IT organization is committed to agile development methods.

Usability is at the best of times a subjective matter. All three products passed
our tests for basic usability, but Products P and Q come out strongest in this
respect.

In evaluating and comparing products we use the many criteria shown in
the tables below. These include accessibility and ease of use for untrained
users, asking what pre-requisite skills are needed for effective use of the
tool by subject matter experts, business analysts and IT staff. A high score is
achieved when all these are accommodated well. Is there a clear and consistent
separation of business knowledge from implementation details? How expres-
sive is the rule language for business users compared with implementation
staff? Relevant to this is the question of who does the translation of business
rules into the execution language syntax. Product P offers the highest level of
automation in this respect.

Metamodel availability and extensibility refers to the availability of built in
concept libraries covering such things as time, units and quantities. Product P,
in particular, scores well because it provides a library of concepts that can be
readily extended into domain specific areas.

For each product, we compared the completeness of representation of
concepts within the knowledge base. Does it include concepts, relationships,

244 Appendix B

vocabulary, phrasings, definitions, policies, constraints, rules, and so on? All
products score well, but Product P does particularly well. It provided the
best support for documenting, defining and standardizing an organizational
vocabulary and in preventing ambiguity in rule definitions.

The results of our evaluation of features are summarized in the MADM
analysis shown in Table B.1.

Table B-1 Multi-attribute decision making analysis. Scenario 1

Attributes Weight P Q R

General Attributes

1 Price 2 4 2 3

2 Defect free 3 4 4 4

3 Ease of installation 3 5 4 2

4 Interface/Usability 5 4 3 3

5 Repository-based 5 5 5 5

6 Technical support 5 5 5 3

7 Availability and coverage of professional
services – including training

5 4 4 4

8 Availability of a defined knowledge engineering
method

3 5 3 3

9 Coverage of full-lifecycle development from
knowledge capture to implementation and testing

5 5 5 4

10 Availability of a knowledge capture and management
(KM) tool

5 5 4 4

11 Plans for forthcoming upgrades 2 4 4 4

12 Adherence to IT industry standards 3 3 4 4

Integration of KM tool with the rule engine

13 Steps involved 4 4 3 3

14 Simplicity 4 4 5 3

15 Level of automation 4 5 5 4

Knowledge Capture and Management Tool

16 Accessibility and Ease of use by untrained
users – pre-requisite skills for effective use of the
tool (perspectives of Subject matter experts,
business analysts, IT staff)

5 4 3 2

Clarity, depth and coverage of supplied
documentation

17 User manuals 4 5 4 3

A Simple Method for Evaluating BRMS Products 245

Table B-1 (continued)

Attributes Weight P Q R

18 Examples 3 4 4 3

19 Separation and consistency of business knowledge
from implementation details

4 5 3 1

20 Availability and expressiveness of language for
business users vs. implementation (in particular
ability to support description of rules in natural
language)

5 5 3 2

21 Automatic translation of business statements into the
execution language/syntax?

4 5 4 3

Knowledge Management features

22 Meta model availability and extensibility 4 4 4 2

23 Completeness of representation within the KB
(concepts, relationships, vocabulary, phrasings,
definitions, policies, constraints, rules)

4 4 4 4

24 Support for documenting, defining and standardizing
an organizational vocabulary and using it to
prevent ambiguity in rule definitions

4 4 3 3

25 Support for different rule expression formats (if/then,
declarative/definitional statements, constraints,
general English statements)

4 5 3 4

26 Change management and version control features 5 5 5 5

27 Support for archetypes, templates, overrides/
specialization, and exclusions – Including the
ability to specify the conditions under which an
override or exclusion should apply (i.e. applicability
conditions)

4 4 3 3

28 Reuse of applicability statements in relation to rules
and rule sets (drag & drop)

4 4 2 3

29 Table and decision table support 3 2 4 4

30 Decision threshold support 2 3 4 2

31 Automatic, multiple, cross-referencing of rules and
concepts (ontology)

5 5 3 4

32 Ability to proactively check for ambiguity in
statements

4 5 3 4

33 Support for incremental development (selective
deployment)

5 4 4 2

34 Ability to create deployment polices with future
effective and expiration dates

3 5 5 4

35 Support for multiple evaluation and control strategies 4 4 4 5

246 Appendix B

Table B-1 (continued)

Attributes Weight P Q R

36 Support for inexact reasoning 4 2 3 1

37 Support for reasoning with time 3 4 2 1

38 Built-in support for importing, mapping to business
vocabulary, usage, orchestration, and integration
with external data representations, procedures,
methods (XML, .NET, Java)

2 3 3 3

Multi-user features

39 Concurrent KB development. Support for a team
repository

3 5 5 4

Built in support for testing and simulation within the
KM tool – without the need for an external
implementation

40 Ability to specify test cases 5 5 4 4

41 Ability to execute test cases 5 4 5 3

42 Code generation capabilities 5 5 4 3

43 Ability to define/maintain/organize rule groups/sets 5 5 5 5

44 Debug/trace facilities 5 4 4 3

45 Report generation capabilities 4 3 3 3

46 Support for Web Services 4 5 4 4

The Rule Engine

47 Support for rete 5 5 5 5

48 Support for backward and mixed chaining 5 3 4 2

49 Automatic truth maintenance 4 5 4 4

50 Support for debugging/audit trail of rule firing 5 5 4 4

51 Support for XML input 4 5 4 4

52 Automation of integration with Java, .NET, and
databases

5 4 3 3

53 Ability to handle large no. of rules 5 5 4 5

54 Performance and scalability (ability to handle large
no. of concurrent requests/transactions, users, and
rule executions)

5 5 3 4

55 Ease of integration with external applications (e.g.
Web Services, embedded)

4 3 3 3

56 Does the language have the power to handle
procedural or technical functions without requiring
a call to an external routine?

4 2 3 4

A Simple Method for Evaluating BRMS Products 247

Table B-1 (continued)

Attributes Weight P Q R

57 Can the language call on external and
mathematical routines when desired?

4 4 5 5

58 Memory footprint (suitability for embedding in
small devices)

4 5 4 4

59 Availability across multiple platforms 4 4 4 3

60 Availability of alternative interfaces (e.g. C, C++,
Java, .NET)

3 5 3 4

61 Support for dynamic ‘hot’ deployment 4 4 4 3

62 Runtime rule updates 2 4 4 4

63 Support for multiple concurrent KBs 4 4 4 3

64 Ability to update KBs with minimal user impact 5 5 5 3

65 Ability to handle different deployment dates 4 5 5 4

66 Maturity in rule engine market with proven
rete-based implementations.

3 4 5 5

67 Conflict resolution 4 3 4 3

68 Interactive testing 4 1 3 1

Other factors (Technical environment,
culture, etc.)

69 Integration with supplier’s product range 0 1 5 3

70 Need to leverage technical skills 0 1 4 5

71 Suitable for mainframe culture 0 3 5 3

72 Integration with J2EE environment 0 2 3 5

73 UML object model input 0 0 1 3

74 COBOL integration 0 1 4 2

75 Custom rule maintenance screens 0 0 4 1

76 RUP plug-ins available 0 0 3 0

77 Supplier involved with standards bodies 0 1 4 4

78 Foreign (i.e. not English) Language support 1 0 2 3

79 Java compatible coding style 0 2 2 5

80 Effectiveness of performance tuning 0 1 3 1

Total weights and scores 1375 1172 1059 935

Normalized scores 0.85 0.77 0.68

248 Appendix B

The interpretation of the results for this scenario, therefore, is that Product
P scores significantly higher than the other two products based both on the
feature-by-feature comparison and subjective evaluation.

B.2 Evaluation in Scenario 2

Scenario 2 is a large conventional IT department. The users are busy and have
no desire to engage in rule authoring, although they will need to modify rules
and need rule-based data validation. Developers and trained analysts will
write and test the rules. Resources are also available to create custom rule
maintenance applications. There is an historic COBOL and mainframe culture
and applications must be closely integrated with channel-hungry mainframe
applications: both legacy and evolving. Nevertheless, there is a commitment
to service oriented architecture and rulesets must be presented to applications
as services, as in Scenario 1. RUP is used as the main development method for
new systems.

We assume that this scenario encounters similar price and performance
characteristics to Scenario 1.

In this scenario the natural language input that so strongly characterizes
Scenario 1 is regarded as a positive disadvantage.

The results of our evaluation of features are summarized in the MADM
analysis shown in Table B.2.

In this situation we find that Product R catches up with Product P and
Product Q overtakes it. Adding subjective interpretation and in recognition
of the fact that these decision tables are only an approximate guide, the
interpretation of the results for this scenario, therefore, is that Product Q
scores significantly higher than the other two products based both on the
feature-by-feature comparison and the subjective evaluation.

B.3 Evaluation in Scenario 3

This scenario is based on a strong IT culture. Initial application and rule
development will be done by skilled Java and J2EE staff, based on user
interviews and workshops. Implementation will be on an n-tier, networked
platform. Users want to maintain and manage their rules. Product R did better
in this scenario, just beating Product Q and pushing Product P into a clear
third place.

A Simple Method for Evaluating BRMS Products 249

Table B-2 Multi-attribute decision making analysis. Scenario 2

Attributes Weight P Q R

General Attributes

1 Price 3 4 2 3

2 Defect free 4 4 4 4

3 Ease of installation 3 5 4 2

4 Interface/Usability 4 4 3 3

5 Repository-based 5 5 5 5

6 Technical support 5 5 5 3

7 Availability and coverage of professional
services – including training

5 4 4 4

8 Availability of a defined knowledge engineering
method

3 5 3 3

9 Coverage of full-lifecycle development from
knowledge capture to implementation and testing

5 5 5 4

10 Availability of a knowledge capture and management
(KM) tool

3 5 4 4

11 Plans for forthcoming upgrades 2 4 4 4

12 Adherence to IT industry standards 4 3 4 4

Integration of KM tool with the rule engine

13 Steps involved 3 4 3 3

14 Simplicity 3 4 5 3

15 Level of automation 3 5 5 4

Knowledge Capture and Management Tool

16 Accessibility and Ease of use by untrained
users – pre-requisite skills for effective use of the
tool (perspectives of Subject matter experts,
business analysts, IT staff)

1 4 3 2

Clarity, depth and coverage of supplied
documentation

17 User manuals 4 5 4 3

18 Examples 3 4 4 3

19 Separation and consistency of business knowledge
from implementation details

2 5 3 1

Continued overleaf

250 Appendix B

Table B-2 (continued)

Attributes Weight P Q R

20 Availability and expressiveness of language for
business users vs. implementation (in particular
ability to support description of rules in natural
language)

0 5 3 2

21 Automatic translation of business statements into the
execution language/syntax?

2 5 4 3

Knowledge Management features

22 Meta model availability and extensibility 3 4 4 2

23 Completeness of representation within the KB
(concepts, relationships, vocabulary, phrasings,
definitions, policies, constraints, rules)

4 4 4 4

24 Support for documenting, defining and standardizing
an organizational vocabulary and using it to
prevent ambiguity in rule definitions

2 4 3 3

25 Support for different rule expression formats (if/then,
declarative/definitional statements, constraints,
general English statements)

4 5 3 4

26 Change management and version control features 5 5 5 5

27 Support for archetypes, templates, overrides/
specialization, and exclusions – Including the
ability to specify the conditions under which an
override or exclusion should apply (i.e. applicability
conditions)

4 4 3 3

28 Reuse of applicability statements in relation to rules
and rule sets (drag & drop)

0 4 2 3

29 Table and decision table support 4 2 4 4

30 Decision threshold support 5 3 4 2

31 Automatic, multiple, cross-referencing of rules and
concepts (ontology)

3 5 4 4

32 Ability to proactively check for ambiguity in
statements

3 5 3 4

33 Support for incremental development (selective
deployment)

5 4 4 2

34 Ability to create deployment polices with future
effective and expiration dates

3 5 5 4

35 Support for multiple evaluation and control strategies 3 4 4 5

36 Support for inexact reasoning 4 2 3 1

37 Support for reasoning with time 2 4 2 1

A Simple Method for Evaluating BRMS Products 251

Table B-2 (continued)

Attributes Weight P Q R

38 Built-in support for importing, mapping to business
vocabulary, usage, orchestration, and integration
with external data representations, procedures,
methods (XML, .NET, Java)

3 3 3 3

Multi-user features

39 Concurrent KB development. Support for a team
repository

3 5 5 4

Built in support for testing and simulation within the
KM tool – without the need for an external
implementation

40 Ability to specify test cases 5 5 4 4

41 Ability to execute test cases 5 4 5 3

42 Code generation capabilities 4 5 4 3

43 Ability to define/maintain/organize rule groups/sets 5 5 5 5

44 Debug/trace facilities 5 4 4 3

45 Report generation capabilities 4 3 3 3

46 Support for Web Services 3 5 4 4

The Rule Engine

47 Support for rete 5 5 5 5

48 Support for backward and mixed chaining 5 3 4 2

49 Automatic truth maintenance 4 5 4 4

50 Support for debugging/audit trail of rule firing 4 5 4 4

51 Support for XML input 2 5 4 4

52 Automation of integration with Java, .NET, and
databases

5 4 3 3

53 Ability to handle large no. of rules 5 5 4 5

54 Performance and scalability (ability to handle large
no. of concurrent requests/transactions, users, and
rule executions)

3 5 3 4

55 Ease of integration with external applications (e.g.
Web Services, embedded)

3 3 3 3

56 Does the language have the power to handle
procedural or technical functions without requiring
a call to an external routine?

4 2 3 4

Continued overleaf

252 Appendix B

Table B-2 (continued)

Attributes Weight P Q R

57 Can the language call on external and mathematical
routines when desired?

4 4 5 5

58 Memory footprint (suitability for embedding in small
devices)

2 5 4 4

59 Availability across multiple platforms 4 4 4 3

60 Availability of alternative interfaces (e.g. C, C++, Java,
.NET)

2 5 3 4

61 Support for dynamic ‘hot’ deployment 4 4 4 3

62 Runtime rule updates 4 4 4 4

63 Support for multiple concurrent KBs 2 4 4 3

64 Ability to update KBs with minimal user impact 5 5 5 3

65 Ability to handle different deployment dates 4 5 5 4

66 Maturity in rule engine market with proven rete-based
implementations.

5 4 5 5

67 Conflict resolution 4 3 4 3

68 Interactive testing 5 1 3 1

Other factors (Technical environment, culture,
etc.)

69 Integration with supplier’s product range 5 1 5 3

70 Need to leverage technical skills 4 1 4 5

71 Suitable for mainframe culture 5 3 5 3

72 Integration with J2EE environment 0 2 3 5

73 UML object model input 2 0 1 3

74 COBOL integration 5 1 4 2

75 Custom rule maintenance screens 5 0 4 1

76 RUP plug-ins available 4 0 3 0

77 Supplier involved with standards bodies 3 1 4 4

78 Foreign (i.e. not English) Language support 1 0 2 3

79 Java compatible coding style 0 2 2 5

80 Effectiveness of performance tuning 3 1 3 1

Total weights and scores 1400 1049 1111 931

Normalized scores 0.75 0.79 0.67

A Simple Method for Evaluating BRMS Products 253

B.4 Analysis of Results

Along with service oriented architectures and component-based development,
business rules management systems are an essential component of modern
agile businesses. They vastly reduce the problems associated with the evolution
of complex and volatile business strategies and policies.

This appendix compared three imaginary products with features based on
those to be found in actual enterprise-class BRMS products, and which can be
used within a component-based development organization. All three products
are capable of delivering effective solutions. However, there are factors that
discriminate among them.

Our weighted multi-attribute analysis gave the following results.
In Scenario 1, Product P had the highest score: 85% of the maximum

possible score. Product Q came second with 77%. Product R scored 68%; all
very respectable scores, indicating that these are all good products.

Product P seems to be ideal for situations where users and non-technical
business analysts need to create and maintain the rules and where development
resources are at a premium. If you really want to engage users, as well as
business analysts, in the development process, and thus reduce the time to
market of new versions of an application, as policy evolves, then this is
the indicated choice. Its natural language syntax capability and automatic
inferencing and code generation facilities make it the clear winner in Scenario
1. It should help reduce knowledge base development and maintenance costs
significantly, compared to its competitors. Product P is the right product when
you have good access to users and domain experts and need them to help
maintain and (especially) create the rulebase.

In Scenario 2, Product Q has the highest score: 79% of the maximum possible
score. Product P came second with 75%. Product R scored 67%; all respectable
scores again.

Product Q seems to be most suitable for environments where multiple
deployment types may be required and business users require customized
rule maintenance. It appears to be a more productive environment than
Product R, and puts the business more in control of application development
than the latter. From the point of view of the rule language, it stands midway
between Products P and R, but its rule maintenance application features
make it the most suitable in this scenario. Adopting Product Q will reduce
development and deployment times. However, the rule syntax is still rather
opaque to business users so that RMAs are essential. Product Q is a mature
product that technically savvy business analysts can use to create rule-based
applications providing they take the time to learn the product.

In Scenario 3, Product R has the highest score: 74% of the maximum possible
score only just beating Product Q came second with 75%. Product P scored
70%; all respectable scores yet again.

254 Appendix B

If your culture is more developer-centric – i.e. the developers create appli-
cations largely in isolation from the users after an initial period of knowledge
gathering and during acceptance testing – then Product R is a viable option.
This is reflected in Scenario 3. Developers will code the knowledge base, but
users may read and understand the rules, providing that enough developer
effort has been put into the rule language customization that the product
makes possible.

All three products have the features needed to support enterprise projects:
multiple views of the same rules, rapid code deployment for various instal-
lations, easily maintainable code, version control, structured user access,
excellent debugging tools, and English-like rule-building languages that makes
maintaining rules easy for developers if not for business analysts and users.
Product P’s natural language approach is superior to that of either of its
competitors for pure rule writing, whereas for custom rule maintenance by
business users, Product Q’s approach may be preferable. Product R excels
where the culture is Java and users prefer to interact with their rules in a
natural language.

All three products can be used to implement Morgan’s or Ross’s recommen-
dations on rule syntax and style, but it is a lot easier to do this using Products
P and R. The use of a rule maintenance application in Product Q, however,
might make these recommendations less relevant.

All three products have weaknesses as well as strengths. No BRMS product
should be adopted without training.

B.5 The Method

The method exemplified by the above analysis may be applied to the eval-
uation of any BRMS product. Decide on the weightings according to your
priorities and organizational culture, bearing in mind also the nature of likely
applications and deployment considerations. It may be necessary to change,
reword or add attributes. Rather than remove attributes, it is better to suppress
them by awarding a weighting of zero; then they can be used for future studies
and you will be able to see (and justify) what has been explicitly left out of
the evaluation. Score each candidate product against each attribute with a
non-zero weighting. Then apply professional judgment before coming to a
final conclusion.

Your evaluation and scores may well be based on a toy application, like the
one used in this book. Where the scores are close, ask the top-scoring suppliers
if they can help you build a prototype of part of your actual application.

A Simple Method for Evaluating BRMS Products 255

Table B-3 Multi-attribute decision making analysis. Scenario 3

Attributes Weight P Q R

General Attributes

1 Price 3 4 2 3

2 Defect free 3 4 4 4

3 Ease of installation 0 5 4 2

4 Interface/Usability 3 4 3 3

5 Repository-based 5 5 5 5

6 Technical support 1 5 5 3

7 Availability and coverage of professional
services – including training

5 4 4 4

8 Availability of a defined knowledge engineering method 0 5 3 3

9 Coverage of full-lifecycle development from knowledge
capture to implementation and testing

0 5 5 4

10 Availability of a knowledge capture and management
(KM) tool

3 5 4 4

11 Plans for forthcoming upgrades 4 4 4 4

12 Adherence to IT industry standards 5 3 4 4

Integration of KM tool with the rule engine

13 Steps involved 1 4 3 3

14 Simplicity 1 4 5 3

15 Level of automation 1 5 5 4

Knowledge Capture and Management Tool

16 Accessibility and Ease of use by untrained
users – pre-requisite skills for effective use of the tool
(perspectives of Subject matter experts, business
analysts, IT staff)

0 4 3 2

Clarity, depth and coverage of supplied documentation

17 User manuals 2 5 4 3

18 Examples 1 4 4 3

19 Separation and consistency of business knowledge from
implementation details

2 5 3 1

20 Availability and expressiveness of language for business
users vs. implementation (in particular ability to
support description of rules in natural language)

0 5 3 2

21 Automatic translation of business statements into the
execution language/syntax?

0 5 4 3

256 Appendix B

Table B-3 (continued)

Attributes Weight P Q R

Knowledge Management features

22 Meta model availability and extensibility 1 4 4 2

23 Completeness of representation within the KB
(concepts, relationships, vocabulary, phrasings,
definitions, policies, constraints, rules)

4 4 4 4

24 Support for documenting, defining and standardizing
an organizational vocabulary and using it to
prevent ambiguity in rule definitions

1 4 3 3

25 Support for different rule expression formats (if/then,
declarative/definitional statements, constraints,
general English statements)

1 5 3 4

26 Change management and version control features 5 5 5 5

27 Support for archetypes, templates, overrides/
specialization, and exclusions – Including the
ability to specify the conditions under which an
override or exclusion should apply (i.e. applicability
conditions)

2 4 3 3

28 Reuse of applicability statements in relation to rules
and rule sets (drag & drop)

0 4 2 3

29 Table and decision table support 5 2 4 4

30 Decision threshold support 0 3 4 2

31 Automatic, multiple, cross-referencing of rules and
concepts (ontology)

1 5 4 4

32 Ability to proactively check for ambiguity in
statements

1 5 3 4

33 Support for incremental development (selective
deployment)

1 4 4 2

34 Ability to create deployment polices with future
effective and expiration dates

1 5 5 4

35 Support for multiple evaluation and control strategies 5 4 4 5

36 Support for inexact reasoning 0 2 3 1

37 Support for reasoning with time 0 4 2 1

38 Built-in support for importing, mapping to business
vocabulary, usage, orchestration, and integration
with external data representations, procedures,
methods (XML, .NET, Java)

2 3 3 3

Continued overleaf

A Simple Method for Evaluating BRMS Products 257

Table B-3 (continued)

Attributes Weight P Q R

Multi-user features

39 Concurrent KB development. Support for a team
repository

3 5 5 4

Built in support for testing and simulation within the
KM tool – without the need for an external
implementation

40 Ability to specify test cases 3 5 4 4

41 Ability to execute test cases 3 4 5 3

42 Code generation capabilities 0 5 4 3

43 Ability to define/maintain/organize rule groups/sets 5 5 5 5

44 Debug/trace facilities 5 4 4 3

45 Report generation capabilities 5 3 3 3

46 Support for Web Services 3 5 4 4

The Rule Engine

47 Support for rete 5 5 5 5

48 Support for backward and mixed chaining 2 3 4 2

49 Automatic truth maintenance 2 5 4 4

50 Support for debugging/audit trail of rule firing 2 5 4 4

51 Support for XML input 2 5 4 4

52 Automation of integration with Java, .NET, and
databases

5 4 3 3

53 Ability to handle large no. of rules 5 5 4 5

54 Performance and scalability (ability to handle large
no. of concurrent requests/transactions, users, and
rule executions)

5 5 3 4

55 Ease of integration with external applications (e.g.
Web Services, embedded)

3 3 3 3

56 Does the language have the power to handle
procedural or technical functions without requiring
a call to an external routine?

4 2 3 4

57 Can the language call on external and mathematical
routines when desired?

5 4 5 5

58 Memory footprint (suitability for embedding in small
devices)

2 5 4 4

59 Availability across multiple platforms 4 4 4 3

258 Appendix B

Table B-3 (continued)

Attributes Weight P Q R

60 Availability of alternative interfaces (e.g. C, C++, Java,
.NET)

0 5 3 4

61 Support for dynamic ‘hot’ deployment 4 4 4 3

62 Runtime rule updates 2 4 4 4

63 Support for multiple concurrent KBs 2 4 4 3

64 Ability to update KBs with minimal user impact 5 5 5 3

65 Ability to handle different deployment dates 3 5 5 4

66 Maturity in rule engine market with proven rete-based
implementations.

5 4 5 5

67 Conflict resolution 4 3 4 3

68 Interactive testing 2 1 3 1

Other factors (Technical environment, culture,
etc.)

69 Integration with supplier’s product range 0 1 5 3

70 Need to leverage technical skills 5 1 4 5

71 Suitable for mainframe culture 2 3 5 3

72 Integration with J2EE environment 5 2 3 5

73 UML object model input 5 0 1 3

74 COBOL integration 1 1 4 2

75 Custom rule maintenance screens 0 0 4 1

76 RUP plug-ins available 0 0 3 0

77 Supplier involved with standards bodies 5 1 4 4

78 Foreign (i.e. not English) Language support 5 0 2 3

79 Java compatible coding style 5 2 2 5

80 Effectiveness of performance tuning 2 1 3 1

Total weights and scores 1050 732 774 781

Normalized scores 0.70 0.74 0.74

References and Bibliography

Alexander, C. (1964) Notes on the Synthesis of Form, Harvard: Harvard University
Press

Alexander, C. (1979) The Timeless Way of Building, Oxford: Oxford University
Press

Alexander, C. (1996) A Foreshadowing of 21st Century Art, New York: Oxford
University Press

Alexander, C. (1999) The Origins of Pattern Theory: The Future of the Theory
and the Generation of a Living World, IEEE Software September/October,
71–82

Alexander, C., Ishikawa, S. and Silverstein, M. (1977) A Pattern Language,
Oxford: Oxford University Press

Anderson, J.R. (1976) Language, Memory and Thought, Laurence Erlbaum
Andrews, D. (2007) Catalysis II, in preparation.
Appleton, D.S. (1984) Business Rules: The Missing Link, Datamation Oct 15th,

145–50
Arsanjani, A. (2000) Rule Object: A Pattern Language for Pluggable and

Adaptive Business Rule Construction; in Proceedings of PLoP2000. Technical
Report #wucs-00–29, Dept. of Computer Science, Washington University
Department of Computer Science, October

Ashby, W.R. (1956) An Introduction to Cybernetics, London: Chapman & Hall
Beck, K. (2000) Extreme Programming Explained: Embrace change, Reading MA:

Addison-Wesley
Bobrow, D.G. and Winograd, T. (1977) An overview of KRL, a knowledge

representation language, Cognitive Science 1, 3–46
Brown, T. (1992) Simplicity and Complexity in the Zachman Framework,

Database Newsletter May/June, 3–11
Bruce, T.A. (1992) Simplicity and Complexity in the Zachman Framework,

Database Newsletter 20(3), 3–11

259

260 References and Bibliography

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.
(1996) Pattern-oriented Software Architecture: A System of Patterns, Chichester,
England: Wiley

Charniak, E. and McDermott, D. (1985) Introduction to Artificial Intelligence,
Reading MA: Addison-Wesley

Cheesman, J. and Daniels, J. (2001) UML Components, Harlow, England:
Addison-Wesley

Chomsky, N. (1980) Rules and Representations, Oxford: Basil Blackwell
Coad, P. (1992) Object-Oriented Patterns, Comms. ACM 35(9), 152–158
Coad, P., LeFebvre, E. and DeLuca, J. (1999) Java Modeling in Color with UML,

Upper Saddle River NJ:Prentice Hall
Coad, P., North, D. and Mayfield, M. (1997) Object Models: Strategies, Patterns

and Applications, Upper Saddle River NJ:Prentice Hall
Cockburn, A. (2000) Writing Effective Use Cases, Reading MA: Addison-Wesley
Collins, H.M. (1990) Artificial Experts: Social knowledge and intelligent machines,

Cambridge MA, MIT Press
Cooper, A. (1999) The Inmates are Running the Asylum, New York: SAMS
Coplien, J. O. (1999) Reevaluating the Architectural Metaphor: Toward

Piecemeal Growth, IEEE Software September/October, 40–44
Coplien, J.O. (1992) Advanced C++: Programming Styles and Idioms, Reading

MA: Addison-Wesley
Coplien, J.O. (1995) A Generative Development-Process Pattern Language. In

Coplien and Schmidt (1995)
Coplien, J.O. and Harrison (2005) Organizational Patterns of Agile Software

Development, Upper Saddle River NJ: Prentice Hall
Coplien, J.O. and Schmidt, D. (Eds) (1995) Pattern Languages of Program Design,

Reading NJ:Addison-Wesley
D’Souza, D.F. and Wills, A.C. (1999) Objects, Components and Frameworks with

UML: The Catalysis Approach, Reading MA: Addison-Wesley
Date, C.J. (1983) An Introduction to Database Systems, Volume II, Reading MA:

Addison-Wesley
Date, C.J. (2000) What Not How: The Business Rules Approach to Application

Development, Reading MA: Addison-Wesley
Duyne, D.K. van, Landay, J. and Hong, J.I. (2002) The Design of Sites, Reading

MA: Addison-Wesley
Farhoodi, F. (1994) CADDIE: an advanced tool for organizational design

and process modelling. In Software Assistance for Business Re-Engineering,
Chichester: Wiley

Ferber, J. (1995) Les Systèms Multi-Agents: Vers une intelligence collective, Paris:
InterEditions

Flores, F. (1997) The leaders of the future. In Denning, P.J. and Metcalfe,
R.M. (Eds.) Beyond Calculation: The next 50 years of computing, New York:
Copernicus

References and Bibliography 261

Forgy, C.L. (1982) RETE: A fast algorithm for the many pattern/many object
pattern match problem, Artificial Intelligence 19 17–37

Fowler, M. (1996) Analysis Patterns, Harlow, England: Addison-Wesley
Fowler, M. (1997) UML Distilled, 2nd Edition, Harlow, England: Addison-

Wesley
Fowler, M. (2000) Refactoring, Reading MA: Addison-Wesley
Gabriel, R.P (1996) Patterns of Software, Oxford: University Press
Gamma, E., Helm, R., Johnson, R. and Vlissedes, J. (1995) Design Patterns:

Elements of Reusable Object-Oriented Software, Reading MA: Addison-Wesley
Gardner, K., Rush, A., Crist, M., Konitzer, R. and Teegarden, B. (1998) Cognitive

Patterns, Cambridge: Cambridge University Press
Graham, I. (1994) On the Impossibility of Artificial Intelligence, BCS Specialist

Group in Expert Systems Newsletter, Summer 1994
Graham, I. (1995) Migrating to Object Technology, Wokingham: Addison-Wesley
Graham, I. (2001) Object-Oriented Methods: Principles & Practice – Third Edition,

Harlow, England: Addison-Wesley
Graham, I. (2003a) A Pattern Language for Web Usability, Harlow, England:

Addison-Wesley
Graham, I. (2003b) Four web usability patterns from the wu language, in

O’Callaghan, A., Eckstein, J. and Schwanninger, C. (Eds) Proc. EuroPLoP ’02,
UVK Universitätsverlag Konstanz, 159–177

Graham, I. and Jones, P.L.K. (1988) Expert Systems: Knowledge, Uncertainty and
Decision, London: Chapman & Hall

Guilfoyle, C. and Warner, E. (1994) Intelligent Agents: The New Revolution in
Software, Ovum Ltd

Halle, B. von (2002) Business Rules Applied, New York: Wiley
Hay, D.C. and Healy, K.A. (1997) GUIDE Business Rules Project,

http://www.softerra.com/files/apbrules.pdf
Hayes-Roth, F., Waterman, D.A. and Lenat, D.B. (Eds) (1983) Building Expert

Systems, Reading MA: Addison-Wesley
Jackson, M.A. (1995) Software Requirements & Specifications, Wokingham,

England: Addison-Wesley
Jackson, M.A. (1998) A Discipline of Description, Requirements Engineering 3(2),

73–78
Jackson, M.A. (2001) Problem Frames, Harlow, England: Addison-Wesley
Jackson, P. (1986) Introduction to Expert Systems, Wokingham, England:

Addison-Wesley
Jacobson, I., Ericsson, M. and Jacobson, A. (1995) The Object Advantage: Busi-

ness Process Re-engineering with Object Technology, Wokingham, England:
Addison-Wesley

Kelly, G.A (1955) The Psychology of Personal Constructs, New York: W.W. Norton
Kendall, E.A., Malkoun, M.T. and Chong, J. (1997) The application of object-

orientated analysis to agent-based systems, J. of Object Oriented Programming
9(9), 56–65

262 References and Bibliography

Kruchten, P. (1999) The Rational Unified Process, Reading MA: Addison-Wesley
Luck, M. and McBurney, P. (2005) Agent-based computing for next generation

apps, ITNOW, September, 24–25
Melle, W. van, Shortliffe, E. and Buchanan, B. (1981) EMYCIN: A domain-

independent system that aids in constructing knowledge based consultation
programs, Infotech State of the Art Report 9, no. 3.

Miller, G.A. (1956) The magical number seven, plus or minus two: some limits
on our capacity for processing information, Psychological Review 63, 81–97

Minsky, M.L. and Papert, S. (1969) Perceptions, MIT Press
Morgan, A. (2002) Business Rules and Information Systems: Aligning IT with

Business Goals, Boston MA: Addison-Wesley
Newell, A. and Simon, H.A (1963) GPS: A program that stimulates human

thought. Ln Feigenbaum, E.A. and Feldman, J.A. (Eds.) Computers and
Thought, McGraw Hill

O’Callaghan, A. (1997a) Object-oriented reverse engineering, Application
Development Adviser 1(1), 35–39

O’Callaghan, A. (1997b) Realizing the reality, Application Development Adviser
1(2), 30–33

O’Callaghan, A. (1998) A plethora of patterns, Application Development Adviser
1(3), 32–33

O’Callaghan, A.J. (2000) Patterns for an Architectural Praxis, Proc. European
Pattern Languages of Program Design, Irsee, Germany

Pajevski, M.J. (2004) www.oasis-open.org/committees/download.php/
17573/06-04-00008.000.pdf

Pawson, R. and Matthews, R. (2002) Naked Objects, Harlow, England: Addison-
Wesley

Riecken, D. (1994) Special issue on intelligent agents, Comms ACM, July.
Rising, L. (Ed.) (1998) The Patterns Handbook, New York: Cambridge University

Press
Ross. R.G. (1987) Entity Modeling: Techniques and Applications, Boston MA:

Database Research Group
Ross. R.G. (1994) The Business Rule Book, Boston MA: Database Research Group
Ross. R.G. (2003) Principles of the Business Rules Approach, Boston MA: Addison-

Wesley
Ross. R.G. (2005) Business Rule Concepts, Getting to the Point of Knowledge (2nd

edition), Boston MA: Business Rule Solutions, LLC
Russell, S. and Norvig, P. (1995) Artificial Intelligence: A Modern Approach,

Englewood Cliffs NJ: Prentice Hall
Shortliffe, E.H. (1976) Computer Based Medical Consultations: MYCIN, American

Elsevier
Sillitoe, A. (1971) Travels in Nihilon, London: W.H. Allen & Co.
Sims, O. (1994) Business Objects: Delivering Cooperative Objects for Client

Server, London: McGraw-Hill
Standish (1995) CHAOS, The Standish Group International Inc.

References and Bibliography 263

Standish (2004) CHAOS, The Standish Group International Inc.
Stapleton, J. (1997) Dynamic Systems Development Method: The Method in

Practise, Harlow: Addison-Wesley
Szperski, C. (1998)Component Software: Beyond Object-Orientated Program-

ming, Harlow: Addison-Wesley
Taylor, D.A. (1995) Business Engineering with Object Technology, New York: John

Wiley & sons
Tidwell, J. (1999) Common Ground: A Pattern Language for Human-Computer

Interface Design, www.mit.edu/∼jtidwell/common ground.html
Wellbank, M. (1983) A Review of Knowledge Acquisition Techniques for Expert

Systems, Martlesham: BT Research Labs
Weiner, N. (1948) Cybernetics, Cambridge MA: MIT Press
Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition,

Reading MA: Addison-Wesley
Zachman, J.A. (1987) A framework for information systems architecture, IBM

Systems Journal 26(3), 276–292

Index

Page references in bold indicate tables and those in italics indicate figures.

abstract patterns 169, 171
activity diagrams 174
adaptation 86
additive probes 221
adviser users 218
aesthetics 96
age test, tax benefits assessment 155
agent communication languages

(ACLs) 32
agents

applications of 35–36
architecture 33–35
communication 34
persistent knowledge 34
and rules 31–36
transient knowledge 34

airliners, refuelling between flights at
airports 47–48, 49

airlines, business rules (example) 58–59
Alexander, Christopher 160–161
algorithms

dichotomizer 86
procedures and 104–105

ambassador users 218
analysis patterns 165
antecedent clause 75
applicability conditions 203–204

applicable income limit, tax benefits
assessment 156

applications, rule-based
testing features 132–139

using Blaze Advisor 133–136
using HaleyAuthority 136–139
using JRules 139–140

ARCHITECT ALSO IMPLEMENTS
(Pattern) 166

architectural patterns 164
architecture, agents 33–35
arrays 26, 27, 28
Arsanjani, Ali 234
ARTEnterprise 109
artificial intelligence 76, 77–78
ASK FOR THE OPPOSITE (Pattern 34)

222–224
ASK THE BUSINESS aka EXPERT

REVIEWER (Pattern 13) 194
assertions 7, 72, 97
ASSIGN RULES TO COMPONENTS

(Pattern 14) 195–196
ASSOCIATION LOOPS CONCEAL

RULES (Pattern 11) 193
AUTOMATE TESTING (Pattern 9)

188–189

background reading 145

265

266 Index

backward chaining 35, 81–82, 105, 226
BAL (Business Action Language) 126
BASE ERROR MESSAGES ON RULES

(Pattern 15) 196–197
basic software agents 32
Bayesian probability 92
Beck, Kent 163
blackboard objects 12
Blaze Advisor 61, 104, 107, 111–117

architecture 111, 112
interactive development environment

(IDE) 112, 115
rule authoring problem 111–112
testing features of 133–136

book catalogues 21
BOUNDARY OF COMPETENCE

(Pattern 35) 224–225
BPEL4WS (BPEL) 65–66
BRMS see business rules management

systems (BRMS)
BUILD A TYPE MODEL (ONTOLOGY)

(Pattern 4) 177–178
building houses, recommended

procedure for 183–184
Business Action Language (BAL) 126
Business Modelling & Integration

Domain Task Force (BMI DTF) 65
Business Motivation Model (BMM) 65
Business Object Model Adapters

(BOMA) 114
business object model (BOM) 125
business objects 11, 21, 22
Business Process Management Initiative

(BPMI.org) 65
BUSINESS PROCESS MODEL

(Pattern 2) 173–175
business process modelling 36
business process modelling notation

(BPMN) 65
business processes 22
Business Query Language (BQL) 129
Business Rule Book (Ron Ross) 5
Business Rule Language Definition

Framework (BRLDF) 127
business rules 6, 14

approaches to 53–69
database-centric approach 53–56

definition 5–8, 99
development methods 64
RulePatterns language patterns for

finding, writing and
organizing 192–208

service oriented architecture (SOA)
and 19–26

see also rules
Business Rules Group 57
business rules management

definition 8–12
evolution of 65
technology and terminology 71–98

business rules management systems
(BRMS) 14

applications of 10–11
architecture of 102, 103
benefits of 13–14
business drivers for the adoption

of 9–10
components and technical features

of 101–108
decision management 24
and expert systems 59–63
features of 8–9, 99–142
history of 3–5
indicators of the need for 11–12
inference in 79–84
pattern language for development

of 159–235
reasons for using 12–13

business rules management systems
(BRMS) products 108–132

Blaze Advisor 111–117
evaluation 241–256
Fair Isaac 111, 116–117
HaleyRules and

HaleyAuthority 117–123
JRules 104, 123–130, 139–140, 178
PegaRULES and Versata 130–132

Business Rules Manifesto 5, 6, 57, 237–239
Business Rules Project Report 5
business rules service, architecture 102
Business Semantics of Business Rules

(BSBR) 57
business-to-business (B2B)

transactions 25

Index 267

C++ patterns
AMBASSADOR 165
ENVELOPE-LETTER 165
EXEMPLAR 165
HANDLE CLASS 165
REFERENCE COUNTER 165

CACHE (Pattern) 165
card sorting 223
causality 72, 77
centralization 12
chaining see backward chaining;

forward chaining; mixed chaining;
opportunistic chaining

CHOOSE RULE ENGINE (Pattern 41)
232–233

CHOOSE RULE MAINTENANCE
RE?GIME (Pattern 40) 231–232

chunks 74
class 26
CLASSIFY YOUR APPLICATIONS

(Pattern 38) 229–230
CLASSIFY YOUR CULTURE

(Pattern 39) 230–231
CleverPath Aion Business Rules

Expert 109
CLIPS 109
Closed World Assumption (CWA) 54
code regression testing 189
cognition 72–73
component based design (CBD) 18, 26,

27
component models 30
components

for building administrative systems
for public libraries 28–30

documentation of 28
function-like 21

computations 55
concrete (white) patterns 169, 171
CONFIGURABLE WORKFLOW

(Pattern) 234
consequent 75, 207–208
constraints 55, 193–194
context 170
CONWAY’S LAW (Pattern) 166
Coplien, Jim 167

C++ patterns 165

on software development 168
core components 28
Corticon 110
COTS (Commercial Off-the-Shelf)

components 23
culture, classification 230–231
cybernetics 86

Darwinian selection 86
data 37, 71
data mining 145–146

and rule induction 84–87
DATA MINING (Pattern 26) 210–211
data models 56
data retrieval agents 33
Data Rules 131
data-directed inference see forward

chaining
data-directed reasoning see forward

chaining
data-driven rules see forward chaining
databases 18, 53–56
Date, Chris 54
DBMS independence 56
decision making 89
Decision Optimizer 116
decision tables 90–91, 105, 113, 126–127
decision trees 88–90, 105, 116, 127
declarative rule languages 5, 103
DEFINE A RULE WRITING STYLE

(Pattern 23) 206–207
definitional probes 221
deliberative intelligent agents 33
deployment 243
Deployment Managers 115
design patterns 159
DETERMINE INFERENCE MODEL

(Pattern 36) 225–227
DETERMINE OWNERSHIP AND

PERMISSIONS (Pattern 22)
205–206

DETERMINE SECURITY MODEL
(Pattern 19) 202–203

DETERMINE UNCERTAINTY MODEL
(Pattern 37) 227–229

DEVELOPER CONTROLS PROCESS
(Pattern) 166

268 Index

development methods 143–158
Halle’s guidelines 150–151
knowledge acquisition and

analysis 143–148
rule style guidance 151–157
system development 149–150

directive probes 221
DISCOVER BUSINESS RULES

(Pattern 5) 178–180
disputes, resolving 217–218
disqualification policies, tax benefits

assessment 154–155
Document Type Definition (DTD) 39
domain ontology 8, 96
Drools 109

Eclipse 117
elicitation by triads 223
EMYCIN 3
ENCAPSULATE A REFERENCE

(Pattern 16) 197–198
encapsulation 12, 198
epistemology 96
ESTABLISH THE BUSINESS

OBJECTIVES (Pattern 1) 172–173
ESTABLISH THE USE CASES

(Pattern 3) 175–177
ethics 96
expert systems 101

BRMS and 59–63
explanation

and help facilities 107–108
uncertainty and 106–108

eXtreme Programming (XP) 184–185

facts (assertions) 7, 72, 97
Fair Isaac 111, 116–117
FALCON 116
FILLED-IN FORMS aka DATA MINING

(Pattern 26) 210–211
FIREWALL (Pattern) 166
first order predicate calculus (FOPC) 35,

66
FOCUSED INTERVIEW (Pattern 32) 220
FOLLOW STANDARDS (Pattern 21)

204–205
forces, discussion of 170
Forgy, Charles 110

forward chaining 35, 79–81, 84, 105,
106, 226

fourth generation languages (4GLs) 18
frames 78
fuzzy inference 95
fuzzy logic 93
fuzzy rules 68
fuzzy terms 62

Gabriel, Richard, on software
development 168

Gamma, Erich 163
Gang of Four (GoF) book 163
patterns 164

ADAPTER 164
BRIDGE 164
COMPOSITE 164
FACADE 164
OBSERVER 164
PROXY 164
VISITOR and STATE 164

GATEKEEPER (Pattern) 166
genetic algorithms 87
genetic programming 87
glue code 117–118
goal-directed inference see backward

chaining
goal-directed reasoning see backward

chaining
goal-driven rules see backward

chaining
GRADUAL STIFFENING (AGILE

PROCESS) (Pattern 8) 183–188
granularity 74
GUIDE project 57

Haley Systems Inc. 117, 146
HaleyAuthority 104, 107, 117–123, 178

debugging 120
deployment mechanism 121
features of 117–118
lookup tables 121
nested logic syntax 122
punctuation 120
testing features of a life assurance

advisory system 136–139
HaleyRules 117–123
Halle, Barbara von 5, 60, 64, 150–151

Index 269

help facilities 107–108
heuristic classification 148
homeostats 86
hotels, interchange of room occupancy

information 41
hybrid intelligent agents 33

ID3 86
IF-THEN statements 3, 4, 75, 100
IF-THEN-ELSE statements 39
ILOG 60
ILOG JRules 56
ILOG Rule Language (IRL) 127
implementations, using

components 26–31
induction 84
inference 55, 73, 105–106

in BRMS 79–84
knowledge and 76–79

inference engine 102
inference models 225–227
informal interviews 143
intelligent agents 32, 33, 35
interest rate calculations 21
interfaces 26
internet 37
interviews 143, 209–210

focused 219–220
structured 218–219

introspection 145
INVOLVE ALL THE STAKEHOLDERS

(Pattern 28) 213–216
IT projects, failure of 12

Jess 109
JRules 104, 123–130, 178

architecture 125
debugging facilities 128
languages 126–127
modules 124
objects 126
queries 129
rules 126
rules subsumption 128
testing features of a life assurance

advisory system 139–140

KADS method 147, 235
problem solving template 148

Kelly grids (repertoire) 145, 222
knowledge 72

evaluation of 73
and inference 76–79

knowledge acquisition and
analysis 143–148

knowledge base 101
knowledge elicitation, patterns

for 209–229
knowledge engineering bottleneck 62
knowledge-based systems 59–63
KQML/KIF 32
KRL 83

laddering 223
lead experts 218
LEAD USER (Pattern 30) 217–219
learning algorithms 33
legacy systems 23, 47
library systems

component managing
members 21–22

components for 28–30
library users 48
LibRT 109
LibRT VALENS 109
life assurance advisory system

rule statement expression 153
rules for 132–133

linked list 160
links 78
Logist 109
look-up tables 121
loops, in UML type diagrams 29, 58

Marvin the robot, goal to go to Boston
(example) 74–75

MERCENARY ANALYST (Pattern) 166
meta-knowledge 72–73
metamodels, availability and

extensibility 243
metaphysics see ontology
methodology 96
mixed chaining 226
mobile agents 34–35
modality 73

270 Index

mode change probes 221
Model Builder for Decision Trees 116
Model Builder for Predictive

Analytics 116
moral philosophy see ethics
Morgan, Tony 5

rule style guidance 152
MYCIN 3

Neuron Data 60
non-procedural languages 103

object knowledge 72
Object Management Group (OMG) 65
object modelling, role in natural

language processing 96–97
object models 56
object-oriented 3GLs 18
objects 26
observational studies 144
OBSERVER pattern 165
OCL, using to express rules 57–59
online systems 18–19
ontogenesis 77
ontology 8, 66, 96
Ontology Definition Metamodel

(ODM) 66, 67
opportunistic chaining 83
OPS5 83
organizational patterns 235
OWL (Web Ontology Language) 66, 67

Party of Five (PoV) patterns 164
pattern catalogue 169
pattern languages 168–169
patterns 30, 58, 78

abstract 169, 171
ASSOCIATION LOOPS CONCEAL

RULES (Pattern 1) 30
definition 159–167
GRADUAL STIFFENING

(Pattern 208) 162
history of 163
occurrence of 160
for organizational development 166
star rating 170–171
THICKENING THE OUTER WALL

(Pattern 211) 162

THINGS FROM YOUR LIFE
(Pattern 253) 162

WAIST-HIGH SHELF (Pattern 201)
162

patterns for finding, writing and
organizing business rules 192–208

ASK THE BUSINESS aka EXPERT
REVIEWER (Pattern 13) 194

ASSIGN RULES TO COMPONENTS
(Pattern 14) 195–196

ASSOCIATION LOOPS CONCEAL
RULES (Pattern 11) 193

BASE ERROR MESSAGES ON RULES
(Pattern 15) 196–197

DEFINE A RULE WRITING STYLE
(Pattern 23) 206–207

DETERMINE OWNERSHIP AND
PERMISSIONS (Pattern 22)
205–206

DETERMINING SECURITY MODEL
(Pattern 19) 201–202

ENCAPSULATE A REFERENCE
(Pattern 16) 197–198

FOLLOW STANDARDS (Pattern 21)
204–206

POLICY BLACKBOARD (Pattern 18)
199–202

SEPARATE VOLATILE RULES aka
APPLICABILITY CONDITIONS
(Pattern 20) 203–204

STORE RULES IN A REPOSITORY
(Pattern 17) 198–199

WRITE THE CONSEQUENT FIRST
(Pattern 24) 208

WRITE THE CONSTRAINTS AS
RULES (Pattern 12) 193–194

patterns for knowledge
elicitation 209–229

ASK FOR THE OPPOSITE aka KELLY
GRIDS, LADDERING, CARD
SORTS, CONCEPT MINING
(Pattern 34) 222–224

BOUNDARY OF COMPETENCE
(Pattern 35) 224–225

CLASSIFY YOUR APPLICATIONS
(Pattern 38) 229–230

Index 271

DETERMINE INFERENCE MODEL
(Pattern 36) 225–227

DETERMINE UNCERTAINTY
MODEL (Pattern 37) 227–228

FILLED-IN FORMS aka DATA
MINING (Pattern 26) 210–211

FOCUSED INTERVIEW (Pattern 32)
220

INVOLVE ALL THE
STAKEHOLDERS (Pattern 28)
212–216

LEAD USER (Pattern 30) 217–218
PLAN INTERVIEWS (Pattern 25)

209–210
PROBES AND TEACHBACK

(Pattern 33) 221–222
RUN A WORKSHOP (Pattern 27)

211–212
STRUCTURED INTERVIEW

(Pattern 31) 219
TEN MINUTE RULE aka TWO

MINUTE RULE (Pattern 29)
216–217

patterns for product selection and
application development 230–233

CHOOSE RULE ENGINE (Pattern 41)
232–233

CHOOSE RULE MAINTENANCE
REGIME (Pattern 40) 231–232

CLASSIFY YOUR CULTURE
(Pattern 39) 230–231

PERFORMANCE TUNING
Pattern 42 233–234

patterns for requirements, process and
architecture 172–192

AUTOMATE TESTING (Pattern 9)
188–189

BUILD A TYPE MODEL (Pattern 4)
177–178

BUSINESS PROCESS MODEL
(Pattern 2) 173–175

DISCOVER BUSINESS RULES
(Pattern 5) 178–180

ESTABLISH THE BUSINESS
OBJECTIVES (Pattern 1) 172–173

ESTABLISH THE USE CASES
(Pattern 3) 175–177

GRADUAL STIFFENING aka AGILE
PROCESS (Pattern 8) 183–188

TIMEBOXES (Pattern 7) 181–183
USABILITY TESTING (Pattern 10)

189–192
USER-CENTRED SERVICE

STRUCTURE (Pattern 6) 180–181
PegaRULES 130–132
perceptrons 86
PERFORMANCE TUNING (Pattern 42)

233–234
philogenesis 77
placeholders 113
PLACEMENTS PLUS 116
POLICY BLACKBOARD (Pattern 18)

199–201
post-conditions 179
postal service 38
presentations 144
price, fuzzy sets 93, 94
probability 85, 92
probes 145, 221
PROBES AND TEACHBACK

(Pattern 33) 220–221
procedural execution 226
procedural rule language 5
procedures 103

and algorithms 104–105
Process Commander 131
process component 29
Process Rules 131
Product P, evaluation example 242, 243,

253
Product Q, evaluation example 242, 253
Product R, evaluation example 242, 253
product selection and application

development, patterns for 230–233
production system, rules and 74–76
programming languages 37
proof, by backward chaining 81, 82
proof tree 83
prototype systems 145
public libraries, components needed for

administrative systems 28–30

qualifying children, tax benefits
assessment 155

272 Index

quality of service (QoS) elements 20
questionnaires 144
queues 27
Quick Deployers 115

rational agents 31
reactive agents 35
reactive intelligent agents 32–33
recursive descent 160
refactoring 186, 188
reflective probes 221
relationship test, tax benefits

assessment 155
Remote Procedure Call mechanism

(RPC) 42
repository 198–199
representation functor 187
requirements, process and architecture,

patterns for 172–192
Rete algorithm 83–84, 106
Ross, Ron

Business Rule Book 5
rule style guidance 151, 152

row-oriented decision tables 91, 105
rule base 101
Rule Builder 125
rule encapsulation 57–58
rule engines 102, 232–233
Rule Execution Server (RES) 124, 126
rule induction, data mining and 84–87
rule inheritance 114
rule maintenance 231–232
rule maintenance applications

(RMA) 112, 113
Rule Object 2001 234
RULE OBJECT (Pattern) 234
Rule Scenario Manager 124
Rule Studio 124
rule style guidance 151–157
Rule Team Server (RTS) 124
rule-based systems 86, 101
ruleflows 105, 129
RulePatterns language 169–208,

209–234
patterns for finding, writing and

organizing business
rules 192–208

patterns for knowledge
elicitation 209–229

patterns for product selection and
application
development 230–233

patterns for requirements, process and
architecture 172–192

rules
ACCESS RIGHTS (Pattern) 235
agents and 31–36
authoring products 66
in BRMS products 103–104
classification of 55
formulation 64–65
HASH AND CACHE (Pattern) 235
history of 3–5
OBJECT REPOSITORY (Pattern) 235
phrasing 100
and production systems 74–76
sharing across business 67
STATE (Pattern) 234
storage of 9
syntax checking 104
techniques for representing 87–91
templates 104
TRACKING (Pattern) 234
using UML and OCL to

express 57–59
writing style guidelines 206
see also business rules

RuleSpeak 66, 152, 207
RulesPower 110
RuleSync 126
RuleXpress 66
RUN A WORKSHOP (Pattern 27)

211–212
RUP 46, 64
rush orders 62

sales, post-conditions 179
sales processes 22, 23
scenario 1, BRMS products

evaluation 241, 243–248
multi-attribute decision making

analysis 244–247
general attributes 244

Index 273

integration of KM tool with the rule
engine 244

knowledge capture and
management tool 244–245

knowledge management
features 245–246

other factors 247
results 253
rule engine 246–247

scenario 2, BRMS products
evaluation 241–242, 248

multi-attribute decision making
analysis 249–252

general attributes 249
integration of KM tool with the rule

engine 249
knowledge capture and

management tool 249–250
knowledge management

features 250–251
other factors 252
results 253
rule engine 251–252

scenario 3, BRMS products
evaluation 242, 248

multi-attribute decision making
analysis 255–258

general attributes 255
integration of KM tool with the rule

engine 255
knowledge capture and

management tool 255
knowledge management

features 256–257
other factors 258
results 253
rule engine 257–258

scorecards 61, 113
security models 202
semantic networks 78–79
Semantics of Business Vocabulary and

Business Rules (SBVR) 57, 65, 66, 67
sensitizing images 170
SEPARATE VOLATILE RULES aka

APPLICABILITY CONDITIONS
(Pattern 20) 202–204

service oriented architecture (SOA) 2,
12, 17, 27, 36

adoption of 46–50
benefits of 47
building 46–47
and business rules 19–26
drivers for 25–26
features of 20
software systems structures 20–21
and web services 37–46

services, supplying to system users 24
simulations 144
slots 78
smart agents 35
SmartForms 116
SOAP (Simple Object Access

Protocol) 19, 37, 38, 42–43
software components 26
software development, history of 18
software patterns 160, 168
source code control (SCC) tool 125
specifications 26

queue component 26, 27
Staffware 110
stakeholders, involving all 212–216
standards, for business rules 65
statements 7, 7
stock control system 62
STORE RULES IN A REPOSITORY

(Pattern 17) 198–200
strong agents 33
strong hybrid intelligent agents 33
STRUCTURED INTERVIEW

(Pattern 31) 218–219
structured rule language (SRL) 112
sweet shop, locating example 89–90
system development 149–150

tax benefits assessment 154–157
age test 155
applicable income limit 156
disqualification policies 154–155
people, information requirements 156
qualifying children 155
recommendations 156
relationship test 155

274 Index

tax benefits assessment (continued)
taxpayer, information

requirements 156–157
TCP/IP 37
teachback 145, 221
Technical Rule Language (TRL) 127
Telescript 32
templates, rule 113
TEN MINUTE RULE aka TWO MINUTE

RULE (Pattern 29) 216–217
terminal patterns 169
terms 7, 97
TIMEBOXES (Pattern 7) 181–183
training sets 85
Transaction Rules 131
TRIAD 116
truth maintenance system 107
tuning performance 233
TWO MINUTE RULE (Pattern 29)

26–27
type modelling 177
type specification 26, 27

UDDI (Universal Description,
Discovery and Integration) 20, 37,
38, 44–46

UML 13
using to express rules 57–59

UML type diagram, with loops 29, 58
uncertainty 73

and explanation 106–108
uncertainty management 61, 67, 91–95,

107
certainty factors in 92–93
vague terms in 92

uncertainty model 227–229
Universal Description, Definition and

Integration (UDDI) 20, 37, 38,
44–46

usability 141, 243

USABILITY TESTING (Pattern 10)
189–192

use case diagrams 174
use case modelling 175–176
use cases 46, 48
user interfaces 48
USER-CENTRED SERVICE

STRUCTURE (Pattern 6) 180–181
utility services components 21

value holders 113
verbal labels 228
verbal protocols 144
Versata 131–132
vocabulary 8, 96
volatile rules 202–204

weak agents 33
web postal services 38
web services, service oriented

architecture and 37–46
well-formed statements 7
what-if facilities 107
WHOLE-PART (Pattern) 164
workflow, configurable 234
workshops 146, 211–212

involving all the
stakeholders 212–216

wrapping, legacy systems 23
WRITE THE CONSEQUENT FIRST

(Pattern 24) 207–208
WRITE THE CONSTRAINTS AS RULES

(Pattern 12) 193–194
WSDL (Web Services Description

Language) 19, 37, 38, 43–44

XCON 83
XML (eXtensible Markup Language) 37,

39–42
XML schemata (XSD) 20, 39

	Business Rules Management and Service Oriented Architecture
	Contents
	Foreword
	Preface
	1 Aligning IT with Business
	1.1 Historical Background
	1.2 What are Business Rules?
	1.3 What is Business Rules Management?
	1.4 Why use a Business Rules Management System?
	1.5 The Benefits
	1.6 Summary
	1.7 Bibliographical Notes

	2 Service Oriented Architecture and Software Components
	2.1 Service Oriented Architecture and Business Rules
	2.1.1 Business Drivers, Bene.ts and Pitfalls

	2.2 Service Implementation using Components
	2.3 Agents and Rules
	2.3.1 Agent Architecture
	2.3.2 Applications of Agents

	2.4 Service Oriented Architecture and Web Services
	2.5 Adoption Strategies
	2.5.1 After SOA

	2.6 Summary
	2.7 Bibliographical Notes

	3 Approaches to Business Rules
	3.1 Database-centric Approaches
	3.2 GUIDE and the Business Rules Group
	3.3 Using UML and OCL to Express Rules
	3.4 Business Rules Management Systems and Expert Systems
	3.5 Other Developments
	3.6 Standards, Directions and Trends
	3.7 Summary
	3.8 Bibliographical Notes

	4 Business Rules Management Technology and Terminology
	4.1 Rules and Other Forms of Knowledge Representation
	4.1.1 Rules and Production Systems

	4.2 Knowledge and Inference
	4.2.1 Semantic Networks

	4.3 Inference in Business Rules Management Systems
	4.3.1 Forward, Backward and Mixed Chaining Strategies

	4.4 Data Mining and Rule Induction
	4.5 Techniques for Representing Rules
	4.5.1 Decision Trees and Decision Tables

	4.6 Uncertainty Management
	4.7 Ontology and Epistemology: the Rˆole of Object Modelling in Natural Language Processing
	4.8 Summary
	4.9 Bibliographical Notes

	5 Features of Business Rules Management Systems
	5.1 The Components and Technical Features of a BRMS
	5.1.1 Rules
	5.1.2 Rule Templates
	5.1.3 Rule Syntax Checking
	5.1.4 Procedures and Algorithms
	5.1.5 Ruleflows
	5.1.6 Decision Tables and Decision Trees
	5.1.7 Inference
	5.1.8 Uncertainty and Explanation

	5.2 BRMS Products
	5.2.1 Blaze Advisor
	5.2.2 HaleyRules and HaleyAuthority
	5.2.3 JRules
	5.2.4 PegaRULES and Versata

	5.3 A Simple Application
	5.3.1 The Application in Blaze Advisor
	5.3.2 The Application in HaleyAuthority
	5.3.3 The Application in JRules

	5.4 Usability Issues
	5.5 Summary
	5.6 Bibliographical Notes

	6 Development Methods
	6.1 Knowledge Acquisition and Analysis
	6.2 System Development
	6.3 Halle’s Guidelines
	6.4 Rule Style Guidance
	6.5 Summary
	6.6 Bibliographical Notes

	7 A Pattern Language for BRMS Development
	7.1 What are Patterns?
	7.2 Why a Pattern Language?
	7.3 The RulePatterns Language – Part I
	7.3.1 Patterns for Requirements, Process and Architecture
	7.3.2 Patterns for Finding, Writing and Organizing Business Rules

	7.4 The RulePatterns Language – Part II
	7.4.1 Patterns for Knowledge Elicitation
	7.4.2 Patterns for Product Selection and Application Development

	7.5 Related Patterns and Pattern Languages
	7.5.1 Arsanjani’s Rule Object Patterns
	7.5.2 KADS Patterns
	7.5.3 Organizational Patterns

	APPENDICES
	A The Business Rules Manifesto
	B A Simple Method for Evaluating BRMS Products

	References and Bibliography
	Index

