

About the Authors
With over a quarter-century of software and systems
engineering experience, Rex Black is President of Rex
Black Consulting Services (www.rbcs-us.com), a leader in
software, hardware, and systems testing. RBCS delivers
consulting, outsourcing, and training services, employing
the industry’s most experienced and recognized
consultants. RBCS worldwide clientele save time and
money through improved product development,
decreased tech support calls, improved corporate
reputation, and more.

Rex is the most prolific author practicing in the field of
software testing today. His popular first book, Managing
the Testing Process, has sold over 40,000 copies around the
world, and is now in its third edition. His six other books—
Advanced Software Testing: Volumes I, II, and III, Critical
Testing Processes, Foundations of Software Testing, and
Pragmatic Software Testing—have also sold tens of
thousands of copies. He has written over thirty articles;
presented hundreds of papers, workshops, and seminars;
and given about fifty keynote and other speeches at
conferences and events around the world. Rex is the
immediate past President of the International Software
Testing Qualifications Board (ISTQB) and a Director of the
American Software Testing Qualifications Board (ASTQB).

Jamie L. Mitchell has over 28 years of experience in
developing and testing both hardware and software. He is
a pioneer in the test automation field and has worked
with a variety of vendor and open-source test automation
tools since the first Windows tools were released with
Windows 3.0. He has also written test tools for several
platforms.

Jamie specializes in increasing the productivity of
automation and test teams through innovative ideas and
custom tool extensions. In addition, he provides training,
mentoring, process auditing, and expert technical
support in all aspects of testing and automation.

Jamie holds a Master of Computer Science degree
from Lehigh University in Bethlehem, PA, and a Certified
Software Test Engineer certification from QAI. He was an
instructor and board member of the International
Institute of Software Testing (IIST) and a contributing
editor, technical editor, and columnist for the Journal of
Software Testing Professionals. He has been a frequent
speaker on testing and automation at several
international conferences, including STAR, QAI, and PSQT.

__AST V3.book Seite ii Freitag, 1. Juli 2011 1:06 13

http://www.rbcs-us.com

Rex Black · Jamie L. Mitchell

Advanced Software
Testing—Vol. 3

Guide to the ISTQB Advanced Certification
as an Advanced Technical Test Analyst

Titelei Vol 3.fm Seite iii Mittwoch, 13. Juli 2011 1:47 13

Rex Black
rex_black@rbcs-us.com

Jamie L. Mitchell
jamie@go-tac.com

Editor: Dr. Michael Barabas
Projectmanager: Matthias Rossmanith
Copyeditor: Judy Flynn
Layout and Type: Josef Hegele
Proofreader: James Johnson
Cover Design: Helmut Kraus, www.exclam.de
Printer: Courier
Printed in USA

ISBN: 978-1-933952-39-0

1st Edition © 2011 by Rex Black and Jamie L. Mitchell
16 15 14 13 12 11 1 2 3 4 5

Rocky Nook
802 East Cota Street, 3rd Floor
Santa Barbara, CA 93103

www.rockynook.com

Library of Congress Cataloging-in-Publication Data
Black, Rex, 1964-
 Advanced software testing : guide to the ISTQB advanced certification as an advanced
technical test analyst / Rex Black, Jamie L. Mitchell.-1st ed.
 p. cm.-(Advanced software testing)
ISBN 978-1-933952-19-2 (v. 1 : alk. paper)-ISBN 978-1-933952-36-9 (v. 2 : alk. paper)
1. Electronic data processing personnel-Certification. 2. Computer software-
Examinations-Study guides. 3. Computer software-Testing. I. Title.
 QA76.3.B548 2008
 005.1'4-dc22
2008030162

Distributed by O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472-2811

All product names and services identified throughout this book are trademarks or registered
trademarks of their respective companies. They are used throughout this book in editorial
fashion only and for the benefit of such companies. No such uses, or the use of any trade
name, is intended to convey endorsement or other affiliation with the book. No part of the
material protected by this copyright notice may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or bay any information storage
and retrieval system, without written permission from the copyright owner.

This book is printed on acid-free paper.

Titelei Vol 3.fm Seite iv Mittwoch, 13. Juli 2011 8:27 08

rex_black@rbcs-us.com
jamie@go-tac.com
http://www.exclam.de
http://www.rockynook.com

v

Rex Black’s Acknowledgements

A complete list of people who deserve thanks for helping me along in my career
as a test professional would probably make up its own small book. Here I’ll con-
fine myself to those who had an immediate impact on my ability to write this
particular book.

First of all, I’d like to thank my colleagues on the American Software Testing
Qualifications Board and the International Software Testing Qualifications
Board, and especially the Advanced Syllabus Working Party, who made this
book possible by creating the process and the material from which this book
grew. Not only has it been a real pleasure sharing ideas with and learning from
each of the participants, but I have had the distinct honor of being elected pres-
ident of both the American Software Testing Qualifications Board and the
International Software Testing Qualifications Board twice. I spent two terms in
each of these roles, and I continue to serve as a board member, as the ISTQB
Governance Officer, and as a member of the ISTQB Advanced Syllabus Work-
ing Party. I look back with pride at our accomplishments so far, I look forward
with pride to what we’ll accomplish together in the future, and I hope this book
serves as a suitable expression of the gratitude and professional pride I feel
toward what we have done for the field of software testing.

Next, I’d like to thank the people who helped us create the material that
grew into this book. Jamie Mitchell co-wrote the materials in this book, our
Advanced Technical Test Analyst instructor-lead training course, and our
Advanced Technical Test Analyst e-learning course. These materials, along
with related materials in the corresponding Advanced Test Analyst book and
courses, were reviewed, re-reviewed, and polished with hours of dedicated
assistance by José Mata, Judy McKay, and Pat Masters. In addition, James Nazar,
Corne Kruger, John Lyerly, Bhavesh Mistry, and Gyorgy Racz provided useful
feedback on the first draft of this book. The task of assembling the e-learning

__AST V3.book Seite v Freitag, 1. Juli 2011 1:06 13

vi Rex Black’s Acknowledgements

and live courseware from the constituent bits and pieces fell to Dena Pauletti,
RBCS’ extremely competent and meticulous systems engineer.

Of course, the Advanced syllabus could not exist without a foundation, spe-
cifically the ISTQB Foundation syllabus. I had the honor of working with that
Working Party as well. I thank them for their excellent work over the years, cre-
ating the fertile soil from which the Advanced syllabus and thus this book
sprang.

In the creation of the training courses and the materials that I contributed
to this book, I have drawn on all the experiences I have had as an author, practi-
tioner, consultant, and trainer. So, I have benefited from individuals too numer-
ous to list. I thank those of you who have bought one of my previous books, for
you contributed to my skills as a writer. I thank those of you who have worked
with me on a project, for you have contributed to my abilities as a test manager,
test analyst, and technical test analyst. I thank those of you who have hired me
to work with you as a consultant, for you have given me the opportunity to learn
from your organizations. I thank those of you who have taken a training course
from me, for you have collectively taught me much more than I taught each of
you. I thank my readers, colleagues, clients, and students, and hope that my
contributions to you have repaid the debt of gratitude that I owe you.

For over a dozen years, I have run a testing services company, RBCS. From
humble beginnings, RBCS has grown into an international consulting, training,
and outsourcing firm with clients on six continents. While I have remained a
hands-on contributor to the firm, over 100 employees, subcontractors, and
business partners have been the driving force of our ongoing success. I thank all
of you for your hard work for our clients. Without the success of RBCS, I could
hardly avail myself of the luxury of writing technical books, which is a source of
great pride but not a whole lot of money. Again, I hope that our mutual suc-
cesses together have repaid the debt of gratitude that I owe each of you.

Finally, I thank my family, especially my wife, Laurel, and my daughters,
Emma and Charlotte. Tolstoy was wrong: It is not true that all happy families
are exactly the same. Our family life is quite hectic, and I know I miss a lot of it
thanks to the endless travel and work demands associated with running a global
testing services company and writing books. However, I’ve been able to enjoy
seeing my daughters grow up as citizens of the world, with passports given to
them before their first birthdays and full of stamps before they started losing

__AST V3.book Seite vi Freitag, 1. Juli 2011 1:06 13

 Jamie Mitchell’s Acknowledgements vii

their baby teeth. Laurel, Emma, and Charlotte, I hope the joys of December
beach sunburns in the Australian summer sun of Port Douglas, learning to ski
in the Alps, hikes in the Canadian Rockies, and other experiences that frequent
flier miles and an itinerant father can provide, make up in some way for the lim-
ited time we share together. I have won the lottery of life to have such a wonder-
ful family.

Jamie Mitchell’s Acknowledgements

What a long, strange trip it's been. The last 25 years has taken me from being a
bench technician, fixing electronic audio components, to this time and place,
where I have cowritten a book on some of the most technical aspects of software
testing. It's a trip that has been both shared and guided by a host of people that I
would like to thank.

To the many at both Moravian College and Lehigh University who started
me off in my “Exciting Career in Computers”: for your patience and leadership
that instilled in me a burning desire to excel, I thank you.

To Terry Schardt, who hired me as a developer but made me a tester, thanks
for pushing me to the dark side. To Tom Mundt and Chuck Awe, who gave me
an incredible chance to lead, and to Barindralal Pal, who taught me that to lead
was to keep on learning new techniques, thank you.

To Dean Nelson, who first asked me to become a consultant, and Larry
Decklever, who continued my training, many thanks. A shout-out to Beth and
Jan, who participated with me in choir rehearsals at Joe Senser's when things
were darkest. Have one on me.

To my colleagues at TCQAA, SQE, and QAI who gave me chances to
develop a voice while I learned how to speak, my heartfelt gratitude. To the peo-
ple I am working with at ISTQB and ASTQB: I hope to be worthy of the honor

__AST V3.book Seite vii Freitag, 1. Juli 2011 1:06 13

viii Jamie Mitchell’s Acknowledgements

of working with you and expanding the field of testing. Thanks for the opportu-
nity.

In my professional life, I have been tutored, taught, mentored, and shown
the way by a host of people whose names deserve to be mentioned, but they are
too abundant to recall. I would like to give all of you a collective thanks; I would
be poorer for not knowing you.

To Rex Black for giving me a chance to coauthor the Advanced Technical
Test Analyst course and this book: Thank you for your generosity and the
opportunity to learn at your feet. For my partner in crime, Judy McKay: Even
though our first tool attempt did not fly, I have learned a lot from you and
appreciate both your patience and kindness. Hoist a fruity drink from me. To
Laurel, Dena, and Michelle: Your patience with me is noted and appreciated.
Thanks for being there.

And finally, to my family, who have seen so much less of me over the last
25 years than they might have wanted, as I strove to become all that I could be
in my chosen profession: words alone cannot convey my thanks. To Beano, who
spent innumerable hours helping me steal the time needed to get through
school and set me on the path to here, my undying love and gratitude. To my
loving wife, Susan, who covered for me at many of the real-life tasks while I
toiled, trying to climb the ladder, my love and appreciation. I might not always
remember to say it, but I do think it. And to my kids, Christopher and Kim-
berly, who have always been smarter than me but allowed me to pretend that I
was the boss of them, thanks. Your tolerance and enduring support have been
much appreciated.

Last, and probably least, to “da boys,” Baxter and Boomer, Bitzi and Buster.
Whether sitting in my lap while I was trying to learn how to test or sitting at my
feet while writing this book, you guys have been my sanity check. You never
cared how successful I was, as long as the doggie-chow appeared in your bowls,
morning and night. Thanks.

__AST V3.book Seite viii Freitag, 1. Juli 2011 1:06 13

Contents ix

Contents

Rex Black’s Acknowledgements v

Jamie Mitchell’s Acknowledgements vii

Introduction xix

1 Test Basics 1

1.1 Introduction .1

1.2 Testing in the Software Lifecycle .2

1.3 Specific Systems .7

1.4 Metrics and Measurement .11

1.5 Ethics .14

1.6 Sample Exam Questions .16

2 Testing Processes 19

2.1 Introduction .19

2.2 Test Process Models .20

2.3 Test Planning and Control .21

2.4 Test Analysis and Design .21

2.4.1 Non-functional Test Objectives .23

2.4.2 Identifying and Documenting Test Conditions25

2.4.3 Test Oracles .29

2.4.4 Standards .31

2.4.5 Static Tests .34

2.4.6 Metrics .35

2.5 Test Implementation and Execution .36

2.5.1 Test Procedure Readiness .37

2.5.2 Test Environment Readiness .39

2.5.3 Blended Test Strategies .41

__AST V3.book Seite ix Freitag, 1. Juli 2011 1:06 13

x Contents

2.5.4 Starting Test Execution . 42

2.5.5 Running a Single Test Procedure . 44

2.5.6 Logging Test Results . 45

2.5.7 Use of Amateur Testers . 47

2.5.8 Standards . 48

2.5.9 Metrics . 53

2.6 Evaluating Exit Criteria and Reporting . 53

2.6.1 Test Suite Summary . 54

2.6.2 Defect Breakdown . 56

2.6.3 Confirmation Test Failure Rate . 57

2.6.4 System Test Exit Review . 58

2.6.5 Standards . 59

2.6.6 Evaluating Exit Criteria and Reporting Exercise 60

2.6.7 System Test Exit Review . 60

2.6.8 Evaluating Exit Criteria and Reporting Exercise Debrief 63

2.7 Test Closure Activities . 67

2.8 Sample Exam Questions . 67

3 Test Management 69

3.1 Introduction . 70

3.2 Test Management Documentation . 70

3.3 Test Plan Documentation Templates . 71

3.4 Test Estimation . 72

3.5 Scheduling and Test Planning . 73

3.6 Test Progress Monitoring and Control . 73

3.7 Business Value of Testing . 74

3.8 Distributed, Outsourced, and Insourced Testing 74

3.9 Risk-Based Testing . 75

3.9.1 Risk Management . 78

3.9.2 Risk Identification . 80

3.9.3 Risk Analysis or Risk Assessment . 82

3.9.4 Risk Mitigation or Risk Control . 84

3.9.5 An Example of Risk Identification and Assessment Results . 87

__AST V3.book Seite x Freitag, 1. Juli 2011 1:06 13

Contents xi

3.9.6 Risk-Based Testing throughout the Lifecycle89

3.9.7 Risk-Aware Testing Standards .90

3.9.8 Risk-Based Testing Exercise 1 .92

3.9.9 Risk-Based Testing Exercise Debrief 1 .93

3.9.10 Project Risk By-Products .95

3.9.11 Requirements Defect By-Products .95

3.9.12 Risk-Based Testing Exercise 2 .96

3.9.13 Risk-Based Testing Exercise Debrief 2 .96

3.9.14 Test Case Sequencing Guidelines .97

3.10 Failure Mode and Effects Analysis .97

3.11 Test Management Issues .98

3.12 Sample Exam Questions .98

4 Test Techniques 101

4.1 Introduction . 102

4.2 Specification-Based . 104

4.2.1 Equivalence Partitioning . 107

4.2.1.1 Avoiding Equivalence Partitioning Errors 110

4.2.1.2 Composing Test Cases
with Equivalence Partitioning . 111

4.2.1.3 Equivalence Partitioning Exercise 115

4.2.1.4 Equivalence Partitioning Exercise Debrief 116

4.2.2 Boundary Value Analysis . 119

4.2.2.1 Examples of Equivalence Partitioning
and Boundary Values . 120

4.2.2.2 Non-functional Boundaries . 123

4.2.2.3 A Closer Look at Functional Boundaries 124

4.2.2.4 Integers . 125

4.2.2.5 Floating Point Numbers . 128

4.2.2.6 Testing Floating Point Numbers 130

4.2.2.7 How Many Boundaries? . 132

4.2.2.8 Boundary Value Exercise . 134

4.2.2.9 Boundary Value Exercise Debrief 135

__AST V3.book Seite xi Freitag, 1. Juli 2011 1:06 13

xii Contents

4.2.3 Decision Tables . 140

4.2.3.1 Collapsing Columns in the Table 143

4.2.3.2 Combining Decision Table Testing
with Other Techniques . 145

4.2.3.3 Nonexclusive Rules in Decision Tables 147

4.2.3.4 Decision Table Exercise . 148

4.2.3.5 Decision Table Exercise Debrief 149

4.2.4 State-Based Testing and State Transition Diagrams 154

4.2.4.1 Superstates and Substates . 161

4.2.4.2 State Transition Tables . 162

4.2.4.3 Switch Coverage . 166

4.2.4.4 State Testing with Other Techniques 169

4.2.4.5 State Testing Exercise . 170

4.2.4.6 State Testing Exercise Debrief . 172

4.2.5 Requirements-Based Testing Exercise . 175

4.2.6 Requirements-Based Testing Exercise Debrief 175

4.3 Structure-Based . 177

4.3.1 Control-Flow Testing . 179

4.3.1.1 Building Control-Flow Graphs 180

4.3.1.2 Statement Coverage . 183

4.3.1.3 Decision Coverage . 188

4.3.1.4 Loop Coverage . 191

4.3.1.5 Hexadecimal Converter Exercise 195

4.3.1.6 Hexadecimal Converter Exercise Debrief 197

4.3.1.7 Condition Coverage . 197

4.3.1.8 Decision/Condition Coverage 200

4.3.1.9 Modified Condition/Decision Coverage
(MC/DC) . 201

4.3.1.10 Multiple Condition Coverage 205

4.3.1.11 Control-Flow Exercise . 209

4.3.1.12 Control-Flow Exercise Debrief 210

4.3.2 Path Testing . 214

4.3.2.1 LCSAJ . 215

__AST V3.book Seite xii Freitag, 1. Juli 2011 1:06 13

Contents xiii

4.3.2.2 Basis Path/Cyclomatic Complexity Testing 220

4.3.2.3 Cyclomatic Complexity Exercise 225

4.3.2.4 Cyclomatic Complexity Exercise Debrief 225

4.3.3 A Final Word on Structural Testing . 227

4.3.4 Structure-Based Testing Exercise . 228

4.3.5 Structure-Based Testing Exercise Debrief 229

4.4 Defect- and Experience-Based . 236

4.4.1 Defect Taxonomies . 237

4.4.2 Error Guessing . 242

4.4.3 Checklist Testing . 243

4.4.4 Exploratory Testing . 245

4.4.4.1 Test Charters . 247

4.4.4.2 Exploratory Testing Exercise . 249

4.4.4.3 Exploratory Testing Exercise Debrief 249

4.4.5 Software Attacks . 252

4.4.5.1 An Example of Effective Attacks 256

4.4.5.2 Other Attacks . 257

4.4.5.3 Software Attack Exercise . 259

4.4.5.4 Software Attack Exercise Debrief 259

4.4.6 Specification-, Defect-, and Experience-Based Exercise 260

4.4.7 Specification-, Defect-,
and Experience-Based Exercise Debrief 260

4.4.8 Common Themes . 261

4.5 Static Analysis . 264

4.5.1 Complexity Analysis . 265

4.5.2 Code Parsing Tools . 268

4.5.3 Standards and Guidelines . 270

4.5.4 Data-Flow Analysis . 273

4.5.5 Set-Use Pairs . 275

4.5.6 Set-Use Pair Example . 278

4.5.7 Data-Flow Exercise . 284

4.5.8 Data-Flow Exercise Debrief . 284

4.5.9 Data-Flow Strategies . 285

__AST V3.book Seite xiii Freitag, 1. Juli 2011 1:06 13

xiv Contents

4.5.10 Static Analysis for Integration Testing . 288

4.5.11 Call-Graph Based Integration Testing . 290

4.5.12 McCabe Design Predicate Approach
to Integration Testing . 292

4.5.13 Hex Converter Example . 296

4.5.14 McCabe Design Predicate Exercise . 301

4.5.15 McCabe Design Predicate Exercise Debrief 301

4.6 Dynamic Analysis . 302

4.6.1 Memory Leak Detection . 305

4.6.2 Wild Pointer Detection . 307

4.6.3 API Misuse Detection . 308

4.7 Sample Exam Questions . 309

5 Tests of Software Characteristics 323

5.1 Introduction . 323

5.2 Quality Attributes for Domain Testing . 325

5.2.1 Accuracy . 326

5.2.2 Suitability . 329

5.2.3 Interoperability . 330

5.2.4 Usability . 331

5.2.5 Usability Test Exercise . 335

5.2.6 Usability Test Exercise Debrief . 335

5.3 Quality Attributes for Technical Testing . 337

5.3.1 Technical Security . 338

5.3.2 Security Issues . 339

5.3.3 Timely Information . 344

5.3.4 Reliability . 349

5.3.5 Efficiency . 355

5.3.6 Multiple Flavors of Efficiency Testing . 357

5.3.7 Modeling the System . 361

5.3.8 Efficiency Measurements . 366

5.3.9 Examples of Efficiency Bugs . 368

5.3.10 Exercise: Security, Reliability, and Efficiency 372

__AST V3.book Seite xiv Freitag, 1. Juli 2011 1:06 13

Contents xv

5.3.11 Exercise: Security, Reliability, and Efficiency Debrief 372

5.3.12 Maintainability . 375

5.3.13 Subcharacteristics of Maintainability . 379

5.3.14 Portability . 386

5.3.15 Maintainability and Portability Exercise 393

5.3.16 Maintainability and Portability Exercise Debrief 393

5.4 Sample Exam Questions . 396

6 Reviews 399

6.1 Introduction . 399

6.2 The Principles of Reviews . 403

6.3 Types of Reviews . 407

6.4 Introducing Reviews . 412

6.5 Success Factors for Reviews . 413

6.5.1 Deutsch’s Design Review Checklist . 417

6.5.2 Marick’s Code Review Checklist . 419

6.5.3 The OpenLaszlo Code Review Checklist 422

6.6 Code Review Exercise . 423

6.7 Code Review Exercise Debrief . 424

6.8 Deutsch Checklist Review Exercise . 429

6.9 Deutsch Checklist Review Exercise Debrief . 430

6.10 Sample Exam Questions . 432

7 Incident Management 435

7.1 Introduction . 435

7.2 When Can a Defect Be Detected? . 436

7.3 Defect Lifecycle . 437

7.4 Defect Fields . 445

7.5 Metrics and Incident Management . 449

7.6 Communicating Incidents . 450

7.7 Incident Management Exercise . 451

7.8 Incident Management Exercise Debrief . 452

7.9 Sample Exam Questions . 454

__AST V3.book Seite xv Freitag, 1. Juli 2011 1:06 13

xvi Contents

8 Standards and Test Process Improvement 457

9 Test Techniques 459

9.1 Introduction . 459

9.2 Test Tool Concepts . 460

9.2.1 The Business Case for Automation . 461

9.2.2 General Test Automation Strategies . 466

9.2.3 An Integrated Test System Example . 471

9.3 Test Tool Categories . 473

9.3.1 Test Management Tools . 474

9.3.2 Test Execution Tools . 475

9.3.3 Debugging, Troubleshooting, Fault Seeding,
and Injection Tools . 479

9.3.4 Static and Dynamic Analysis Tools . 480

9.3.5 Performance Testing Tools . 483

9.3.6 Monitoring Tools . 485

9.3.7 Web Testing Tools . 486

9.3.8 Simulators and Emulators . 488

9.4 Keyword-Driven Test Automation . 489

9.4.1 Capture/Replay Exercise . 495

9.4.2 Capture/Replay Exercise Debrief . 495

9.4.3 Evolving from Capture/Replay . 497

9.4.4 The Simple Framework Architecture . 499

9.4.5 Data-Driven Architecture . 502

9.4.6 Keyword-Driven Architecture . 504

9.4.7 Keyword Exercise . 511

9.4.8 Keyword Exercise Debrief . 512

9.5 Performance Testing . 514

9.5.1 Performance Testing Exercise . 520

9.5.2 Performance Testing Exercise Debrief . 521

9.6 Sample Exam Questions . 523

__AST V3.book Seite xvi Freitag, 1. Juli 2011 1:06 13

Contents xvii

10 People Skills and Team Composition 527

10.1 Introduction . 528

10.2 Individual Skills . 528

10.3 Test Team Dynamics . 528

10.4 Fitting Testing within an Organization . 529

10.5 Motivation . 529

10.6 Communication . 530

10.7 Sample Exam Questions . 532

11 Preparing for the Exam 535

11.1 Learning Objectives . 535

11.1.1 Level 1: Remember (K1) . 536

11.1.2 Level 2: Understand (K2) . 536

11.1.3 Level 3: Apply (K3) . 537

11.1.4 Level 4: Analyze (K4) . 538

11.1.5 Where Did These Levels
of Learning Objectives Come From? . 538

11.2 ISTQB Advanced Exams . 539

11.2.1 Scenario-Based Questions . 541

11.2.2 On the Evolution of the Exams . 543

Appendix A – Bibliography 545

11.2.3 Advanced Syllabus Referenced Standards 545

11.2.4 Advanced Syllabus Referenced Books . 545

11.2.5 Other Referenced Books . 547

11.2.6 Other References . 547

Appendix B – HELLOCARMS
The Next Generation of Home Equity Lending 549

System Requirements Document . 549

I Table of Contents . 551

II Versioning . 553

III Glossary . 555

__AST V3.book Seite xvii Freitag, 1. Juli 2011 1:06 13

xviii Contents

000 Introduction . 557

001 Informal Use Case . 558

003 Scope . 560

004 System Business Benefits . 561

010 Functional System Requirements . 562

020 Reliability System Requirements . 566

030 Usability System Requirements . 567

040 Efficiency System Requirements . 568

050 Maintainability System Requirements . 570

060 Portability System Requirements . 571

A Acknowledgement . 573

Appendix C – Answers to Sample Questions 575

Index 577

__AST V3.book Seite xviii Freitag, 1. Juli 2011 1:06 13

xix

Introduction

This is a book on advanced software testing for technical test analysts. By that
we mean that we address topics that a technical practitioner who has chosen
software testing as a career should know. We focus on those skills and tech-
niques related to test analysis, test design, test tools and automation, test execu-
tion, and test results evaluation. We take these topics in a more technical
direction than in the earlier volume for test analysts by including details of test
design using structural techniques and details about the use of dynamic analysis
to monitor internal status. We assume that you know the basic concepts of test
engineering, test design, test tools, testing in the software development lifecycle,
and test management. You are ready to mature your level of understanding of
these concepts and to apply these advanced concepts to your daily work as a test
professional.

This book follows the International Software Testing Qualifications Board’s
(ISTQB) Advanced Level Syllabus, with a focus on the material and learning
objectives for the advanced technical test analyst. As such, this book can help
you prepare for the ISTQB Advanced Level Technical Test Analyst exam. You
can use this book to self-study for this exam or as part of an e-learning or
instructor-lead course on the topics covered in those exams. If you are taking an
ISTQB-accredited Advanced Level Technical Test Analyst training course, this
book is an ideal companion text for that course.

However, even if you are not interested in the ISTQB exams, you will find
this book useful to prepare yourself for advanced work in software testing. If
you are a test manager, test director, test analyst, technical test analyst, auto-
mated test engineer, manual test engineer, programmer, or in any other field
where a sophisticated understanding of software testing is needed—especially
an understanding of the particularly technical aspects of testing such as white-
box testing and test automation—then this book is for you.

__AST V3.book Seite xix Freitag, 1. Juli 2011 1:06 13

xx Introduction

This book focuses on technical test analysis. It consists of 11 chapters,
addressing the following material:

1. Basic aspects of software testing
2. Testing processes
3. Test management
4. Test techniques
5. Testing of software characteristics
6. Reviews
7. Incident (defect) management
8. Standards and test process improvement
9. Test tools and automation
10. People skills (team composition)
11. Preparing for the exam

Since the structure follows the structure of the ISTQB Advanced syllabus, some
of the chapters address the material in great detail because they are central to
the technical test analyst role. Some of the chapters address the material in less
detail because the technical test analyst need only be familiar with it. For exam-
ple, we cover in detail test techniques—including highly technical techniques
like structure-based testing and dynamic analysis and test automation—in this
book because these are central to what a technical test analyst does, while we
spend less time on test management and no time at all on test process improve-
ment.

If you have already read Advanced Software Testing: Volume 1, you will
notice that there is overlap in some chapters in the book, especially chapters 1,
2, 6, 7, and 10. (There is also some overlap in chapter 4, in the sections on black-
box and experience-based testing.) This overlap is inherent in the structure of
the ISTQB Advanced syllabus, where both learning objectives and content are
common across the two analysis modules in some areas. We spent some time
grappling with how to handle this commonality and decided to make this book
completely free-standing. That meant that we had to include common material
for those who have not read volume 1. If you have read volume 1, you may
choose to skip chapters 1, 2, 6, 7, and 10, though people using this book to pre-
pare for the Technical Test Analysis exam should read those chapters for review.

If you have also read Advanced Software Testing: Volume 2, which is for test
managers, you’ll find parallel chapters that address the material in detail but

__AST V3.book Seite xx Freitag, 1. Juli 2011 1:06 13

 Introduction xxi

with different emphasis. For example, technical test analysts need to know quite
a bit about incident management. Technical test analysts spend a lot of time cre-
ating incident reports, and you need to know how to do that well. Test managers
also need to know a lot about incident management, but they focus on how to
keep incidents moving through their reporting and resolution lifecycle and how
to gather metrics from such reports.

What should a technical test analyst be able to do? Or, to ask the question
another way, what should you have learned to do—or learned to do better—by
the time you finish this book?

■ Structure the tasks defined in the test strategy in terms of technical
requirements (including the coverage of technically related quality risks)

■ Analyze the internal structure of the system in sufficient detail to meet the
expected quality level

■ Evaluate the system in terms of technical quality attributes such as
performance, security, etc.

■ Prepare and execute adequate activities, and report on their progress
■ Conduct technical testing activities
■ Provide the necessary evidence to support evaluations
■ Implement the necessary tools and techniques to achieve the defined goals

In this book, we focus on these main concepts. We suggest that you keep these
high-level objectives in mind as we proceed through the material in each of the
following chapters.

In writing this book, we’ve kept foremost in our minds the question of how
to make this material useful to you. If you are using this book to prepare for an
ISTQB Advanced Level Technical Test Analyst exam, then we recommend that
you read chapter 11 first, then read the other 10 chapters in order. If you are
using this book to expand your overall understanding of testing to an advanced
and highly technical level but do not intend to take the ISTQB Advanced Level
Technical Test Analyst exam, then we recommend that you read chapters 1
through 10 only. If you are using this book as a reference, then feel free to read
only those chapters that are of specific interest to you.

Each of the first 10 chapters is divided into sections. For the most part, we
have followed the organization of the ISTQB Advanced syllabus to the point of
section divisions, but subsections and sub-subsection divisions in the syllabus

__AST V3.book Seite xxi Freitag, 1. Juli 2011 1:06 13

xxii Introduction

might not appear. You’ll also notice that each section starts with a text box
describing the learning objectives for this section. If you are curious about how
to interpret those K2, K3, and K4 tags in front of each learning objective, and
how learning objectives work within the ISTQB syllabus, read chapter 11.

Software testing is in many ways similar to playing the piano, cooking a
meal, or driving a car. How so? In each case, you can read books about these
activities, but until you have practiced, you know very little about how to do it.
So we’ve included practical, real-world exercises for the key concepts. We
encourage you to practice these concepts with the exercises in the book. Then,
make sure you take these concepts and apply them on your projects. You can
become an advanced testing professional only by applying advanced test tech-
niques to actual software testing.

ISTQB Copyright

This book is based on the ISTQB Advanced Syllabus version 2007. It also
references the ISTQB Foundation Syllabus version 2011. It uses terminology
definitions from the ISTQB Glossary version 2.1. These three documents are
copyrighted by the ISTQB and used by permission.

ASTV3Chapter0_Introduction.fm Seite xxii Mittwoch, 13. Juli 2011 2:05 14

1

1 Test Basics

“Read the directions and directly you will be directed in the right direction.”
A doorknob in Lewis Carroll’s surreal fantasy, Alice in Wonderland.

The first chapter of the Advanced syllabus is concerned with contextual and
background material that influences the remaining chapters. There are five sec-
tions.

1. Introduction
2. Testing in the Software Lifecycle
3. Specific Systems
4. Metrics and Measurement
5. Ethics

Let’s look at each section and how it relates to technical test analysis.

1.1 Introduction

This chapter, as the name implies, introduces some basic aspects of software
testing. These central testing themes have general relevance for testing profes-
sionals.

There are four major areas:

■ Lifecycles and their effects on testing
■ Special types of systems and their effects on testing
■ Metrics and measures for testing and quality
■ Ethical issues

Learning objectives
Recall of content only

__AST V3.book Seite 1 Freitag, 1. Juli 2011 1:06 13

2 1 Test Basics

Many of these concepts are expanded upon in later chapters. This material
expands on ideas introduced in the Foundation syllabus.

1.2 Testing in the Software Lifecycle

Chapter 2 in the Foundation syllabus discusses integrating testing into the soft-
ware lifecycle. As with the Foundation syllabus, in the Advanced syllabus, you
should understand that testing must be integrated into the software lifecycle to
succeed. This is true whether the particular lifecycle chosen is sequential, incre-
mental, iterative, or spiral.

Proper alignment between the testing process and other processes in the
lifecycle is critical for success. This is especially true at key interfaces and hand-
offs between testing and lifecycle activities such as these:

■ Requirements engineering and management
■ Project management
■ Configuration and change management
■ Software development and maintenance
■ Technical support
■ Technical documentation

Learning objectives
Recall of content only

ISTQB Glossary

software lifecycle: The period of time that begins when a software product is
conceived and ends when the software is no longer available for use. The soft-
ware lifecycle typically includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase. Note
that these phases may overlap or be performed iteratively.

__AST V3.book Seite 2 Freitag, 1. Juli 2011 1:06 13

 1.2 Testing in the Software Lifecycle 3

Let’s look at two examples of alignment.
In a sequential lifecycle model, a key assumption is that the project team

will define the requirements early in the project and then manage the (hopefully
limited) changes to those requirements during the rest of the project. In such a
situation, if the team follows a formal requirements process, an independent test
team in charge of the system test level can follow an analytical requirements-
based test strategy.

Using a requirements-based strategy in a sequential model, the test team
would start—early in the project—planning and designing tests following an
analysis of the requirements specification to identify test conditions. This plan-
ning, analysis, and design work might identify defects in the requirements,
making testing a preventive activity. Failure detection would start later in the
lifecycle, once system test execution began.

However, suppose the project follows an incremental lifecycle model,
adhering to one of the agile methodologies like Scrum. The test team won’t
receive a complete set of requirements early in the project, if ever. Instead, the
test team will receive requirements at the beginning of sprint, which typically
lasts anywhere from two to four weeks.

Rather than analyzing extensively documented requirements at the outset
of the project, the test team can instead identify and prioritize key quality risk
areas associated with the content of each sprint; i.e., they can follow an analyti-
cal risk-based test strategy. Specific test designs and implementation will occur
immediately before test execution, potentially reducing the preventive role of
testing. Failure detection starts very early in the project, at the end of the first
sprint, and continues in repetitive, short cycles throughout the project. In such a
case, testing activities in the fundamental testing process overlap and are con-
current with each other as well as with major activities in the software lifecycle.

No matter what the lifecycle—and indeed, especially with the more fast-
paced agile lifecycles—good change management and configuration manage-
ment are critical for testing. A lack of proper change management results in an
inability of the test team to keep up with what the system is and what it should
do. As was discussed in the Foundation syllabus, a lack of proper configura-
tion management may lead to loss of artifact changes, an inability to say what
was tested at what point in time, and severe lack of clarity around the mean-
ing of the test results.

__AST V3.book Seite 3 Freitag, 1. Juli 2011 1:06 13

4 1 Test Basics

The Foundation syllabus cited four typical test levels:

■ Unit or component
■ Integration
■ System
■ Acceptance

The Foundation syllabus mentioned some reasons for variation in these levels,
especially with integration and acceptance.

Integration testing can mean component integration testing—integrating a
set of components to form a system, testing the builds throughout that process.
Or it can mean system integration testing—integrating a set of systems to form
a system of systems, testing the system of systems as it emerges from the
conglomeration of systems.

As discussed in the Foundation syllabus, acceptance test variations include
user acceptance tests and regulatory acceptance tests.

Along with these four levels and their variants, at the Advanced level you
need to keep in mind additional test levels that you might need for your
projects. These could include the following:

■ Hardware-software integration testing
■ Feature interaction testing
■ Customer product integration testing

You should expect to find most if not all of the following for each level:

■ Clearly defined test goals and scope
■ Traceability to the test basis (if available)
■ Entry and exit criteria, as appropriate both for the level and for the system

lifecycle
■ Test deliverables, including results reporting

ISTQB Glossary

system of systems: Multiple heterogeneous, distributed systems that are
embedded in networks at multiple levels and in multiple interconnected
domains, addressing large-scale interdisciplinary common problems and
purposes, usually without a common management structure.

__AST V3.book Seite 4 Freitag, 1. Juli 2011 1:06 13

 1.2 Testing in the Software Lifecycle 5

■ Test techniques that will be applied, as appropriate for the level, for the team
and for the risks inherent in the system

■ Measurements and metrics
■ Test tools, where applicable and as appropriate for the level
■ And, if applicable, compliance with organizational or other standards

When RBCS associates perform assessments of test teams, we often find organi-
zations that use test levels but that perform them in isolation. Such isolation leads
to inefficiencies and confusion. While these topics are discussed more in
Advanced Software Testing: Volume 2, test analysts should keep in mind that using
documents like test policies and frequent contact between test-related staff can
coordinate the test levels to reduce gaps, overlap, and confusion about results.

Let’s take a closer look at this concept of alignment. We’ll use the V-model
shown in figure 1-1 as an example. We’ll further assume that we are talking
about the system test level.

Figure 1–1 V-model

Concept

In
te

gr
at

io
n/

Sy
st

em
 Te

st
Ac

ce
pt

an
ce

 Te
st

s

Co
m

po
ne

nt
 Te

st

Develop Tests

System

Develop Tests

Develop
Tests

Design System

Im
plem

ent System

Capture Requirem
ents

__AST V3.book Seite 5 Freitag, 1. Juli 2011 1:06 13

6 1 Test Basics

In the V-model, with a well-aligned test process, test planning occurs concur-
rently with project planning. In other words, the moment that the testing team
becomes involved is at the very start of the project.

Once the test plan is approved, test control begins. Test control continues
through to test closure. Analysis, design, implementation, execution, evaluation
of exit criteria, and test results reporting are carried out according to the plan.
Deviations from the plan are managed.

Test analysis starts immediately after or even concurrently with test plan-
ning. Test analysis and test design happen concurrently with requirements,
high-level design, and low-level design. Test implementation, including test
environment implementation, starts during system design and completes just
before test execution begins.

Test execution begins when the test entry criteria are met. More realistically,
test execution starts when most entry criteria are met and any outstanding entry
criteria are waived. In V-model theory, the entry criteria would include success-
ful completion of both component test and integration test levels. Test execu-
tion continues until the test exit criteria are met, though again some of these
may often be waived.

Evaluation of test exit criteria and reporting of test results occur throughout
test execution.

Test closure activities occur after test execution is declared complete.
This kind of precise alignment of test activities with each other and with the

rest of the system lifecycle will not happen simply by accident. Nor can you
expect to instill this alignment continuously throughout the process, without
any forethought.

Rather, for each test level, no matter what the selected software lifecycle and
test process, the test manager must perform this alignment. Not only must this
happen during test and project planning, but test control includes acting to
ensure ongoing alignment.

No matter what test process and software lifecycle are chosen, each project
has its own quirks. This is especially true for complex projects such as the sys-
tems of systems projects common in the military and among RBCS’s larger cli-
ents. In such a case, the test manager must plan not only to align test processes,
but also to modify them. Off-the-rack process models, whether for testing alone
or for the entire software lifecycle, don’t fit such complex projects well.

__AST V3.book Seite 6 Freitag, 1. Juli 2011 1:06 13

 1.3 Specific Systems 7

1.3 Specific Systems

In this section, we are going to talk about how testing affects—and is affected
by—the need to test two particular types of systems. The first type is systems of
systems. The second type is safety-critical systems.

Systems of systems are independent systems tied together to serve a com-
mon purpose. Since they are independent and tied together, they often lack a
single, coherent user or operator interface, a unified data model, compatible
external interfaces, and so forth.

Systems of systems projects include the following characteristics and risks:

■ The integration of commercial off-the-shelf (COTS) software along with
some amount of custom development, often taking place over a long
period.

■ Significant technical, lifecycle, and organizational complexity and
heterogeneity. This organizational and lifecycle complexity can include
issues of confidentiality, company secrets, and regulations.

■ Different development lifecycles and other processes among disparate
teams, especially—as is frequently the case—when insourcing, outsourcing,
and offshoring are involved.

■ Serious potential reliability issues due to intersystem coupling, where one
inherently weaker system creates ripple-effect failures across the entire
system of systems.

■ System integration testing, including interoperability testing, is essential.
Well-defined interfaces for testing are needed.

At the risk of restating the obvious, systems of systems projects are more com-
plex than single-system projects. The complexity increase applies organization-
ally, technically, processwise, and teamwise. Good project management, formal
development lifecycles and processes, configuration management, and quality
assurance become more important as size and complexity increase.

Let’s focus on the lifecycle implications for a moment.

Learning objectives
Recall of content only

__AST V3.book Seite 7 Freitag, 1. Juli 2011 1:06 13

8 1 Test Basics

As mentioned earlier, with systems of systems projects, we are typically
going to have multiple levels of integration. First, we will have component inte-
gration for each system, and then we’ll have system integration as we build the
system of systems.

We will also typically have multiple version management and version con-
trol systems and processes, unless all the systems happen to be built by the same
(presumably large) organization and that organization follows the same
approach throughout its software development team. This kind of unified
approach to such systems and processes is not something that we commonly see
during assessments of large companies, by the way.

The duration of projects tends to be long. We have seen them planned for as
long as five to seven years. A system of systems project with five or six systems
might be considered relatively short and relatively small if it lasted “only” a year
and involved “only” 40 or 50 people. Across this project, there are multiple test
levels, usually owned by different parties.

Because of the size and complexity of the project, it’s easy for handoffs and
transfers of responsibility to break down. So, we need formal information trans-
fer among project members (especially at milestones), transfers of responsibility
within the team, and handoffs. (A handoff, for those of you unfamiliar with the
term, is a situation in which some work product is delivered from one group to
another and the receiving group must carry out some essential set of activities
with that work product.)

Even when we’re integrating purely off-the-shelf systems, these systems are
evolving. That’s all the more likely to be true with custom systems. So we have
the management challenge of coordinating development of the individual sys-
tems and the test analyst challenge of proper regression testing at the system of
systems level when things change.

Especially with off-the-shelf systems, maintenance testing can be trig-
gered—sometimes without much warning—by external entities and events such
as obsolescence, bankruptcy, or upgrade of an individual system.

If you think of the fundamental test process in a system of systems project,
the progress of levels is not two-dimensional. Instead, imagine a sort of pyrami-
dal structure, as shown in figure 1-2.

__AST V3.book Seite 8 Freitag, 1. Juli 2011 1:06 13

 1.3 Specific Systems 9

Figure 1–2 Fundamental test process in a system of systems project

At the base, we have component testing. A separate component test level exists
for each system.

Moving up the pyramid, you have component integration testing. A sepa-
rate component integration test level exists for each system.

Next, we have system testing. A separate system test level exists for each
system.

Note that, for each of these test levels, we have separate organizational own-
ership if the systems come from different vendors. We also probably have sepa-
rate team ownership since multiple groups often handle component,
integration, and system test.

Continuing to move up the pyramid, we come to system integration testing.
Now, finally, we are talking about a single test level across all systems. Next
above that is systems testing, focusing on end-to-end tests that span all the sys-
tems. Finally, we have user acceptance testing. For each of these test levels, while
we have single organizational ownership, we probably have separate team own-
ership.

Let’s move on to safety-critical systems. Simply put, safety-critical systems
are those systems upon which lives depend. Failure of such a system—or even
temporary performance or reliability degradation or undesirable side effects as
support actions are carried out—can injure or kill people or, in the case of mili-
tary systems, fail to injure or kill people at a critical juncture of a battle.

System A System B

User acceptance test
System of
systems Systems test

System test

System integration test

Component integration test

Component test

__AST V3.book Seite 9 Freitag, 1. Juli 2011 1:06 13

10 1 Test Basics

Safety-critical systems, like systems of systems, have certain associated charac-
teristics and risks:

■ Since defects can cause death, and deaths can cause civil and criminal
penalties, proof of adequate testing can be and often is used to reduce
liability.

■ For obvious reasons, various regulations and standards often apply to
safety-critical systems. The regulations and standards can constrain the
process, the organizational structure, and the product. Unlike the usual
constraints on a project, though, these are constructed specifically to
increase the level of quality rather than to enable trade-offs to enhance
schedule, budget, or feature outcomes at the expense of quality. Overall,
there is a focus on quality as a very important project priority.

■ There is typically a rigorous approach to both development and testing.
Throughout the lifecycle, traceability extends all the way from regulatory
requirements to test results. This provides a means of demonstrating
compliance. This requires extensive, detailed documentation but provides
high levels of audit ability, even by non-test experts.

Audits are common if regulations are imposed. Demonstrating compliance can
involve tracing from the regulatory requirement through development to the
test results. An outside party typically performs the audits. Therefore, establish-
ing traceability up front and carrying out both from a people and a process
point of view.

During the lifecycle—often as early as design—the project team uses safety
analysis techniques to identify potential problems. As with quality risk analysis,
safety analysis will identify risk items that require testing. Single points of fail-
ure are often resolved through system redundancy, and the ability of that redun-
dancy to alleviate the single point of failure must be tested.

In some cases, safety-critical systems are complex systems or even systems
of systems. In other cases, non-safety-critical components or systems are inte-

ISTQB Glossary

safety-critical system: A system whose failure or malfunction may result in
death or serious injury to people, or loss or severe damage to equipment, or
environmental harm.

__AST V3.book Seite 10 Freitag, 1. Juli 2011 1:06 13

 1.4 Metrics and Measurement 11

grated into safety-critical systems or systems of systems. For example, network-
ing or communication equipment is not inherently a safety-critical system, but
if integrated into an emergency dispatch or military system, it becomes part of a
safety-critical system.

Formal quality risk management is essential in these situations. Fortunately,
a number of such techniques exist, such as failure mode and effect analysis; fail-
ure mode, effect, and criticality analysis; hazard analysis; and software common
cause failure analysis. We’ll look at a less formal approach to quality risk analysis
and management in chapter 3.

1.4 Metrics and Measurement

Throughout this book, we use metrics and measurement to establish expecta-
tions and guide testing by those expectations. You can and should apply metrics
and measurements throughout the software development lifecycle because well-
established metrics and measures, aligned with project goals and objectives, will
enable technical test analysts to track and report test and quality results to
management in a consistent and coherent way.

A lack of metrics and measurements leads to purely subjective assessments
of quality and testing. This results in disputes over the meaning of test results
toward the end of the lifecycle. It also results in a lack of clearly perceived and
communicated value, effectiveness, and efficiency for testing.

Learning objectives
Recall of content only

ISTQB Glossary
metric: A measurement scale and the method used for measurement.

measurement scale: A scale that constrains the type of data analysis that can
be performed on it.

measurement: The process of assigning a number or category to an entity to
describe an attribute of that entity.

measure: The number or category assigned to an attribute of an entity by
making a measurement.

metric
measurement scale
measurement
measure

__AST V3.book Seite 11 Freitag, 1. Juli 2011 1:06 13

12 1 Test Basics

Not only must we have metrics and measurements, we also need goals.
What is a “good” result for a given metric? An acceptable result? An unaccept-
able result? Without defined goals, successful testing is usually impossible. In
fact, when we perform assessments for our clients, we more often than not find
ill-defined metrics of test team effectiveness and efficiency with no goals and
thus bad and unrealistic expectations (which of course aren’t met). We can
establish realistic goals for any given metric by establishing a baseline measure
for that metric and checking current capability, comparing that baseline against
industry averages, and, if appropriate, setting realistic targets for improvement
to meet or exceed the industry average.

There’s just about no end to what can be subjected to a metric and tracked
through measurement. Consider the following:

■ Planned schedule and coverage
■ Requirements and their schedule, resource, and task implications for testing
■ Workload and resource usage
■ Milestones and scope of testing
■ Planned and actual costs
■ Risks; both quality and project risks
■ Defects, including total found, total fixed, current backlog, average closure

periods, and configuration, subsystem, priority, or severity distribution

During test planning, we establish expectations in the form of goals for the
various metrics. As part of test control, we can measure actual outcomes and
trends against these goals. As part of test reporting, we can consistently
explain to management various important aspects of the process, product,
and project, using objective, agreed-upon metrics with realistic, achievable
goals.

When thinking about a testing metrics and measurement program, there
are three main areas to consider: definition, tracking, and reporting. Let’s start
with definition.

In a successful testing metrics program, you define a useful, pertinent, and
concise set of quality and test metrics for a project. You avoid too large a set of
metrics because this will prove difficult and perhaps expensive to measure while
often confusing rather than enlightening the viewers and stakeholders.

__AST V3.book Seite 12 Freitag, 1. Juli 2011 1:06 13

 1.4 Metrics and Measurement 13

You also want to ensure uniform, agreed-upon interpretations of these met-
rics to minimize disputes and divergent opinions about the meaning of certain
measures of outcomes, analyses, and trends. There’s no point in having a met-
rics program if everyone has an utterly divergent opinion about what particular
measures mean.

Finally, define metrics in terms of objectives and goals for a process or task,
for components or systems, and for individuals or teams.

Victor Basili’s well-known Goal Question Metric technique is one way to
evolve meaningful metrics. (We prefer to use the word objective where Basili
uses goal.) Using this technique, we proceed from the objectives of the effort—
in this case, testing—to the questions we’d have to answer to know if we were
achieving those objectives to, ultimately, the specific metrics.

For example, one typical objective of testing is to build confidence. One nat-
ural question that arises in this regard is, How much of the system has been
tested? Metrics for coverage include percentage requirements covered by tests,
percentage of branches and statements covered by tests, percentage of interfaces
covered by tests, percentage of risks covered by tests, and so forth.

Let’s move on to tracking.
Since tracking is a recurring activity in a metrics program, the use of auto-

mated tool support can reduce the time required to capture, track, analyze,
report, and measure the metrics.

Be sure to apply objective and subjective analyses for specific metrics over
time, especially when trends emerge that could allow for multiple interpreta-
tions of meaning. Try to avoid jumping to conclusions or delivering metrics that
encourage others to do so.

Be aware of and manage the tendency for people’s interests to affect the
interpretation they place on a particular metric or measure. Everyone likes to
think they are objective—and, of course, right as well as fair!—but usually
people’s interests affect their conclusions.

Finally, let’s look at reporting.
Most importantly, reporting of metrics and measures should enlighten

management and other stakeholders, not confuse or misdirect them. In part,
this is achieved through smart definition of metrics and careful tracking, but
it is possible to take perfectly clear and meaningful metrics and confuse
people with them through bad presentation. Edward Tufte’s series of books,

__AST V3.book Seite 13 Freitag, 1. Juli 2011 1:06 13

14 1 Test Basics

starting with The Graphical Display of Quantitative Information, is a treasure
trove of ideas about how to develop good charts and graphs for reporting
purposes.1

Good testing reports based on metrics should be easily understood, not
overly complex and certainly not ambiguous. The reports should draw the
viewer’s attention toward what matters most, not toward trivialities. In that way,
good testing reports based on metrics and measures will help management
guide the project to success.

Not all types of graphical displays of metrics are equal—or equally useful. A
snapshot of data at a moment in time, as shown in a table, might be the right
way to present some information, such as the coverage planned and achieved
against certain critical quality risk areas. A graph of a trend over time might be a
useful way to present other information, such as the total number of defects
reported and the total number of defects resolved since the start of testing. An
analysis of causes or relationships might be a useful way to present still other
information, such as a scatter plot showing the correlation (or lack thereof)
between years of tester experience and percentage of bug reports rejected.

1.5 Ethics

Many professions have ethical standards. In the context of professionalism,
ethics are “rules of conduct recognized in respect to a particular class of human
actions or a particular group, culture, etc.”2

1. The three books of Tufte’s that Rex has read and can strongly recommend on this topic are The
Graphical Display of Quantitative Information, Visual Explanations, and Envisioning Information
(all published by Graphics Press, Cheshire, CT).

Learning objectives
Recall of content only

2. Definition from dictionary.com.

ISTQB Glossary

ethics: No definition provided in the ISTQB Glossary.
ethics

__AST V3.book Seite 14 Freitag, 1. Juli 2011 1:06 13

 1.5 Ethics 15

Since, as a technical test analyst, you’ll often have access to confidential and
privileged information, ethical guidelines can help you to use that information
appropriately. In addition, you should use ethical guidelines to choose the best
possible behaviors and outcomes for a given situation, given your constraints.
The phrase “best possible” means for everyone, not just you.

Here is an example of ethics in action. One of the authors, Rex Black, is
president of three related international software testing consultancies, RBCS,
RBCS AU/NZ, and Software TestWorx. He also serves on the ISTQB and
ASTQB boards of directors. As such, he might have and does have insight into
the direction of the ISTQB program that RBCS’ competitors in the software
testing consultancy business don’t have.

In some cases, such as helping to develop syllabi, Rex has to make those
business interests clear to people, but he is allowed to help do so. Rex helped
write both the Foundation and Advanced syllabi.

In other cases, such as developing exam questions, Rex agreed, along with
his colleagues on the ASTQB, that he should not participate. Direct access to the
exam questions would make it all too likely that, consciously or unconsciously,
RBCS would warp its training materials to “teach the exam.”

As you advance in your career as a tester, more and more opportunities to
show your ethical nature—or to be betrayed by a lack of it—will come your way.
It’s never too early to inculcate a strong sense of ethics.

The ISTQB Advanced syllabus makes it clear that the ISTQB expects certificate
holders to adhere to the following code of ethics.

PUBLIC – Certified software testers shall act consistently with the public inter-
est. For example, if you are working on a safety-critical system and are asked to
quietly cancel some defect reports, it’s an ethical problem if you do so.

CLIENT AND EMPLOYER – Certified software testers shall act in a manner
that is in the best interests of their client and employer and consistent with the
public interest. For example, if you know that your employer’s major project is
in trouble and you short-sell the stock and then leak information about the
project problems to the Internet, that’s a real ethical lapse—and probably a
criminal one too.

PRODUCT – Certified software testers shall ensure that the deliverables they
provide (on the products and systems they test) meet the highest professional

__AST V3.book Seite 15 Freitag, 1. Juli 2011 1:06 13

16 1 Test Basics

standards possible. For example, if you are working as a consultant and you
leave out important details from a test plan so that the client has to hire you on
the next project, that’s an ethical lapse.

JUDGMENT – Certified software testers shall maintain integrity and indepen-
dence in their professional judgment. For example, if a project manager asks
you not to report defects in certain areas due to potential business sponsor reac-
tions, that’s a blow to your independence and an ethical failure on your part if
you comply.

MANAGEMENT – Certified software test managers and leaders shall subscribe
to and promote an ethical approach to the management of software testing. For
example, favoring one tester over another because you would like to establish a
romantic relationship with the favored tester’s sister is a serious lapse of mana-
gerial ethics.

PROFESSION – Certified software testers shall advance the integrity and repu-
tation of the profession consistent with the public interest. For example, if you
have a chance to explain to your child’s classmates or your spouse’s colleagues
what you do, be proud of it and explain the ways software testing benefits
society.

COLLEAGUES – Certified software testers shall be fair to and supportive of
their colleagues and promote cooperation with software developers. For exam-
ple, it is unethical to manipulate test results to arrange the firing of a program-
mer whom you detest.

SELF – Certified software testers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession. For example, attending courses, reading books, and
speaking at conferences about what you do help to advance yourself—and the
profession. This is called doing well while doing good, and fortunately, it is very
ethical!

1.6 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to rein-
force your knowledge and understanding of the material and to prepare for the
ISTQB Advanced Level Technical Test Analyst exam.

__AST V3.book Seite 16 Freitag, 1. Juli 2011 1:06 13

 1.6 Sample Exam Questions 17

1 You are working as a test analyst at a bank. At the bank, technical test
analysts work closely with users during user acceptance testing. The bank
has bought two financial applications as commercial off-the-shelf (COTS)
software from large software vendors. Previous history with these vendors
has shown that they deliver quality applications that work on their own, but
this is the first time the bank will attempt to integrate applications from
these two vendors. Which of the following test levels would you expect to
be involved in? [Note: There might be more than one right answer.]

A Component test

B Component integration test

C System integration test

D Acceptance test

2 Which of the following is necessarily true of safety-critical systems?

A They are composed of multiple COTS applications.

B They are complex systems of systems.

C They are systems upon which lives depend.

D They are military or intelligence systems.

__AST V3.book Seite 17 Freitag, 1. Juli 2011 1:06 13

18 1 Test Basics

__AST V3.book Seite 18 Freitag, 1. Juli 2011 1:06 13

19

2 Testing Processes

Do not enter. If the fall does not kill you, the crocodile will.

A sign blocking the entrance to a parapet above a pool
in the Sydney Wildlife Centre, Australia, guiding people in a safe

viewing process for one of many dangerous-fauna exhibits.

The second chapter of the Advanced syllabus is concerned with the process of
testing and the activities that occur within that process. It establishes a frame-
work for all the subsequent material in the syllabus and allows you to visualize
organizing principles for the rest of the concepts. There are seven sections.

1. Introduction
2. Test Process Models
3. Test Planning and Control
4. Test Analysis and Design
5. Test Implementation and Execution
6. Evaluating Exit Criteria and Reporting
7. Test Closure Activities

Let’s look at each section and how it relates to technical test analysis.

2.1 Introduction

Learning objectives

Recall of content only

__AST V3.book Seite 19 Freitag, 1. Juli 2011 1:06 13

20 2 Testing Processes

The ISTQB Foundation syllabus describes the ISTQB fundamental test process.
It provides a generic, customizable test process, shown in figure 2-1. That
process consists of the following activities:

■ Planning and control
■ Analysis and design
■ Implementation and execution
■ Evaluating exit criteria and reporting
■ Test closure activities

For technical test analysts, we can focus on the middle three activities in the
bullet list above.

Figure 2–1 ISTQB fundamental test process

2.2 Test Process Models

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 2 of the Advanced
syllabus for general recall and familiarity only.

Learning objectives

Recall of content only

Execution

Control

Project Timeline

Evaluating exit criteria
Reporting test results

__AST V3.book Seite 20 Freitag, 1. Juli 2011 1:06 13

 2.3 Test Planning and Control 21

2.3 Test Planning and Control

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 2 of the Advanced
syllabus for general recall and familiarity only.

2.4 Test Analysis and Design

ISTQB Glossary

test planning: The activity of establishing or updating a test plan.

test plan: A document describing the scope, approach, resources and schedule
of intended test activities. It identifies, among other test items, the features to
be tested, the testing tasks, who will do each task, the degree of tester inde-
pendence, the test environment, the test design techniques and entry and exit
criteria to be used, and the rationale for their choice, and any risks requiring
contingency planning. It is a record of the test planning process.

Learning objectives

Recall of content only

Learning objectives

(K2) Explain the stages in an application’s lifecycle where non-
functional tests and architecture-based tests may be applied.
Explain the causes of non-functional testing taking place only in
specific stages of an application’s lifecycle.

(K2) Give examples of the criteria that influence the structure and
level of test condition development.

(K2) Describe how test analysis and design are static testing
techniques that can be used to discover defects.

(K2) Explain by giving examples the concept of test oracles and
how a test oracle can be used in test specifications.

__AST V3.book Seite 21 Freitag, 1. Juli 2011 1:06 13

22 2 Testing Processes

During the test planning activities in the test process, test leads and test manag-
ers work with project stakeholders to identify test objectives. In the IEEE 829
test plan template—which was introduced at the Foundation Level and which
we’ll review later in this book—the lead or manager can document these in the
section “Features to be Tested.”

The test objectives are a major deliverable for technical test analysts because
without them, we wouldn’t know what to test. During test analysis and design
activities, we use these test objectives as our guide to carry out two main subac-
tivities:

■ Identify and refine the test conditions for each test objective
■ Create test cases that exercise the identified test conditions

However, test objectives are not enough by themselves. We not only need to
know what to test, but in what order and how much. Because of time con-
straints, the desire to test the most important areas first, and the need to expend
our test effort in the most effective and efficient manner possible, we need to
prioritize the test conditions.

When following a risk-based testing strategy—which we’ll discuss in detail
in chapter 3—the test conditions are quality risk items identified during quality
risk analysis. The assignment of priority for each test condition usually involves
determining the likelihood and impact associated with each quality risk item;
i.e., we assess the level of risk for each risk item. The priority determines the
allocation of test effort (throughout the test process) and the order of design,
implementation, and execution of the related tests.

ISTQB Glossary

test case: A set of input values, execution preconditions, expected results, and
execution postconditions developed for a particular objective or test condi-
tion, such as to exercise a particular program path or to verify compliance with
a specific requirement.

test condition: An item or event of a component or system that could be veri-
fied by one or more test cases, e.g., a function, transaction, feature, quality
attribute, or structural element.

__AST V3.book Seite 22 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 23

Throughout the process, the specific test conditions and their associated priori-
ties can change as the needs—and our understanding of the needs—of the
project and project stakeholders evolve.

This prioritization, use of prioritization, and reprioritization occurs regu-
larly in the test process. It starts during risk analysis and test planning, of
course. It continues throughout the process, from analysis and design to
implementation and execution. It influences evaluation of exit criteria and
reporting of test results.

2.4.1 Non-functional Test Objectives

Before we get deeper into this process, let’s look at an example of non-functional
test objectives.

First, it’s important to remember that non-functional test objectives can
apply to any test level and exist throughout the lifecycle. Too often major
non-functional test objectives are not addressed until the very end of the
project, resulting in much wailing and gnashing of teeth when show-stopping
failures are found.

Consider a video game as an example. For a video game, the ability to
interact with the screen in real time, with no perceptible delays, is a key non-
functional test objective. Every subsystem of the game must interact and per-
form efficiently to achieve this goal.

To be smart about this testing, execution efficiency to enable timely
processing should be tested at the unit, integration, system, and acceptance
levels. Finding a serious bottleneck during system test would affect the sched-
ule, and that’s not good for a consumer product like a game—or any other
kind of software or system, for that matter.

ISTQB Glossary

exit criteria: The set of generic and specific conditions, agreed upon with the
stakeholders, for permitting a process to be officially completed. The purpose
of exit criteria is to prevent a task from being considered complete when there
are still outstanding parts of the task which have not been finished. Exit criteria
are used to report against and to plan when to stop testing. exit criteria

__AST V3.book Seite 23 Freitag, 1. Juli 2011 1:06 13

24 2 Testing Processes

Furthermore, why wait until test execution starts at any level, early or late?
Instead, start with reviews of requirements specifications, design specifications,
and code to assess this function as well.

Many times, non-functional quality characteristics can be quantified; in
this case, we might have actual performance requirements which we can test
throughout the various test levels. For example, suppose that key events must be
processed within 3 milliseconds of input to a specific component to be able to
meet performance standards; we can test if the component actually meets that
measure. In other cases, the requirements might be implicit rather than explicit:
the system must be “fast enough.”

Some types of non-functional testing should clearly be performed as early
as possible. As an example, for many projects we have worked on, perfor-
mance testing was only done late in system testing. The thought was that it
could not be done earlier because the functional testing had not yet been
done, so end-to-end testing would not be possible. Then, when serious bottle-
necks resulting in extremely slow performance were discovered in the sys-
tem, the release schedule was severely impacted.

Other projects targeted performance testing as critical. At the unit and
component testing level, measurements were made as to time required for
processing through the objects. At integration testing, subsystems were
benchmarked to make sure they could perform in an optimal way. As system
testing started, performance testing was a crucial piece of the planning and
started as soon as some functionality was available, even though the system
was not yet feature complete.

All of this takes time and resources, planning and effort. Some perfor-
mance tools are not really useful too early in the process, but measurements
can still be taken using simpler tools.

Other non-functional testing may not make sense until late in the Soft-
ware Development Life Cycle (SDLC). While error and exception handling
can be tested in unit and integration testing, full blown recoverability testing

ISTQB Glossary

test execution: The process of running a test on the component or system
under test, producing actual result(s).

test execution

__AST V3.book Seite 24 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 25

really makes sense only in the system, acceptance, and system integration
phases when the response of the entire system can be measured.

2.4.2 Identifying and Documenting Test Conditions

To identify test conditions, we can perform analysis of the test basis, the test
objectives, the quality risks, and so forth using any and all information inputs
and sources we have available. For analytical risk-based testing strategies, we’ll
cover exactly how this works in chapter 3.

If you’re not using analytical risk-based testing, then you’ll need to select
the specific inputs and techniques according to the test strategy or strategies
you are following. Those strategies, inputs, and techniques should align with
the test plan or plans, of course, as well as with any broader test policies or
test handbooks.

Now, in this book, we’re concerned primarily with the technical test ana-
lyst role. So we address both functional tests (especially from a technical per-
spective) and non-functional tests. The analysis activities can and should
identify functional and non-functional test conditions. We should consider
the level and structure of the test conditions for use in addressing functional
and non-functional characteristics of the test items.

There are two important choices when identifying and documenting test condi-
tions:

■ The structure of the documentation for the test conditions
■ The level of detail we need to describe the test conditions in the documen-

tation

There are many common ways to determine the level of detail and structure of
the test conditions.

One is to work in parallel with the test basis documents. For example, if
you have a marketing requirements document and a system requirements
document in your organization, the former is usually high level and the latter
is low level. You can use the marketing requirements document to generate
the high-level test conditions and then use the system requirements docu-
ment to elaborate one or more low-level test conditions underneath each
high-level test condition.

__AST V3.book Seite 25 Freitag, 1. Juli 2011 1:06 13

26 2 Testing Processes

Another approach is often used with quality risk analysis (sometimes
called product risk analysis). In this approach, we can outline the key features
and quality characteristics at a high level. We can then identify one or more
detailed quality risk items for each feature or characteristic. These quality risk
items are thus the test conditions.

Another approach, if you have only detailed requirements, is to go
directly to the low-level requirements. In this case, traceability from the
detailed test conditions to the requirements (which impose the structure) is
needed for management reporting and to document what the test is to estab-
lish.

Yet another approach is to identify high-level test conditions only, some-
times without any formal test bases. For example, in exploratory testing some
advocate the documentation of test conditions in the form of test charters. At
that point, there is little to no additional detail created for the unscripted or
barely scripted tests.

Again, it’s important to remember that the chosen level of detail and the
structure must align with the test strategy or strategies, and those strategies
should align with the test plan or plans, of course, as well as with any broader
test policies or test handbooks.

Also, remember that it’s easy to capture traceability information while
you’re deriving test conditions from test basis documents like requirements,
designs, use cases, user manuals, and so forth. It’s much harder to re-create
that information later by inspection of test cases.

Let’s look at an example of applying a risk-based testing strategy to this
step of identifying test conditions.

Suppose you are working on an online banking system project. During a
risk analysis session, system response time, a key aspect of system perfor-
mance, is identified as a high-risk area for the online banking system. Several
different failures are possible, each with its own likelihood and impact.

So, discussions with the stakeholders lead us to elaborate the system perfor-
mance risk area, identifying three specific quality risk items:

■ Slow response time during login
■ Slow response time during queries
■ Slow response time during a transfer transaction

__AST V3.book Seite 26 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 27

At this point, the level of detail is specific enough that the risk analysis team can
assign specific likelihood and impact ratings for each risk item.

Now that we have test conditions, the next step is usually to elaborate those
into test cases. We say “usually” because some test strategies, like the reactive
ones discussed in the Foundation syllabus and in this book in chapter 4, don’t
always use written test cases. For the moment, let’s assume that we want to spec-
ify test cases that are repeatable, verifiable, and traceable back to requirements,
quality risk, or whatever else our tests are based on.

If we are going to create test cases, then, for a given test condition—or
two or more related test conditions—we can apply various test design tech-
niques to create test cases. These techniques are covered in chapter 4. Keep in
mind that you can and should blend techniques in a single test case.

We mentioned traceability to the requirements, quality risks, and other test
bases. Some of those other test bases for technical test analysts can include
designs (high or low level), architectural documents, class diagrams, object
hierarchies, and even the code itself. We can capture traceability directly, by
relating the test case to the test basis element or elements that gave rise to the
test conditions from which we created the test case. Alternatively, we can relate
the test case to the test conditions, which are in turn related to the test basis
elements.

ISTQB Glossary

test design: (1) See test design specification. (2) The process of transforming
general testing objectives into tangible test conditions and test cases.

test design specification: A document specifying the test conditions (cover-
age items) for a test item and the detailed test approach and identifying the
associated high-level test cases.

high-level test case: A test case without concrete (implementation-level)
values for input data and expected results. Logical operators are used;
instances of the actual values are not yet defined and/or available.

low-level test case: A test case with concrete (implementation-level) values for
input data and expected results. Logical operators from high-level test cases
are replaced by actual values that correspond to the objectives of the logical
operators.

__AST V3.book Seite 27 Freitag, 1. Juli 2011 1:06 13

28 2 Testing Processes

As with test conditions, we’ll need to select a level of detail and structure for our
test cases. It’s important to remember that the chosen level of detail and the
structure must align with the test strategy or strategies. Those strategies should
align with the test plan or plans, of course, as well as with any broader test poli-
cies or test handbooks.

So, can we say anything else about the test design process? Well, the specific
process of test design depends on the technique. However, it typically involves
defining the following:

■ Preconditions
■ Test environment requirements
■ Test inputs and other test data requirements
■ Expected results
■ Postconditions

Defining the expected result of a test can be tricky, especially as expected results
are not only screen outputs, but also data and environmental post conditions.
Solving this problem requires that we have what’s called a test oracle, which we’ll
look at in a moment.

First, though, notice the mention of test environment requirements in the
preceding bullet list. This is an area of fuzziness in the ISTQB fundamental
test process. Where is the line between test design and test implementation,
exactly?

The Advanced syllabus says, “[D]uring test design the required detailed test
infrastructure requirements may be defined, although in practice these may not
be finalized until test implementation.” Okay, but maybe we’re doing some
implementation as part of the design? Can’t the two overlap? To us, trying to
draw sharp distinctions results in many questions along the lines of, How many
angels can dance on the head of a pin?

ISTQB Glossary

test implementation: The process of developing and prioritizing test proce-
dures, creating test data, and, optionally, preparing test harnesses and writing
automated test scripts.

test implementation

__AST V3.book Seite 28 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 29

Whatever we call defining test environments and infrastructures—design,
implementation, environment setup, or some other name—it is vital to remem-
ber that testing involves more than just the test objects and the testware. There
is a test environment, and this isn’t just hardware. It includes rooms, equipment,
personnel, software, tools, peripherals, communications equipment, user
authorizations, and all other items required to run the tests.

2.4.3 Test Oracles

Okay, let’s look at what test oracles are and what oracle-related problems the
technical test analyst faces.

A test oracle is a source we use to determine the expected results of a test.
We can compare these expected results with the actual results when we run a
test. Sometimes the oracle is the existing system. Sometimes it’s a user man-
ual. Sometimes it’s an individual’s specialized knowledge. Rex usually says that
we should never use the code itself as an oracle, even for structural testing,
because that’s simply testing that the compiler, operating system, and hard-
ware work. Jamie feels that the code can serve as a useful partial oracle, say-
ing it doesn’t hurt to consider it, though he agrees with Rex that it should not
serve as the sole oracle.

So, what is the oracle problem? Well, if you haven’t experienced this first-
hand, ask yourself, in general, how we know what “correct results” are for a
test? The difficulty of determining the correct result is the oracle problem.

If you’ve just entered the workforce from the ivory towers of academia,
you might have learned about perfect software engineering projects. You may
have heard stories about detailed, clear, and consistent test bases like require-
ments and design specifications that define all expected results. Those stories
were myths.

In the real world, on real projects, test basis documents like requirements
are vague. Two documents, such as a marketing requirements document and
a system requirements document, will often contradict each other. These doc-
uments may have gaps, omitting any discussion of important characteristics of
the product—especially non-functional characteristics, and especially usabil-
ity and user interface characteristics.

Sometimes these documents are missing entirely. Sometimes they exist
but are so superficial as to be useless. One of our clients showed Rex a hand-

__AST V3.book Seite 29 Freitag, 1. Juli 2011 1:06 13

30 2 Testing Processes

written scrawl on a letter-size piece of paper, complete with crude illustra-
tions, which was all the test team had received by way of requirements on a
project that involved 100 or so person-months of effort. We have both worked
on projects where even that would be an improvement over what we actually
received!

When test basis documents are delivered, they are often delivered late,
often too late to wait for them to be done before we begin test design (at least
if we want to finish test design before we start test execution). Even with the
best intentions on the part of business analysts, sales and marketing staff, and
users, test basis documents won’t be perfect. Real-world applications are com-
plex and not entirely amenable to complete, unambiguous specification.

So we have to augment the written test basis documents we receive with
tester expertise or access to expertise, along with judgment and professional
pessimism. Using all available oracles—written and mental, provided and
derived—the tester can define expected results before and during test execu-
tion.

Since we’ve been talking a lot about requirements, you might assume that
the oracle problem applies only to high-level test levels like system test and
acceptance test. Nope. The oracle problem—and its solutions—apply to all test
levels. The test bases will vary from one level to another, though. Higher test
levels like user acceptance test and system test rely more on requirements spec-
ification, use cases, and defined business processes. Lower test levels like com-
ponent test and integration test rely more on low-level design specification

While this is a hassle, remember that you must solve the oracle problem
in your testing. If you run tests with no way to evaluate the results, you are
wasting your time. You will provide low, zero, or negative value to the team.
Such testing generates false positives and false negatives. It distracts the team
with spurious results of all kinds. It creates false confidence in the system.

By the way, as for our sarcastic aside about the “ivory tower of academia”
a moment ago, let us mention that, when Rex studied computer science at
UCLA quite a few years ago, one of his software engineering professors told
him about this problem right from the start. One of Jamie’s professors at
Lehigh said that that complete requirements were more mythological than
unicorns. Neither of us could say we weren’t warned!

Let’s look at an example of a test oracle, from the real world.

__AST V3.book Seite 30 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 31

Rex and his associates worked on a project to develop a banking applica-
tion to replace a legacy system. There were two test oracles. One was the
requirements specification, such as it was. The other was the legacy system.
They faced two challenges.

For one thing, the requirements were vague. The original concept of the
project, from the vendor’s side, was “Give the customer whatever the cus-
tomer wants,” which they then realized was a good way to go bankrupt given
the indecisive and conflicting ideas about what the system should do among
the customer’s users. The requirements were the outcome of a belated effort
to put more structure around the project.

For another thing, sometimes the new system differed from the legacy
system in minor ways. In one infamous situation, there was a single bug
report that they opened, then deferred, then reopened, then deferred again, at
least four or five times. It described situations where the monthly payment
varied by $0.01.

The absence of any reliable, authoritative, consistent set of oracles led to a
lot of “bug report ping-pong.” They also had bug report prioritization issues
as people argued over whether some problems were problems at all. They had
high rates of false positives and negatives. The entire team—including the test
team—was frustrated. So, you can see that the oracle problem is not some
abstract concept; it has real-world consequences.

2.4.4 Standards

At this point, let’s review some standards from the Foundation that will be use-
ful in test analysis and design.

First, let’s look at two documentation templates you can use to capture
information as you analyze and design your tests, assuming you intend to
document what you are doing, which is usually true. The first is the IEEE 829
test design specification.

Remember from the Foundation course that a test condition is an item or
event of a component or system that could be verified by one or more test
cases, e.g., a function, transaction, feature, quality attribute, identified risk, or
structural element. The IEEE 829 test design specification describes a condi-
tion, feature or small set of interrelated features to be tested and the set of
tests that cover them at a very high or logical level. The number of tests

__AST V3.book Seite 31 Freitag, 1. Juli 2011 1:06 13

32 2 Testing Processes

required should be commensurate with the risks we are trying to mitigate (as
reflected in the pass/fail criteria.) The design specification template includes
the following sections:

■ Test design specification identifier (following whatever standard your
company uses for document identification)

■ Features to be tested (in this test suite)
■ Approach refinements (specific techniques, tools, etc.)
■ Test identification (tracing to test cases in suites)
■ Feature pass/fail criteria (e.g., how we intend to determine whether a fea-

ture works, such as via a test oracle, a test basis document, or a legacy sys-
tem)

The collection of test cases outlined in the test design specification is often
called a test suite.

The sequencing of test suites and cases within suites is often driven by
risk and business priority. Of course, project constraints, resources, and
progress must affect the sequencing of test suites.

Next comes the IEEE 829 test case specification. A test case specification
describes the details of a test case. This template includes the following sections:

■ Test case specification identifier
■ Test items (what is to be delivered and tested)
■ Input specifications (user inputs, files, etc.)
■ Output specifications (expected results, including screens, files, timing,

behaviors of various sorts, etc.)
■ Environmental needs (hardware, software, people, props, and so forth)
■ Special procedural requirements (operator intervention, permissions, etc.)
■ Intercase dependencies (if needed to set up preconditions)

While this template defines a standard for contents, many other attributes of a
test case are left as open questions. In practice, test cases vary significantly in
effort, duration, and number of test conditions covered.

We’ll return to the IEEE 829 standard again in the next section. However,
let us also review another related topic from the Foundation syllabus, on the
matter of documentation.

__AST V3.book Seite 32 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 33

In the real world, the extent of test documentation varies considerably. It would
be hard to list all the different reasons for this variance, but they include the fol-
lowing:

■ Risks to the project created by documenting or not documenting.
■ How much value, if any, the test documentation creates—and is meant to

create.
■ Any standards that are or should be followed, including the possibility of an

audit to ensure compliance with those standards.
■ The software development lifecycle model used. Advocates of agile

approaches try to minimize documentation by ensuring close and frequent
team communication.

■ The extent to which we must provide traceability from the test basis to the
test cases.

The key idea here is to remember to keep an open mind and a clear head when
deciding how much to document.

Now, since we focus on both functional and non-functional characteris-
tics as part of this technical test analyst volume, let’s review the ISO 9126
standard.

The ISO 9126 quality standard for software defines six software quality
characteristics: functionality, reliability, usability, efficiency, maintainability,
and portability. Each characteristic has three or more subcharacteristics, as
shown in figure 2-2.

Tests that address functionality and its subcharacteristics are functional
tests. These were the main topics in the first volume of this series, for test ana-
lysts. We will revisit them here, but primarily from a technical perspective. Tests
that address the other five characteristics and their subcharacteristics are non-
functional tests. These are among the main topics for this book. Finally, keep in
mind that, when you are testing hardware/software systems, additional quality
characteristics can and will apply.

__AST V3.book Seite 33 Freitag, 1. Juli 2011 1:06 13

34 2 Testing Processes

Figure 2–2 ISO 9126 quality standard

2.4.5 Static Tests

Now, let’s review three important ideas from the Foundation syllabus. One is
the value of static testing early in the lifecycle to catch defects when they are
cheap and easy to fix. The next is the preventive role testing can play when
involved early in the lifecycle. The last is that testing should be involved early
in the project. These three ideas are related because technical test analysis and
design is a form of static testing; it is synergistic with other forms of static
testing, and we can exploit that synergy only if we are involved at the right
time.

Notice that, depending on when the analysis and design work is done,
you could possibly define test conditions and test cases in parallel with
reviews and static analyses of the test basis. In fact, you could prepare for a
requirements review meeting by doing test analysis and design on the require-
ments. Test analysis and design can serve as a structured, failure-focused
static test of a requirements specification that generates useful inputs to a
requirements review meeting.

Of course, we should also take advantage of the ideas of static testing, and
early involvement if we can, to have test and non-test stakeholders participate
in reviews of various test work products, including risk analyses, test designs,

Characteristic

Subchar-
acteristic

Addressed by
functional tests

Addressed by non-
functional tests

Functionality: Suitability, accuracy,
 interoperability, security, compliance

Reliability: Maturity (robustness), fault
 tolerance, recoverability, compliance

Usability: Understandability, learnability,
 operability, attractiveness, compliance

Efficiency: Time behaviour, resource
 utilization, compliance

Maintainability: Analyzability, changeability,
 stability, testability, compliance

Portability: Adaptability, installability,
 coexistence, replaceability, compliance

__AST V3.book Seite 34 Freitag, 1. Juli 2011 1:06 13

 2.4 Test Analysis and Design 35

test cases, and test plans. We should also use appropriate static analysis tech-
niques on these work products.

Let’s look at an example of how test analysis can serve as a static test. Sup-
pose you are following an analytical risk-based testing strategy. If so, then in
addition to quality risk items—which are the test conditions—a typical qual-
ity risk analysis session can provide other useful deliverables.

We refer to these additional useful deliverables as by-products, along the
lines of industrial by-products, in that they are generated by the way as you
create the target work product, which in this case is a quality risk analysis
document. These by-products are generated when you and the other partici-
pants in the quality risk analysis process notice aspects of the project you
haven’t considered before.

These by-products include the following:

■ Project risks—things that could happen and endanger the success of the
project

■ Identification of defects in the requirements specification, design specifica-
tion, or other documents used as inputs into the quality risk analysis

■ A list of implementation assumptions and simplifications, which can
improve the design as well as set up checkpoints you can use to ensure that
your risk analysis is aligned with actual implementation later

By directing these by-products to the appropriate members of the project team,
you can prevent defects from escaping to later stages of the software lifecycle.
That’s always a good thing.

2.4.6 Metrics

To close this section, let’s look at metrics and measurements for test analysis and
design. To measure completeness of this portion of the test process, we can
measure the following:

■ Percentage of requirements or quality (product) risks covered by test
conditions

■ Percentage of test conditions covered by test cases
■ Number of defects found during test analysis and design

__AST V3.book Seite 35 Freitag, 1. Juli 2011 1:06 13

36 2 Testing Processes

We can track test analysis and design tasks against a work breakdown structure,
which is useful in determining whether we are proceeding according to the esti-
mate and schedule.

2.5 Test Implementation and Execution

Test implementation includes all the remaining tasks necessary to enable test
case execution to begin. At this point, remember, we have done our analysis and
design work, so what remains?

For one thing, if we intend to use explicitly specified test procedures—
rather than relying on the tester’s knowledge of the system—we’ll need to
organize the test cases into test procedures (or, if using automation, test
scripts). When we say “organize the test cases,” we mean, at the very least,
document the steps to carry out the test. How much detail do we put in these
procedures? Well, the same considerations that lead to more (or less) detail at
the test condition and test case level would apply here. For example, if a
regulatory standard like the United States Federal Aviation Administration’s
DO-178B applies, that’s going to require a high level of detail.

Since testing frequently requires test data for both inputs and the test envi-
ronment itself, we need to make sure that data is available now. In addition, we
must set up the test environments. Are both the test data and the test environ-
ments in a state such that we can use them for testing now? If not, we must
resolve that problem before test execution starts. In some cases test data require
the use of data generation tools or production data. Ensuring proper test
environment configuration can require the use of configuration management
tools.

With the test procedures in hand, we need to put together a test execu-
tion schedule. Who is to run the tests? In what order should they run them?
What environments are needed for which tests? When should we run the

Learning objectives

(K2) Describe the preconditions for test execution, including
testware, test environment, configuration management, and
defect management.

__AST V3.book Seite 36 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 37

automated tests? If automated tests run in the same environment as manual
tests, how do we schedule the tests to prevent undesirable interactions
between the automated and manual tests? We need to answer these questions.

Finally, since we’re about to start test execution, we need to check whether
all explicit and implicit entry criteria are met. If not, we need to work with
project stakeholders to make sure they are met before the scheduled test exe-
cution start date.

Now, keep in mind that you should prioritize and schedule the test proce-
dures to ensure that you achieve the objectives in the test strategy in the most
efficient way. For example, in risk-based testing, we usually try to run tests in
risk priority order. Of course, real-world constraints like availability of test
configurations can change that order. Efficiency considerations like the
amount of data or environment restoration that must happen after a test is
over can change that order too.

Let’s look more closely at two key areas, readiness of test procedures and
readiness of test environments.

2.5.1 Test Procedure Readiness

Are the test procedures ready to run? Let’s examine some of the issues we need
to address before we know the answer.

As mentioned earlier, we must have established clear sequencing for the
test procedures. This includes identifying who is to run the test procedure,
when, in what test environment, with what data.

We have to evaluate constraints that might require tests to run in a partic-
ular order. Suppose we have a sequence of test procedures that together make
up an end-to-end workflow? There are probably business rules that govern
the order in which those test procedures must run.

ISTQB Glossary

test procedure: See test procedure specification.

test procedure specification: A document specifying a sequence of actions for
the execution of a test. Also known as test script or manual test script.

test script: Commonly used to refer to a test procedure specification, espe-
cially an automated one.

test procedure
test procedure specificati-
on
test script

__AST V3.book Seite 37 Freitag, 1. Juli 2011 1:06 13

38 2 Testing Processes

So, based on all the practical considerations as well as the theoretical ideal
of test procedure order—from most important to least important—we need to
finalize the order of the test procedures. That includes confirming that order
with the test team and other stakeholders. In the process of confirming the
order of test procedures, you might find that the order you think you should
follow is in fact impossible or perhaps unacceptably less efficient than some
other possible sequencing.

We also might have to take steps to enable test automation. Of course, we
say “might have to take steps” rather than “must take steps” because not all
test efforts involve automation. However, as a technical test analyst, imple-
menting automated testing is a key responsibility, one which we’ll discuss in
detail later in this book.

If some tests are automated, we’ll have to determine how those fit into the
test sequence. It’s very easy for automated tests, if run in the same environ-
ment as manual tests, to damage or corrupt test data, sometimes in a way that
causes both the manual and automated tests to generate huge numbers of
false positives and false negatives. Guess what? That means you get to run the
tests all over again. We don’t want that!

Now, the Advanced syllabus says that we will create the test harness and
test scripts during test implementation. Well, that’s theoretically true, but as a
practical matter we really need the test harness ready weeks, if not months,
before we start to use it to automate test scripts.

We definitely need to know all the test procedure dependencies. If we
find that there are reasons—due to these dependencies—we can’t run the test
procedures in the sequence we established earlier, we have two choices: One,
we can change the sequence to fit the various obstacles we have discovered.
Or, two, we can remove the obstacles.

Let’s look more closely at two very common categories of test procedure
dependencies—and thus obstacles.

The first is the test environment. You need to know what is required for
each test procedure. Now, check to see if that environment will be available
during the time you have that test procedure scheduled to run. Notice that
“available” means not only is the test environment configured, but also no
other test procedure—or any other test activity for that matter—that would
interfere with the test procedure under consideration is scheduled to use that
test environment during the same period of time.

__AST V3.book Seite 38 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 39

The interference question is usually where the obstacles emerge. How-
ever, for complex and evolving test environments, the mere configuration of
the test environment can become a problem. Rex worked on a project a while
back that was so complex that he had to construct a special database to track,
report, and manage the relationships between test procedures and the test
environments they required.

The second category of test procedure dependencies is the test data. You
need to know what data each test procedure requires. Now, similar to the pro-
cess before, check to see if that data will be available during the time you have
that test procedure scheduled to run. As before, “available” means not only is
the test data created, but also no other test procedure—or any other test activ-
ity for that matter—that would interfere with the viability and accessibility of
the data is scheduled to use that test data during the same period of time.

With test data, interference is again often a large issue. We had a client
who tried to run manual tests during the day and automated tests overnight.
This resulted in lots of problems until a process was evolved to properly
restore the data at the handover points between manual testing and auto-
mated testing (at the end of the day) and between automated testing and
manual testing (at the start of the day).

2.5.2 Test Environment Readiness

Are the test environments ready to use? Let’s examine some of the issues we
need to address before we know the answer.

First, let’s make clear the importance of a properly configured test environ-
ment. If we run the test procedures perfectly but use an improperly configured
test environment, we obtain useless test results. Specifically, we get many false
positives. A false positive in software testing is analogous to one in medicine—a
test that should have passed instead fails, leading to wasted time analyzing
“defects” that turn out to be test environment problems. Often the false positives
are so large in number that we also get false negatives. This happens when a test
that should have failed instead passes, often in this case because we didn’t see it
hiding among the false positives. The overall outcomes are low defect detection
effectiveness; high field or production failure rates; high defect report rejection
rates; a lot of wasted time for testers, managers, and developers; and a severe
loss of credibility for the test team. Obviously those are all very bad outcomes.

__AST V3.book Seite 39 Freitag, 1. Juli 2011 1:06 13

40 2 Testing Processes

So, we have to ensure properly configured test environments. Now, in the ISTQB
fundamental test process, implementation is the point where this happens. As
with automation, though, we feel this is probably too late, at least if implementa-
tion is an activity that starts after analysis and design. If, instead, implementation
of the test environment is a subset of the overall implementation activity and can
start as soon as the test plan is done, then we are in better shape.

What is a properly configured test environment and what does it do for us?
For one thing, a properly configured test environment enables finding

defects under the test conditions we intend to run. For example, if we want to
test for performance, it allows us to find unexpected bottlenecks that would
slow down the system.

For another thing, a properly configured test environment operates nor-
mally when failures are not occurring. In other words, it doesn’t generate
many false positives.

Additionally, at higher levels of testing such as system test and system
integration test, a properly configured test environment replicates the produc-
tion or end-user environment. Many defects, especially non-functional defects
like performance and reliability problems, are hard if not impossible to find in
scaled-down environments.

There are some other things we need for a properly configured test environ-
ment. We’ll need someone to set up and support the environment. For complex
environments, this person is usually someone outside the test team. (Jamie and
Rex both would prefer the situation in which the person is part of the test team,
due to the problems of environment support availability that seem to arise with
reliance on external resources, but the preferences of the test manager don’t

ISTQB Glossary

false negative: See false-pass result.

false-pass result: A test result which fails to identify the presence of a defect
that is actually present in the test object.

false positive: See false-fail result.

false-fail result: A test result in which a defect is reported although no such
defect actually exists in the test object.

false negative
false-pass result
false positive
false-fail result

__AST V3.book Seite 40 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 41

always result in the reallocation of the individual.) We also need to make sure
someone—perhaps a tester, perhaps someone else—has loaded the testware, test
support tools, and associated processes on the test environment.

Test support tools include, at the least, configuration management, inci-
dent management, test logging, and test management. Also, you’ll need proce-
dures to gather data for exit criteria evaluation and test results reporting.
Ideally, your test management system will handle some of that for you.

2.5.3 Blended Test Strategies

It is often a good idea to use a blend of test strategies, leading to a balanced test
approach throughout testing, including during test implementation. For exam-
ple, when RBCS associates run test projects, we typically blend analytical risk-
based test strategies with analytical requirements-based test strategies and
dynamic test strategies (also referred to as reactive test strategies). We reserve
some percentage (often 10 to 20 percent) of the test execution effort for testing
that does not follow predetermined scripts.

Analytical strategies follow the ISTQB fundamental test process nicely,
with work products produced along the way. However, the risk with blended
strategies is that the reactive portion can get out of control. Testing without
scripts should not be ad hoc or aimless. Such tests are unpredictable in dura-
tion and coverage.

Some techniques like session-based test management, which is covered in
the companion volume on test management, can help deal with that inherent
control problem in reactive strategies. In addition, we can use experience-
based test techniques such as attacks, error guessing, and exploratory testing
to structure reactive test strategies. We’ll discuss these topics further in chap-
ter 4.

test log
test logging

ISTQB Glossary

test log: A chronological record of relevant details about the execution of
tests.

test logging: The process of recording information about tests executed into a
test log.

__AST V3.book Seite 41 Freitag, 1. Juli 2011 1:06 13

42 2 Testing Processes

The common trait of a reactive test strategy is that most of the testing
involves reacting to the actual system presented to us. This means that test
analysis, test design, and test implementation occur primarily during test exe-
cution. In other words, reactive test strategies allow—indeed, require—that
the results of each test influence the analysis, design, and implementation of
the subsequent tests.

As discussed in the Foundation syllabus, these reactive strategies are
lightweight in terms of total effort both before and during test execution.
Experience-based test techniques are often efficient bug finders, sometimes 5
or 10 times more efficient than scripted techniques. However, being experi-
ence based, naturally enough, they require expert testers. As mentioned ear-
lier, reactive test strategies result in test execution periods that are sometimes
unpredictable in duration. Their lightweight nature means they don’t provide
much coverage information and are difficult to repeat for regression testing.
Some claim that tools can address this coverage and repeatability problem,
but we’ve never seen that work in actual practice.

That said, when reactive test strategies are blended with analytical test
strategies, they tend to balance each other’s weak spots. This is analogous to
blended scotch whiskey. Blended scotch whiskey consists of malt whiskey—
either a single malt or more frequently a combination of various malt whis-
keys—blended with grain alcohol (basically, vodka). It’s hard to imagine two
liquors more different than vodka and single malt scotch, but together they
produce a liquor that many people find much easier to drink and enjoy than
the more assertive, sometimes almost medicinal single malts.

2.5.4 Starting Test Execution

Before we start test execution, it’s a best practice to measure readiness based on
some predefined preconditions, often called entry criteria. Entry criteria were
discussed in the Foundation syllabus, in the chapter on test management.

Often we will have formal entry criteria for test execution. Consider the fol-
lowing entry criteria, taken from an actual project:

1. Bug tracking and test tracking systems are in place.
2. All components are under formal, automated configuration management

and release management control.

__AST V3.book Seite 42 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 43

3. The operations team has configured the system test server environment,
including all target hardware components and subsystems. The test team
has been provided with appropriate access to these systems.

These were extracted from the entry criteria section of the test plan for that
project. They focus on three typical areas that can adversely affect the value of
testing if unready: the test environment (as discussed earlier), configuration
management, and defect management.

On the other hand, sometimes projects have less-formal entry criteria for exe-
cution. For example, test teams often simply assume that the test cases and test
data will be ready, and there is no explicit measurement of them.

Whether the entry criteria are formal or informal, we need to determine if we’re
ready to start test execution. To do so, we need the delivery of a testable test
object or objects and the satisfaction (or waiver) of entry criteria.

Of course, this presumes that the entry criteria alone are enough to
ensure that the various necessary implementation tasks discussed earlier in
this section are complete. If not, then we have to go back and check those
issues of test data, test environments, test dependencies, and so forth.

Now, during test execution, people will run the manual test cases via the
test procedures. To execute a test procedure to completion, we’d expect that at
least two things had happened. First, we covered all of the test conditions or
quality risk items traceable to the test procedure. Second, we carried out all of
the steps of the test procedure.

You might ask, “How could I carry out the test procedure without cover-
ing all the risks or conditions?” In some cases, the test procedure is written at
a high level. In that case, you would need to understand what the test was
about and augment the written test procedure with on-the-fly details that
ensure that you cover the right areas.

You might also ask, “How could I cover all the risks and conditions with-
out carrying out the entire test procedure?” Some steps of a test procedure
serve to enable testing rather than covering conditions or risks. For example,
some steps set up data or other preconditions, some steps capture logging
information, and some steps restore the system to a known good state at the
end.

__AST V3.book Seite 43 Freitag, 1. Juli 2011 1:06 13

44 2 Testing Processes

A third kind of activity can apply during manual test execution. We can
incorporate some degree of reactive testing into the procedures. One way to
accomplish this is to leave the procedures somewhat vague and to tell the
tester to select their favorite way of carrying out a certain task. Another way
is to tell the testers, as Rex often does, that a test script is a road map to inter-
esting places and, when they get somewhere interesting, they should stop and
look around. This has the effect of giving them permission to transcend, to go
beyond, the scripts. We have found it very effective.

Finally, during execution, tools will run any existing automated tests.
These tools follow the defined scripts without deviation. That can seem like
an unalloyed “good thing” at first. However, if we did not design the scripts
properly, that can mean that the script can get out of sync with the system
under test and generate a bunch of false positives. We’ll talk more about that
problem—and how to solve it—in chapter 9.

2.5.5 Running a Single Test Procedure

Let’s zoom in on the act of a tester running a single test procedure. After the
logistical issues of initial setup are handled, the tester starts running the specific
steps of the test. These yield the actual results.

Now we have come to the heart of test execution. We compare actual
results with expected results. This is indeed the moment when testing either
adds value or removes value from the project. Everything up to this point—all
of the work designing and implementing our tests—was about getting us to
this point. Everything after this point is about using the value this compari-
son has delivered. Since running a test procedure is so critical, so central to
good testing, attention and focus on your part is essential at this moment.

But what if we notice a mismatch between the expected results and the
actual results? The ISTQB glossary refers to each difference between the
expected results and the actual results as an anomaly. There can be multiple
differences, and thus multiple anomalies, in a mismatch. When we observe an
anomaly, we have an incident.

Some incidents are failures. A failure occurs when the system misbehaves
due to one or more defects. This is the ideal situation when an incident has
occurred. If we are looking at a failure—a symptom of a true defect—we should
start to gather data to help the developer resolve the defect. We’ll talk more
about incident reporting and management in detail in chapter 7.

__AST V3.book Seite 44 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 45

Some incidents are not failures but rather are false positives. False positives
occur when the expected and actual results don’t match due to bad test specifi-
cations, invalid test data, incorrectly configured test environments, a simple
mistake on the part of the person running the test, and so forth.

If we can catch a false positive right away, the moment it happens, the dam-
age is limited. The tester should fix the test, which might involve some configu-
ration management work if the tests are checked into a repository. The tester
should then rerun the test. Thus, the damage done was limited to the tester’s
wasted time along with the possible impact of that lost time on the schedule
plus the time needed to fix the test plus the time needed to rerun the test.

All of those activities, all of that lost time, and the impact on the schedule
would have happened even if the tester had simply assumed the failure was valid
and reported it as such. It just would have happened later, after an additional
loss of time on the part of managers, other testers, developers, and so forth.

Here’s a cautionary note on these false positives too. Just because a test
has never yielded a false positive before, in all the times it’s been run before,
doesn’t mean you’re not looking at one this time. Changes in the test basis,
the proper expected results, the test object, and so forth can obsolete or inval-
idate a test specification.

2.5.6 Logging Test Results

Most testers like to run tests—at least the first few times they run them—but
sometimes they don’t always like to log results. “Paperwork!” they snort.
“Bureaucracy and red tape!” they protest.

anomaly
incident
failure

ISTQB Glossary

anomaly: Any condition that deviates from expectation based on require-
ments specifications, design documents, user documents, standards, etc. or
from someone’s perception or experience. Anomalies may be found during,
but not limited to, reviewing, testing, analysis, compilation, or use of software
products or applicable documentation.

incident: Any event occurring that requires investigation.

failure: Deviation of the component or system from its expected delivery, ser-
vice, or result.

__AST V3.book Seite 45 Freitag, 1. Juli 2011 1:06 13

46 2 Testing Processes

If you are one of those testers, get over it. We said previously that all the
planning, analysis, design, and implementation was about getting to the point
of running a test procedure and comparing actual and expected results. We
then said that everything after that point is about using the value the compar-
ison delivered. Well, you can’t use the value if you don’t capture it, and the
test logs are about capturing the value.

So remember that, as testers run tests, testers log results. Failure to log
results means either doing the test over (most likely) or losing the value of
running the tests. When you do the test over, that is pure waste, a loss of your
time running the test. Since test execution is usually on the critical path for
project completion, that waste puts the planned project end date at risk. Peo-
ple don’t like that much.

A side note here, before we move on. We mentioned reactive test strate-
gies and the problems they have with coverage earlier. Note that, with ade-
quate logging, while you can’t ascertain reactive test coverage in advance, at
least you can capture it afterward. So again, log your results, both for scripted
and unscripted tests.

During test execution, there are many moving parts. The test cases might
be changing. The test object and each constituent test item are often chang-
ing. The test environment might be changing. The test basis might be chang-
ing. Logging should identify the versions tested.

The military strategist Clausewitz referred famously to the “fog of war.”
What he meant was not a literal fog—though black-powder cannons and fire-
arms of his day created plenty of that!—but rather a metaphorical fog
whereby no one observing a battle, be they an infantryman or a general,
could truly grasp the whole picture.

Clausewitz would recognize his famous fog if he were to come back to life
and work as a tester. Test execution periods tend to have a lot of fog. Good
test logs are the fog-cutter. Test logs should provide a detailed, rich chronol-
ogy of test execution.

To do so, test logs need to be test by test and event by event. Each test,
uniquely identified, should have status information logged against it as it goes
through the test execution period. This information should support not only
understanding the overall test status but also the overall test coverage.

__AST V3.book Seite 46 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 47

You should also log events that occur during test execution and affect the test
execution process, whether directly or indirectly. You should document any-
thing that delays, interrupts, or blocks testing.

Test analysts are not always also test managers, but they should work
closely with the test managers. Test managers need logging information for
test control, test progress reporting, and test process improvement. Test ana-
lysts need logging information too, along with the test managers, for measure-
ment of exit criteria, which we’ll cover later in this chapter.

Finally, note that the extent, type, and details of test logs will vary based
on the test level, the test strategy, the test tools, and various standards and
regulations. Automated component testing results in the automated test gath-
ering logging information. Manual acceptance testing usually involves the test
manager compiling the test logs or at least collating the information coming
from the testers. If we’re testing regulated, safety-critical systems like pharma-
ceutical systems, we might have to log certain information for audit purposes.

2.5.7 Use of Amateur Testers

Amateur testers. This term is rather provocative, so here’s what we mean. A per-
son who primarily works as a tester to earn a living is a professional tester. Any-
one else engaged in testing is an amateur tester.

Rex is a professional tester now—and has been since 1987. Before that, he
was a professional programmer. Rex still writes programs from time to time,
but now he’s an amateur programmer. He makes many typical amateur-pro-
grammer mistakes when he does it. Before Rex was a professional tester, he
unit-tested his code as a programmer. He made many typical amateur-tester
mistakes when he did that. Since one of the companies he worked for as a
programmer relied entirely on programmer unit testing, that sometimes
resulted in embarrassing outcomes for their customers—and for Rex.

ISTQB Glossary

test control: A test management task that deals with developing and apply-
ing a set of corrective actions to get a test project on track when monitoring
shows a deviation from what was planned.

__AST V3.book Seite 47 Freitag, 1. Juli 2011 1:06 13

48 2 Testing Processes

Jamie is also a professional tester, and he has been one since 1991. Jamie
also does some programming from time to time, but he considers himself an
amateur programmer. He makes many typical amateur-programmer mistakes
when he does it, mistakes that full-time professional programmers often do
not make. There are two completely differing mind-sets for testing and pro-
gramming. Companies that rely entirely on programmer testing sometimes
find that it results in embarrassing outcomes for their customers. Professional
testers could have solved some of those problems.

There’s nothing wrong with involving amateur testers. Sometimes, we
want to use amateur testers such as users or customers during test execution.
It’s important to understand what we’re trying to accomplish with this and
why it will (or won’t) work. For example, often the objective is to build user
confidence in the system, but that can backfire! Suppose we involve them too
early, when the system is still full of bugs. Oops!

2.5.8 Standards

Let’s look at some standards that relate to implementation and execution as well
as to other parts of the test process.

Let’s start with the IEEE 829 standard. Most of this material about IEEE
829 should be a review of the Foundation syllabus for you, but it might be a
while since you’ve looked at it.

The first IEEE 829 template, which we’d use during test implementation, is the
IEEE 829 test procedure specification. A test procedure specification describes
how to run one or more test cases. This template includes the following sec-
tions:

■ Test procedure specification identifier
■ Purpose (e.g., which tests are run)
■ Special requirements (skills, permissions, environment, etc.)
■ Procedure steps (log, set up, start, proceed [the steps themselves], measure

results, shut down/suspend, restart [if needed], stop, wrap up/tear down,
contingencies)

While the IEEE 829 standard distinguishes between test procedures and test
cases, in practice test procedures are often embedded in test cases.

__AST V3.book Seite 48 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 49

A test procedure is sometimes referred to as a test script. A test script can
be manual or automated.

The IEEE 829 standard for test documentation also includes ideas on what
to include in a test log. According to the standard, a test log should record the
relevant details about test execution. This template includes the following sec-
tions:

■ Test log identifier.
■ Description of the testing, including the items under test (with version

numbers), the test environments being used, and the like.
■ Activity and event entries. These should be test by test and event by event.

Events include things like test environments becoming unavailable, people
being out sick, and so forth. You should capture information on the test exe-
cution process; the results of the tests; environmental changes or issues;
bugs, incidents, or anomalies observed; the testers involved; any suspension
or blockage of testing; changes to the plan and the impact of change; and so
forth.

For those who find the IEEE 829 templates too daunting, simple spreadsheets
could also be used to capture execution logging information.

The British Standards Institute produces the BS 7925/2 standard. It has two
main sections: test design techniques and test measurement techniques. For test
design, it reviews a wide range of techniques, including black box, white box,
and others. It covers the following black-box techniques that were also covered
in the Foundation syllabus:

■ Equivalence partitioning
■ Boundary value analysis
■ State transition testing

It also covers a black-box technique called cause-effect graphing, which is a
graphical version of a decision table, and a black-box technique called syntax
testing.

It covers the following white-box techniques that were also covered in the
Foundation syllabus:

■ Statement testing
■ Branch and decision testing

__AST V3.book Seite 49 Freitag, 1. Juli 2011 1:06 13

50 2 Testing Processes

It also covers some additional white-box techniques that were covered only
briefly or not at all in the Foundation syllabus:

■ Data flow testing
■ Branch condition testing
■ Branch condition combination testing
■ Modified condition decision testing
■ Linear Code Sequence and Jump (LCSAJ) testing

Rounding out the list are two sections, “Random Testing” and “Other Testing
Techniques.” Random testing was not covered in the Foundation syllabus, but
we’ll talk about the use of randomness in relation to reliability testing in
chapters 5 and 9. The section on other testing techniques doesn’t provide any
examples but merely talks about rules on how to select them.

You might be thinking, “Hey, wait a minute, that was too fast. Which of
those do I need to know for the Advanced Level Technical Test Analyst
(ATTA) exam?” The answer is in two parts. First, you need to know any test
design technique that was on the Foundation syllabus. Such techniques may
be covered on the Advanced Level Technical Test Analyst exam. Second, we’ll
cover the new test design techniques that might be on the Advanced Level
Test Analyst (ATA) exam in detail in chapter 4.

BS 7925/2 provides one or more coverage metrics for each of the test
measurement techniques. These are covered in the measurement part of the
standard. The choice of organization for this standard is curious indeed
because there is no clear reason why the coverage metrics weren’t covered at
the same time as the design techniques.

However, from the point of view of the ISTQB fundamental test process,
perhaps it is easier that way. For example, our entry criteria might require some
particular level of test coverage, as it would if we were testing safety-critical
avionics software subject to the United States Federal Aviation Administration’s
standard DO-178B. (We’ll cover that standard in a moment.) So during test
design, we’d employ the test design techniques. During test implementation,
we’d use the test measurement techniques to ensure adequate coverage.

In addition to these two major sections, this document also includes two
annexes. Annex B brings the dry material in the first two major sections to life
by showing an example of applying them to realistic situations. Annex A covers

__AST V3.book Seite 50 Freitag, 1. Juli 2011 1:06 13

 2.5 Test Implementation and Execution 51

process considerations, which is perhaps closest to our area of interest here. It
discusses the application of the standard to a test project, following a test pro-
cess given in the document. To map that process to the ISTQB fundamental test
process, we can say the following:

■ Test analysis and design along with test implementation in the ISTQB
process is equivalent to test specification in the BS 7925/2 process.

■ BS 7925/2 test execution, logically enough, corresponds to test execution in
the ISTQB process. Note, though, that the ISTQB process includes that as
part of a larger activity, test implementation and execution. Note also that
the ISTQB process includes test logging as part of test execution, while BS
7925/2 has a separate test recording process.

■ Finally, BS 7925/2 has checking for test completion as the final step in its
process. That corresponds roughly to the ISTQB’s evaluating test criteria
and reporting.

Finally, as promised, let’s talk about the DO-178B standard. This standard is
promulgated by the United States Federal Aviation Administration. As you
might guess, it’s for avionics systems. In Europe, it’s called ED-12B. The stan-
dard assigns a criticality level, based on the potential impact of a failure. Based
on the criticality level, a certain level of white-box test coverage is required, as
shown in table 2-1.

Table 2–1 FAA DO/178B mandated coverage

Criticality Potential Failure Impact Required Coverage

Level A:
Catastrophic

Software failure can result in a
catastrophic failure of the system.

Modified Condition/Decision,
Decision, and Statement

Level B: Hazardous/
Severe

Software failure can result in a hazardous
or severe/major failure of the system.

Decision and Statement

Level C:
Major

Software failure can result in a major
failure of the system.

Statement

Level D:
Minor

Software failure can result in a minor
failure of the system.

None

Level E:
No Effect

Software failure cannot have an effect on
the system.

None

__AST V3.book Seite 51 Freitag, 1. Juli 2011 1:06 13

52 2 Testing Processes

Let us explain table 2-1 a bit more thoroughly:

Criticality level A, or Catastrophic, applies when a software failure can
result in a catastrophic failure of the system. For software with such criti-
cality, the standard requires Modified Condition/Decision, Decision, and
Statement coverage.

Criticality level B, or Hazardous and Severe, applies when a software
failure can result in a hazardous, severe, or major failure of the system.
For software with such criticality, the standard requires Decision and
Statement coverage.

Criticality level C, or Major, applies when a software failure can result
in a major failure of the system. For software with such criticality, the
standard requires only Statement coverage.

Criticality level D, or Minor, applies when a software failure can only
result in a minor failure of the system. For software with such criticality,
the standard does not require any level of coverage.

Finally, criticality level E, or No Effect, applies when a software fail-
ure cannot have an effect on the system. For software with such critical-
ity, the standard does not require any level of coverage.

This makes a certain amount of sense. You should be more concerned about
software that affects flight safety, such as rudder and aileron control modules,
than about software that doesn’t, such as video entertainment systems. How-
ever, there is a risk of using a one-dimensional white-box measuring stick to
determine how much confidence we should have in a system. Coverage metrics
are a measure of confidence, it’s true, but we should use multiple coverage met-
rics, both white box and black box.

By the way, if you found this a bit confusing, note that two of the white-
box coverage metrics we mentioned, statement and decision coverage, were
discussed in the Foundation syllabus, in chapter 4. Modified condition/deci-
sion coverage was mentioned briefly but not described in any detail in the
Foundation; Modified condition/decision coverage will be covered in detail in
this book. If you don’t remember what statement and decision coverage mean,
you should go back and review the material in that chapter on white-box cov-
erage metrics. We’ll return to black-box and white-box testing and test cover-
age in chapter 4 of this book, and we’ll assume that you understand the

__AST V3.book Seite 52 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 53

relevant Foundation-level material. Chapter 4 will be hard to follow if you are
not fully conversant with the Foundation-level test design techniques.

2.5.9 Metrics

Finally, what metrics and measurements can we use for the test implementation
and execution of the ISTQB fundamental test process? Different people use dif-
ferent metrics, of course.

Typical metrics during test implementation are the percentage of test
environments configured, the percentage of test data records loaded, and the
percentage of test cases automated.

During test execution, typical metrics look at the percentage of test condi-
tions covered, test cases executed, and so forth.

We can track test implementation and execution tasks against a work-
breakdown-structure, which is useful in determining whether we are proceed-
ing according to the estimate and schedule.

Note that here we are discussing metrics to measure the completeness of
these processes; i.e., the progress we have made. You should use a different set
of metrics for test reporting.

2.6 Evaluating Exit Criteria and Reporting

In one sense, the evaluation of exit criteria and reporting of results is a test man-
agement activity. And, in the volume on advanced test management, we exam-
ine ways to analyze, graph, present, and report test results as part of the test
progress monitoring and control activities.

However, in another sense, there is a key piece of this process that
belongs to the technical test analyst. As technical test analysts, in this book we
are more interested in two main areas. First, we need to collect the informa-
tion necessary to support test management reporting of results. Second, we
need to measure progress toward completion, and by extension, we need to

Learning objectives

(K3) Determine from a given set of measures if a test completion
criterion has been fulfilled.

__AST V3.book Seite 53 Freitag, 1. Juli 2011 1:06 13

54 2 Testing Processes

detect deviation from the plan. (Of course, if we do detect deviation, it is the
test manager’s role, as part of the control activities, to get us back on track.)

To measure completeness of the testing with respect to exit criteria, and to
generate information needed for reporting, we can measure properties of the
test execution process such as the following:

■ Number of test conditions, cases, or test procedures planned, executed,
passed, and failed

■ Total defects, classified by severity, priority, status, or some other factor
■ Change requests proposed, accepted, and tested
■ Planned versus actual costs, schedule, effort
■ Quality risks, both mitigated and residual
■ Lost test time due to blocking events
■ Confirmation and regression test results

We can track evaluation and reporting milestones and tasks against a work-
breakdown-structure, which is useful in determining whether we are proceed-
ing according to the estimate and schedule.

We’ll now look at examples of test metrics and measures that you can use to
evaluate where you stand with respect to exit criteria. Most of these are drawn
from actual case studies, projects where RBCS helped a client with their testing.

2.6.1 Test Suite Summary

Figure 2-3 shows a test suite summary worksheet. Such a worksheet summa-
rizes the test-by-test logging information described in a previous section. As a
test analyst, you can use this worksheet to track a number of important proper-
ties of the test execution so far:

■ Test case progress
■ Test case pass/fail rates
■ Test suite defect priority/severity (weighted failure)
■ Earned value

As such, it’s a useful chart for the test analyst to understand the status of the
entire test effort.

__AST V3.book Seite 54 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 55

Figure 2–3 Test suite summary worksheet

Down the left side of figure 2-3, you see two columns, the test suite name and
the number of test cases it contains. Again, in some test log somewhere, we have
detailed information for each test case.

On the middle-left side, you see four columns under the general heading
of “Planned Tests Fulfilled.” These are the tests for which no more work
remains, at least during this pass of testing.

The weighted failure numbers for each test suite, found in the column about
in the middle of the table, give a metric of historical bug finding effectiveness.
Each bug is weighted by priority and severity—only the severity one, priority
one bugs, count for a full weighted failure point, while lower severity and prior-
ity can reduce the weighted failure point count for a bug to as little 0.04. So this
is a metric of the technical risk, the likelihood of finding problems, associated
with each test suite based on historical bug finding effectiveness.

On the middle-right side, you see four columns under the general heading
of “Planned Tests Unfulfilled.” These are the tests for which more work remains
during this pass of testing. IP, by the way, stands for “in progress.”

Finally, on the right side you see four columns under the general heading
of “Earned Value.” Earned value is a simple project management concept. It

Test Suite Summary

Test Pass Two

 Total Planned Tests Fullfilled Weighted Planned Tests Unfullfilled Earned Value

Suite Cases Count Skip Pass Fail Failure Count Queued IP Block Plan
Hrs

Actual
Hrs

%Effort %Exec

Functionality 14 14 0 4 10 10.6 0 0 0 0 36.0 49.0 163% 100%

Performance 5 4 0 1 3 8.7 1 1 0 0 7.0 11.5 164% 80%

Reliability 2 2 2 0 0 0.0 0 0 0 0 0.0 0.0 0% 0%

Robustness 3 1 0 0 1 0.5 2 2 0 0 12.5 8.0 64% 33%

Installation 4 0 0 0 0 0.0 4 4 0 0 72.0 0.0 0% 0%

Localization 8 1 0 0 1 0.5 7 0 7 0 128.0 22.0 17% 13%

Security 4 2 0 2 0 1.1 2 2 0 0 17.0 8.5 50% 50%

Documentation 3 1 0 0 1 4.0 2 2 0 0 28.0 15.0 54% 33%

Integration 4 4 0 3 1 1.0 0 0 0 0 8.0 12.5 156% 100%

Usability 2 0 0 0 0 0.0 2 0 2 0 16.0 0.0 0% 0%

Exploratory 6 0 0 0 0.0 6 6 0 0 12.0 0.0 0% 0%

Total 55 29 2 10 17 26.4 26 17 9 0 336.5 126.5 38% 51%

Percent 100% 53% 4% 18% 31% N/A 47% 31% 16% 0%

__AST V3.book Seite 55 Freitag, 1. Juli 2011 1:06 13

56 2 Testing Processes

says that, in a project, we accomplish tasks by expending resources. So if the
percentage of tasks accomplished is about equal to the percentage of resources
expended, we’re on track. If the percentage of tasks accomplished is greater
than the percentage of resources expended, we’re on our way to being under
budget. If the percentage of tasks accomplished is less than the percentage of
resources expended, we’re on our way to being over budget.

Similarly, from a schedule point of view, the percentage of tasks accom-
plished should be approximately equal to the percentage of project time
elapsed. As with effort, if the tasks percentage is over the schedule percent-
age, we’re happy. If the tasks percentage is below the schedule percentage,
we’re sad and worried.

In test execution, we can consider the test case or test procedure to be our
basic task. The resources—for manual testing, anyway—are usually the per-
son-hours required to run the tests. That’s the way this chart shows earned
value, test suite by test suite.

Take a moment to study figure 2-3. Think about how you might be able
to use it on your current (or future) projects.

2.6.2 Defect Breakdown
We can analyze defect (or bug) reports in a number of ways. There’s just about
no end to the analysis that we have done as technical test analysts, test manag-
ers, and test consultants. As a test professional, you should think of good,
proper analysis of bug reports much the same way as a doctor thinks of good,
proper analysis of blood samples.

Just one of these many ways to examine bug reports is by looking at the
breakdown of the defects by severity, priority, or some combination of the
two. If you use a numerical scale for severity and priority, it’s easy to multiply
them together to get a weighted metric of overall bug importance, as you just
saw.

Figure 2-4 shows an example of such a chart. What can we do with it? Well,
for one thing, we can compare this chart with previous projects to get a sense of
whether we’re in better or worse shape. Remember, though, that the distribution
will change over the life of the project. Ideally, the chart will start skewed toward
high-priority bugs—at least it will if we’re doing proper risk-based testing,
which we’ll discuss in chapter 3.

__AST V3.book Seite 56 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 57

Figure 2–4 Breakdown of defects by severity

Figure 2-4 shows lots of severity ones and twos. Usually, severity one is loss of
data. Severity two is loss of functionality without a workaround. Either way, bad
news.

This chart tells us, as test professionals, to take a random sample of 10 or
20 of these severity one and two reports and see if we have severity inflation
going on here. Are our severity classifications accurate? If not, the poor test
manager’s reporting will be biased and alarmist, which will get her in trouble.

As we mentioned previously, though, if we’re doing risk-based testing, this
is probably about how this chart should look during the first quarter or so of
the project. Find the scary stuff first, we always tell testers. If these severity
classifications are right, the test team is doing just that.

2.6.3 Confirmation Test Failure Rate

As technical test analysts, we can count on finding some bugs. Hopefully many
of those bugs will be sent back to us, allegedly fixed. At that point, we confirma-
tion-test the fix. How many of those fixes fail the confirmation test? It can feel
like it’s quite a few, but is it really? Figure 2-5 shows the answer, graphically, for
an actual project.

Severity of Defect

N
um

be
r o

f R
ep

or
ts

700

600

500

400

300

200

100

 0

1

136

2

622

3

82

4

19

5

0

__AST V3.book Seite 57 Freitag, 1. Juli 2011 1:06 13

58 2 Testing Processes

Figure 2–5 Confirmation test failure analysis

On this banking project, we can see that quite a few bug fixes failed the confir-
mation test. We had to reopen fully one in six defect reports at least once. That’s
a lot of wasted time. It’s also a lot of potential schedule delay. Study figure 2-5,
thinking about ways you could use this information during test execution.

2.6.4 System Test Exit Review

Finally, let’s look at another case study. Figure 2-6 shows an excerpt of the exit
criteria for an Internet appliance project that RBCS provided testing for. You’ll
see that we have graded the criteria as part of a system test exit review.

Each of the three criteria here is graded on a three-point scale:

■ Green: Totally fulfilled, with little remaining risk
■ Yellow: Not totally fulfilled, but perhaps an acceptable risk
■ Red: Not in any sense fulfilled, and poses a substantial risk

Of course, you’d want to provide additional information and data for the yellows
and the reds.

Case Study Banking Application Bugs
Confirmation Test Failure Analysis

Opened Count

N
um

be
r o

f B
ug

s
O

pe
ne

d
1000

100

10

1

0

1 2

710

83%

112

26

6

96%
99% 99% 100%100%100%100%100%100%100%

5

1

00000

3 4 5 6 7 8 9 10 11 Bug Count

% Cum

100%

80%

60%

40%

20%

0%

__AST V3.book Seite 58 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 59

Figure 2–6 Case study of system test exit review

2.6.5 Standards

Finally, let’s look at one more IEEE 829 template, one that applies to this part of
the test process. The IEEE 829 standard for test documentation includes a
template for test summary reports.

A test summary report describes the results of a given level or phase of test-
ing. The IEEE 829 template includes the following sections:

■ Test summary report identifier
■ Summary (e.g., what was tested, what the conclusions are, etc.)
■ Variances (from plan, cases, procedures)
■ Comprehensive assessment
■ Summary of results (e.g., final metrics, counts)
■ Evaluation (of each test item vis-à-vis pass/fail criteria)
■ Summary of activities (resource use, efficiency, etc.)
■ Approvals

The summaries can be delivered during test execution as part of a project status
report or meeting. They can also be used at the end of a test level as part of test
closure activities.

System Test Exit Review

Per the Test Plan, System Test was planned to end when following criteria were met:

1. All design, implementation, and feature completion, code completion, and unit

test completion commitments made in the System Test Entry meeting were either

met or slipped to no later than four (4), three (3), and three (3) weeks, respectively,

prior to the proposed System Test Exit date.

STATUS: RED. Audio and demo functionality have entered System Test in the

last three weeks. The modems entered System Test in the last three weeks. On the

margins of a violation, off-hook detection was changed significantly.

2. No panic, crash, halt, wedge, unexpected process termination, or other stoppage

of processing has occurred on any server software or hardware for the previous

three (3) weeks.

STATUS: YELLOW. The servers have not crashed, but we did not complete all

the tip-over and fail-over testing we planned, and so we are not satisfied that the

servers are stable under peak load or other inclement conditions.

3. Production Devices have been used for all System Test execution for at least three

(3) weeks.

STATUS: GREEN. Except for the modem situation discussed above, the hardware

has been stable.

__AST V3.book Seite 59 Freitag, 1. Juli 2011 1:06 13

60 2 Testing Processes

2.6.6 Evaluating Exit Criteria and Reporting Exercise

Consider the complete set of actual exit criteria from the Internet appliance
project, which is shown in the following subsection. Toward the end of the
project, the test team rated each criterion on the following scale:

Green: Totally fulfilled, with little remaining risk
Yellow: Not totally fulfilled, but perhaps an acceptable risk
Red: Not in any sense fulfilled, and poses a substantial risk

You can see the ratings we gave each criterion in the STATUS block below the
criterion itself.

We used this evaluation of the criteria as an agenda for a System Test Exit
Review meeting. Rex led the meeting and walked the team through each cri-
terion. As you can imagine, the RED ones required more explanation than the
YELLOW and GREEN ones.

While narrative explanation is provided for each evaluation, perhaps
more information and data are needed. So, for each criterion, determine what
kind of data and other information you’d want to collect to support the con-
clusions shown in the status evaluations for each.

2.6.7 System Test Exit Review

Per the Test Plan, System Test was planned to end when the following criteria
were met:

ISTQB Glossary

test closure: During the test closure phase of a test process, data is collected
from completed activities to consolidate experience, testware, facts, and num-
bers. The test closure phase consists of finalizing and archiving the testware
and evaluating the test process, including preparation of a test evaluation
report.

test summary report: A document summarizing testing activities and results.
It also contains an evaluation of the corresponding test items against exit crite-
ria.

__AST V3.book Seite 60 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 61

1. All design, implementation, and feature completion, code completion, and
unit test completion commitments made in the System Test Entry meeting
were either met or slipped to no later than four (4), three (3), and three (3)
weeks, respectively, prior to the proposed System Test Exit date.
STATUS: RED. Audio and demo functionality have entered System Test in
the last three weeks. The modems entered System Test in the last three
weeks. On the margins of a violation, off-hook detection was changed sig-
nificantly.

2. No panic, crash, halt, wedge, unexpected process termination, or other
stoppage of processing has occurred on any server software or hardware for
the previous three (3) weeks.
STATUS: YELLOW. The servers have not crashed, but we did not complete
all the tip-over and fail-over testing we planned, and so we are not satisfied
that the servers are stable under peak load or other inclement conditions.

3. Production devices have been used for all System Test execution for at least
three (3) weeks.
STATUS: GREEN. Except for the modem situation discussed above, the
hardware has been stable.

4. No client systems have become inoperable due to a failed update for at least
three (3) weeks.
STATUS: YELLOW. No system has become permanently inoperable during
update, but we have seen systems crash during update and these systems
required a reboot to clear the error.

5. Server processes have been running without installation of bug fixes, man-
ual intervention, or tuning of configuration files for two (2) weeks.
STATUS: RED. Server configurations have been altered by Change Com-
mittee–approved changes multiple times over the last two weeks.

6. The Test Team has executed all the planned tests against the release-candi-
date hardware and software releases of the Device, Server, and Client.
STATUS: RED. We had planned to test Procurement and Fulfillment, but
disengaged from this effort because the systems were not ready. Also, we
have just received the release-candidate build; complete testing would take
two weeks. In addition, the servers are undergoing Change Committee–
approved changes every few days and a new load balancer has been added
to the server farm. These server changes have prevented volume, tip-over,

__AST V3.book Seite 61 Freitag, 1. Juli 2011 1:06 13

62 2 Testing Processes

and fail-over testing for the last week and a half. Finally, we have never had
a chance to test the server installation and boot processes because we never
received documentation on how to perform these tasks.

7. The Test Team has retested all fixes for priority one and two bug reports
over the life of the project against the release-candidate hardware and soft-
ware releases of the Device, Server, and Client.
STATUS: RED. Testing of the release-candidate software and hardware has
been schedule-limited to one week, which does not allow for retesting of all
bug fixes.

8. The Development Teams have resolved all “must-fix” bugs. “Must-fix” will
be defined by the Project Management Team.
STATUS: RED. Referring to the attached open/closed charts and the “Bugs
Found Since 11/9” report, we continue to find new bugs in the product,
though there is good news in that the find rate for priority one bugs has lev-
eled off. Per the closure period charts, it takes on average about two
weeks—three weeks for priority one bugs—to close a problem report. In
addition, both open/close charts show a significant quality gap between
cumulative open and cumulative closed, and it’s hard to believe that taken
all together, a quantity of bugs that significant doesn’t indicate a pervasive
fit-and-finish issue with the product. Finally, note that WebGuide and E-
commerce problems are design issues—the selected browser is basically
incompatible with much of the Internet—which makes these problems
much more worrisome.

9. The Test Team has checked that all issues in the bug tracking system are
either closed or deferred and, where appropriate, verified by regression and
confirmation testing.
STATUS: RED. A large quality gap exists and has existed for months.
Because of the limited test time against the release-candidate build, the risk
of regression is significant.

10. The open/close curve indicates that we have achieved product stability and
reliability.
STATUS: RED. The priority-one curve has stabilized, but not the overall
bug-find curve. In addition, the run chart of errors requiring a reboot
shows that we are still showing about one crash per eight hours of system
operation, which is no more stable than a typical Windows 95/Windows 98
laptop. (One of the ad claims is improved stability over a PC.)

__AST V3.book Seite 62 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 63

11. The Project Management Team agrees that the product, as defined during
the final cycle of System Test, will satisfy the customer’s reasonable expecta-
tions of quality.
STATUS: YELLOW. We have not really run enough of the test suite at this
time to give a good assessment of overall product quality.

12. The Project Management Team holds a System Test Exit Meeting and
agrees that we have completed System Test.
STATUS: In progress.

2.6.8 Evaluating Exit Criteria and Reporting Exercise Debrief

We have added a section called “ADDITIONAL DATA AND INFORMATION”
below each criterion. In that section, you’ll find Rex’s solution to this exercise,
based both on what kind of additional data and information he actually had
during this meeting and what he would have brought if he knew then what he
knows now.

1. All design, implementation, and feature completion, code completion, and
unit test completion commitments made in the System Test Entry meeting
were either met or slipped to no later than four (4), three (3), and three (3)
weeks, respectively, prior to the proposed System Test Exit date.
STATUS: RED. Audio and demo functionality have entered System Test in
the last three weeks. The modems entered System Test in the last three
weeks. On the margins of a violation, off-hook detection was changed sig-
nificantly.
ADDITIONAL DATA AND INFORMATION: The specific commitments
made in the System Test Entry meeting. The delivery dates for the audio
functionality, the demo functionality, the modem, and the off-hook detec-
tion functionality.

2. No panic, crash, halt, wedge, unexpected process termination, or other
stoppage of processing has occurred on any server software or hardware for
the previous three (3) weeks.
STATUS: YELLOW. The servers have not crashed, but we did not complete
all the tip-over and fail-over testing we planned, and so we are not satisfied
that the servers are stable under peak load or other inclement conditions.
ADDITIONAL DATA AND INFORMATION: Metrics indicate the per-
centage completion of tip-over and fail-over tests. Details on which specific

__AST V3.book Seite 63 Freitag, 1. Juli 2011 1:06 13

64 2 Testing Processes

quality risks remain uncovered due to the tip-over and fail-over tests not
yet run.

3. Production devices have been used for all System Test execution for at least
three (3) weeks.
STATUS: GREEN. Except for the modem situation discussed above, the
hardware has been stable.
ADDITIONAL DATA AND INFORMATION: None. Good news requires
no explanation.

4. No client systems have become inoperable due to a failed update for at least
three (3) weeks.
STATUS: YELLOW. No system has become permanently inoperable during
update, but we have seen systems crash during update and these systems
required a reboot to clear the error.
ADDITIONAL DATA AND INFORMATION: Details, from bug reports,
on the system crashes described.

5. Server processes have been running without installation of bug fixes, man-
ual intervention, or tuning of configuration files for two (2) weeks.
STATUS: RED. Server configurations have been altered by Change Com-
mittee–approved changes multiple times over the last two weeks.
ADDITIONAL DATA AND INFORMATION: List of tests that have been
run prior to the last change, along with an assessment of the risk posed to
each test by the change. (Note: Generating this list and the assessment could
be a lot of work unless you have good traceability information.)

6. The Test Team has executed all the planned tests against the release-candi-
date hardware and software releases of the Device, Server, and Client.
STATUS: RED. We had planned to test Procurement and Fulfillment, but
disengaged from this effort because the systems were not ready. Also, we
have just received the release-candidate build; complete testing would take
two weeks. In addition, the servers are undergoing Change Committee–
approved changes every few days and a new load balancer has been added
to the server farm. These server changes have prevented volume, tip-over,
and fail-over testing for the last week and a half. Finally, we have never had
a chance to test the server installation and boot processes because we never
received documentation on how to perform these tasks.
ADDITIONAL DATA AND INFORMATION: List of Procurement and

__AST V3.book Seite 64 Freitag, 1. Juli 2011 1:06 13

 2.6 Evaluating Exit Criteria and Reporting 65

Fulfillment tests skipped, along with the risks associated with those tests.
List of tests that will be skipped due to time compression of the last pass of
testing against the release-candidate, along with the risks associated with
those tests. List of changes to the server since the last volume, tip-over, and
fail-over tests along with an assessment of reliability risks posed by the
change. (Again, this could be a big job.) List of server install and boot pro-
cess tests skipped, along with the risks associated with those tests.

7. The Test Team has retested all priority one and two bug reports over the life
of the project against the release-candidate hardware and software releases
of the Device, Server, and Client.
STATUS: RED. Testing of the release-candidate software and hardware has
been schedule-limited to one week, which does not allow for retesting of all
bugs.
ADDITIONAL DATA AND INFORMATION: The list of all the priority
one and two bug reports filed during the project, along with an assessment
of the risk that those bugs might have re-entered the system in a change-
related regression not otherwise caught by testing. (Again, potentially a
huge job.)

8. The Development Teams have resolved all “must-fix” bugs. “Must-fix” will
be defined by the Project Management Team.
STATUS: RED. Referring to the attached open/closed charts and the “Bugs
Found Since 11/ 9” report, we continue to find new bugs in the product,
though there is good news in that the find rate for priority one bugs has lev-
eled off. Per the closure period charts, it takes on average about two
weeks—three weeks for priority one bugs—to close a problem report. In
addition, both open/close charts show a significant quality gap between
cumulative open and cumulative closed, and it’s hard to believe that taken
all together, a quantity of bugs that significant doesn’t indicate a pervasive
fit-and-finish issue with the product. Finally, note that Web and E-com-
merce problems are design issues—the selected browser is basically incom-
patible with much of the Internet—which makes these problems much
more worrisome.
ADDITIONAL DATA AND INFORMATION: Open/closed charts, list of
bugs since November 9, closure period charts, and a list of selected impor-

__AST V3.book Seite 65 Freitag, 1. Juli 2011 1:06 13

66 2 Testing Processes

tant sites that won’t work with the browser. (Note: The two charts men-
tioned are covered in the Advanced Test Manager course, if you’re curious.)

9. The Test Team has checked that all issues in the bug tracking system are
either closed or deferred and, where appropriate, verified by regression and
confirmation testing.
STATUS: RED. A large quality gap exists and has existed for months.
Because of the limited test time against the release-candidate build, the risk
of regression is significant.
ADDITIONAL DATA AND INFORMATION: List of bug reports that are
neither closed nor deferred, sorted by priority. Risk of tests that will not be
run against the release-candidate software, along with the associated risks
for each test.

10. The open/close curve indicates that we have achieved product stability and
reliability.
STATUS: RED. The priority-one curve has stabilized, but not the overall
bug-find curve. In addition, the run chart of errors requiring a reboot
shows that we are still showing about one crash per eight hours of system
operation, which is no more stable than a typical Windows 95/Windows 98
laptop. (One of the ad claims is improved stability over a PC.)
ADDITIONAL DATA AND INFORMATION: Open/closed chart (run for
priority one defects only and again for all defects). Run chart of errors
requiring a reboot; i.e., a trend chart that shows how many reboot-requiring
crashes occurred each day.

11. The Project Management Team agrees that the product, as defined during
the final cycle of System Test, will satisfy the customer’s reasonable expecta-
tions of quality.
STATUS: YELLOW. We have not really run enough of the test suite at this
time to give a good assessment of overall product quality.
ADDITIONAL DATA AND INFORMATION: List of all the tests not yet
run against the release-candidate build, along with their associated risks.

12. The Project Management Team holds a System Test Exit Meeting and
agrees that we have completed System Test.
STATUS: In progress.
ADDITIONAL DATA AND INFORMATION: None.

__AST V3.book Seite 66 Freitag, 1. Juli 2011 1:06 13

 2.7 Test Closure Activities 67

2.7 Test Closure Activities

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 2 of the Advanced
syllabus for general recall and familiarity only.

2.8 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to
reinforce your knowledge and understanding of the material and to prepare for
the ISTQB Advanced Level Technical Test Analyst exam.

1 Identify all of the following that can be useful as a test oracle the first time a
test case is run.

A Incident report

B Requirements specification

C Test summary report

D Legacy system

2 Assume you are a technical test an=2alyst working on a banking project to
upgrade an existing automated teller machine system to allow customers to
obtain cash advances from supported credit cards. During test design, you
identify a discrepancy between the list of supported credit cards in the
requirements specification and the design specification. This is an example
of what?

A Test design as a static test technique

B A defect in the requirements specification

C A defect in the design specification

D Starting test design too early in the project

Learning objectives

Recall of content only

__AST V3.book Seite 67 Freitag, 1. Juli 2011 1:06 13

68 2 Testing Processes

3 Which of the following is not always a precondition for test execution?

A A properly configured test environment

B A thoroughly specified test procedure

C A process for managing identified defects

D A test oracle

4 Assume you are a technical test analyst working on a banking project to
upgrade an existing automated teller machine system to allow customers to
obtain cash advances from supported credit cards. One of the exit criteria in
the test plan requires documentation of successful cash advances of at least
500 euros for all supported credit cards. The correct list of supported credit
cards is American Express, Visa, Japan Credit Bank, Eurocard, and
MasterCard.

After test execution, a complete list of cash advance test results shows
the following:

■ American Express allowed advances of up to 1,000 euros.
■ Visa allowed advances of up to 500 euros.
■ Eurocard allowed advances of up to 1,000 euros.
■ MasterCard allowed advances of up to 500 euros.

Which of the following statements is true?

A. The exit criterion fails due to excessive advances for American
Express and Eurocard.

B. The exit criterion fails due to a discrepancy between American
Express and Eurocard on the one hand and Visa and MasterCard on
the other hand.

C. The exit criterion passes because all supported cards allow cash
advances of at least the minimum required amount.

D. The exit criterion fails because we cannot document Japan Credit
Bank results.

__AST V3.book Seite 68 Freitag, 1. Juli 2011 1:06 13

69

3 Test Management

Wild Dog...said, “I will go up and see and look, and say; for I think it is
good. Cat, come with me.’”

“Nenni!” said the Cat. “I am the Cat who walks by himself, and all places
are alike to me. I will not come.” Rudyard Kipling, from his story,
The Cat That Walked by Himself, a colorful illustration of the reasons for
the phrase “herding cats,” which is often applied to describe the task of
managing software engineering projects.

The third chapter of the Advanced syllabus is concerned with test management.
It discusses test management activities from the start to the end of the test pro-
cess and introduces the consideration of risk for testing. There are 11 sections.

1. Introduction
2. Test Management Documentation
3. Test Plan Documentation Templates
4. Test Estimation
5. Scheduling and Test Planning
6. Test Progress Monitoring and Control
7. Business Value of Testing
8. Distributed, Outsourced, and Insourced Testing
9. Risk-Based Testing
10. Failure Mode and Effects Analysis
11. Test Management Issues

Let’s look at the sections that pertain to technical test analysis.

__AST V3.book Seite 69 Freitag, 1. Juli 2011 1:06 13

70 3 Test Management

3.1 Introduction

This chapter, as the name indicates, is focused primarily on test management
topics. Thus, it is mainly the purview of Advanced Test Manager exam candi-
dates. Since this book is for technical test analysts, most of our coverage in this
chapter is to support simple recall.

However, there is one key area that, as a technical test analyst, you need to
understand very well: risk-based testing. In this chapter, you’ll learn how to per-
form risk analysis, to allocate test effort based on risk, and to sequence tests
according to risk. These are the key tasks for a technical test analyst doing risk-
based testing.

This chapter in the Advanced syllabus also covers test documentation tem-
plates for test managers. It focuses on the IEEE 829 standard. As a technical test
analyst, you’ll need to know that standard as well. If you plan to take the
Advanced Level Technical Test Analyst exam, remember that all material from
the Foundation syllabus, including that related to the use of the IEEE 829 tem-
plates and the test management material in chapter 5 of the Foundation sylla-
bus, is examinable.

3.2 Test Management Documentation

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section.

ISTQB Glossary

test management: The planning, estimating, monitoring and control of test
activities, typically carried out by a test manager.

Learning objectives

Recall of content only

Learning objectives

Recall of content only

__AST V3.book Seite 70 Freitag, 1. Juli 2011 1:06 13

 3.3 Test Plan Documentation Templates 71

However, the Foundation syllabus covered test management, including the
topic of test management documentation. Anything covered in the Foundation
syllabus is examinable. In addition, all sections of the Advanced syllabus are
examinable in terms of general recall.

So, if you are studying for the exam, you’ll want to read this section in chap-
ter 3 of the Advanced syllabus for general recall and familiarity and review the
test management documentation material from the Foundation syllabus.

3.3 Test Plan Documentation Templates

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section.

ISTQB Glossary

test policy: A high-level document describing the principles, approach, and
major objectives of the organization regarding testing.

test strategy: A high-level description of the test levels to be performed and
the testing within those levels for an organization or program (one or more
projects).

test level: A group of test activities that are organized and managed together.
A test level is linked to the responsibilities in a project. Examples of test levels
are component test, integration test, system test, and acceptance test.

level test plan: A test plan that typically addresses one test level. See also test
plan.

master test plan: A test plan that typically addresses multiple test levels. See
also test plan.

test plan: A document describing the scope, approach, resources, and
schedule of intended test activities. It identifies amongst others test items, the
features to be tested, the testing tasks, who will do each task, degree of tester
independence, the test environment, the test design techniques and entry
and exit criteria to be used (and the rationale for their choice), and any risks
requiring contingency planning. It is a record of the test planning process.

Learning objectives

Recall of content only

__AST V3.book Seite 71 Freitag, 1. Juli 2011 1:06 13

72 3 Test Management

Earlier, in chapter 2, we reviewed portions of the IEEE 829 test documentation
standard. Specifically, we looked at the test design specification template, the
test case specification template, the test procedure specification template, the
test summary report template, and the test log template. However, the Founda-
tion covered the entire IEEE 829 standard, including the test plan template, test
item transmittal report template, and the incident report template.

Anything covered in the Foundation syllabus is examinable. All sections of
the Advanced syllabus are examinable in terms of general recall. If you are
studying for the exam, you’ll want to read this section in chapter 3 of the
Advanced syllabus for general recall and familiarity and review the test manage-
ment documentation material from the Foundation syllabus.

3.4 Test Estimation

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section.

ISTQB Glossary

test estimation: The calculated approximation of a result related to various
aspects of testing (e.g., effort spent, completion date, costs involved, number
of test cases, etc.) which is usable even if input data may be incomplete, uncer-
tain, or noisy.

test schedule: A list of activities, tasks, or events of the test process, identify-
ing their intended start and finish dates and/or times and interdependencies.

test point analysis (TPA): A formula-based test estimation method based on
function point analysis.

Wideband Delphi: An expert-based test estimation technique that aims at
making an accurate estimation using the collective wisdom of the team mem-
bers. [Note: The glossary spells this as Wide Band Delphi, though the spelling
given here is more commonly used.]

Learning objectives

Recall of content only

__AST V3.book Seite 72 Freitag, 1. Juli 2011 1:06 13

 3.5 Scheduling and Test Planning 73

However, chapter 5 of the Foundation syllabus covered test estimation as
part of the material on test management. Anything covered in the Foundation
syllabus is examinable. All sections of the Advanced syllabus are examinable in
terms of general recall. If you are studying for the exam, you’ll want to read this
section in chapter 3 of the Advanced syllabus for general recall and familiarity
and review the test estimation material from the Foundation syllabus.

3.5 Scheduling and Test Planning

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 3 of the Advanced
syllabus for general recall and familiarity only.

3.6 Test Progress Monitoring and Control

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section.

However, chapter 5 of the Foundation syllabus covers test progress moni-
toring and control as part of the material on test management. Anything cov-
ered in the Foundation syllabus is examinable. All sections of the Advanced
syllabus are examinable in terms of general recall. If you are studying for the
exam, you’ll want to read this section in chapter 3 of the Advanced syllabus for
general recall and familiarity and review the test progress monitoring and con-
trol material from the Foundation syllabus.

Learning objectives

Recall of content only

Learning objectives

Recall of content only

__AST V3.book Seite 73 Freitag, 1. Juli 2011 1:06 13

74 3 Test Management

3.7 Business Value of Testing

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 3 of the Advanced
syllabus for general recall and familiarity only.

3.8 Distributed, Outsourced, and Insourced Testing

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 3 of the Advanced
syllabus for general recall and familiarity only.

ISTQB Glossary

test monitoring: A test management task that deals with the activities related
to periodically checking the status of a test project. Reports are prepared that
compare the actuals to that which was planned. See also test management.

Learning objectives

Recall of content only

Learning objectives

Recall of content only

__AST V3.book Seite 74 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 75

3.9 Risk-Based Testing

Risk is the possibility of a negative or undesirable outcome or event. A specific
risk is any problem that may occur that would decrease customer, user, partici-
pant, or stakeholder perceptions of product quality or project success.

In testing, we’re concerned with two main types of risks. The first type of
risk is product or quality risk. When the primary impact of a potential problem
is on product quality, such potential problems are called product risks. A syn-
onym for product risks, which we use most frequently ourselves, is quality risks.
An example of a quality risk is a possible reliability defect that could cause a sys-
tem to crash during normal operation.

The second type of risk is project or planning risks. When the primary
impact of a potential problem is on project success, such potential problems are
called project risks. Some people also refer to project risks as planning risks. An
example of a project risk is a possible staffing shortage that could delay comple-
tion of a project.

Of course, you can consider a quality risk as a special type of project risk.
While the ISTQB definintion of project risk is given here, Jamie likes the infor-
mal definition of a project risk as anything that might prevent the project from
delivering the right product, on time and on budget. However, the difference is
that you can run a test against the system or software to determine whether a
quality risk has become an actual outcome. You can test for system crashes, for
example. Other project risks are usually not testable. You can’t test for a staffing
shortage.

Learning objectives
(K2) Outline the activities of a risk-based approach for planning
and executing technical testing.

[Note: While the Advanced syllabus does not include K3 or K4
learning objectives for technical test analysts (unlike for test
analysts) in this section, we feel that technical test analysts have an
equal need for the ability to perform a risk analysis. Therefore, we
will include exercises on this topic from a technical perspective.]

__AST V3.book Seite 75 Freitag, 1. Juli 2011 1:06 13

76 3 Test Management

Not all risks are equal in importance. There are a number of ways to classify the
level of risk. The simplest is to look at two factors:

■ The likelihood of the problem occurring; i.e., being present in the product
when it is delivered for testing

■ The impact of the problem should it occur; i.e., being present in the product
when it is delivered to customers or users after testing

Note the distinction made here in terms of project timeline. Likelihood is
assessed based on the likelihood of a problem existing in the software, not on
the likelihood of it being encountered by the user. The likelihood of a user
encountering the problem influences impact.

Likelihood of a problem arises primarily from technical considerations, such as
the programming languages used, the bandwidth of connections, and so forth.
The impact of a problem arises from business considerations, such as the finan-

ISTQB Glossary

risk: A factor that could result in future negative consequences; usually
expressed as impact and likelihood.

risk type: A set of risks grouped by one or more common factors such as a
quality attribute, cause, location, or potential effect of risk. A specific set of
product risk types is related to the type of testing that can mitigate (control)
that risk type. For example, the risk of user interactions being misunderstood
can be mitigated by usability testing.

risk category: see risk type. [Note: Included because this is also a common term,
and because the process of risk analysis as described in the Advanced syllabus
includes risk categorization.]

product risk: A risk directly related to the test object. See also risk. [Note: We
will also use the commonly used synonym quality risk in this book.]

project risk: A risk related to management and control of the (test) project,
e.g., lack of staffing, strict deadlines, changing requirements, etc. See also risk.

risk-based testing: An approach to testing to reduce the level of product risks
and inform stakeholders of their status, starting in the initial stages of a
project. It involves the identification of product risks and the use of risk levels
to guide the test process.

__AST V3.book Seite 76 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 77

cial loss the business will suffer from a problem, the number of users or custom-
ers affected by a problem, and so forth.

In risk-based testing, we use the risk items identified during risk analysis
together with the level of risk associated with each risk item to guide us. In fact,
under a true analytical risk-based testing strategy, risk is the primary basis of
testing.

Risk can guide testing in various ways, but there are three very common ones:

■ First, during all test activities, test managers, technical test analysts, and test
analysts allocate effort for each quality risk item proportionally to the level of
risk. Technical test analysts and test analysts select test techniques in a way
that matches the rigor and extensiveness of the technique with the level of
risk. Test managers, technical test analysts, and test analysts carry out test
activities in risk order, addressing the most important quality risks first and
only at the very end spending any time at all on less-important ones. Finally,
test managers, technical test analysts, and test analysts work with the project
team to ensure that the repair of defects is appropriate to the level of risk.

■ Second, during test planning and test control, test managers provide both
mitigation and contingency responses for all significant, identified project
risks. The higher the level of risk, the more thoroughly that project risk is
managed.

■ Third, test managers, technical test analysts, and test analysts report test
results and project status in terms of residual risks. For example, which tests
have not yet been run or have been skipped? Which tests have been run?
Which have passed? Which have failed? Which defects have not yet been
fixed or retested? How do the tests and defects relate back to the risks?

When following a true analytical risk-based testing strategy, it’s important that
risk management not happen only once in a project. The three responses to risk
we just covered—along with any others that might be needed—should occur
throughout the lifecycle. Specifically, we should try to reduce quality risk by
running tests and finding defects and reduce project risks through mitigation
and, if necessary, contingency actions. Periodically in the project we should
reevaluate risk and risk levels based on new information. This might result in
our reprioritizing tests and defects, reallocating test effort, and taking other test
control activities.

__AST V3.book Seite 77 Freitag, 1. Juli 2011 1:06 13

78 3 Test Management

One metaphor sometimes used to help people understand risk-based testing is
that testing is a form of insurance. In your daily life, you buy insurance when
you are worried about some potential risk. You don’t buy insurance for risks that
you are not worried about. So, we should test the areas that are worrisome, test
for bugs that are worrisome, and ignore the areas and bugs that aren’t worri-
some.

One potentially misleading aspect of this metaphor is that insurance profes-
sionals and actuaries can use statistically valid data for quantitative risk analysis.
Typically, risk-based testing relies on qualitative analyses because we don’t have
the same kind of data insurance companies have.

During risk-based testing, you have to remain aware of many possible
sources of risks. There are safety risks for some systems. There are business
and economic risks for most systems. There are privacy and data security
risks for many systems. There are technical, organizational, and political risks
too.

3.9.1 Risk Management

Risk management includes three primary activities:

■ Risk identification, figuring out what the different project and quality risks
are for the project

■ Risk analysis, assessing the level of risk—typically based on likelihood and
impact—for each identified risk item

■ Risk mitigation, which is really more properly called “risk control” because
it consists of mitigation, contingency, transference, and acceptance actions
for various risks

ISTQB Glossary

test control: A test management task that deals with developing and apply-
ing a set of corrective actions to get a test project on track when monitoring
shows a deviation from what was planned. See also test management.

risk level: The importance of a risk as defined by its characteristics, impact and
likelihood. The level of risk can be used to determine the intensity of testing to
be performed. A risk level can be expressed either qualitatively (e.g., high,
medium, low) or quantitatively.

__AST V3.book Seite 78 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 79

In some sense, these activities are sequential, at least in terms of when they start.
They are staged such that risk identification starts first. Risk analysis comes next.
Risk control starts once risk analysis has determined the level of risk. However,
since risk management should be continuous in a project, the reality is that risk
identification, risk analysis, and risk control are all recurring activities.

Everyone has their own perspective on how to manage risks on a project,
including what the risks are, the level of risk, and the appropriate controls to put
in place for risks. Therefore, risk management should include all project stake-
holders.

In many cases, though, not all stakeholders can participate or are willing to
do so. In such cases, some stakeholders may act as surrogates for other stake-
holders. For example, in mass-market software development, the marketing
team might ask a small sample of potential customers to help identify potential
defects that would affect their use of the software most heavily. In this case, the
sample of potential customers serves as a surrogate for the entire eventual cus-
tomer base. As another example, business analysts on IT projects can some-
times represent the users rather than involving users in potentially distressing
risk analysis sessions that include conversations about what could go wrong and
how bad it would be.

Technical test analysts bring particular expertise to risk management due to
their defect-focused outlook, especially as relates to technically based sources of
risk and likelihood. So they should participate whenever possible. In fact, in

ISTQB Glossary

risk management: Systematic application of procedures and practices to the
tasks of identifying, analyzing, prioritizing, and controlling risk.

risk identification: The process of identifying risks using techniques such as
brainstorming, checklists, and failure history.

risk analysis: The process of assessing identified risks to estimate their impact
and probability of occurrence (likelihood).

risk mitigation or risk control: The process through which decisions are
reached and protective measures are implemented for reducing risks to, or
maintaining risks within, specified levels.

__AST V3.book Seite 79 Freitag, 1. Juli 2011 1:06 13

80 3 Test Management

many cases, the test manager will lead the quality risk analysis effort, with tech-
nical test analysts providing key support in the process.

With that overview of risk management in place, let’s look at the three risk
management activities more closely.

3.9.2 Risk Identification

For proper risk-based testing, we need to identify both product and project
risks. We can identify both kinds of risks using techniques like these:

■ Expert interviews
■ Independent assessments
■ Use of risk templates
■ Project retrospectives
■ Risk workshops and brainstorming
■ Checklists
■ Calling on past experience

Conceivably, you can use a single integrated process to identify both project and
product risks. We usually separate them into two separate processes since they
have two separate deliverables. We include the project risk identification pro-
cess in the test planning process and thus hand the bulk of the responsibility for
these kinds of risks to managers, including test managers. In parallel, the quality
risk identification process occurs early in the project.

That said, project risks—and not just for testing but also for the project as a
whole—are often identified as by-products of quality risk analysis. In addition,
if you use a requirements specification, design specification, use cases, or other
documentation as inputs into your quality risk analysis process, you should
expect to find defects in those documents as another set of by-products. These
are valuable by-products, which you should plan to capture and escalate to the
proper person.

Previously, we encouraged you to include representatives of all possible
stakeholder groups in the risk management process. For the risk identification
activities, the broadest range of stakeholders will yield the most complete, accu-
rate, and precise risk identification. The more stakeholder group representatives
you omit from the process, the more you will miss risk items and even whole
risk categories.

__AST V3.book Seite 80 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 81

How far should you take this process? Well, it depends on the technique. In the
relatively informal Pragmatic Risk Analysis and Management technique that we
frequently use, risk identification stops at the risk items. You have to be specific
enough about the risk items to allow for analysis and assessment of each risk item
to yield an unambiguous likelihood rating and an unambiguous impact rating.

Techniques that are more formal often look downstream to identify poten-
tial effects of the risk item if it were to become an actual negative outcome.
These effects include effects on the system—or the system of systems if applica-
ble—as well as effects on the potential users, customers, stakeholders, and even
society in general. Failure Mode and Effect Analysis is an example of such a for-
mal risk management technique, and it is commonly used on safety-critical and
embedded systems.

Other formal techniques look upstream to identify the source of the risk.
Hazard Analysis is an example of such a formal risk management technique.
We’ve never used it ourselves, but Rex has talked to clients who have used it for
safety-critical medical systems.1

1. For more information on risk identification and analysis techniques, you can see either of Rex
Black’s two books, Managing the Testing Process, 3e (for more both formal and informal tech-
niques) or Pragmatic Software Testing (for informal techniques). If you want to use Failure Mode
and Effect Analysis, then we recommend reading D.H. Stamatis’s Failure Mode and Effect Analysis
for a thorough discussion of the technique, followed by Managing the Testing Process, 3e for a dis-
cussion of how the technique applies to software testing.

ISTQB Glossary

Failure Mode and Effect Analysis (FMEA): A systematic approach to risk
identification and analysis of possible modes of failure and attempting to pre-
vent their occurrence. See also Failure Mode, Effect and Criticality Analysis
(FMECA).

Failure Mode, Effect and Criticality Analysis (FMECA): An extension of
FMEA. In addition to the basic FMEA, it includes a criticality analysis, which is
used to chart the probability of failure modes against the severity of their con-
sequences. The result highlights failure modes with relatively high probability
and severity of consequences, allowing remedial effort to be directed where it
will produce the greatest value. See also Failure Mode and Effect Analysis
(FMEA).

Failure Mode and Effect
Analysis (FMEA)
Failure Mode, Effect and
Criticality Analysis
(FMECA)

__AST V3.book Seite 81 Freitag, 1. Juli 2011 1:06 13

82 3 Test Management

3.9.3 Risk Analysis or Risk Assessment

The next step in the risk management process is referred to in the Advanced syl-
labus as risk analysis. We prefer to call it risk assessment because analysis would
seem to us to include both identification and assessment of risk. For example,
the process of identifying risk items often includes analysis of work products
such as requirements and metrics such as defects found in past projects.
Regardless of what we call it, risk analysis or risk assessment involves the study
of the identified risks. We typically want to categorize each risk item appropri-
ately and assign each risk item an appropriate level of risk.

We can use ISO 9126 or other quality categories to organize the risk items.
In our opinion—and in the Pragmatic Risk Analysis and Management process
described here—it doesn’t matter so much what category a risk item goes into,
usually, so long as we don’t forget it. However, in complex projects and for large
organizations, the category of risk can determine who has to deal with the risk.
A practical implication of categorization like this will make the categorization
important.

The other part of risk assessment is determining the level of risk. This often
involves likelihood and impact as the two key factors. Likelihood arises from
technical considerations, typically, while impact arises from business consider-
ations.

So what technical factors should we consider when assessing likelihood?
Here’s a list to get you started:

■ Complexity of technology and teams
■ Personnel and training issues
■ Intrateam and interteam conflict
■ Supplier and vendor contractual problems
■ Geographical distribution of the development organization, as with

outsourcing
■ Legacy or established designs and technologies versus new technologies

and designs
■ The quality—or lack of quality—in the tools and technology used
■ Bad managerial or technical leadership
■ Time, resource, and management pressure, especially when financial

penalties apply

__AST V3.book Seite 82 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 83

■ Lack of earlier testing and quality assurance tasks in the lifecycle
■ High rates of requirements, design, and code changes in the project
■ High defect rates
■ Complex interfacing and integration issues.

What business factors should we consider when assessing impact? Here’s a list
to get you started:

■ The frequency of use of the affected feature
■ Potential damage to image
■ Loss of customers and business
■ Potential financial, ecological, or social losses or liability
■ Civil or criminal legal sanctions
■ Loss of licenses, permits, and the like
■ The lack of reasonable workarounds

When determining the level of risk, we can try to work quantitatively or qualita-
tively. In quantitative risk analysis, we have numerical ratings for both likeli-
hood and impact. Likelihood is a percentage, and impact is often a monetary
quantity. If we multiply the two values together, we can calculate the cost of
exposure, which is called—in the insurance business—the expected payout or
expected loss.

While perhaps some day in the future of software engineering we can do
this routinely, typically we find that we have to determine the level of risk quali-
tatively. Why? Because we don’t have statistically valid data on which to perform
quantitative quality risk analysis. So we can speak of likelihood being very high,
high, medium, low, or very low, but we can’t say—at least, not in any meaningful
way—whether the likelihood is 90 percent, 75 percent, 50 percent, 25 percent,
or 10 percent.

This is not to say—by any means—that a qualitative approach should be
seen as inferior or useless. In fact, given the data most of us have to work with,
use of a quantitative approach is almost certainly inappropriate on most
projects. The illusory precision of such techniques misleads the stakeholders
about the extent to which you actually understand and can manage risk. What
we’ve found is that if we accept the limits of our data and apply appropriate
qualitative quality risk management approaches, the results are not only per-
fectly useful, but also indeed essential to a well-managed test process.

__AST V3.book Seite 83 Freitag, 1. Juli 2011 1:06 13

84 3 Test Management

In any case, unless your risk analysis is based on extensive and statistically
valid risk data, it will reflect perceived likelihood and impact. In other words,
personal perceptions and opinions held by the stakeholders will determine the
level of risk. Again, there’s absolutely nothing wrong with this, and we don’t
bring this up to condemn the technique at all. The key point is that project
managers, programmers, users, business analysts, architects, and testers typi-
cally have different perceptions and thus possibly different opinions on the level
of risk for each risk item. By including all these perceptions, we distill the collec-
tive wisdom of the team.

However, we do have a strong possibility of disagreements between stake-
holders. The risk analysis process should include some way of reaching consen-
sus. In the worst case, if we cannot obtain consensus, we should be able to
escalate the disagreement to some level of management to resolve. Otherwise,
risk levels will be ambiguous and conflicted and thus not useful as a guide for
risk mitigation activities—including testing.

3.9.4 Risk Mitigation or Risk Control

Having identified and assessed risks, we now must control them. As we men-
tioned earlier, the Advanced syllabus refers to this as risk mitigation, but that’s
not right. Risk control is a better term. We actually have four main options for
risk control:
■ Mitigation, where we take preventive measures to reduce the likelihood of

the risk occurring and/or the impact of a risk should it occur
■ Contingency, where we have a plan or perhaps multiple plans to reduce the

impact of a risk should it occur
■ Transference, where we get another party to accept the consequences of a

risk should it occur
■ Finally, ignoring or accepting the risk and its consequences should it

occur
For any given risk item, selecting one or more of these options creates its own
set of benefits and opportunities as well as costs and, potentially, additional
risks associated.

Analytical risk-based testing is focused on creating risk mitigation opportu-
nities for the test team, including for technical test analysts, especially for qual-

__AST V3.book Seite 84 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 85

ity risks. Risk-based testing mitigates quality risks via testing throughout the
entire lifecycle.

Let us mention that, in some cases, there are standards that can apply. We’ve
already looked at one such standard, the United States Federal Aviation Admin-
istration’s DO-178B. We’ll look at another one of those standards shortly.

It’s important too that project risks be controlled. For technical test analysts,
we’re particularly concerned with test-affecting project risks like the following:

■ Test environment and tools readiness
■ Test staff availability and qualification
■ Low quality of inputs to testing
■ Overly high rates of change for work products delivered to testing
■ Lack of standards, rules, and techniques for the testing effort.

While it’s usually the test manager’s job to make sure these risks are controlled,
the lack of adequate controls in these areas will affect the technical test analyst.

One idea discussed in the Foundation syllabus, a basic principle of testing,
is the principle of early testing and quality assurance (QA). This principle
stresses the preventive potential of testing. Preventive testing is part of analyti-
cal risk-based testing. We should try to mitigate risk before test execution starts.
This can entail early preparation of testware, pretesting test environments, pre-
testing early versions of the product well before a test level starts, insisting on
tougher entry criteria to testing, ensuring requirements for and designing for
testability, participating in reviews (including retrospectives for earlier project
activities), participating in problem and change management, and monitoring
of the project progress and quality.

In preventive testing, we take quality risk control actions throughout the lifecy-
cle. Technical test analysts should look for opportunities to control risk using
various techniques:

■ Choosing an appropriate test design technique
■ Reviews and inspections
■ Reviews of test design
■ An appropriate level of independence for the various levels of testing
■ The use of the most experienced person on test tasks
■ The strategies chosen for confirmation testing (retesting) and regression

testing

__AST V3.book Seite 85 Freitag, 1. Juli 2011 1:06 13

86 3 Test Management

Preventive test strategies acknowledge that quality risks can and should be miti-
gated by a broad range of activities, many of them not what we traditionally
think of as testing. For example, if the requirements are not well written, per-
haps we should institute reviews to improve their quality rather than relying on
tests that we will run once the badly written requirements become a bad design
and ultimately bad, buggy code.

Of course, testing is not effective against all kinds of quality risks. In some
cases, you can estimate the risk reduction effectiveness of testing in general and
for specific test techniques for given risk items. There’s not much point in using
testing to reduce risk where there is a low level of test effectiveness. For exam-
ple, code maintainability issues related to poor commenting or use of unstruc-
tured programming techniques will not tend to show up—at least, not
initially—during testing.

Once we get to test execution, we run tests to mitigate quality risks. Where
testing finds defects, testers reduce risk by providing the awareness of defects
and opportunities to deal with them before release. Where testing does not find
defects, testing reduces risk by ensuring that under certain conditions the sys-
tem operates correctly. Of course, running a test only demonstrates operation
under certain conditions and does not constitute a proof of correctness under
all possible conditions.

We mentioned earlier that we use level of risk to prioritize tests in a risk-
based strategy. This can work in a variety of ways, with two extremes, referred
to as depth-first and breadth-first. In a depth-first approach, all of the highest-
risk tests are run before any lower-risk tests, and tests are run in strict risk order.
In a breadth-first approach, we select a sample of tests across all the identified
risks using the level of risk to weight the selection while at the same time ensur-
ing coverage of every risk at least once.

As we run tests, we should measure and report our results in terms of resid-
ual risk. The higher the test coverage in an area, the lower the residual risk. The
fewer bugs we’ve found in an area, the lower the residual risk.2 Of course, in
doing risk-based testing, if we only test based on our risk analysis, this can leave
blind spots, so we need to use testing outside the predefined test procedures to

2. You can find examples of how to carry out risk-based test reporting in Rex Black’s book Critical
Testing Processes and in the companion volume to this book, Advanced Software Testing: Volume 2,
which addresses test management.

__AST V3.book Seite 86 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 87

see if we have missed anything. We’ll talk about about how to accomplish such
testing, using blended testing strategies, in chapter 4.

If, during test execution, we need to reduce the time or effort spent on test-
ing, we can use risk as a guide. If the residual risk is acceptable, we can curtail
our tests. Notice that, in general, those tests not yet run are less important than
those tests already run. If we do curtail further testing, that property of risk-
based test execution serves to transfer the remaining risk onto the users, cus-
tomers, help desk and technical support personnel, or operational staff.

Suppose we do have time to continue test execution? In this case, we can adjust
our risk analysis—and thus our testing—for further test cycles based on what
we’ve learned from our current testing. First, we revise our risk analysis. Then,
we reprioritize existing tests and possibly add new tests. What should we look
for to decide whether to adjust our risk analysis? We can start with the following
main factors:

■ Totally new or very much changed product risks
■ Unstable or defect-prone areas discovered during the testing
■ Risks, especially regression risk, associated with fixed defects
■ Discovery of unexpected bug clusters
■ Discovery of business-critical areas that were missed

So, if you have time for new additional test cycles, consider revising your quality
risk analysis first. You should also update the quality risk analysis at each project
milestone.

3.9.5 An Example of Risk Identification and Assessment Results

In figure 3-1, you see an example of a quality risk analysis document. It is a case
study from an actual project. This document—and the approach we used—fol-
lowed the Failure Mode and Effect Analysis (FMEA) approach.

__AST V3.book Seite 87 Freitag, 1. Juli 2011 1:06 13

88 3 Test Management

Figure 3–1 An example of a quality risk analysis document using FMEA

As you can see, we start—at the left side of the table—with a specific function
and then identify failure modes and their possible effects. Criticality is deter-
mined based on the effects, as is the severity and priority. Possible causes are
listed to enable bug prevention work during requirements, design, and imple-
mentation.

Next, we look at detection methods—those methods we expect to be
applied for this project. The more likely the failure mode is to escape detection,
the worse the detection number. We calculate a risk priority number based on
the severity, priority, and detection numbers. Smaller numbers are worse. Sever-
ity, priority, and detection each range from 1 to 5, so the risk priority number
ranges from 1 to 125.

This particular table shows the highest-level risk items only because Rex
sorted it by risk priority number. For these risk items, we’d expect a lot of addi-
tional detection and other recommended risk control actions. You can see that
we have assigned some additional actions at this point but have not yet assigned
the owners.

During testing actions associated with a risk item, we’d expect that the num-
ber of test cases, the amount of test data, and the degree of test coverage would

__AST V3.book Seite 88 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 89

all increase as the risk increases. Notice that we can allow any test procedures
that cover a risk item to inherit the level of risk from the risk item. That docu-
ments the priority of the test procedure, based on the level of risk.

3.9.6 Risk-Based Testing throughout the Lifecycle

We’ve mentioned that, properly done, risk-based testing manages risk through-
out the lifecycle. Let’s look at how that happens, based on our usual approach to
a test project.

During test planning, risk management comes first. We perform a quality
risk analysis early in the project, ideally once the first draft of a requirements
specification is available. From that quality risk analysis, we build an estimate
for negotiation with and, we hope, approval by project stakeholders and man-
agement.

Once the project stakeholders and management agree on the estimate, we
create a plan for the testing. The plan assigns testing effort and sequences tests
based on the level of quality risk. It also plans for project risks that could affect
testing.

During test control, we will periodically adjust the risk analysis throughout
the project. That can lead to adding, increasing, or decreasing test coverage;
removing, delaying, or accelerating the priority of tests; and other such activi-
ties.

During test analysis and design, we work with the test team to allocate test
development and execution effort based on risk. Because we want to report test
results in terms of risk, we maintain traceability to the quality risks.

During implementation and execution, we sequence the procedures based
on the level of risk. We ensure that the test team, including the test analysts and
technical test analysts, uses exploratory testing and other reactive techniques to
detect unanticipated high-risk areas.

During the evaluation of exit criteria and reporting, we work with our test
team to measure test coverage against risk. When reporting test results (and
thus release readiness), we talk not only in terms of test cases run and bugs
found, but also in terms of residual risk.

__AST V3.book Seite 89 Freitag, 1. Juli 2011 1:06 13

90 3 Test Management

3.9.7 Risk-Aware Testing Standards

As you saw in chapter 2, the United States Federal Aviation Administration’s
DO-178B standard bases the extent of testing—measured in terms of white-box
code coverage—on the potential impact of a failure. That makes DO-178B a
risk-aware testing standard.

Another interesting example of how risk management, including quality
risk management, plays into the engineering of complex and/or safety-critical
systems is found in the ISO/IEC standard 61508, which is mentioned in the
Advanced syllabus. This standard applies to embedded software that controls
systems with safety-related implications, as you can tell from its title, “Func-
tional safety of electrical/electronic/programmable electronic safety-related sys-
tems.”

The standard is very much focused on risks. Risk analysis is required. It
considers two primary factors for determing the level of risk, likelihood and
impact. During a project, we are to reduce the residual level of risk to a tolerable
level, specifically through the application of electrical, electronic, or software
improvements to the system.

The standard has an inherent philosophy about risk. It acknowledges that
we can’t attain a level of zero risk—whether for an entire system or even for a
single risk item. It says that we have to build quality, especially safety, in from
the beginning, not try to add it at the end. Thus we must take defect-preventing
actions like requirements, design, and code reviews.

The standard also insists that we know what constitutes tolerable and intol-
erable risks and that we take steps to reduce intolerable risks. When those steps
are testing steps, we must document them, including a software safety valida-
tion plan, a software test specification, software test results, software safety vali-
dation, a verification report, and a software functional safety report.

The standard addresses the author-bias problem. As discussed in the Foun-
dation syllabus, this is the problem with self-testing, the fact that you bring the
same blind spots and bad assumptions to testing your own work that you
brought to creating that work. So the standard calls for tester independence,
indeed insisting on it for those performing any safety-related tests. And since
testing is most effective when the system is written to be testable, that’s also a
requirement.

__AST V3.book Seite 90 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 91

The standard has a concept of a safety integrity level (or SIL), which is
based on the likelihood of failure for a particular component or subsystem. The
safety integrity level influences a number of risk-related decisions, including the
choice of testing and QA techniques.

Some of the techniques are ones we’ll cover in this book and in the compan-
ion volume for test analysis (volume I) that address various functional and
black-box testing design techniques. Many of the techniques are ones that we’ll
cover in this book, including probabilistic testing, dynamic analysis, data
recording and analysis, performance testing, interface testing, static analysis,
and complexity metrics. Additionally, since thorough coverage, including dur-
ing regression testing, is important in reducing the likelihood of missed bugs,
the standard mandates the use of applicable automated test tools, which we’ll
also cover here in this book.

Again, depending on the safety integrity level, the standard might require
various levels of testing. These levels include module testing, integration testing,
hardware-software integration testing, safety requirements testing, and system
testing.

If a level of testing is required, the standard states that it should be docu-
mented and independently verified. In other words, the standard can require
auditing or outside reviews of testing activities. In addition, continuing on with
the theme of “guarding the guards,” the standard also requires reviews for test
cases, test procedures, and test results along with verification of data integrity
under test conditions.

The standard requires the use of structural test design techniques. Struc-
tural coverage requirements are implied, again based on the safety integrity
level. (This is similar to DO-178B.) Because the desire is to have high confi-
dence in the safety-critical aspects of the system, the standard requires com-
plete requirements coverage not once, but multiple times, at multiple levels of
testing. Again, the level of test coverage required depends on the safety integ-
rity level.

Now, this might seem a bit excessive, especially if you come from a very
informal world. However, the next time you step between two pieces of metal
that can move—e.g., elevator doors—ask yourself how much risk you want to
remain in the software the controls that movement.

__AST V3.book Seite 91 Freitag, 1. Juli 2011 1:06 13

92 3 Test Management

3.9.8 Risk-Based Testing Exercise 1

Read the HELLOCARM system requirements document in Appendix B, a
hypothetical project derived from a real project that RBCS helped to test.

If you’re working in a classroom, break into groups of three to five. If you
are working alone, you’ll need to do this yourself. Perform quality risks analysis
for this project. Since this is a book focused on non-functional testing, identify
and assess risks for efficiency quality characteristics only. Use the templates
shown in figure 3-2 and table 3-1 on the following page.

To keep the time spent reasonable, I suggest 30 to 45 minutes identifying
quality risks, then 15 to 30 minutes altogether assessing the level of each risk. If
you are working in a classroom, once each group has finished its analysis, dis-
cuss the results.

Figure 3–2 Annotated template for informal quality risk analysis

 Extent of

Quality Risk Likelihood Impact Risk Pri. # Testing Tracing

 Risk Category 1

Risk 1

Risk 2

Risk n

A heirarchy of

risk categories

can help

organize the

list and jog

your memory

1 = Very high

2 = High

3 = Medium

4 = Low

5 = Very low

The product of

technical and

business risk,

from 1-25

1-5 = Extensive

6-10 = Broad

11-5 = Cursory

16-20 = Opportunity

21-25 = Report bugs

Quality risks are potential system problems which could reduce user satisfaction

Risk priority number. Aggregate measure of problem risk

Impact of the problem: Arises from business,

operational. and regulatory considerations

Likelihood of the problem: Arises from

implementation and technical considerations

Tracing

information back

to requirements,

design, or other

risk bases

__AST V3.book Seite 92 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 93

Table 3–1 Functional quality risk analysis template showing quality risk categories to address

3.9.9 Risk-Based Testing Exercise Debrief 1

You can see our solution to the exercise starting in table 3-2. Immediately after
that table are two lists of by-products. One is the list of project risks discovered
during the analysis. The other is the list of requirements document defects dis-
covered during the analysis.

As a first pass for this quality risk analysis, Jamie went through each effi-
ciency requirement and identified one or more risk items for it. Jamie assumed
that the priority of the requirement was a good surrogate for the impact of the
risk, so he used that. Even using all of these shortcuts, it took Jamie about an
hour to get through this.

Table 3–2 Functional quality risk analysis for HELLOCARMS

No. Quality Risk
Likeli-
hood

Im-
pact

Risk
Pri. #

Extent of
Testing Tracing

1.1.000 Efficiency: Time behavior

1.1.001 [Non-functional risks related to
time behavior go in this section.]

1.1.002

1.1.003

1.1.004

1.1.005

1.2.000 Efficiency: Resource utilization

1.2.001 [Non-functional risks related to
accuracy go in this section.]

1.2.002

1.2.003

No. Quality Risk
Likeli-
hood

Im-
pact

Risk
Pri. #

Extent of
Testing Tracing

1.1.000 Efficiency: Time behavior
1.1.001 Screen-to-screen response

is continually slow for home
equity loans

4 2 8 Broad 040-010-010

1.1.002 Screen-to-screen response
is continually slow for home
equity lines of credit

4 3 12 Cursory 040-010-010

1.1.003 Screen-to-screen response
is continually slow for reverse
mortgages

4 4 16 Opportun
ity

040-010-010

__AST V3.book Seite 93 Freitag, 1. Juli 2011 1:06 13

94 3 Test Management

1.1.004 Approval or decline of loan
continually slower than
required for all applications

4 2 8 Broad 040-010-020

1.1.005 Approval or decline of high-
value loans slower than
required

3 2 6 Broad 040-010-020

1.1.006 Loans regularly fail to be
processed within one hour

3 3 9 Broad 040-010-030

1.1.007 Time overhead on scoring
mainframe does not meet
requirements when running
at 2,000 applications per
hour.

3 4 12 Cursory 040-010-040

1.1.008 Time overhead on scoring
mainframe does not meet
requirements when running
at 4,000 applications per
hour

2 4 8 Extensive 040-010-040

1.1.009 Credit-worthiness of
customers is not determined
in timely manner, especially
when working at high rates of
throughput

3 2 6 Broad 040-010-050

1.1.010 Fewer than rated Credit
Bureau Mainframe requests
are completed within the
required timeframe at high
rates of throughput

2 2 4 Extensive 040-010-050

1.1.011 At high rates of throughput,
archiving application is slow,
tying up Telephone Banker
workstation appreciably

4 2 8 Broad 040-010-060

1.1.012 Escalation to Senior Banker
or return to standard
Telephone Banker takes
longer than rated time when
working at high throughput.

4 3 12 Cursory 040-010-070
040-010-080

1.1.013 Conditional confirmation of
acceptance takes
appreciably more time at
high throughput (2,000 per
hour)

3 2 6 Broad 040-010-090

1.1.014 Conditional confirmation of
acceptance takes
appreciably more time at
high throughput (4,000 per
hour)

2 2 4 Extensive 040-010-090

__AST V3.book Seite 94 Freitag, 1. Juli 2011 1:06 13

 3.9 Risk-Based Testing 95

3.9.10 Project Risk By-Products

In the course of preparing the quality risk analysis document, Jamie observed
the following project risk inherent in the requirements.

What is Service level agreement (SLA) contract with the Credit Bureau
Mainframe? Many efficiency measurements will be dependent on fast
turnaround there.

3.9.11 Requirements Defect By-Products

In the course of preparing the quality risk analysis document, Jamie observed
the following defect in the requirements.

1.1.015 Abort function does not reset
the system to the starting
point on the banker's
workstation in preparation for
the next customer in a timely
manner

5 4 20 Report
Bugs

040-010-100

1.1.016 Unable to support Internet
operations within a timely
manner

5 4 20 Opportun
ity

010-010-170

1.1.017 Unable to sustain a 2,000
application per hour
throughput

2 2 4 Extensive 040-010-110

1.1.018 Unable to sustain a 4,000
application per hour
throughput

3 3 9 Broad 040-010-120

1.1.019 Unable to support 4,000
concurrent applications

3 4 12 Cursory 040-010-130

1.1.020 Unable to sustain a rate of
throughput that would
facilitate 1.2 applications the
first year

3 2 6 Broad 040-010-140

1.1.021 Turnaround time is
prohibitive on transactions
(including network
transmission time)

4 4 16 Opportun
ity

040-010-150

1.2.000 Efficiency: Resource
utilization

1.2.001 Database server unable to
handle the rated load

4 3 12 Cursory 040-020-010

1.2.002 Web server unable to handle
the rated load

3 3 9 Broad 040-020-020

1.2.003 App server unable to handle
the rated load

2 3 6 Broad 040-020-030

__AST V3.book Seite 95 Freitag, 1. Juli 2011 1:06 13

96 3 Test Management

1. Assumption appears to be that a certain percentage of applications will be
approved or conditionally approved (see 040-010-140, 040-010-150, and
040-010-160). I see no proof that this is a logical necessity.

3.9.12 Risk-Based Testing Exercise 2

Using the quality risks analysis for HELLOCARMS, outline a set of non-func-
tional test suites to run for HELLOCARM system integration and system test-
ing.

Specifically, the system integration test level should have, as an overall objective,
looking for defects in and building confidence around the ability of the
HELLOCARMS application to work with the other applications in the data-
center efficiently. The system test level should have, as an overall objective,
looking for defects in and building confidence around the ability of the
HELLOCARMS application to provide the necessary end-to-end capabilities
efficiently.

Again, if you are working in a classroom, once each group has finished its
work on the test suites and guidelines, discuss the results.

3.9.13 Risk-Based Testing Exercise Debrief 2

Based on the quality risk analysis Jamie performed, he created the following lists
of system integration test suites and system test suites.

System Integration Test Suites
■ HELLOCARMS/Scoring Mainframe Interfaces
■ HELLOCARMS/LoDoPS Interfaces
■ HELLOCARMS/GLADS Interfaces
■ HELLOCARMS/GloboRainBQW Interfaces

System Test Suites
■ Time behavior / Home equity loans
■ Time behavior / Home equity lines of credit
■ Time behavior / Reverse mortgages
■ Resource utilization / Mix of all three

__AST V3.book Seite 96 Freitag, 1. Juli 2011 1:06 13

 3.10 Failure Mode and Effects Analysis 97

3.9.14 Test Case Sequencing Guidelines

For system integration testing, we are going to create a suite for each of the dif-
ferent systems that interact with HELLOCARMS. The suite will consist of all
the transactions that are possible between the systems.

For system testing, we may be using overkill between the time behavior
suites. It is unclear to us at this time in the software development lifecycle how
much commonality there may be between the three different products. By the
time we get ready to test, we may merge those suites to test all loan products
together. For resource utilization, we definitely will mix the different products
together to get a realistic test set.

The question of sequencing the tests should be addressed. In performance
testing, prioritization must include not only the risk analysis, but also the avail-
ability of data, functionality, tools, and resources. Often the resources are prob-
lematic because we will be including network, database, and application
experts, and perhaps others.

3.10 Failure Mode and Effects Analysis

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 3 of the Advanced
syllabus for general recall and familiarity only.

Learning objectives

Recall of content only

session-based test mana-
gement

ISTQB Glossary

session-based test management: A method for measuring and managing
session-based testing, e.g., exploratory testing.

__AST V3.book Seite 97 Freitag, 1. Juli 2011 1:06 13

98 3 Test Management

3.11 Test Management Issues

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 3 of the Advanced
syllabus for general recall and familiarity only.

3.12 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to rein-
force your knowledge and understanding of the material and to prepare for the
ISTQB Advanced Level Technical Test Analyst exam. The questions in this
section illustrate what is called a scenario question.

Scenario

Assume you are testing a computer-controlled braking system for an auto-
mobile. This system includes the possibility of remote activation to initiate a
gradual braking followed by disabling of the motor upon a full stop if the owner
or the police report that the automobile is stolen or otherwise being illegally
operated. Project documents and the product marketing collateral refer to this
feature as emergency vehicle control override. The marketing team is heavily pro-
moting this feature in advertisements as a major innovation for an automobile
at this price.

Consider the following two statements:

I. Testing will cover the possibility of the failure of the emergency vehicle
control override feature to engage properly and also the possibility of
the emergency vehicle control override engaging without proper autho-
rization.

II. The reliability tests will include sending a large volume of invalid com-
mands to the emergency vehicle control override system. Ten percent
of these invalid commands will consist of deliberately engineered

Learning objectives

Recall of content only

__AST V3.book Seite 98 Freitag, 1. Juli 2011 1:06 13

 3.12 Sample Exam Questions 99

invalid commands that cover all invalid equivalence partitions and/or
boundary values that apply to command fields; 10 percent of these
invalid commands will consist of deliberately engineered invalid com-
mands that cover all pairs of command sequences, both valid and
invalid; the remaining invalid commands will be random corruptions
of valid commands rendered invalid by the failure to match the check-
sum.

1. If the project follows the IEEE 829 documentation standard, which of the
following statements about the IEEE 829 templates could be correct?

A I belongs in the Test Design Specification, while II belongs in the
Test Plan

B I belongs in the Test Plan, while II belongs in the Test Design
Specification

C I belongs in the Test Case Specification, while II belongs in the
Test Plan

D I belongs in the Test Design Specification, while II belongs in the
Test Item Transmittal Report

2. If the project is following a risk-based testing strategy, which of the follow-
ing is a quality risk item that would result in the kind of testing specified in
statements I and II above?

A The emergency vehicle control override system fails to accept valid
commands.

B The emergency vehicle control override system is too difficult to
install.

C The emergency vehicle control override system accepts invalid
commands.

D The emergency vehicle control override system alerts
unauthorized drivers.

3. Assume that each quality risk item is assessed for likelihood and impact to
determine the extent of testing to be performed. Consider only the infor-
mation in the scenario, in questions 1 and 2 above, and in your answers to

__AST V3.book Seite 99 Freitag, 1. Juli 2011 1:06 13

100 3 Test Management

those questions. Which of the following statements is supported by this
information?

A The likelihood and impact are both high.

B The likelihood is high.

C The impact is high.

D No conclusion can be reached about likelihood or impact.

__AST V3.book Seite 100 Freitag, 1. Juli 2011 1:06 13

101

4 Test Techniques

“Let’s just say I was testing the bounds of reality. I was curious to see
what would happen. That’s all it was: curiosity.”

Jim Morrison of the Doors, an early boundary analyst

The fourth chapter of the Advanced syllabus is concerned with test techniques.
To make the material manageable, the syllabus uses a taxonomy—a hierarchical
classification scheme—to divide the material into sections and subsections.
Conveniently for us, it uses the same taxonomy of test techniques given in the
Foundation syllabus, namely specification-based, structure-based, and experi-
ence-based, adding additional techniques and further explanation in each cate-
gory. In addition, the Advanced syllabus also discusses both static and dynamic
analysis.1

This chapter contains six sections.

1. Introduction
2. Specification-Based
3. Structure-Based
4. Defect- and Experience-Based
5. Static Analysis
6. Dynamic Analysis

We’ll look at each section and how it relates to test analysis.

1. You might notice a slight change from the organization of the Foundation syllabus here.
The Foundation syllabus covers static analysis in the material on static techniques in chapter 3.
The Advanced syllabus covers reviews (one form of static techniques) in chapter 6. The Advanced
syllabus covers static analysis (another form of static techniques) and dynamic analysis in chapter
4 and, in terms of tools, in chapter 9.

__AST V3.book Seite 101 Freitag, 1. Juli 2011 1:06 13

102 4 Test Techniques

4.1 Introduction

In this chapter and the next two chapters, we cover a number of test design
techniques. Let’s start by putting some structure around these techniques, and
then we’ll tell you which ones are in scope for the test analyst and which are in
scope for the technical test analyst.

Figure 4–1 A taxonomy for Advanced syllabus test techniques

Figure 4-1 shows the highest-level breakdown of testing techniques as the dis-
tinction between static and dynamic tests. Static tests, you’ll remember from the
Foundation syllabus, are those that do not involve running (or executing) the
test object itself, while dynamic tests are those that do involve running the test
object.

Static tests are broken down into reviews and static analysis. A review is any
method where the human being is the primary defect finder and scrutinizer of
the item under test, while static analysis relies on a tool as the primary defect
finder and scrutinizer.

Dynamic tests are broken down into five main types in the Advanced level:

■ Black-box (also referred to as specification-based or behavioral), where we
test based on the way the system is supposed to work. Black-box tests can

Learning objectives

Recall of content only

Testing

Static Dynamic

Review

Black-box
White-box

Functional

ATA

ATTA

ATTA
ATTA ATA

ATTA

ATA ATTA ATTA

ATA ATTA

Static

analysis Experience-

based

Defect-

based

Dynamic

analysis

Non-

functional

ATA ATTA

__AST V3.book Seite 102 Freitag, 1. Juli 2011 1:06 13

 4.1 Introduction 103

further be broken down in two main subtypes, functional and non-
functional, following the ISO 9126 standard. The easy way to distinguish
between functional and non-functional is that functional is testing what the
system does and non-functional is testing how or how well the system does
what it does.

■ White-box (also referred to as structural), where we test based on the way
the system is built.

■ Experience-based, where we test based on our skills and intuition, along
with our experience with similar applications or technologies.

■ Defect-based, where we use our understanding of the type of defect
targeted by a test as the basis for test design, with tests derived systemati-
cally from what is known about the defect.

■ Dynamic analysis, where we analyze an application while it is running,
usually via some kind of instrumentation in the code.

There’s always a temptation, when presented with a taxonomy—a hierarchical
classification scheme—like this one, to try to put things into neat, exclusive cat-
egories. If you’re familiar with biology, you’ll remember that every living being,
from herpes virus to trees to chimpanzees, has a unique Latin name based on
where in the big taxonomy of life it fits. However, when dealing with testing,
remember that these techniques are complementary. You should use whichever
and as many as are appropriate for any given test activity, whatever level of test-
ing you are doing.

Now, in figure 4-1, below each bubble that shows the lowest-level break-
down of test techniques, you see one or two boxes. Boxes with ATA in them rep-
resents test techniques covered by the book Advanced Software Testing Vol. 1.
Boxes with ATTA in them represent test techniques covered by this book. The
fact that most techniques are covered by both books does not, however, mean
that the coverage is the same.

You should also keep in mind that this assignment of types of techniques
into particular roles is based on common usage, which might not correspond to
your own organization. You might have the title of test analyst and be responsi-
ble for dynamic analysis. You might have the title of technical test analyst and
not be responsible for static analysis at all.

__AST V3.book Seite 103 Freitag, 1. Juli 2011 1:06 13

104 4 Test Techniques

Okay, so that gives you an idea of where we’re headed, basically for the rest
of this chapter. Figure 4-1 gives an overview of the heart of this book, probably
65 percent of the material covered. In this chapter, we cover dynamic testing,
except for non-functional tests, which are covered in the next chapter. A subse-
quent chapter covers static testing.

You might want to make a copy of figure 4-1 and have it available as you go
through this chapter and the next two, as a way of orienting yourself to where
we are in the book.

4.2 Specification-Based

Let’s start with a broad overview of specification-based tests before we dive into
the details of each technique.

In specification-based testing, we are going to derive and select tests by ana-
lyzing the test basis. Remember that the test basis is—or, more accurately, the
test bases are—the documents that tell us, directly or indirectly, how the com-
ponent or system under test should and shouldn’t behave, what it is required to
do, and how it is required to do it. These are the documents we can base the
tests on. Hence the name, test basis. Note also that, while the ISTQB glossary

Learning objectives

(K2) List examples of typical defects to be identified by each
specific specification-based technique.

(K3) Write test cases from a given software model in real life using
the following test design techniques (the tests shall achieve a
given model coverage):

– Equivalence partitioning
– Boundary value analysis
– Decision tables
– State transition testing

(K4) Analyze a system, or its requirement specification, in order to
determine which specification-based techniques to apply for
specific objectives, and outline a test specification based on IEEE
829, focusing on component and non-functional test cases and
test procedures.

__AST V3.book Seite 104 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 105

defines the test basis to consist of documents, it is not uncommon to base tests
on conversations with users, business analysts, architects, and other stake-
holders or on reviews of competitors’ systems.

It’s probably worth a quick compare-and-contrast with the term test oracle,
which is similar and related but not the same as the test basis. The test oracle is
anything we can use to determine expected results that we can compare with the
actual results of the component or system under test. Anything that can serve as
a test basis can also be a test oracle, of course. However, an oracle can also be an
existing system, either a legacy system being replaced or a competitor’s system.
An oracle can also be someone’s specialized knowledge. An oracle should not be
the code because otherwise we are only testing whether the compiler works.

For structural tests—which are covered in the next section—the internal
structure of the system is the test basis but not the test oracle. However, for
specification-based tests, we do not consider the internal structure at all—at
least theoretically.

Beyond being focused on behavior rather than structure, what’s common in
specification-based test techniques? Well, for one thing, there is some model,
whether formal or informal. The model can be a graph or a table. For each

ISTQB Glossary

black-box testing: Testing, either functional or non-functional, without refer-
ence to the internal structure of the component or system.

specification: A document that specifies, ideally in a complete, precise and ver-
ifiable manner, the requirements, design, behavior, or other characteristics of a
component or system and, often, the procedures for determining whether
these provisions have been satisfied.

specification-based technique (or black-box test design technique): Proce-
dure to derive and/or select test cases based on an analysis of the specifica-
tion, either functional or non-functional, of a component or system without
reference to its internal structure.

test basis: All documents from which the requirements of a component or sys-
tem can be inferred. The documentation on which the test cases are based. If a
document can be amended only by way of formal amendment procedure,
then the test basis is called a frozen test basis.

black-box testing
specification-based tech-
nique
test basis

__AST V3.book Seite 105 Freitag, 1. Juli 2011 1:06 13

106 4 Test Techniques

model, there is some systematic way to derive or create tests using it. And, typi-
cally, each technique has a set of coverage criteria that tell you, in effect, when
the model has run out of interesting and useful test ideas. It’s important to
remember that fulfilling coverage criteria for a particular test design technique
does not mean that your tests are in any way complete or exhaustive. Instead, it
means that the model has run out of useful tests to suggest based on that tech-
nique.

There is also typically some family of defects that the technique is particu-
larly good at finding. Boris Beizer, in his books on test design, referred to this as
the “bug hypothesis”. He meant that, if you hypothesize that a particular kind of
bug is likely to exist, you could then select the technique based on that hypothe-
sis. This provides an interesting linkage with the concept of defect-based test-
ing, which we’ll cover in a later section of this chapter.2

Often, specification-based tests are requirements based. Requirements
specifications often describe behavior, especially functional behavior. (The ten-
dency to underspecify non-functional requirements creates a set of quality-
related problems that we’ll not address at this point.) So, we can use the descrip-
tion of the system behavior in the requirements to create the models. We can
then derive tests from the models.

2. Boris Beizer’s books on this topic would include Black-Box Testing (perhaps most pertinent to
test analysts), Software System Testing and Quality Assurance (good for test analysts, technical test
analysts, and test managers), and Software Test Techniques (perhaps most pertinent to technical
test analysts).

ISTQB Glossary

test oracle: A source to determine expected results to compare with the actual
result of the software under test. An oracle may be the existing system (for a
benchmark), other software, a user manual, or an individual s specialized
knowledge, but it should not be the code.

test oracle

__AST V3.book Seite 106 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 107

4.2.1 Equivalence Partitioning

We start with the most basic of specification-based test design techniques,
equivalence partitioning. Conceptually, equivalence partitioning involves test-
ing various groups that are expected to be handled the same way by the system
and to exhibit similar behavior.

The underlying model is a graphical or mathematical one that identifies
equivalent classes—which are also called equivalence partitions—of inputs, out-
puts, internal values, time relationships, calculations, or just about anything else
of interest. These classes or partitions are called equivalent because they are
likely to be handled the same way by the system. Some of the classes can be
called valid equivalence classes because they describe valid situations that the
system should handle normally. Other classes can be called invalid equivalence
classes because they describe invalid situations that the system should reject or
at least escalate to the user for correction or exception handling.

Once we’ve identified the equivalence classes, we can derive tests from them.
Usually, we are working with more than one set of equivalence classes at one time;
for example, each input field on a screen has its own set of valid and invalid equiv-
alence classes. So, we can create one set of valid tests by selecting one valid mem-
ber from each equivalence partition. We continue this process until each valid
class for each equivalence partition is represented in at least one valid test.

Next, we can create negative tests (using invalid data). In most applications,
for each equivalence partition, we select one invalid class for one equivalence
partition and a valid class for every other equivalence partition. This rule—
don’t combine multiple invalid equivalent classes in a single test—prevents us
from running into a situation where the presence of one invalid value might
mask the incorrect handling of another invalid value. We continue this process
until each invalid class for each equivalence partition is represented in at least
one invalid test.

ISTQB Glossary

requirements-based testing: An approach to testing in which test cases are
designed based on test objectives and test conditions derived from require-
ments, e.g., tests that exercise specific functions or probe non-functional
attributes such as reliability or usability.

__AST V3.book Seite 107 Freitag, 1. Juli 2011 1:06 13

108 4 Test Techniques

However, some applications (particularly web-based applications) are now
designed so that, when processing an input screen, they evaluate all of the
inputs before responding to the user. With these screens, multiple invalid values
are bundled up and returned to the user all at the same time, often by highlight-
ing erroneous values or the controls that contain incorrect values. Careful selec-
tion of data is still required, even though multiple invalid values may be tested
concurrently if we can check that the input validation code acts independently
on each field.

Notice the coverage criterion implicit in the preceding discussion. Every
class member, both valid and invalid, is represented in at least one test case.

What is our bug hypothesis with this technique? For the most part, we are
looking for a situation where some equivalence class is handled improperly.
That could mean the value is accepted when it should have been rejected or vice
versa, or that a value is properly accepted or rejected but handled in a way
appropriate to another equivalence class, not the class to which it actually
belongs.

You might find this concept a bit confusing verbally, so let’s try some
figures. Figure 4-2 shows a way that we can visualize equivalence partitioning.

As you can see in the top half of the figure 4-2, we start with some set of
interest. This set of interest can be an input field, an output field, a test precon-
dition or postcondition, a configuration, or just about anything we’re interested
in testing. The key is that we can apply the operation of equivalence partitioning
to split the set into two or more disjoint subsets, where all the members of each
subset share some trait in common that was not shared with the members of the
other subset.

ISTQB Glossary

equivalence partition: A portion of an input or output domain for which the
behavior of a component or system is assumed to be the same, based on the
specification.

equivalence partitioning: A black-box test design technique in which test
cases are designed to execute representatives from equivalence partitions. In
principle, test cases are designed to cover each partition at least once.

__AST V3.book Seite 108 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 109

Figure 4–2 Visualizing equivalence partitioning

For example, if you have a simple drawing program that can fill figures with red,
green, or blue, you can split the set of fill colors into three disjoint sets: red,
green, and blue.

In the bottom half of the figure 4-2, we see the selection of test case values
from the subsets. The dots in the subsets represent the value chosen from each
subset to be represented in the test case. This involves selecting at least one
member from each subset. In pure equivalence partitioning, the logic behind
the specific selection is outside the scope of the technique. In other words, you
can select any member of the subset you please. If you’re thinking, “Some mem-
bers are better than others,” that’s fine; hold that thought for a few minutes and
we’ll come back to it.

Now, at this point we’ll generate the rest of the test case. If the set that we
partitioned was an input field, we might refer to the requirements specification
to understand how each subset is supposed to be handled. If the set that we par-
titioned was an output field, we might refer to the requirements to derive inputs

Set
Equivalence
Partitioning

Subset A

Subset B

Subset A

Subset B

Subset A

Subset B

Select
Test Cases

__AST V3.book Seite 109 Freitag, 1. Juli 2011 1:06 13

110 4 Test Techniques

that should cause that output to occur. We might use other test techniques to
design the rest of the test cases.

Figure 4–3 Subpartitioning an equivalence class

Figure 4-3 shows that equivalence partitioning can be applied iteratively. In this
figure, we apply a second round of equivalence partitioning to one of the sub-
sets to generate three smaller subsets. Only at that point do we select four mem-
bers—one from subset B and one each from subset A1, A2, and A3—for test
cases. Note that we don’t have to select a member from subset A since each of
the members from subsets A1, A2, and A3 are also members of subset A.

4.2.1.1 Avoiding Equivalence Partitioning Errors
While equivalence partitioning is fairly straightforward, people do make some
common errors when applying it. Let’s look at these errors so you can avoid
them.

First, as shown in the top half of figure 4-4, the subsets must be disjoint.
That is, no two of the subsets can have one or more member in common. The
whole point of equivalence partitioning is to test whether a system handles dif-
ferent situations differently (and properly, of course). If it’s ambiguous as to
which handling is proper, then how do we define a test case around this? Try it
out and see what happens? Not much of a test!

Equivalence
PartitioningSet

Subset B

Subset B

Subset A

Subset A 1

Subset A 2

Subset A 3

Subset B

Subset A 1

Subset A 2

Subset A 3

Subset A 1

Subset A 2

Subset A 3

Equivalence
Partitioning

Select
Test Cases

__AST V3.book Seite 110 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 111

Figure 4–4 Common equivalence partitioning errors

Second, as shown in the bottom half of figure 4-4, none of the subsets may be
empty. That is, if the equivalence partitioning operation produces a subset with
no members, that’s hardly very useful for testing. We can’t select a member of
that subset because it has no members.

Third, while not shown graphically—in part because we couldn’t figure out
a clear way to draw the picture—note that the equivalence partitioning process
does not subtract, it divides. What we mean by this is that, in terms of mathe-
matical set theory, the union of the subsets produced by equivalence partition-
ing must be the same as the original set that was equivalence partitioned. In
other words, equivalence partitioning does not generate “spare” subsets that are
somehow disposed of in the process—at least, not if we do it properly.

Notice that this is important because, if this is not true, then we stand the
chance of failing to test some important subset of inputs, outputs, configura-
tions, or some other factor of interest that somehow was dropped in the test
design process.

4.2.1.2 Composing Test Cases with Equivalence Partitioning
When we compose test cases in situations where we’ve performed equivalence par-
titioning on more than one set, we select from each subset as shown in figure 4-5.

Set Equivalence
Partitioning

Subset A

Subset B

Set Equivalence
Partitioning

Subset A

Subset B

{}

__AST V3.book Seite 111 Freitag, 1. Juli 2011 1:06 13

112 4 Test Techniques

Figure 4–5 Composing test cases with valid values

Here, we start with set X and set Y. We partition set X into two subsets, X1 and
X2. We partition set Y into three subsets, Y1, Y2, and Y3. We select test case
values from each of the five subsets, X1 and X2 on the one hand, Y1, Y2, and Y3
on the other. We then compose three test cases since we can combine the values
from the X subsets with values from the Y subsets (assuming the values are
independent and all valid).

For example, imagine you are testing a browser-based application. You are
interested in two browsers: Internet Explorer and Firefox. You are interested in
three connection types: dial-up, DSL, and cable modem. Since the browser and
the connection types are independent, we can create three test cases. In each of
the test cases, one of the connection types and one of the browser types will be
represented. One of the browser types will be represented twice.

When discussing figure 4-5, we made a brief comment that we can combine
values across the equivalence partitions when the values are independent and
all valid. Of course, that’s not always the case.

In some cases, values are not independent, in that the selection of one value
from one subset constrains the choice in another subset. For example, imagine
if we are trying to test combinations of applications and operating systems. We
can’t test an application running on an operating system if there is not a version
of that application available for that operating system.

In some cases, values are not valid. For example, in figure 4-6, imagine that
we are testing a project management application, something like Microsoft
Project. Suppose that set X is the type of event we’re dealing with, which can be

Equivalence
PartitioningX

Y1

Y2

X1

TC1 TC2 TC3

X2

X1

X2

Y

Select
Test Cases

Equivalence
Partitioning

Select
Test Cases

Compose
Test Cases

Y3

Y1

Y2

Y3

__AST V3.book Seite 112 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 113

either a task (X1) or a milestone (X2). Suppose that set Y is the start date of the
event, which can be in the past (Y1), today (Y2), or in the future (Y3). Suppose
that set Z is the end date of the event, which can be either on or after the start
date (Z1) or before the start date (Z2). Of course, Z2 is invalid, since no event
can have a negative duration.

Figure 4–6 Composing tests with invalid values

So, we test combinations of tasks and milestones with past, present, and future
start dates and valid end dates in test cases TC1, TC2, and TC3. In TC4, we
check that illegal end dates are correctly rejected. We try to enter a task with a
start date in the past and an end date prior to the start date. If we wanted to sub-
partition the invalid situation, we could also test with a start date in the present
and one in the future together with an end date before the start date, which
would add two more test cases. One would test a start date in the present and an
end date prior to the start date. The other would test a start date in the future
and an end date prior to the start date.

In this particular example, we had a single subset for just one of the sets that
was invalid. The more general case is that many—perhaps all—of the fields will
have invalid subsets. Imagine testing an e-commerce application. On the check-
out screens of the typical e-commerce application, there are multiple required
fields, and usually there is at least one way for such a field to be invalid.

When there are multiple invalid values, there are two possible ways of
testing them, depending on how the error handling is designed in the applica-
tion.

Equivalence
PartitioningX

Y1

Y2

X1

TC1 TC2 TC3 TC4

X2

X1

X2

Y

Select
Test Cases

Equivalence
PartitioningZ

Z1

Z2

Z1

Z2

Select
Test Cases

Equivalence
Partitioning

Select
Test Cases

Compose
Test Cases

Compose
Test Cases

Y3

Y1

Y2

Y3

__AST V3.book Seite 113 Freitag, 1. Juli 2011 1:06 13

114 4 Test Techniques

Historically, most error handling is done by parsing through the values and
immediately stopping when the first error is found. Some newer applications
parse through the entire set of values first, and then compile a list of errors
found.

Whichever error handler is used, we can always run test cases with a single
invalid value entered. That way, we can check that every invalid value is
correctly rejected or otherwise handled by the system. Of course, the number
of test cases required by this method will equal the number of invalid parti-
tions.

When we have an error handler that aggregates all of the errors in one pass,
we could test it by submitting multiple invalid values and thence reduce the
total number of test cases.

In a safety-critical or mission-critical system, you might want to test combi-
nations of invalid values even if the parser stops on the first error. Just remem-
ber, anytime you start down the trail of combinatorial testing, you are taking a
chance that you’ll spend a lot of time testing things that aren’t terribly impor-
tant.

Consider a simple example of equivalence partitioning for system configu-
ration. On the Internet appliance project we’ve mentioned, there were four pos-
sible configurations for the appliances. They could be configured for kids, teens,
adults, or seniors. This configuration value was stored in a database on the
Internet service provider’s server so that, when an Internet appliance is con-
nected to the Internet, this configuration value became a property of its connec-
tion.

Based on this configuration value, there were two key areas of difference in
the expected behavior. For one thing, for the kids and teens systems, there was a
filtering function enabled. This determined the allowed and disallowed websites
the system could surf to. The setting was most strict for kids and somewhat less
strict for teens. Adults and seniors, of course, were to have no filtering at all and
should be able to surf anywhere.

For another thing, each of the four configurations had a default set of
e-commerce sites they could visit called the mall. These sites were selected
by the marketing team and were meant to be age appropriate.

Of course, these were the expected differences. We were also aware of the
fact that there could be weird unexpected differences that could arise because

__AST V3.book Seite 114 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 115

that’s the nature of some types of bugs. For example, performance was supposed
to be the same, but it’s possible that performance problems with the filtering
software could introduce perceptible response-time issues with the kids and
teens systems. We had to watch for those kinds of misbehaviors.

So, to test for the unexpected differences, we simply had at least one of each
configuration in the test lab at all times and spread the nonconfiguration-spe-
cific tests more or less randomly across the different configurations. To test
expected differences related to filtering and e-commerce, we made sure these
configuration-specific tests were run on the correct configuration. The chal-
lenge here was that, while the expected results were concrete for the mall—the
marketing people gave us four sets of specific sites, one for each configuration—
the expected results for the filtering were not concrete but rather logical. This
led to an enormous number of disturbing defect reports during test execution as
we found creative ways to sneak around the filters and access age-inappropriate
materials on the kids and teens configurations.

4.2.1.3 Equivalence Partitioning Exercise
A screen prototype for one screen of the HELLOCARMS system is shown in
figure 4-7. This screen asks for three pieces of information:

■ The product being applied for, which is one of the following:
– Home equity loan
– Home equity line of credit
– Reverse mortgage

■ Whether someone has an existing Globobank checking account, which is
either Yes or No

■ Whether someone has an existing Globobank savings account, which is
either Yes or No

If the user indicates an existing Globobank account, then the user must enter
the corresponding account number. This number is validated against the bank’s
central database upon entry. If the user indicates no such account, the user must
leave the corresponding account number field blank.

If the fields are valid, including the account number fields, then the
screen will be accepted. If one or more fields are invalid, an error message is
displayed.

__AST V3.book Seite 115 Freitag, 1. Juli 2011 1:06 13

116 4 Test Techniques

Figure 4–7 HELLOCARMS system product screen prototype

The exercise consists of two parts:

1. Show the equivalence partitions for each of the three pieces of information,
indicating valid and invalid members.

2. Create test cases to cover these partitions, keeping in mind the rules about
combinations of valid and invalid members.

The answers to the two parts are shown on the next pages. You should review
the answer to the first part (and, if necessary, revise your answer to the second
part) before reviewing the answer to the second part.

4.2.1.4 Equivalence Partitioning Exercise Debrief
First, let’s take a look at the equivalence partitions.

For the application-product field, the equivalence partitions are as follows:

Table 4–1

Partition

1 Home equity loan

2 Home equity line of credit

3 Reverse mortgage

Apply for Product?

Existing Checking?

Existing Savings?

{Select a product}

{Select Yes or No}

{Select Yes or No}

Yes

No

Yes

No

{If Yes input account number}

{If Yes input account number}

Home equity loan

Home equity line of credit

Reverse mortgage

__AST V3.book Seite 116 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 117

Note that the screen prototype shows this information as selected from a pull-
down list, so there is no possibility of entering an invalid product here. Some
people do include an invalid product test, but we have not.

For each of two existing-account entries, the situation is best modeled as a
single input field, which consists of two subfields. The first subfield is the Yes/
No field. This subfield determines the rule for checking the second subfield,
which is the account number. If the first subfield is Yes, the second subfield
must be a valid account number. If the first subfield is No, the second subfield
must be blank.

So, the existing checking account information partitions are as follows:

Table 4–2

And, the existing savings account information partitions are as follows:

Table 4–3

Note that, for both of these, partitions 2 and 4 are invalid partitions, while parti-
tions 1 and 3 are valid partitions.

Just as a side note, we could simplify the interface to eliminate some error
handling code, testing, and possible end-user errors. This simplification could
be done by designing the interface such that selecting No for either existing
checking or savings accounts automatically deleted any value in the respec-
tive account number text field and then hid that field. In both table 4-2 and
table 4-3, this would have the effect of eliminating partition 4. The user
would not be allowed to make the mistakes, therefore the code would not
have to handle the exceptions, and therefore the tester would not need to test

Partition

1 Yes-Valid

2 Yes-Invalid

3 No-Blank

4 No-Nonblank

Partition

1 Yes-Valid

2 Yes-Invalid

3 No-Blank

4 No-Nonblank

__AST V3.book Seite 117 Freitag, 1. Juli 2011 1:06 13

118 4 Test Techniques

them. A win-win-win situation. Often, clever design of the interface can
increase the testability of an application in this way.

Now, let’s create tests from these equivalence partitions. As we do so, we’re
going to capture traceability information from the test case number back to the
partitions. Once we have a trace from each partition to a test case, we’re done—
provided that we’re careful to follow the rules about combining valid and invalid
partitions!

Table 4–4

Table 4–5

Table 4–6

Table 4–7

Inputs 1 2 3 4 5 6 7

Product HEL LOC RM HEL LOC RM HEL

Existing Checking? Yes No No Yes No No No

Checking Account Valid Blank Blank Invalid Nonblank Blank Blank

Existing Savings? No Yes No No No Yes No

Savings Account Blank Valid Blank Blank Blank Invalid Nonblank

Outputs

Accept? Yes Yes Yes No No No No

Error? No No No Yes Yes Yes Yes

Partition Test Case

1 Home equity loan (HEL) 1

2 Home equity line of credit (LOC) 2

3 Reverse mortgage (RM) 3

Partition Test Case

1 Yes-Valid 1

2 Yes-Invalid 4

3 No-Blank 2

4 No-Nonblank 5

Partition Test Case

1 Yes-Valid 2

2 Yes-Invalid 6

3 No-Blank 1

4 No-Nonblank 7

__AST V3.book Seite 118 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 119

You should notice that these test cases do not cover all interesting possible
combinations of factors here. For example, we don’t test to make sure a per-
son with both a valid savings and valid checking account work properly. That
could be an interesting test because the accounts might have been established
at different times and might have information that now conflicts in some way;
e.g., in some countries it is still relatively common for a woman to take her
husband’s last name upon marriage. We also don’t test the combination of
invalid accounts or the combination of account numbers that are valid alone
but not valid together; e.g., the two accounts belong to entirely different
people.

4.2.2 Boundary Value Analysis

Let’s refine our equivalence partitioning test design technique with the next
technique, boundary value analysis. Conceptually, boundary value analysis is
predominately about testing the edges of equivalence classes. In other words,
instead of selecting one member of the class, we select the largest and smallest
members of the class and test them. We will discuss some other options for
boundary analysis later.

The underlying model is again either a graphical or mathematical one that
identifies two boundary values at the boundary between one equivalence class
and another. (In some techniques, the model identifies three boundary values,
which we’ll discuss later.) Whether such a boundary exists for subsets where
we’ve performed equivalence partitioning is another question that we’ll get to in
just a moment. Right now, assuming the boundary does exist, notice that the
boundary values are special members of the equivalence classes that happen to
be right next to each other and right next to the point where the expected
behavior of the system changes. If the boundary values are members of a valid

ISTQB Glossary

boundary value: An input value or output value which is on the edge of an
equivalence partition or at the smallest incremental distance on either side of
an edge, such as, for example, the minimum or maximum value of a range.

boundary value analysis: A black-box test design technique in which test
cases are designed based on boundary values.

__AST V3.book Seite 119 Freitag, 1. Juli 2011 1:06 13

120 4 Test Techniques

equivalence class, they are valid, of course, but if members of an invalid equiva-
lence class, they are invalid.

Deriving tests with boundary values as the equivalence class members is
much the same as for plain equivalence classes. We test valid boundary values
together and then combine one invalid boundary value with other valid bound-
ary values (unless the application being tested aggregates errors).

We have to represent each boundary value in a test case, analogous to the
equivalence partitioning situation. In other words, the coverage criterion is that
every boundary value, both valid and invalid, must be represented in at least
one test.

The main difference is that there are at least two boundary values in each
equivalence class. Therefore, we’ll have more test cases, about twice as many.

More test cases? That’s not something we like unless there’s a good reason.
What is the point of these extra test cases? That is revealed by the bug hypothe-
sis for boundary value analysis. Since we are testing equivalence class mem-
bers—every boundary value is an equivalence class member—we are testing for
situations where some equivalence class is handled improperly. Again, that
could mean acceptance of values that should be rejected, or vice versa, or proper
acceptance or rejection but improper handling subsequently, as if the value were
in another equivalence class, not the class to which it actually belongs. However,
by testing boundary values, we also test whether the boundary between equiva-
lence classes is defined in the right place.

So, do all equivalence classes have boundary values? No, definitely not.
Boundary value analysis is an extension of equivalence partitioning that applies
only when the members of an equivalence class are ordered.

So, what does that mean? Well, an ordered set is one where we can say that
one member is greater than or less than some other member if those two mem-
bers are not the same. We have to be able to say this meaningfully too. Just
because some item is right above or below some other item on a pull-down
menu does not mean that, within the program, the two items have a greater-
than/less-than relationship.

4.2.2.1 Examples of Equivalence Partitioning and Boundary Values

Let’s look at two examples where a technical test analyst can (and can’t) use
boundary value analysis on equivalence classes: enumerations and arrays.

__AST V3.book Seite 120 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 121

Many languages allow a programmer to define a set of named values that
can be used as a substitute for constant values. These are called enumerations.

As an example, assume that a database stored colors as integers to save
space. Red equals 0, blue equals 1, green equals 2. When the programmer
wanted to set an object to red, he would have to use the value 0.

These arbitrary values are often called magic numbers because they have a
(somewhat) hidden meaning, often known only by the programmer. A pro-
gramming language that allowed enumeration could allow the programmer to
create a mapping of the magic numbers to a textual value, allowing the pro-
grammer to write code that is self-documenting.

Instead of writing ColorGun = 0;, the programmer can write ColorGun =
Red. In figure 4-8, an example enumeration is made in the C language, defining
the five different colors.

Figure 4–8

In some languages, the programmer is given special functions to allow easier
manipulation of the enumerated values. For example, Pascal has the functions
pred and succ to traverse the values of an enumeration. Of course, trying to
“pred” the first or “succ” the last is going to fail, sometimes with unknown
symptoms. Hence boundaries that can be tested: both valid and invalid.

The compiler usually manages the access to the values in the enumeration.
We should be able to assume (we hope) that if we can access the first and last
elements of an enumeration, we should be able to access them all. If the lan-
guage supports functions that walk the enumerated list, then we should test
both valid and invalid boundaries using the list.

In some languages (e.g., C), the order of enumeration may be set by the
compiler but the rules used are specific to each compiler and therefore not con-
sistent for testing. Knowing the rules for the programming language and com-
piler being used is essential.

enum Colors {
 Red,
 Blue,
 Green,
 Yellow,
 Cyan
};

__AST V3.book Seite 121 Freitag, 1. Juli 2011 1:06 13

122 4 Test Techniques

Arrays are data structures allowing a programmer to store homogenous
data and access it via index rather than by name. The data must be homoge-
nous, which means of a single type. In most languages, arrays can consist of ele-
ments of programmer-defined types. A defined type may contain any number
of different internal elements (including a mix of different data types) but each
element in the array must be of that type, whether that type is built in or pro-
grammer defined.

Some programming languages allow only static arrays3 which are never
allowed to change in number of elements. Other programming languages allow
arrays to be dynamically created (memory for the array is allocated off the heap
at runtime). These types of arrays can often be reallocated to allow resizing
them on the fly. That can make testing them interesting. Even more interesting
is testing what happens after an array is resized. Then, we get issues as to
whether pointers to the old array are still accessible, whether data get moved
correctly (or lost if the array is resized downward).

For languages that do bounds checking of arrays, where an attempt to
access an item before or after the array is automatically prevented, testing of
boundaries may be somewhat less important. However, other issues may be
problematic. For example, if the system throws an exception while resizing an
array, what should happen?

Many languages, however, are more permissive when it comes to array
checking. They allow the programmer the freedom to make mistakes. And, very
often, those mistakes often come at the boundaries.

In some operating and runtime systems, an attempt to access memory
beyond the bounds of the array will immediately result in a runtime failure that
is immediately visible. But not all. A common problem occurs when the run-
time system allows a write action to memory not owned by the same process or
thread that owns the array. The data being held in that location beyond the
array are overwritten. When the actual owning process subsequently tries to use
the overwritten memory, the failure may then become evident (i.e., total failure
or freeze up) or the memory’s contents might be used in a calculation (resulting
in the wrong answer), or it might be stored in a file or database, corrupting the
data store silently. None of those are attractive results; thus worthy of testing.

3. Those created and sized at compile time

__AST V3.book Seite 122 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 123

There are also security issues to this array overwrite that we will discuss in a
later chapter.

Multidimensional arrays, where an item is accessed through two or more
indices, can be arbitrarily complex, making all of the issues mentioned above
even worse.

Dynamic analysis tools can be useful when testing arrays; they can catch the
failure at the first touch beyond the bounds of the array rather than waiting for
the symptom of the failure to show. We will discuss dynamic analysis tools later
in this chapter and in chapter 9.

4.2.2.2 Non-functional Boundaries
Boundaries are sometimes simple to find. For example, when dealing with sim-
ple data types like integers, where the values are ordered, there is no need to
guess. The boundaries are self-evident. Other boundaries may be somewhat
murky as you will see when we discuss integer and floating point data types.

And then there are times when a boundary is only implicitly defined and
the tester must settle on ways to test it. Consider the following requirement:

The maximum file size is 16 MB.

Exactly how many bytes is 16 MB? How do we create a 16 MB file to test the
maximum? How do we test the invalid high boundary? The answer to the first
question as to the number of bytes is...it depends. What is the operating system?
What is the file system under use: FAT32, NTFS? What are the sector and clus-
ter sizes on the hard disk? Testing the exact valid high boundary on a 16 MB file
is very difficult, as is testing the invalid high boundary. When we are testing
such a system—assuming it is not a critical or safety-related system—we will
often not spend time trying to ascertain the exact size but will test a file as close
to 16 MB as we can get for the valid high boundary and perhaps a 17 MB file for
the invalid high boundary.

On the other end of the file size, the invalid low boundary is relatively easy
to comprehend: there is none. No file can be minus one (-1) byte. But perhaps
the invalid low must be compared to the valid low size. Is it zero bytes? Some
file systems and operating systems allow zero-sized files, and therefore there is
no invalid low boundary size file possible. If the file is a structured file, with
defined header information, the application that created it likely will not allow a
zero-byte file, and therefore an invalid low boundary is testable.

__AST V3.book Seite 123 Freitag, 1. Juli 2011 1:06 13

124 4 Test Techniques

In our experience, you should take these types of questions to the develop-
ment team if they were not already defined in the design specification. Be
aware, however, that often the developers have not given sufficient thought to
some of these questions; their answers might be incorrect. Often, experiment-
ing is required once the system arrives.

As a separate example, assume the following efficiency requirement:

The system shall process at least 150 transactions per second.

An invalid low boundary may not exist. It would, of course, be impossible to
trigger a negative number of transactions; however, if the system is designed
such that a minimum number of transactions must flow within a given unit of
time, there would be both valid and invalid low boundaries. Defining the mini-
mum should be approached as we did the file example.

Is a valid high really a boundary though? Clearly we must test 150 transac-
tions per second, consistent with good performance testing—we will discuss
that later in the book. What would be an invalid high? In a case like this, we
would argue that there is no specific high invalid boundary to test; however,
good performance testing would continue to ramp up the number of transac-
tions until we see an appreciable change in performance.

The point of this discussion is that boundaries are really useful for testing;
sometimes you just must search a bit to determine what those boundaries are.

4.2.2.3 A Closer Look at Functional Boundaries
In the Foundation syllabus, we discussed a few boundary examples in a some-
what simplistic way. For an integer where the valid range is 1 to 10 inclusive,
the boundaries were discussed as if there were four. These are shown on the
number line in figure 4-9 as 0 (invalid low), 1 (valid low), 10 (valid high), and
11 (invalid high).

Figure 4–9 Boundaries for integers

However, the closer you look, the more complicated it actually gets. Looking at
this number line, there appear to be two missing values that we did not discuss:
on the far left and far right. In math, we would say that the two missing bound-

?? ??0 1 10 11

__AST V3.book Seite 124 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 125

aries represent negative infinity on the left, positive infinity on the right. Clearly
a computer cannot represent infinity using integers, as that would take an infi-
nite number of bytes. That means there are going to be specific values that are
both the largest and the smallest values that the computer can represent.
Boundaries! In order to understand how these boundaries are actually repre-
sented—and where errors can occur—we need to look at some computer archi-
tectural details. Exactly how are numbers stored in memory?

Technical test analysts must understand how different values are repre-
sented in memory; we will look at this topic for both integer and floating point
numbers.

4.2.2.4 Integers
In most computer architectures, integers are stored differently than floating
point numbers (those numbers that have fractional values). The maximum size
of an integer—and hence the boundaries—(in most cases) is defined by two
things: the number of bits that are allocated for the number and whether it is
signed or unsigned.

In these architectures, an integer is encoded using the binary number sys-
tem, a combination of ones and zeroes. The width or precision of the number is
the number of bits in its representation. A number with n bits can encode 2n

different numeric values.
If the number is signed, the left-most bit represents the sign; this has the

effect of making approximately half of the possible values positive and the other
half negative. For example, assume that 8 bits are used to store the number. The
range of the unsigned number is from 0 (0000 0000) to +255 (1111 1111). The
range of the signed number is from -128 (1000 0000) to +127 (0111 1111). If
those actual bit representations look strange, it is because in most computers,
negative numbers are represented as two’s complements.

A two’s complement number is represented as the value obtained by sub-
tracting the number from a large power of two. To get the two’s complement of
an 8-bit value, the value (in binary) is subtracted from 28. The full math and
logic behind using two’s complement encoding for negative numbers is beyond
the scope of this book. The important concept is that the boundaries can be
determined for use in testing.

__AST V3.book Seite 125 Freitag, 1. Juli 2011 1:06 13

126 4 Test Techniques

Figure 4–10 Whole number representations4 4

Figure 4-10 shows several possible number sizes and the values that can be
represented.

Many mainframes (and some databases) use a different encoding scheme
called binary-coded decimals (BCDs). Each digit in a represented number takes
up 4 bits. The possible maximum length of a number is proportional to the
number of bytes allowed by the architecture. So, if the computer allowed 1,000
bytes for a single number, that number could be 2,000 digits long. By writing

4. Wikipedia at http://en.wikipedia.org/wiki/Integer_(computer_science)

__AST V3.book Seite 126 Freitag, 1. Juli 2011 1:06 13

http://en.wikipedia.org/wiki/Integer_(computer_science)

 4.2 Specification-Based 127

your own handler routines, you could conceivably have numbers of any magni-
tude in any programming language. The issue would then become computa-
tional speed—how long does it take to perform mathematical calculations.

Note that the binary representation is slightly more efficient than the BCD
representation as far as the relative size of the number that can be stored. A 128-
bit, unsigned value (16 bytes) can hold up to 39 digits, while you would need a
BCD of 20 bytes to hold the same size number. While this size differential is not
huge, the speed of processing may become paramount; BCD calculations tend
to be slower than calculations for built-in data types because the calculation
must be done digit by digit.

Most programming languages have a number of different width whole
numbers that can be selected by the programmer. The typical default value inte-
ger in 16-bit computers was 16 bits; in most 32-bit computers the default is
32 bits wide. For example, in the Delphi programming language, a short is
16 bits, an int is 32 bits, and an int64 is 64 bits. A special library can be used in
Delphi to support 128-bit numbers. When the programmer declares a variable,
they define the length and whether the value is signed or unsigned. While a pro-
grammer could conceivably use the largest possible value for each number to
minimize the chance of overflow, that has always been considered a bad pro-
gramming technique that wastes space and often slows down computations.

In C as it was originally defined for DEC minicomputers, the language only
guaranteed that an int was at least as long (if not longer) as a short and a long
was at least as long (if not longer) as an int. On the PDP-11, a short was 16 bits,
an int 32 bits, and a long also 32 bits. Other architectures gave other lengths, and
even with modern 64-bit CPUs, you might not always know how many bits
you’ll get with your int. This ambiguity about precision in C has created—and
continues to create—a lot of bugs and thus is fertile ground for testing.

By looking at the definitions of the data variables used, a technical tester
can discern the length of the value and thence the boundaries. Since there is
always a defined maxint (the maximum size integer) and minint (the maximum
magnitude negative number)—no matter which type variable is used—it is rela-
tively straightforward to find and test the boundaries. Assuming an 8-bit,
unsigned integer 255 (1111 1111), adding 1 to it would result in an overflow,
giving the value 0 (0000 0000). 255 + 1 = 0. Probably not what the programmer
intended...

__AST V3.book Seite 127 Freitag, 1. Juli 2011 1:06 13

128 4 Test Techniques

Since any value inputted to the system may be used in an expression where
a value is added to it, testing with very large and very small numbers based on
the representation used by the programmer should be considered a good test
technique. Because division and multiplication happens too, be sure to test zero,
which is always an interesting boundary value.

4.2.2.5 Floating Point Numbers
The other types of numbers we need to discuss are floating point (floats). These
numbers allow a fractional value; some number of digits before and some num-
ber of digits after a decimal point. As before, a technical tester needs to investi-
gate the architecture and selections made by programmers when testing these
types of numbers. These numbers are represented by a specific number of sig-
nificant digits and scaled by using an exponent. This is the computer equivalent
of scientific notation. The base is usually 2 but could be 10 or 8. Like scientific
notation, floats are used to represent very large or very small numbers. For
example, a light year is approximately 9.460536207 × 1015 meters. This value is
a bit more than even a really large integer can represent. Likewise, an angstrom
is approx 1 × 10-15 meters, a very tiny number.

Just to get the terminology correct, a floating point number consists of a
signed digit string of a given length in a given base. The signed string (as shown
in the preceding paragraph, 9.460536207) is called the significand (or some-
times the mantissa). The length of the significand determines the precision that
the float can represent—that is, the number of significant digits. The decimal
point, sometimes called the radix, is usually understood to be in a specific
place—usually to the right of the first digit of the significand. The base is usually
set by the architecture (usually 2 or 10). The exponent (also called the charac-
teristic or scale) modifies the magnitude of the number. In the preceding para-
graph, in the first example, the exponent is 15. That means that the number is
9.460536207 times 10 to the 15th power.

Like integers, floats can also be represented by binary coded decimals.
These are sometimes called fixed-point decimals and are actually undistinguish-
able from integer BCDs. In other words, the decimal point is not stored in the
value; instead, its relative location is understood by the programmer and com-
piler. For example, assume a 4-byte value: 12 34 56 7C. In fixed-point notation,

__AST V3.book Seite 128 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 129

this value might represent +1,234.567 if the compiler understands the decimal
point to be between the fourth and fifth digits.

In general, non-integer numbers have a far wider range than integers while
taking up only a few more bytes. Different architectures have a variety of
schemes for storing these values. Like integers, floats come in several different
sizes; one common naming terminology is 16 bit (halfs), 32 bit (singles), 64 bit
(doubles) and 128 bit (quadruples). Over the years, a wide variety of schemes
have been used to represent these values; IEEE 754 has standardized most of
them. This standard, first adopted in 1985, is followed by almost every com-
puter manufacturer with the exception of IBM mainframes and Cray supercom-
puters. The larger the representation, the larger (and smaller) the numbers that
can be stored.

Figure 4–11 IEEE 754-2008 float representations

As shown in figure 4-11, a float contains a sign (positive or negative), an expo-
nent of certain size, and a significand of certain size. The magnitude of the sig-
nificand determines the number of significant figures the representation can
hold (called the precision). Note that the bits precision is actually one more than
the significand can hold. For complex reasons having to do with the way floats
are used in calculations, the leading bit of the significand is implicit—that is, not
stored. That adds the extra bit of precision. Related to that is the bias of the
exponent (bias is used in the engineering sense, as in offset). The value of the
exponent is offset by a given value to allow it to be represented by an unsigned
number even though it actually represents both large (positive) and small (neg-
ative) exponents.

A key issue with these values that must be understood by technical testers is
that most floats are not exact; instead, they are approximations of the value we
may be interested in. In many cases, this is not an issue. Occasionally, however,
interesting bugs can lurk in these approximate values.

__AST V3.book Seite 129 Freitag, 1. Juli 2011 1:06 13

130 4 Test Techniques

When values are calculated, the result is often an irrational number. The
definition of an irrational number is any real number that cannot be expressed
as the fraction a/b where a and b are integers. Since an irrational number, by
definition, has an infinite number of decimal digits (i.e., is a non-terminating
number), there is no way to represent it exactly by any size floating point num-
ber. That means anytime an operation occurs with irrational values, the result
will be irrational (and hence approximate). There are many irrational numbers
that are very important to mathematic concepts, including pi and the square
root of 2.

It is not that a floating point value cannot be exact. Whole numbers may be
represented exactly. The representation for 734 would be 7.34 × 102. However,
when calculations are made using floating point values, the exactness of the
result might depend on how the values were originally set. It is probably safe to
hold, as a rule of thumb, that any floating number is only close, an approxima-
tion of the mathematically correct value.

To the tester, close may or may not be problematic. The longer a chain of
calculations using floats, the more likely the values will drift from exactness.
Likewise, rounding and truncating can cause errors. Consider the following
chain of events. Two values are calculated and placed into floating point vari-
ables; one comes close to 6, the other close to 2. Very close; for all intents and
purposes the values are almost exactly 6 and 2. The second value is divided into
the f i rst , resu lt ing in a va lue c lose to 3 . Perhaps s omething l ike
2.999999999999932. Now, suppose the value is placed into an integer rather
than a float—the compiler will allow that. Suppose the developer decides that
they do not want the fractional value and, rather than rounding, uses the trun-
cation function. Essentially, following along this logic, we get 6 divided by
2 equals 2. Oops. If this sounds far-fetched, it is. But this particular error actu-
ally happened to software that we were testing, and we did a lot of head scratch-
ing digging it out. Each step the programmer made was sensible, even if the
answer was nonsensical. Clearly, boundaries of floating point numbers—and
calculations made with them—need to be tested.

4.2.2.6 Testing Floating Point Numbers

Testing of financial operations involves floating point numbers, so all of the
issues just discussed apply. Notice that the question of precision has serious

__AST V3.book Seite 130 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 131

real-world implications. People tend to be very sensitive to rounding errors that
involve things like money, investment account balances, and the like. Further-
more, there are regulations and contracts that often apply, along with any speci-
fied requirements. So testing financial applications involves a great deal of care
when these kinds of issues are involved.

Figure 4–12 A stock-purchase screen from Quicken

In figure 4-12, you can see the application of equivalence partitioning and
boundary value analysis to the input of a stock purchase transaction in
Quicken. In this application, when you enter a stock purchase transaction, after
entering the stock, you input the number of shares, the price per share, and the
commission, if any. Quicken calculates the amount of the transaction.

First, for each of the three fields—number of shares, price per share, and
commission—we can say that any non-numeric input is invalid. So that’s com-
mon across all three.

For the numeric inputs, the price per share and the number of shares are
handled the same. The number must be zero or greater. Look closely at all of the
boundaries that are shown in figure 4-12. Some of these boundaries are not nec-
essarily intuitive. When boundary testing with real numbers, there are two
complexities we must deal with: precision and round-off.

Equivalence
Partitioning

Not Number {letters, punctuation, null, ...}

Number # of
shares

price per
share

commis-
sion

BVA

EP

-max

-0.000 000 000 1 1,000,000,000.000.000001

0.000 000 499 99 999,999,999.99

0.000 000 5

0.000 000 9

max0

Valid
(zero)

Valid
(round)

Invalid
(negative)

Invalid
(too large)

Valid
(no round)

-max

-0.005 10,000,000.000.001

0.0049999 9,999,999.99

0.005

0.009

max0

Valid
(zero)

Valid
(round)

Valid?
(negative)

Invalid
(too large)

Valid
(no round)

__AST V3.book Seite 131 Freitag, 1. Juli 2011 1:06 13

132 4 Test Techniques

By precision, in this case we are talking about the number of decimal digits
we are willing to test. Many people refer to this as the epsilon (or smallest recog-
nizable difference) to which we will test. Suppose we have a change in system
behavior exactly at the value 10.00. Values below are valid, above are invalid.
What is the closest possible value that you can reasonably say is the invalid
boundary? 10.01? Clearly we can get many values between 10.00 and 10.01,
including 10.001, 10.0001, 10.00001...

Somewhere in testing we have to decide the boundary beyond which it
makes no sense to test. One such line is the epsilon, and it generally represents
the number of decimal digits to which we will test. In the preceding example, we
might decide that we want to test to an epsilon of 2. That would make our
invalid boundary 10.01, even if, in reality, it is not a physical boundary. Testers
must understand the epsilon to which they will be testing. This epsilon may be
decided by the programmer who wrote the code, the designer who designed it,
or even the computer representation used.

Likewise, rounding off is an important facet of real-world boundaries.
Again, look at figure 4-12. It is possible to buy a fractional portion of a share of
stock. Clearly, if we put 0 (zero) in the number of shares purchased, we will buy
no stock. You might think that if we put a positive non-zero value in, we would
automatically be purchasing some stock. However, some values will round
down to zero, even though the absolute value is greater than zero. And therein
lies our boundary. We should find out exactly where the boundary is, that is,
where the behavior changes (with due respect to the epsilon).

In this version of Quicken, Rex discovered through trial and error that the
smallest amount of a share that can be purchased is 0.000 001 shares. This is a
value where behavior changes. However, the testable boundary must allow for
rounding. The value 0.000 000 5 will round up to 0.000 001. That makes it the
low valid boundary. But we need to go to more decimal places to allow the
round-off to occur, down to the epsilon. Hence the low invalid boundary is
some value less than that which will round down to zero; in this case we select
0.000 000 499 99.

4.2.2.7 How Many Boundaries?
Let’s wind down our discussion of boundary value analysis by mentioning a
somewhat obscure point that can nevertheless arise if you do any reading

__AST V3.book Seite 132 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 133

about testing. This is the question of how many boundary values exist at a
boundary.

In the material so far, we’ve shown just two boundary values per boundary.
The boundary lies between the largest member of one equivalence class and the
smallest member of the equivalence class above it. In other words, the boundary
itself doesn’t correspond to any member of any class.

However, some authors, of whom Boris Beizer is probably the most notable,
say there are three boundary values. Why would there be three?

Figure 4–13 Two ways to look at boundaries

The difference arises from the use of a mathematical analysis rather than the
graphical one that we’ve used, as shown in figure 4-13. You can see that the two
mathematical inequalities shown in figure 4-13 describe the same situation as
the graphical model. Applying Beizer’s methodology, you select the value itself
as the middle boundary value, then you add the smallest possible amount to
that value and subtract the smallest possible amount from that value to generate
the two other boundary values. Remember, with integers, as in this example, the
smallest possible amount is one, while for floating points we have to consider
those pesky issues of precision and round-off.

Invalid –
too low

x0 1 99 100

Invalid –
too high

Graphical (“number line”) model

The user must order a quantity
greater than 0 and less than 100...

Mathematical inequality model (v1)
0 < x < 100

-1 0 1 99 100 101

Mathematical inequality model (v2)
1 =< x =< 99

0 1 2 98 99 100

__AST V3.book Seite 133 Freitag, 1. Juli 2011 1:06 13

134 4 Test Techniques

As you can see from this example, the mathematical boundary values will
always include the graphical boundary values. To us, the three-value approach
is wasted effort. We have enough to do already without creating more test values
to cover, especially when they don’t address any risks that haven’t already been
covered by other test values.

4.2.2.8 Boundary Value Exercise

Figure 4–14 HELLOCARMS system amount screen prototype

A screen prototype for one screen of the HELLOCARMS system is shown in
figure 4-14. This screen asks for two pieces of information:

■ Loan amount
■ Property value

For both fields, the system allows entry of whole dollar amounts only (no
cents), and it rounds to the nearest $100.

Assume the following rules apply to loans:

■ The minimum loan amount is $5,000.
■ The maximum loan amount is $1,000,000.
■ The minimum property value is $25,000.
■ The maximum property value is $5,000,000.

Refer also to requirements specification elements 010-010-130 and 010-010-140
in the Functional System Requirements section of the HELLOCARMS system
requirements document.

Loan amount

Whole dollar amounts (no cents).
Will be rounded to nearest $ 100.

{Enter a loan amount}

Property value?

Whole dollar amounts (no cents).
Will be rounded to nearest $ 100.

{Enter the property’s value}

__AST V3.book Seite 134 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 135

If the fields are valid, then the screen will be accepted. Either the Telephone
Banker will continue with the application or the application will be transferred
to a Senior Telephone Banker for further handling. If one or both fields are
invalid, an error message is displayed.

The exercise consists of two parts:

1. Show the equivalence partitions and boundary values for each of the two
fields, indicating valid and invalid members and the boundaries for those
partitions.

2. Create test cases to cover these partitions and boundary values, keeping in
mind the rules about combinations of valid and invalid members.

The answers to the two parts are shown on the following pages. You should
review the answer to the first part (and, if necessary, revise your answer to the
second part) before reviewing the answer to the second part.

4.2.2.9 Boundary Value Exercise Debrief
First, let’s take a look at the equivalence partitions and boundary values, which
are shown in figure 4-15.

Figure 4–15 Equivalence partitions (EP) and boundary values (BVA) for exercise

-max max-1 0 49 50 4,949

4,950 500,049 1,000,050

500,050 1,000,049

Invalid
(zero)

Invalid
(too low)

Valid
(xfer)

Valid
(no xfer)

Invalid
(too high)

Invalid
(negative)

Loan
Amount

Not Integer ABC 50000.01 null

Integer

EP

EP

BVA

-max max-1 0 49 50 24,949

24,950 5,000,050
1,000,049

5,000,0491,000,050

Invalid
(zero)

Invalid
(too low)

Valid
(xfer)

Valid
(no xfer)

Invalid
(too high)

Invalid
(negative)

Property
Value

Not Integer abc 999777.01 null

Integer

EP

EP

BVA

Property
Value

No

For Loan For Value For BothYes

EP

EP

__AST V3.book Seite 135 Freitag, 1. Juli 2011 1:06 13

136 4 Test Techniques

So, for the loan amount we can show the boundary values and equivalence par-
titions as shown in table 4-8.

Table 4–8

For the property value, we can show the boundary values and equivalence parti-
tions as shown in table 4-9.

Table 4–9

Partition Boundary Value

1 Letter: ABC -

2 Decimal: 50,000.01 -

3 Null -

4 Invalid (negative) -max
5 Invalid (negative) -1

6 Invalid (zero) 0

7 Invalid (zero) 49

8 Invalid (too low) 50

9 Invalid (too low) 4,949

10 Valid (no transfer) 4,950

11 Valid (no transfer) 500,049

12 Valid (transfer) 500,050

13 Valid (transfer) 1,000,049

14 Invalid (too high) 1,000,050

15 Invalid (too high) max

Partition Boundary Value

1 Letter: abc -

2 Decimal: 999,777.01 -

3 Null -

4 Invalid (negative) -max
5 Invalid (negative) -1

6 Invalid (zero) 0

7 Invalid (zero) 49

8 Invalid (too low) 50

9 Invalid (too low) 24,949

10 Valid (no transfer) 24,950

11 Valid (no transfer) 1,000,049

12 Valid (transfer) 1,000,050

13 Valid (transfer) 5,000,049

14 Invalid (too high) 5,000,050

15 Invalid (too high) max

__AST V3.book Seite 136 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 137

Make sure you understand why these values are boundaries based on round-off
rules given in the requirements. For the transfer decision, we can show the
equivalence partitions for the loan amount as shown in table 4-10.

Table 4–10

Now, let’s create tests from these equivalence partitions and boundary values.
We’ll capture traceability information from the test case number back to the
partitions or boundary values, and as before, once we have a trace from each
partition to a test case, we’re done—as long as we didn’t combine invalid values!

Table 4–11

Partition

1 No

2 Yes, for the loan amount

3 Yes, for the property value

4 Yes, for both

Inputs 1 2 3 4 5 6

Loan amount 4,950 500,050 500,049 1,000,049 ABC 50,000.01

Property value 24,950 1,000,049 1,000,050 5,000,049 100,000 200,000

Outputs

Accept? Y Y Y Y N N

Transfer? N Y (loan) Y (prop) Y (both) - -

Inputs 7 8 9 10 11 12

Loan amount null 100,000 200,000 300,000 -max -1

Property value 300,000 abc 999,777.01 null 400,000 500,000

Outputs

Accept? N N N N N N

Transfer? - - - - - -

Inputs 13 14 15 16 17 18

Loan amount 0 49 50 4,949 1,000,050 max
Property value 600,000 700,000 800,000 900,000 1,000,000 1,100,000

Outputs

Accept? N N N N N N

Transfer? - - - - - -

__AST V3.book Seite 137 Freitag, 1. Juli 2011 1:06 13

138 4 Test Techniques

Table 4–12

Inputs 19 20 21 22 23 24

Loan amount 400,000 500,000 600,000 700,000 800,000 900,000

Property value -max -1 0 49 50 24,949

Outputs

Accept? N N N N N N

Transfer? - - - - - -

Inputs 25 26 27 28 29 30

Loan amount 1,000,000 555,555

Property value 5,000,050 max

Outputs

Accept? N N

Transfer? - -

Partition Boundary Value Test Case

1 Letter: ABC - 5

2 Decimal: 50,000.01 - 6

3 Null - 7

4 Invalid (negative) -max 11

5 Invalid (negative) -1 12

6 Invalid (zero) 0 13

7 Invalid (zero) 49 14

8 Invalid (too low) 50 15

9 Invalid (too low) 4,949 16

10 Valid (no transfer) 4,950 1

11 Valid (no transfer) 500,049 3

12 Valid (transfer) 500,050 2

13 Valid (transfer) 1,000,049 4

14 Invalid (too high) 1,000,050 17

15 Invalid (too high) max 18

__AST V3.book Seite 138 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 139

Table 4–13

Table 4–14

Notice that’s there’s another interesting combination related to the transfer deci-
sion that we covered in our tests. This was when the values were rejected as
inputs, in which case we should not even be able to leave the screen, not to men-
tion transfer the application. We did test with both loan amounts and property
values that would have triggered a transfer had the other value been valid. We
could have shown that as a third set of equivalence classes for the transfer deci-
sion.

Partition Boundary Value Test Case

1 Letter: abc - 8

2 Decimal: 999,777.01 - 9

3 Null - 10

4 Invalid (negative) -max 19

5 Invalid (negative) -1 20

6 Invalid (zero) 0 21

7 Invalid (zero) 49 22

8 Invalid (too low) 50 23

9 Invalid (too low) 24,949 24

10 Valid (no transfer) 24,950 1

11 Valid (no transfer) 1,000,049 2

12 Valid (transfer) 1,000,050 3

13 Valid (transfer) 5,000,049 4

14 Invalid (too high) 5,000,050 25

15 Invalid (too high) max 26

Partition Test Case

1 No 1

2 Yes, for the loan amount 2

3 Yes, for the property value 3

4 Yes, for both 4

__AST V3.book Seite 139 Freitag, 1. Juli 2011 1:06 13

140 4 Test Techniques

4.2.3 Decision Tables

Equivalence partitioning and boundary value analysis are very useful tech-
niques. They are especially useful, as you saw in the earlier parts of this section,
when testing input field validation at the user interface. However, lots of testing
that we do as technical test analysts involves testing the business logic that sits
underneath the user interface. We can use boundary values and equivalence
partitioning on business logic too, but two additional techniques, decision
tables and state-based testing, will often prove handier and more powerful.

Let’s start with decision tables.

Conceptually, decision tables express the rules that govern handling of transac-
tional situations. By their simple, concise structure, they make it easy for us to
design tests for those rules, usually at least one test per rule.

When we said “transactional situations,” what we meant was those situa-
tions where the conditions—inputs, preconditions, etc.—that exist at a given
moment in time for a single transaction are sufficient by themselves to deter-
mine the actions the system should take. If the conditions on their own are not
sufficient, but we must also refer to what conditions have existed in the past,
then we’ll want to use state-based testing, which we’ll cover later in this chapter.

The underlying model is a table. The model connects combinations of con-
ditions with the action or actions that should occur when each particular com-
bination of conditions arises.

To create test cases from a decision table, we are going to design test inputs
that fulfill the conditions given. The test outputs will correspond to the action
or actions given for that combination of conditions. During test execution, we
check that the actual actions taken correspond to the expected actions.

ISTQB Glossary

decision table: A table showing combinations of inputs and/or stimuli (causes)
with their associated outputs and/or actions (effects), which can be used to
design test cases.

decision table testing: A black-box test design technique in which test cases
are designed to execute the combinations of inputs and/or stimuli (causes)
shown in a decision table.

__AST V3.book Seite 140 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 141

We create enough test cases that every combination of conditions is covered
by at least one test case. Oftentimes, that coverage criterion is relaxed to ensure
that we cover those combinations of conditions that can determine the action or
actions. If that’s a little confusing—which it might be, depending on how you
prepared for the Foundation exam, because this isn’t always explained properly
in books and classes—the distinction we’re drawing will become clear to you
when we talk about collapsed decision tables.

With a decision table, the coverage criterion boils down to an easy-to-
remember rule of at least one test per column in the table.

So, what is our bug hypothesis with decision tables? What kind of bugs are
we looking for? There are several. First, under some combination of conditions,
the wrong action might occur. In other words, there may be some action that
the system is not to take under this combination of conditions, yet it does. Sec-
ond, under some combination of conditions, the system might not take the
right action. In other words, there is some action that the system is to take
under this combination of conditions, yet it does not.

Beyond those two possibilities, there is also a very real positive value of
using decision tables during the analysis portion of our testing. A decision table
forces testers to consider many possibilities that we may not have considered
otherwise. By considering all of the permutations of conditions possible, even if
we don’t test them all, we may discover some unknown unknowns. That is, we
are likely to find some scenarios that the analysts and developers had not con-
sidered. By considering these scenarios, we can not only capture incipient
defects but avoid later disagreements about correct behavior.

Table 4–15

Conditions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Real account? Y Y Y Y Y Y Y Y N N N N N N N N

Active account? Y Y Y Y N N N N Y Y Y Y N N N N

Within limit? Y Y N N Y Y N N Y Y N N Y Y N N

Location okay? Y N Y N Y N Y N Y N Y N Y N Y N

Actions

Approve Y N N N N N N N N N N N N N N N

Call
cardholder?

N Y Y Y N Y Y Y N N N N N N N N

Call vendor? N N N N Y Y Y Y Y Y Y Y Y Y Y Y

__AST V3.book Seite 141 Freitag, 1. Juli 2011 1:06 13

142 4 Test Techniques

Consider the decision table shown in table 4-15. This table shows the decisions
being made at an e-commerce website about whether to accept a credit card
purchase of merchandise. Once the information goes to the credit card process-
ing company for validation, how can we test their decisions? We could handle
that with equivalence partitioning, but there is actually a whole set of conditions
that determine this processing:

■ Does the named person hold the credit card entered, and is the other
information correct?

■ Is it still active or has it been cancelled?
■ Is the person within or over their limit?
■ Is the transaction coming from a normal or a suspicious location?

The decision table in table 4-15 shows how these four conditions interact to
determine which of the following three actions will occur:

■ Should we approve the transaction?
■ Should we call the cardholder (e.g., to warn them about a purchase from a

strange place)?
■ Should we call the vendor (e.g., to ask them to seize the cancelled card)?

Take a minute to study the table to see how this works. The conditions are listed
at the top left of the table, and the actions at the bottom left. Each column to the
right of this leftmost column contains a business rule. Each rule says, in essence,
“Under this particular combination of conditions (shown at the top of the rule),
carry out this particular combination of actions (shown at the bottom of the
rule).”

Notice that the number of columns—i.e., the number of business rules—is
equal to 2 (two) raised to the power of the number of conditions. In other
words, 2 raised to the 4th power (based on four conditions), which results in
16 columns. When the conditions are strictly Boolean—true or false—and we’re
dealing with a full decision table (not a collapsed one), that will always be the
case. If one or more of the conditions are not rendered as Boolean, then the
number of columns will not follow this rule.

Did you notice how we populated the conditions? The topmost condition
changes most slowly. Half of the columns are Yes, then half No. The condition
under the topmost changes more quickly, but it changes more slowly than all the

__AST V3.book Seite 142 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 143

other conditions below it. The pattern is a quarter Yes, then a quarter No, then a
quarter Yes, then a quarter No. Finally, for the bottommost condition, the alter-
nation is Yes, No, Yes, No, Yes, etc. This pattern makes it easy to ensure that you
don’t miss anything. If you start with the topmost condition, set the left half of
the rule columns to Yes and the right half of the rule columns to No, then fol-
lowing the pattern we showed, if you get to the bottom and the Yes, No, Yes, No,
Yes, etc. pattern doesn’t hold, you did something wrong. The other algorithm
that you can use, again assuming that all conditions are Boolean, is to count the
columns in binary. The first column is YYYY, second YYYN, third YYNY,
fourth YYNN, etc. If you are not familiar with binary arithmetic, forget we
mentioned it.

Deriving test cases from this example is relatively easy: each column (busi-
ness rule) of the table generates a test case. When time comes to run the tests,
we’ll create the conditions that are each test’s inputs. We’ll replace the yes/no
conditions with actual input values for credit card number, security code, expi-
ration date, and cardholder name, either during test design or perhaps even at
test execution time. We’ll verify the actions that are the test’s expected results.

In some cases, we might generate more than one test case per column. We’ll
cover this possibility later, as we enlist our previous test techniques, equivalence
partitioning and boundary value analysis, to extend decision table testing.

Notice that, in this case, some of the test cases don’t make much sense. For
example, how can the account not be real but yet active? How can the account
not be real but within the given limit?

This kind of situation is a hint that maybe we don’t need all the columns in
our decision table.

4.2.3.1 Collapsing Columns in the Table
We can sometimes collapse the decision table, combining columns, to achieve a
more concise—and in some cases more sensible—decision table. In any situa-
tion where the value of one or more particular conditions can’t affect the actions
for two or more combinations of conditions, we can collapse the decision table.

This involves combining two or more columns where, as we said, one or
more of the conditions don’t affect the actions. As a hint, combinable columns
are often but not always next to each other. You can at least start by looking at
columns next to each other.

__AST V3.book Seite 143 Freitag, 1. Juli 2011 1:06 13

144 4 Test Techniques

To combine two or more columns, look for two or more columns that result
in the same combination of actions. Note that the actions in the two columns
must be the same for all of the actions in the table, not just some of them. In
these columns, some of the conditions will be the same, and some will be differ-
ent. The ones that are different obviously don’t affect the outcome. We can
replace the conditions that are different in those columns with a dash. The dash
usually means we don’t care, it doesn’t matter, or it can’t happen, given the other
conditions.

Now, repeat this process until the only columns that share the same combi-
nation of actions for all the actions in the table are ones where you’d be combin-
ing a dash with a Yes or No value and thus wiping out an important distinction
for cause of action. What we mean by this will be clear in the example on the
next page, if it’s not clear already.

Another word of caution at this point: Be careful when dealing with a table
where more than one rule can apply at one single point in time. These tables
have nonexclusive rules. We’ll discuss that further later in this section.

Table 4–16

Table 4-16 shows the same decision table as before, but collapsed to eliminate
extraneous columns. Most notably, you can see that what were columns 9
through 16 in the original decision table collapsed into a single column. Notice
that all of the columns 9 through 16 are essentially the same test: Is this for a real
account? If it is not real (note that for all columns, 9 through 16, the answer is
no), then it certainly cannot be active, within limit, or have an okay location.
Since those conditions are impossible, we would essentially be running the
same test eight times.

Conditions 1 2 3 5 6 7 9

Real account? Y Y Y Y Y Y N

Active account? Y Y Y N N N -

Within limit? Y Y N Y Y N -

Location okay? Y N - Y N - -

Actions

Approve Y N N N N N N

Call card holder? N Y Y N Y Y N

Call vendor? N N N Y Y Y Y

__AST V3.book Seite 144 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 145

We’ve kept the original column numbers for ease of comparison. Again,
take a minute to study the table to see how we did this. Look carefully at col-
umns 1, 2, and 3. Notice that we can’t collapse 2 and 3 because that would result
in “dash” for both “within limit” and “location okay.” If you study this table or
the full one, you can see that one of these conditions must not be true for the
cardholder to receive a call. The collapse of rule 4 into rule 3 says that, if the
card is over limit, the cardholder will be called, regardless of location.

The same logic applies to the collapse of rule 8 into rule 7.
Notice that the format is unchanged. The conditions are listed at the top left

of the table, and the actions at the bottom left. Each column to the right of this
leftmost column contains a business rule. Each rule says, “Under this particular
combination of conditions (shown at the top of the rule, some of which might
not be applicable), carry out this particular combination of actions (shown at
the bottom of the rule, all of which are fully specified).”

Notice that the number of columns is no longer equal to 2 raised to the
power of the number of conditions. This makes sense, since otherwise no col-
lapsing would have occurred. If you are concerned that you might miss some-
thing important, you can always start with the full decision table. In a full table,
because of the way you generate it, it is guaranteed to have all the combinations
of conditions. You can mathematically check if it does. Then, carefully collapse
the table to reduce the number of test cases you create.

Also, notice that, when you collapse the table, that pleasant pattern of Yes
and No columns present in the full table goes away. This is yet another reason to
be very careful when collapsing the columns, because you can’t count on the
pattern or the mathematical formula to check your work.

4.2.3.2 Combining Decision Table Testing with Other Techniques
Okay, let’s address an issue we brought up earlier, the possibility of multiple test
cases per column in the decision table via the combination of equivalence parti-
tioning and the decision table technique. In figure 4-16, we refer to our example
decision table of table 4-16, specifically column 9.

__AST V3.book Seite 145 Freitag, 1. Juli 2011 1:06 13

146 4 Test Techniques

Figure 4–16 Equivalence partitions and decision tables

We can apply equivalence partitioning to the question, How many interesting—
from a test point of view—ways are there to have an account not be real? As you
can see from figure 4-16, this could happen seven potentially interesting ways:

■ Card number and cardholder mismatch
■ Card number and expiry mismatch
■ Card number and CSC (card security code) mismatch
■ Two of the above mismatches (three possibilities)
■ All three mismatches

So, there could be seven tests for that column.

How about boundary value analysis? Yes, that too can be applied to decision
tables to find new and interesting tests. For example, How many interesting test
values relate to the credit limit?

Figure 4–17 Boundary values and decision tables

As you can see from figure 4-17, equivalence partitioning and boundary value
analysis show us six interesting possibilities:

1. The account starts at zero balance.
2. The account would be at a normal balance after transaction.

Number/
Name

Number/
Expiry

Number/
CSC

Three
mismatch

Two
mismatch

Two
mismatch

Two
mismatch

Conditions 9

Real account? N

Active account? -

Within limit? -

Location okay? -

EP

Zero before
transaction

Conditions 1 2 3 5 6 7

Real account? Y Y Y Y Y Y

Active account? Y Y Y N N N

Within limit? Y Y N Y Y N

Location okay? Y N - Y N -

Normal after
transaction

At limit after
transaction

Within limit

0 limit limit+0.01 max

Over limit
BVA

E
P

Just over
limit after

transaction
At limit before

transaction
Max after

transaction

E
P

__AST V3.book Seite 146 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 147

3. The account would be exactly at the limit after the transaction.
4. The account would be over the limit after the transaction.
5. The account was at exactly the limit before the transaction (which would

ensure going over if the transaction concluded).
6. The account would be at the maximum overdraft value after the transaction

(which might not be possible).

Combining this with the decision table, we can see that would again end up
with more “over limit” tests than we have columns—one more, to be exact—so
we’d increase the number of tests just slightly. In other words, there would be
four within-limit tests and three over-limit tests. That’s true unless you wanted
to make sure that each within-limit equivalence class was represented in an
approved transaction, in which case column 1 would go from one test to three.

4.2.3.3 Nonexclusive Rules in Decision Tables

Let’s finish our discussion about decision tables by looking at the issue of non-
exclusive rules we mentioned earlier.

Table 4–17

Sometimes more than one rule can apply to a transaction. In table 4-17, you see
a table that shows the calculation of credit card fees. There are three conditions,
and notice that zero, one, two, or all three of those conditions could be met in a
given month. How does this situation affect testing?

It complicates the testing a bit, but we can use a methodical approach and
risk-based testing to avoid the major pitfalls.

To start with, test the decision table like a normal one, one rule at a time,
making sure that no conditions not related to the rule you are testing are met.
This allows you to test rules in isolation—just as you are forced to do in situa-
tions where the rules are exclusive.

Conditions 1 2 3

Foreign exchange? Y - -

Balance forward? - Y -

Late payment? - - Y

Actions

Exchange fee? Y - -

Charge interest? - Y -

Charge late fee? - - Y

__AST V3.book Seite 147 Freitag, 1. Juli 2011 1:06 13

148 4 Test Techniques

Next, consider testing combinations of rules. Notice we said, “Consider,”
not “test all possible combinations of rules.” You’ll want to avoid combinatorial
explosions, which is what happens when testers start to test combinations of
factors without consideration of the value of those tests. Now, in this case, there
are only 8 possible combinations—three factors, two options for each factor, 2
times 2 times 2 is 8. However, if you have six factors with five options each, you
would now have 15,625 combinations.

One way to avoid combinatorial explosions is to identify the possible com-
binations and then use risk to weight those combinations. Try to get to the
important combinations and don’t worry about the rest.

Another way to avoid combinatorial explosions is to use techniques like
classification trees and pairwise testing, which are covered in Rex’s book
Advanced Software Testing Vol. 1.

4.2.3.4 Decision Table Exercise
During development, the HELLOCARMS project team added a feature to HEL-
LOCARMS. This feature allows the system to sell a life insurance policy to cover
the amount of a home equity loan so that, should the borrower die, the policy
will pay off the loan. The premium is calculated annually, at the beginning of
each annual policy period and based on the loan balance at that time. The base
annual premium will be $1 for $10,000 in loan balance. The insurance policy is
not available for lines of credit or for reverse mortgages.

The system will increase the base premium by a certain percentage based
on some basic physical and health questions that the Telephone Banker will ask
during the interview.

A Yes answer to any of the following questions will trigger a 50 percent
increase to the base premium:

1. Have you smoked cigarettes in the past 12 months?
2. Have you ever been diagnosed with cancer, diabetes, high cholesterol, high

blood pressure, a heart disorder, or stroke?
3. Within the last 5 years, have you been hospitalized for more than 72 hours

except for childbirth or broken bones?
4. Within the last 5 years, have you been completely disabled from work for a

week or longer due to a single illness or injury?

__AST V3.book Seite 148 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 149

The Telephone Banker will also ask about age, weight, and height. (Applicants
cannot be under 18.) The weight and height are combined to calculate the body
mass index (BMI). Based on that information, the Telephone Banker will apply
the rules in table 4-18 to decide whether to increase the rate or even decline to
issue the policy based on possible weight-related illnesses in the person’s future.

Table 4–18

The increases are cumulative. For example, if the person has normal weight,
smokes cigarettes, and has high blood pressure, the annual rate is increased
from $1 per $10,000 to $2.255 per $10,000. If the person is a 45-year-old male
diabetic with a body mass index of 39, the annual rate is increased from $1 per
$10,000 to $2.6256 per $10,000.

The exercise consists of three steps:

1. Create a decision table that shows the effect of the four health questions and
the body mass index.

2. Show the boundary values for body mass index and age.
3. Create test cases to cover the decision table and the boundary values, keep-

ing in mind the rules about testing nonexclusive rules.

The answers to the three parts are shown on the next pages. You should review
the answer to the each part (and, if necessary, revise your answer to the next
parts) before reviewing the answer to the next part.

4.2.3.5 Decision Table Exercise Debrief
First, we created the decision table from the four health questions and the BMI/
age table. The answer is shown in table 4-19. Note that the increases are shown
in percentages.

Body Mass Index (BMI)

Age <17 34-36 37-39 >39

18-39 Decline 75% 100% Decline

40-59 Decline 50% 75% Decline

>59 Decline 25% 50% Decline

5. Two risk factors; the calculation is as follows: ($1 x 50%) = $1.50 + ($1.50 x 50%) = $2.25
6. One risk factor plus BMI increase of 75%: ($1 x 50%) = $1.50 + ($1.50 x 75%) = $2.625

__AST V3.book Seite 149 Freitag, 1. Juli 2011 1:06 13

150 4 Test Techniques

Table 4–19

It’s important to notice that rules 1 through 4 are nonexclusive, though rules 5
through 12 are exclusive.

In addition, there is an implicit rule that the age must be greater than 17 or
the applicant will be denied not only insurance but the loan itself. We could
have put that here in the decision table, but our focus is primarily on testing
business functionality, not input validation. We’ll cover those tests with bound-
ary values.

Now, let’s look at the boundary values for body mass index and age, shown
in figure 4-18.

Figure 4–18 BMI and age boundary values

Three important testing notes relate to the body mass index. First, the body
mass index is not entered directly but rather by entering height and weight.
Depending on the range and precision of these two fields, there could be dozens
of ways to enter a given body mass index. Second, the maximum body mass
index is achieved by entering the smallest possible height and the largest possi-
ble weight. Third, we’d need to separately understand the boundary values for
these two fields and make sure those were tested properly.

Conditions 1 2 3 4 5 6 7 8 9 10 11 12

Smoked? Y – – – – – – – – – – –

Diagnosed? – Y – – – – – – – – – –

Hospitalized? – – Y – – – – – – – – –

Disabled? – – – Y – – – – – – – –

BMI – – – – 34–36 34–36 34–36 37–39 37–39 37–39 <17 >39

Age – – – – 18–39 40–59 >59 18–39 40–59 >59 – –

Actions

Increase 50 50 50 50 75 50 25 100 75 50 – –

Decline – – – – – – – – – – Y Y

Smaller
increase

To o
thin

No
increase

Bigger
increase

To o
heavy

0 16 17 3 3 3 4 3 6 37 3 9 40 max

Mid-agedToo young Young Senior

0 17 18 3 9 59 6 0 max9 40

__AST V3.book Seite 150 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 151

An important testing note relates to the age. You can see that we omitted
equivalence classes related to invalid ages, such as negative ages and non-integer
input for ages. Again, our idea is that we’d need to separately test the input field
validation. Here, our focus is on testing business logic.

Finally, for both fields, we omit any attempt to figure out the maxima.
Either someone will give us a requirements specification that tells us that during
test design or we’ll try to ascertain it empirically during test execution.

So, for the BMI, we can show the boundary values and equivalence parti-
tions as shown in table 4-20.

Table 4–20

For the age, we can show the boundary values and equivalence partitions as
shown in table 4-21.

Table 4–21

Partition Boundary Value

1 Too thin 0

2 Too thin 16

3 No increase 17

4 No increase 33

5 Smaller increase 34

6 Smaller increase 36

7 Bigger increase 37

8 Bigger increase 39

9 Too heavy 40

10 Too heavy max

Partition Boundary Value

1 Too young 0

2 Too young 17

3 Young 18

4 Young 39

5 Mid-aged 40

6 Mid-aged 59

7 Senior 60

8 Senior max

__AST V3.book Seite 151 Freitag, 1. Juli 2011 1:06 13

152 4 Test Techniques

Finally, table 4-22 shows the test cases. They are much like the decision table,
but note that we have shown the rate (in dollars per $10,000 of loan balance)
rather than the percentage increase.

Table 4–22

Test case

Conditions 1 2 3 4 5 6 7 8 9 10 11 12

Smoked? Y N N N N N N N N N N N

Diagnosed? N Y N N N N N N N N N N

Hospitalized? N N Y N N N N N N N N N

Disabled? N N N Y N N N N N N N N

BMI N N N N 34 36 35 34 36 35 37 39

Age N N N N 18 39 40 59 60 max 20 30

Actions

Rate 1.5 1.5 1.5 1.5 1.75 1.75 1.5 1.5 1.25 1.25 2 2

Decline N N N N N N N N N N N N

Test case

Conditions 13 14 15 16 17 18 19 20 21 22 23 24

Smoked? N N N N N N N N N N N N

Diagnosed? N N N N N N N N N N N N

Hospitalized? N N N N N N N N N N N N

Disabled? N N N N N N N N N N N N

BMI 38 37 39 38 16 40 0 max 17 33 20 30

Age 45 55 65 75 35 50 25 70 37 47 0 17

Actions

Rate 1.75 1.75 1.50 1.50 N/A N/A N/A N/A 1 1 N/A N/A

Decline N N N N Y Y Y Y N N Y Y

Test case

Conditions 25 26 27 28 29

Smoked? Y N N N Y

Diagnosed? N Y N N Y

Hospitalized? N N Y N Y

Disabled? N N N Y Y

BMI 35 36 34 38 37

Age 20 50 70 30 35

Actions

Rate 2.625 2.25 1.875 3 10.125

Decline N N N N N

__AST V3.book Seite 152 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 153

Notice our approach to testing the nonexclusive rules. First, we tested every
rule, exclusive and nonexclusive, in isolation. Then, we tested the remaining
untested boundary values. Next, we tested combinations of only one nonexclu-
sive rule with one exclusive rule, making sure each nonexclusive rule had been
tested once in combination (but not all the exclusive rules were tested in combi-
nation). Finally, we tested a combination of all four nonexclusive rules with one
exclusive rule. We did not use combinations with the “decline” rules since pre-
sumably there’s no way to check if the increase was correctly calculated.

You might also have noticed that we managed to sneak in covering the min-
imum and maximum increases. However, we probably didn’t cover every possi-
ble increase. Since we didn’t test every possible pair, triple, and quadruple
combination of rules, we certainly didn’t test every way an increase could be cal-
culated by that table. That topic is covered in Advanced Software Testing Vol.1.

For the decision table and the boundary values, we’ve captured test coverage
in the following tables to make sure we missed nothing. Table 4-23, table 4-24,
and table 4-25 show decision table coverage using three coverage metrics.

Table 4–23

Conditions 1 2 3 4 5 6 7 8 9 10 11 12

Smoked? Y - - - - - - - - - - -

Diagnosed? - Y - - - - - - - - - -

Hospitalized? - - Y - - - - - - - - -

Disabled? - - - Y - - - - - - - -

BMI - - - - 34-36 34-36 34-36 37-39 37-39 37-39 <17 >39

Age - - - - 18-39 40-59 >59 18-39 40-59 >59 - -

Actions

Increase 50 50 50 50 75 50 25 100 75 50 - -

Decline - - - - - - - - - - Y Y

Single Rule Coverage

Test case(s) 1 2 3 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 17,19 18,20

Pairs of Rules Coverage

Test case(s) 25 26 27 28 25 26 27 28

Maximum Combination of Rules Coverage

Test case(s) 29 29 29 29 29

__AST V3.book Seite 153 Freitag, 1. Juli 2011 1:06 13

154 4 Test Techniques

Table 4–24

Table 4–25

4.2.4 State-Based Testing and State Transition Diagrams

We said that after our discussion of equivalence partitioning and boundary
value analysis, we would cover two techniques that would prove useful for test-
ing business logic, even more useful than equivalence partitioning and bound-

ISTQB Glossary

state diagram: A diagram that depicts the states that a component or system
can assume and shows the events or circumstances that cause and/or result
from a change from one state to another.

state transition: A transition between two states of a component or system.

state transition testing: A black-box test design technique in which test cases
are designed to execute valid and invalid state transitions.

Partition Boundary Value Test Case

1 Too thin 0 19

2 Too thin 16 17

3 No increase 17 21

4 No increase 33 22

5 Smaller increase 34 5

6 Smaller increase 36 6

7 Bigger increase 37 11

8 Bigger increase 39 12

9 Too heavy 40 18

10 Too heavy max 20

Partition Boundary Value Test Case

1 Too young 0 23

2 Too young 17 24

3 Young 18 5

4 Young 39 6

5 Mid-aged 40 7

6 Mid-aged 59 8

7 Senior 60 9

8 Senior max 10

__AST V3.book Seite 154 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 155

ary value analysis. We covered decision tables, which work very well in
transactional situations, in the last section.

Now we move on to state-based testing. State-based testing is ideal when we
have sequences of events that occur and conditions that apply to those events
and the proper handling of a particular event/condition depends on the events
and conditions that have occurred in the past. In some cases, the sequences of
events can be potentially infinite, which of course exceeds our testing capabili-
ties, but we want to have a test design technique that allows us to handle arbi-
trarily long sequences of events.

The underlying model is a state transition diagram or table. The diagram or
table connects beginning states, events, and conditions with resulting states and
actions.

To describe this interaction, consider a system. At a given time, some status
quo prevails and the system is in a steady state. Then some event occurs, some
event that the system must handle. The handling of that event might be influ-
enced by one or more conditions. The event/condition combination triggers a
state transition, either from the current state to a new state or from the current
state back to itself again. In the course of the transition, the system takes one or
more actions.

Given this model, we generate tests that traverse the states and transitions.
The inputs trigger events and create conditions, while the expected results of
the test are the new states and actions taken by the system.

Differing coverage criteria apply for state-based testing. The weakest crite-
rion requires that the tests visit every state and traverse every transition. This
criterion can be applied to state transition diagrams. A higher coverage crite-
rion is at least one test for every row in a state transition table. Achieving “every
row” coverage will achieve “every state and transition” coverage, which is why
we said it was a higher coverage criterion.

Another potentially higher coverage criterion requires that at least one test
cover each transition sequence of N or less length. The N can be 1, 2, 3, 4, or
higher. This is called alternatively Chow’s switch coverage—after Professor
Chow, who developed it—or N-1 switch coverage, after the level given to the
degree of coverage. If you cover all transitions of length one, then N-1 switch
coverage means 0 switch coverage. Notice that this is the same as the lowest
level of coverage discussed. If you cover all transitions of length one and two,

__AST V3.book Seite 155 Freitag, 1. Juli 2011 1:06 13

156 4 Test Techniques

then N-1 switch coverage means 1 switch coverage. This is a higher level of cov-
erage than the lowest level, of course.

Now, 1 switch coverage is not necessarily a higher level of coverage than
“every-row” coverage. This is because the state transition table forces testing of
state and event/condition combinations that do not occur in the state-transition
diagram. The so-called “switches” in N-1 switch coverage are derived from the
state transition diagram, not the state transition table.

All this might be a bit confusing if you’re fuzzy on the test design material
covered at the Foundation level. Don’t worry, though; it will be clear to you
shortly.

So, what is the bug hypothesis in state-based testing? We’re looking for situ-
ations where the wrong action or the wrong new state occurs in response to a
particular event under a given set of conditions based on the history of event/
condition combinations so far.

Figure 4–19 State transition diagram example

Figure 4-19 shows the state transition diagram for shopping and buying items
online from an e-commerce application. It shows the interaction of the system
with a customer, from the customer’s point of view. Let’s walk through it, and
we’ll point out the key elements of state transition diagrams in general and the
features of this one in particular.

Initial
state

indicator

State

browsing

Transition
Event

selecting

Action

resume shopping/
display

continue
shopping/

display

check out/
login

dialog
logging in

abandon

left

confirmed

Condition

purchasing

Final state
indicator

abandon

abandon

abandon

login[good]/
purchase

dialog

purchase[good]/
confirmation

purchase[bad]/
error

login[bad]/
error

go
elsewhere

add to cart/
selection

dialog

click link/
display

__AST V3.book Seite 156 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 157

First, notice that we have at the leftmost side a small dot-and-arrow
element labeled “initial state indicator.” This notation shows that, from the
customer’s point of view, the transaction starts when she starts browsing the
website. We can click on links and browse the catalog of items, remaining in a
browsing state. Notice the looping arrow above the browsing state. The nodes
or bubbles represent states, as shown by the label below the browsing state.
The arrows represent transitions, as shown by the label above the looping
arrow.

Next, we see that the customer can enter a “selecting” state by adding an
item to the shopping cart; “add to cart” is the event, as shown by the label
above. The system will display a “selection dialog” where it asks the customer to
tell us how many of the item she wants, along with any other information we
need to add the item to the cart. Once that’s done, the customer can tell the
system she wants to continue shopping, in which case the system displays the
home screen again and the customer is back in a browsing state. From a
notation point of view, notice that the actions taken by the system are shown
under the event and after the slash symbol, on the transition arrow, as shown
by the label below.

Alternatively, the customer can choose to check out. At this point, she
enters a logging-in state. She enters login information. A condition applies to
that login information: either it was good or it was bad. If it was bad, the system
displays an error and the customer remains in the logging-in state. If it was
good, the system displays the first screen in the purchasing dialog. Notice that
the “bad” and “good” shown in brackets are, notationally, conditions.

While in the purchasing state, the system will display screens and the cus-
tomer will enter payment information. Either that information is good or bad—
conditions again—which determines whether we can complete and confirm the
transaction. Once the transaction is confirmed, the customer can either resume
shopping or go somewhere else.

Notice also that the user can always abandon the transaction and go else-
where.

When we talk about state-based testing during live courses we teach, people
often ask, “How do we distinguish a state, an event, or an action?” The main dis-
tinctions are as follows:

__AST V3.book Seite 157 Freitag, 1. Juli 2011 1:06 13

158 4 Test Techniques

■ A state persists until something happens—something external to the thing
itself, usually—to trigger a transition. A state can persist for an indefinite
period.

■ An event occurs, either instantly or in a limited, finite period. It is the
something that happened—the external occurrence—that triggers the
transition. Events can be triggered in a variety of ways, such as, for example,
by a user with a keyboard or mouse, an external device, or even the
operating system.

■ An action is the response the system has during the transition. An action,
like an event, is either instantaneous or requires a limited, finite period.
Often, an action can be thought of as a side effect of an event.

That said, it is sometimes possible to draw the same situation differently, espe-
cially when a single state or action can be split into a sequence of finer-grained
states, events, and actions. We’ll see an example of that in a moment, splitting
the purchase state into substates.

Finally, notice that, at the outset, we said this chart is shown from the cus-
tomer’s point of view. Notice that, if we drew this from the system’s point of
view, it would look different. Maintaining a consistent point of view is critical
when drawing these charts, otherwise you’ll end up with a nonsensical diagram.

State-based testing uses a formal model, so we can have a formal procedure
for deriving tests from the model. Following is a procedure that will work to
derive tests that achieve state/transition coverage (i.e., 0 switch coverage):

1. Adopt a rule for where a test procedure or test step must start and where it
may or must end. An example is to say that a test step must start in an initial
state and may only end in a final state. The reason for the “may” or “must”
wording on the ending part is because, in situations where the initial and
final states are the same, you might want to allow sequences of states and
transitions that pass through the initial state more than once.

2. From an allowed test starting state, define a sequence of event/condition
combinations that leads to an allowed test ending state. For each transition
that will occur, capture the expected action that the system should take.
This is the expected result.

__AST V3.book Seite 158 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 159

3. As you visit each state and traverse each transition, mark it as covered. The
easiest way to do this is to print the state transition diagram and then use a
marker to highlight each node and arrow as you cover it.

4. Repeat steps 2 and 3 until all states have been visited and all transitions tra-
versed. In other words, every node and arrow has been marked with the
marker.

This procedure will generate logical test cases. To create concrete test cases,
you’d have to generate the actual input values and the actual output values. For
this book, we intend to generate logical tests to illustrate the techniques, but
remember, as we mentioned before, at some point before execution, the imple-
mentation of concrete test cases must occur.

Figure 4–20 Coverage check 1

Let’s apply this process to the example e-commerce application we’ve just looked
at. In figure 4-20, we will redraw the state transition diagram of figure 4-19
using dashed lines to indicate states and transitions that have been covered.
Here, we see two things.

First, we have the rule that says that a test must start in the initial state and
must end in the final state.

Next, we generate the first logical test case.

Initial
state

indicator

State

browsing

Transition
Event

selecting

Action

resume shopping/
display

continue
shopping/

display

check out/
login

dialog
logging in

abandon

left

confirmed

Condition

purchasing

Final state
indicator

abandon

abandon

abandon

login[good]/
purchase

dialog

purchase[good]/
confirmation

purchase[bad]/
error

login[bad]/
error

go
elsewhere

add to cart/
selection

dialog

click link/
display

__AST V3.book Seite 159 Freitag, 1. Juli 2011 1:06 13

160 4 Test Techniques

1. (browsing, click link, display, add to cart, selection dialog, continue shop-
ping, display, add to cart, selection dialog, checkout, login dialog,
login[bad], error, login[good], purchase dialog, purchase[bad], error, pur-
chase[good], confirmation, resume shopping, display, abandon, left).

At this point, we check completeness of coverage, which we’ve been tracking in
our state transition diagram. As you can see in figure 4-20, we have covered all
of the states and most transitions, but not all of the transitions. We need to cre-
ate some more test cases.

Figure 4–21 Coverage check completed

Figure 4-21 shows the test coverage achieved by the following additional test
cases (case 1 was listed earlier):

2. (browsing, add to cart, selection dialog, abandon, <no action>, left)
3. (browsing, add to cart, selection dialog, checkout, login dialog, abandon,

<no action>, left)
4. (browsing, add to cart, selection dialog, checkout, login dialog, login[good],

purchase dialog, abandon, <no action>, left)
5. (browsing, add to cart, selection dialog, continue shopping, display, add to

cart, selection dialog, checkout, login dialog, login[good], purchase dialog,
purchase[good], confirmation, go elsewhere, <no action>, left)

Initial
state

indicator

State

browsing

Transition
Event

selecting

Action

resume shopping/
display

continue
shopping/

display

check out/
login

dialog
logging in

abandon

left

confirmed

Condition

purchasing

Final state
indicator

abandon

abandon

abandon

login[good]/
purchase

dialog

purchase[good]/
confirmation

purchase[bad]/
error

login[bad]/
error

go
elsewhere

add to cart/
selection

dialog

click link/
display

__AST V3.book Seite 160 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 161

Remember that you’re not done generating tests until every state and every
transition has been highlighted, as shown in figure 4-21.

One rule of thumb that can help estimate the number of tests needed to get
this minimum coverage: we usually need as many test cases as there are transi-
tions entering the final state. In our example, there are five arrows pointing to
the left state. While this rule of thumb often works, it is not officially part of the
test design technique.

4.2.4.1 Superstates and Substates
In some cases, it makes sense to unfold a single state into a superstate consisting
of two or more substates. In figure 4-22, you can see that we’ve taken the pur-
chasing state from the e-commerce example and expanded it into three sub-
states.

Figure 4–22 Superstates and substates

The rule for basic coverage here follows simply. Cover all transitions into the
superstate, all transitions out of the superstate, all substates, and all transitions
within the superstate.

Note that, in our example, this would increase the number of tests because
we now have three “abandon” transitions to the “left” state out of the purchasing
superstate rather than just one transition from the purchasing state. This would
also add a finer-grained element to our tests—i.e., more events and actions—as
well as make sure we tested at least three different types of bad purchasing
entries.

abandonabandon

purchasing

purchase[bad]/
error

address[good]/
payment

dialog specifying
payment

editting
order

abandon

payment[good]/
order dialog

purchase[good]/
confirmation

order[bad]/
error

payment[bad]/
error

login[good]/
address
dialog

entering
 address

Substate

Purchasing
superstate

address[bad]/
error

Expand
Substates

__AST V3.book Seite 161 Freitag, 1. Juli 2011 1:06 13

162 4 Test Techniques

4.2.4.2 State Transition Tables
State transition tables are useful because they force us—and the business ana-
lysts and the system designers—to consider combinations of states with event/
condition combinations that they might have forgotten.

To construct a state transition table, you first list all the states from the state
transition diagram. Next, you list all the event/condition combinations shown
on the state transition diagram. Then, you create a table that has a row for each
state with every event/condition combination. Each row has four fields:

■ Current state
■ Event/condition
■ Action
■ New state

For those rows where the state transition diagram specifies the action and new
state for the given combination of current state and event/condition, we can
populate those two fields from the state transition diagram. However, for the
other rows in the table, we find undefined situations, i.e., situations where the
behavior of the system is not specified.

We can now go to the business analysts, system designers, and other such
people and ask, “So, what exactly should happen in each of these situations?”

You might hear them say, “Oh, that can never happen!” As a technical test
analyst, you know what that means. Your job now is to figure out how to make it
happen.

You might hear them say, “Oh, well, I’d never thought of that.” That proba-
bly means you just prevented a bug from ever happening, if you are doing test
design during system design.

As an example, consider figure 4-23. Assume that the customer is in the
browsing state, having previously put one or more items into the cart. If she
decides to check out while in the browsing state, she cannot: that state-event/
condition combination is not defined. We have found a missing requirement! If

ISTQB Glossary

state table: A grid showing the resulting transitions for each state combined
with each possible event, showing both valid and invalid transitions.

__AST V3.book Seite 162 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 163

we actually built the system in this way, we would force our customers to only
be able to check out immediately after putting an item in the cart. Our customer
now must put an additional item into the cart to be able to check out. Or, she
might just decide to move to our competitor’s site! A state transition table can
be an invaluable tool when looking for missing requirements, much the same
way a decision table can.

Figure 4–23 State transition table example

Figure 4-23 shows an excerpt of the table we would create for the e-commerce
example we’ve been looking at so far. We have six states:

■ Browsing
■ Selecting
■ Logging in
■ Purchasing
■ Confirmed
■ Left

We have 11 event/condition combinations:

■ Click link
■ Add to cart

Current

State

Event/cond Action New State

Browsing Click link Display Browsing

Click link Browsing Add to cart Selection dia Selecting

Add to cart Browsing Continue
shopping

Undefined Undefined

Continue shopping Browsing Check out Undefined Undefined

Browsing Check out Browsing Login[bad] Undefined Undefined

Selecting Login[bad] Browsing Login[good] Undefined Undefined

Logging Login[good] Browsing Purchase[bad] Undefined Undefined

Purchasing Purchase[bad] Browsing Purchase[good] Undefined Undefined

Confirmed Purchase[good] Browsing Abandon <no action> Left

Left

�

Abandon

=

Browsing Resume
shopping

Undefined Undefined

Resume shopping Browsing Go elsewhere Undefined Undefined

Go elsewhere Selecting Click link Undefined Undefined

(Fifty-three rows, generated in the pattern shown above,

not shown)

Left Go elsewhere Undefined Undefined

__AST V3.book Seite 163 Freitag, 1. Juli 2011 1:06 13

164 4 Test Techniques

■ Continue shopping
■ Check out
■ Login[bad]
■ Login[good]
■ Purchase[bad]
■ Purchase[good]
■ Abandon
■ Resume shopping
■ Go elsewhere

That means our state transition table should have 66 rows, one for each possible
pairing of a specific state with a specific event/condition combination.

To derive a set of tests that covers the state transition table, we can follow
the following procedure. Notice that we build on an existing set of tests created
from the state transition diagram to achieve state/transition or 0-switch cover:

1. Start with a set of tests (including the starting and stopping state rule),
derived from a state transition diagram, that achieves state/transition cover-
age.

2. Construct the state transition table and confirm that the tests cover all the
defined rows. If they do not, then either you didn’t generate the existing set
of tests properly or you didn’t generate the table properly, or the state transi-
tion diagram is screwed up. Do not proceed until you have identified and
resolved the problem, including re-creating the state transition table or the
set of tests, if necessary.

3. Select a test that visits a state for which one or more undefined rows exists
in the table. Modify that test to attempt to introduce the undefined event/
condition combination for that state. Notice that the action in this case is
undefined.

4. As you modify the tests, mark the row as covered. The easiest way to do this
is to take a printed version of the table and use a marker to highlight each
row as covered.

5. Repeat steps 3 and 4 until all rows have been covered.

Again, this procedure will generate logical test cases. Eventually, either formally
(in a scripted test case) or informally (using experience-based testing), you’ll
need to choose data for execution of the tests.

__AST V3.book Seite 164 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 165

As an example of deriving state table-based tests, we can build on the e-
commerce example already shown. Start with an existing test from the state
transition testing; here we select test 4 from earlier:

 (browsing, add to cart, selection dialog, checkout, login dialog,
login[good], purchase dialog, abandon, <no action>, left)

Now, from here we start to create modified tests to cover undefined browsing
event/conditions and those undefined conditions only.

One test is as follows:

(browsing, attempt: continue shopping, action undefined, add to cart, selec-
tion dialog, checkout, login dialog, login[good], purchase dialog, abandon,
<no action>, left)

 Another test:

 (browsing, attempt: check out, action undefined, add to cart, selection
dialog, checkout, login dialog, login[good], purchase dialog, abandon,
<no action>, left)

There are six other modified tests for browsing, which we’ve not shown. As you
can see, it’s a mechanical process to generate these tests. As long as you are care-
ful to keep track of which rows you’ve covered—using the marker trick we men-
tioned earlier, for example—it’s almost impossible to forget a test.

Now, you’ll notice that we only included one undefined event/condition
combination in each test step. Why? This is a variant of the equivalence parti-
tioning rule that we should not create invalid test cases that combine multiple
invalid event/conditions. In this case, each row corresponds to an invalid event/
condition. If we try to cover two rows in a single test step, we can’t be sure the
system will remain testable after the first invalid event/condition.

Notice that we indicated that the action is undefined. What is the ideal sys-
tem behavior under these conditions? Well, the best-case scenario is that the
undefined event/condition combination is impossible to trigger. If we cannot
get there from here—no menu items, no buttons, no hot-key combinations, no
possible URL edits—so much the better. Next best is that the undefined event/
condition pair is ignored or—better yet—rejected with an intelligent error
message. At that point, processing continues normally. In the absence of any

__AST V3.book Seite 165 Freitag, 1. Juli 2011 1:06 13

166 4 Test Techniques

meaningful input from business analysts, the requirements specification, sys-
tem designers, or any other authority, we would take the position that any other
outcome is a bug, including some inscrutable error message like, “What just
happened can’t happen.” (No, we are not making that up; an RBCS course
attendee once told Rex she had seen exactly that message when inputting an
unexpected value.)

4.2.4.3 Switch Coverage
Figure 4-24 shows how we can generate sequences of transitions using the con-
cept of switch coverage. We will illustrate this concept with the e-commerce
example we’ve used so far.

Figure 4–24 N-1 switch coverage example

At the top of figure 4-24, you see the same state transition as before, except we
have replaced the state labels with letters and the transition labels with numbers.
Now a state/transition pair can be specified as a letter followed by a number.
Notice that we are not bothering to list, in the table, a letter after the number

ISTQB Glossary

N-switch testing: A form of state transition testing in which test cases are
designed to execute all valid sequences of N+1 transitions.

N-switch testing

1
A B C D E

F
8

9 10

7

14

2

3
11

4 5

13
12

6

0-switch 1-switch

A1 A2 A9 A1A1 A1A2 A1A9 A9B10 A9B8 A9B3

B10 B8 B3 B10C14 B10C11 B10C4 B8A1 B8A2 B8A9

C14 C11 C4 C14C14 C14C11 C14C4 C11D13 C11D12 C11D5

D13 D12 D5 D13D13 D13D12 D13D5 D12F6 D12F7

F6 F7 F7A1 F7A2 F7A9

__AST V3.book Seite 166 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 167

because it’s unambiguous from the diagram what state we’ll be in after the given
transition. There is only one arrow labeled with a given number that leads out of
a state labeled with a given letter, and that arrow lands on exactly one state.

The table contains two types of columns. The first contains the state/transi-
tion pairs that we must cover to achieve 0-switch coverage. Study this for a
moment, and assure yourself that, by designing tests that cover each state/tran-
sition pair in the 0-switch columns, you’ll achieve state/transition coverage as
discussed previously.

Constructing the 0-switch columns is easy. The first row consists of the first
state, with a column for each transition leaving that state. There are at most
three transitions from the A state. Repeat that process for each state for which
there is an outbound transition. Notice that the E state doesn’t have a row, and
that’s because E is a final state and there’s no outbound transition. Notice also
that, for this example, there are at most three transitions from any given state.

The 1-switch columns are a little trickier to construct, but there’s a regular-
ity here that makes it mechanical if you are meticulous. Notice, again that after
each transition occurs in the 0-switch situation, we are left in a state which is
implicit in the 0-switch cells. As mentioned, there are at most three transitions
from any given state. So that means that, for this example, each 0-switch cell can
expand to at most three 1-switch cells.

So, we can take each 0-switch cell for the A row and copy it into three cells
in the 1-switch columns, for nine cells for the A row. Now, we ask ourselves, for
each triple of cells in the A row of the 1-switch columns, what implicit state did
we end up in? We can then refer to the appropriate 0-switch cells to populate the
remainder of the 1-switch cell.

Notice that the blank cells in the 1-switch columns indicate situations
where we entered a state in the first transition from which there was no out-
bound transition. In figure 4-24, that is the state labeled E, which was labeled
“Left” on the full-sized diagram.

So, given a set of state/transition sequences like those shown—whether 0-
switch, 1-switch, 2-switch, or even higher—how do we derive test cases to cover
those sequences and achieve the desired level of coverage? Again, we’re going to
build on an existing set of tests created from the state transition diagram to
achieve state/transition or 0-switch coverage.

__AST V3.book Seite 167 Freitag, 1. Juli 2011 1:06 13

168 4 Test Techniques

1. Start with a set of tests (including the starting and stopping state rule),
derived from a state transition diagram, that achieves state/transition cover-
age.

2. Construct the switch table using the technique shown previously. Once you
have, confirm that the tests cover all of the cells in the 0-switch columns. If
they do not, then either you didn’t generate the existing set of tests properly
or you didn’t generate the switch table properly, or the state transition dia-
gram is wrong. Do not proceed until you have identified and resolved the
problem, including re-creating the switch table or the set of tests, if neces-
sary. Once you have that done, check for higher-order switches already cov-
ered by the tests.

3. Now, using 0-switch sequences as needed, construct a test that reaches a
state from which an uncovered higher-order switch sequence originates.
Include that switch sequence in the test. Check to see what state this left you
in. Ideally, another uncovered higher-order switch sequence originates
from this state, but if not, see if you can use 0-switch sequences to reach
such a state. You’re crawling around in the state transition diagram looking
for ways to cover higher-order sequence. Repeat this for the current test
until the test must terminate.

4. As you construct tests, mark the switch sequences as covered once you
include them in a test. The easiest way to do this is to take a printed version
of the switch table and use a marker to highlight each cell as covered.

5. Repeat steps 3 and 4 until all switch sequences have been covered.

Again, this procedure will generate logical test cases.

Figure 4–25 Deriving tests example

1
A B C D E

F
8

9 10

7

14

2 3
11

4 5

13
12

6

0-switch 1-switch
A1 A2 A9 A1A1 A1A2 A1A9 A9B10 A9B8 A9B3

B10 B8 B3 B10C14 B10C11 B10C4 B8A1 B8A2 B8A9
C14 C11 C4 C14C14 C14C11 C14C4 C11D13 C11D12 C11D5
D13 D12 D5 D13D13 D13D12 D13D5 D12F6 D12F7
F6 F7 F7A1 F7A2 F7A9

__AST V3.book Seite 168 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 169

In figure 4-25, we see the application of the derivation technique covered in fig-
ure 4-24 to the e-commerce example we’ve used. After finishing the second step,
that of assessing coverage already attained via 0-switch coverage, we can see that
most of the table is already shaded. Those are the lighter-shaded cells, which are
covered by the five existing state/transition cover tests.

Now, we generate five new tests to achieve 1-switch coverage. Those are
shown below. The darker-shaded cells are covered by five new 1-switch cover
tests.

1. (A1A1A2).
2. (A9B8A1A9B8A2).
3. (A9B10C14C14C4).
4. (A9B10C11D13D13D5).
5. (A9B10C11D12F7A1A9B10C11D12F7A9).

We need to mention something about this algorithm for deriving higher-order
switch coverage tests, as well as the one given previously for row-coverage tests.
Both build on an existing set of tests that achieve state/transition coverage. That
is efficient from a test design point of view. It’s also conservative from a test exe-
cution point of view because we cover the less challenging stuff first and then
move on to the more difficult tests.

However, it is quite possible that, starting from scratch, a smaller set of tests
could be built, both for the row coverage situation and for the 1-switch coverage
situation. If the most important thing is to create the minimum number of tests,
then you should look for ways to reduce the tests created, or modify the deriva-
tion procedures given here to start from scratch rather than to build on an exist-
ing set of 0–switch tests.

4.2.4.4 State Testing with Other Techniques
Let’s finish our discussion of state-based testing by looking at a couple of inter-
esting questions. First, how might equivalence partitioning and boundary value
analysis combine with state-based testing? The answer is, quite well.

From the e-commerce example, suppose that the minimum purchase is $10
and the maximum is $10,000. In that case, we can perform boundary value
analysis as shown in figure 4-26, performed on the purchase[good] and pur-
chase[bad] event/condition combinations. By covering not only transitions,

__AST V3.book Seite 169 Freitag, 1. Juli 2011 1:06 13

170 4 Test Techniques

rows, and transition sequences, but also boundary values, this forces us to try
different purchase amounts.

Figure 4–26 Equivalence partitions and boundary values

We can also apply equivalence partitioning to the pay[good] event/condition
combination. For example, suppose we accept four different types of credit
cards. By covering not only transitions, rows, and transition sequences, but also
equivalence partitions, this forces us to try different payment types.

Now, to come full circle on a question we brought up at the start of the dis-
cussion on these two business-logic test techniques. When do we use decision
tables and when do we use state diagrams?

This can be, in some cases, a matter of taste. The decision table is compact.
If we’re not too worried about the higher-order coverage, or the effect of states
on the tests, many state-influenced situations can be modeled as decision tables,
using conditions to model states. However, if the decision table’s conditions sec-
tion starts to become very long, you’re probably stretching the technique. Also,
keep in mind that test coverage is usually more thorough using state-based
techniques.

In most cases, one technique or the other will clearly fit better. If you are at a
loss, try both and see which feels most appropriate.

4.2.4.5 State Testing Exercise
This exercise consists of three parts:

1. Using the following semiformal use case, translate it into a state transition
diagram, shown from the point of view of the Telephone Banker.

2. Generate test cases to cover the states and transitions (0-switch).
3. Generate a switch table to the 1-switch level.

pay[good]

-max -0.01 0 0.01 9.99 10 10,000 10,000.01 max

purchase
[bad]

purchase
[good]

Boundary
Value Analysis

American
Express

Equivalence
Partitioning MasterCard Visa Discover

Invalid
(zero)

Valid
(in range)

Invalid
(too large)Invalid

(too low)
Invalid

(negative)

__AST V3.book Seite 170 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 171

Table 4–26

Actor Telephone Banker

Preconditions The Globobank Telephone Banker is logged into the HELLOCARMS System.

Normal
Workflow

1. The Telephone Banker receives a phone call from a Customer.
2. The Telephone Banker interviews the Customer, entering information into the

HELLOCARMS System through a web browser interface on his Desktop.
3. Once the Telephone Banker has gathered the information from the Customer, the

HELLOCARMS System determines the credit-worthiness of the Customer using the
Scoring Mainframe.

4. Based on all of the Customer information, the HELLOCARMS System displays
various Home Equity Products that the Telephone Banker can offer to the
Customer.

5. If the Customer chooses one of these Products, the Telephone Banker will
conditionally confirm the Product.

6. The interview ends. The Telephone Banker directs the HELLOCARMS System to
transmit the loan information to the Loan Document Printing System (LoDoPS) in
the Los Angeles Datacenter for origination.

Exception
Workflow 1

During step 2 of the normal workflow, if the Customer is requesting a large loan or
borrowing against a high-value property, the Telephone Banker escalates the
application to a Senior Telephone Banker who decides whether to proceed with the
application.
If the decision is to proceed, then the Telephone Banker completes the remainder of
step 2 and proceeds normally.
If the decision is not to proceed, the Telephone Banker informs the Customer that the
application is declined and the interview ends.

Exception
Workflow 2

During step 4 of the normal workflow, if the System does not display any Home Equity
Products as available, the Telephone Banker informs the Customer that the
application is declined and the interview ends.

Exception
Workflow 3

During step 5 of the normal workflow, if the product chosen by the Customer was a
Home Equity Loan, the Telephone Banker offers the Customer the option of applying
for life insurance to cover the loan. If the Customer wants to apply, the following steps
occur:

1. The Telephone Banker interviews the Customer, entering health information into the
HELLOCARMS System through a web browser interface on his Desktop.

2. The HELLOCARMS System processes the information as described in the previous
exercise. One of two outcomes will occur:
a. The HELLOCARMS System declines to offer insurance based on the health

information given. The Telephone Banker informs the Customer that the
insurance application was denied. This exception workflow is over and
processing returns to step 5.

b. The HELLOCARMS System offers insurance at a rate based on the loan size
and the health information given. The Telephone Banker informs the Customer
of the offer.

3. The Customer makes one of two decisions:
a. Accept the offer. The Telephone Banker makes the life insurance purchase part

of the overall application. This exception workflow is over and processing returns
to step 5.

b. Reject the offer. The Telephone Banker excludes the life insurance purchase
from the overall application. This exception workflow is over and processing
returns to step 5.

__AST V3.book Seite 171 Freitag, 1. Juli 2011 1:06 13

172 4 Test Techniques

4.2.4.6 State Testing Exercise Debrief
1. Create state transition diagram.

Figure 4-27 shows the state transition diagram we generated based on the pre-
ceding semiformal use case.

Figure 4–27 HELLOCARMS state transition diagram

Exception
Workflow 4

During any of steps 1 through 5 of the normal workflow, if the Customer chooses to
end the interview without continuing the process or selecting a product, the application
is cancelled and the interview ends.

Exception
Workflow 5

If no Telephone Banker is logged into the system (e.g., because the system is down)
and step 1 of the normal workflow begins, the following steps occur:

1. The Telephone Banker takes the information manually. At the end of the interview,
the Telephone Banker informs the Customer that a Telephone Banker will call back
shortly with the decision on the application.

2. Once a Telephone Banker is logged into the System, the application information is
entered into HELLOCARMS and normal processing resumes at step 2.

3. The Telephone Banker calls the Customer once one of the following outcomes has
occurred:
a. Step 5 of normal processing is reached. Processing continues at step 5.
b. At step 2 of normal processing, exception workflow 1 was triggered. Processing

continues at step 2.
c. At step 4 of normal processing, exception workflow 2 was triggered. No

processing remains to be done.

Postconditions Loan application is in LoDoPS system for origination

waiting
gathering
loan info offering

shift over

escalating

system loan decline/
archive

system loan decline/
archive

cust cancel/
archive

cust cancel/
archive

cust cancel/
archive

phone call/
loan screens system loan offer/

offer screen

approved/
resume

offer insurance/
insurance screens

cust ins accept/
add to package

cust ins reject/
archive

systems ins reject/
archive

cust cancel/
archive

end of shift/
log out

cust loan reject/
archive

cust loan accept/
send to LoDoPS

exceed[value or loan]/
escalate

gathering
insurance

info

__AST V3.book Seite 172 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 173

2. Generate test cases to cover the states and transitions (0-switch).

Let’s adopt a rule that says that any test must start in the initial waiting state and
may only end in the waiting state or the shift over state. To achieve state and
transition coverage, the following tests will suffice:

1. (waiting, phone call, loan screens, exceed[value], escalate, approved,
resume, system loan offer, offer screen, offer insurance, insurance screens,
cust ins accept, add to package, cust loan accept, send to LoDoPS, waiting)

2. (waiting, phone call, loan screens, exceed[loan], escalate, approved, resume,
system loan offer, offer screen, offer insurance, insurance screens, cust ins
reject, archive, cust loan accept, send to LoDoPS, waiting)

3. (waiting, phone call, loan screens, system loan offer, offer screen, offer
insurance, insurance screens, system ins reject, archive, cust loan reject,
archive, waiting)

4. (waiting, phone call, loan screens, exceed[loan], escalate, system loan
decline, archive, waiting)

5. (waiting, phone call, loan screens, system loan decline, archive, waiting)
6. (waiting, phone call, loan screens, cust cancel, archive, waiting)
7. (waiting, phone call, loan screens, exceed[loan], escalate, cust cancel,

archive, waiting)
8. (waiting, phone call, loan screens, system loan offer, offer screen, cust can-

cel, archive, waiting)
9. (waiting, phone call, loan screens, system loan offer, offer screen, offer

insurance, insurance screens, cust cancel, archive, waiting)
10. (waiting, end of shift, log out, shift over)

Notice that we didn’t do an explicit boundary value or equivalence partitioning
testing of, say, the loan amount or the property value, though we certainly could
have. Also, note that this is an example of when our rule of thumb for number of
needed test cases did not work. This usually happens because there are multiple
paths between two non-final states (in this case between offering and gathering
insurance info) that must be tested with separate test cases.

3. Generate a switch table to the 1-switch.

First, redraw the state transition diagram of figure 4-27 to make it easier to work
with. It should look like figure 4-28.

__AST V3.book Seite 173 Freitag, 1. Juli 2011 1:06 13

174 4 Test Techniques

Figure 4–28 HELLOCARMS state transition diagram for switch table

From the diagram, we can generate the 1-switch table shown in table 4-27.
Notice that we have used patterns in the diagram to generate the table. For
example, the maximum number of outbound transitions for any state in the
diagram is four, so we use four columns on both the 0-switch and 1-switch
columns. We started with six 1-switch rows per 0-switch row because there are
six states, though we were able to delete most of those rows as we went along.
This leads to a sparse table, but who cares as long as it makes generating this
beast easier.

Table 4–27

0-switch 1-switch

A1 A12 A1F2 A1F6 A1F16 A1F17

B3 B4 B7 B3A1 B3A12

B4A1 B4A12

B7F2 B7F6 B7F16 B7F17

C5 C9 C10 C11 C5A1 C5A12

C9D8 C9D13 C9D14 C9D15

C10D8 C10D13 C10D14 C10D15

C11D8 C11D13 C11D14 C11D15

D8 D13 D14 D15 D8C5 D8C9 D8C10 D8C11

D13A1 D13A12

D14A1 D14A12

D15A1 D15A12

F2 F6 F16 F17 F2B3 F2B4 F2B7

F6D8 F6D13 F6D14 F6D15

F16A1 F16A12

F17A1 F17A12

4 3

1

2 7 8 9 10 11

17

16 15
14
13

12

5

A F

B

D

E

C

__AST V3.book Seite 174 Freitag, 1. Juli 2011 1:06 13

 4.2 Specification-Based 175

4.2.5 Requirements-Based Testing Exercise

This exercise requires you to select which specification-based techniques to use
to test requirement element 040-020-030 from the HELLOCARMS system
Requirements Document.

The exercise consists of two parts:

1. Select appropriate techniques for test design.
2. Apply those techniques to generate tests, achieving the coverage criteria for

the techniques.

As always, check your work on the first part before proceeding to the second
part. The solutions are shown in the following section.

4.2.6 Requirements-Based Testing Exercise Debrief

The requirement in question reads as follows:

Load App Server to no more than 30% CPU and 30% Resource utilization
average rate with peak utilization never more than 80% when handling
4,000 simultaneous (concurrent) application submissions.

We have discussed four specification-based techniques in this section: equiva-
lence partitioning, boundary value analysis, decision tables, and state transition
testing. The former two will be very useful in being able to test this requirement;
however, no clear value of using decision tables or state transition for this exam-
ple comes immediately to mind.

The following analysis will be done with the requirement as it stands. While
the CPU requirement is clear, the resource utilization is not. Which resources?
Since there are dozens of resources that we can monitor, it is not really clear.
This is often the case when we get requirements documents that have not been
subjected to rigorous static review.

For this exercise, we have decided to pick a few main resources: the physical
disk, memory utilization, page file usage, and network utilization as a percent-
age of bandwidth. We might expect (hope?) that we would get additional clarity
via static review of the requirements.

One more clarification. On the resources we are looking at, we do not
believe that any of them, other than CPU, can be run at a full 100 percent. For
each one, there will be a maximum utilization somewhat below 100 percent. We

__AST V3.book Seite 175 Freitag, 1. Juli 2011 1:06 13

176 4 Test Techniques

would expect the modeling portion of the performance test would establish
exactly what the reasonable top end will be. For our equivalence class identifica-
tion and boundary value analysis, we will call that top end 100 percent and
manage our peak utilization to 80 percent of that value. For CPU, 80 percent
would actually mean 80 percent usage.

Based on the requirement, all of the measurements would have the same
equivalent classes and boundary values as shown in figure 4-29 and figure 4-30.

Figure 4–29 Instantaneous measurement boundaries

Figure 4–30 Average measurement boundaries

For instantaneous measurements, the valid high boundary would be 80 percent.
The invalid boundary would be just over 80 percent. Epsilon would be depen-
dent on the quality of our measuring tools (for this exercise, we will assume an
epsilon of zero). For average measurements, over the life of the test, 30 percent
would be the valid high boundary. Invalid high boundary would be just over
30 percent. Exact values are going to depend on the instrumentation used.

Testing would consist of modeling the system, the test environment, and
other setup tasks consistent with the techniques discussed in chapters 5 and 9.

We would start executing the test via our performance tool by applying vir-
tual users to the system slowly, making sure that functionality is working as
expected. Monitoring tools would be used to measure instantaneous values and
store them for later calculation of averages. The load would consist of virtual
users performing all acceptable operations, modeling the real world usage of the
system.

Over a defined time, we would increase loading until the system is clocking
at the rated value of concurrent users. All of this presupposes that we have hard-

0%
Never

30%
Average Sometimes

80% 100%

Instantaneous measurements :

0%
Never

30%
Always

100%

Average measurements:

__AST V3.book Seite 176 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 177

ware equivalent to that of production. This assumption is often wrong in our
experience. If the hardware that we are testing on is appreciably smaller than
production is expected to be, we would have to use extrapolation to try to deter-
mine what the actual scaled values the test should return. 7

4.3 Structure-Based

Structural-based testing uses the internal structure of the system as a test basis
for deriving dynamic test cases. In other words, we are going to use information
about how the system is designed and built to derive our tests.

7. In the ISTQB Advanced Syllabus, 2007, the learning objective is actually incorrect. It says
“specific specification-based technique” but clearly means “structure-based”.

ISTQB Glossary

structure-based design technique (white-box test design technique): Proce-
dure to derive and/or select test cases based on an analysis of the internal
structure of a component or system.

structure-based design
technique (white-box test
design technique)

Learning objectives

(K2) List examples of typical defects to be identified by each
specific structure-based7 technique.

(K3) Write test cases in real-life using the following test design
techniques (the tests shall achieve a given model coverage).

– Statement testing
– Decision testing
– Condition determination testing
– Multiple condition testing

(K4) Analyze a system in order to determine which structure-based
technique to apply for specific test objectives.

(K2) Understand each structure-based technique and its
corresponding coverage criteria and when to use it.

(K4) Be able to compare and analyze which structure-based
technique to use in different situations.

__AST V3.book Seite 177 Freitag, 1. Juli 2011 1:06 13

178 4 Test Techniques

The question that should come to mind is why. We have all kinds of specifi-
cation-based (black-box) testing methods to choose from. We just spent dozens
of pages going through four of the many different black-box design methods.
Why do we need more? We don’t have time or resources to spare for extra test-
ing, do we?

Well, consider a world-class, excellent system test team using all black-box
and experience-based techniques. Suppose they go through all of their testing,
using decision tables, state-based tests, boundary analysis, and equivalence
classes. They do exploratory and attack-based testing and use error guessing
and checklist-based methods (which we will discuss later). At the end of that,
have they done enough testing? Maybe. But research has shown that even with
all of that testing, and all of that effort, they may have missed a few things.

Maybe as much as 70 percent of all of the code in the system might never
have been executed once! Not once!

How can that be? Well, a good system is going to have a lot of code that is
only there to handle the unusual, exceptional conditions that may occur. The
happy path is often fairly straightforward to build—and test. And, if everyone
were an expert, and no one ever made mistakes, and everyone followed the
happy path without deviation, we would not need to worry so much about test-
ing the rest. If systems did not sometimes go down, and networks did not some-
times fail, and databases didn’t get busy and stuff didn’t happen...

But, unfortunately, many people are novices at using software and even
experts forget things. And people do make mistakes and multi-strike the keys
and look away at the wrong time. And virtually no one follows only the happy
path without stepping off it occasionally. Stuff happens. And the software must
be written so that when stuff happens, it does not roll over and die.

To handle these less-likely conditions, developers design systems and write
code to survive the bad stuff. That makes systems convoluted and complex.
Levels of complexity are placed on top of levels of complexity; the resulting sys-
tem is usually hard to test well. We have to be able to look inside so we can test
all of those levels.

In addition, black-box testing is predicated on having models which expose
the behaviors and list all requirements. Unfortunately, no matter how complete,
not all behaviors and requirements are going to be visible to the testers.
Requirements are often changed on the fly, features added, changed, or

__AST V3.book Seite 178 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 179

removed. Functionality often requires the developers to build “helper” func-
tionality to be able to deliver. Internal data flows often occur between hidden
devices which have asynchronous timing triggers, invisible to black-box testers.

Much of white-box testing is involved with coverage—making sure that we
have tested everything that we can based on the context of project needs. Using
white-box testing on top of black-box testing allows us to measure the coverage
we got and add more testing when needed to make sure we have tested all of the
stuff we wanted to. In the following sections, we are going to discuss how to
design, create, and execute white-box testing.

4.3.1 Control-Flow Testing

Our first step into structural testing will be to discuss a technique called con-
trol-flow testing. Control-flow testing is done through control-flow graphs, a
way of abstracting a code module in order to better understand what it does.
Control-flow graphs give us a visual representation of the structure of the code.
The algorithm for all control-flow testing consists of converting a section of the
code into a control graph and then analyzing the possible paths through the
graph. There are a variety of techniques that we can apply to decide just how
thoroughly we want to test the code. Then we can create test cases to test to that
chosen level.

If there are different levels of control-flow testing we can choose, we need to
come up with a differentiator that helps us decide which level of coverage to
choose. How much should we test? Possible answers range from no testing at all
(a complete laissez-faire approach) to total exhaustive testing, hitting every pos-
sible path through the software. The end points are actually a little silly; no one
is going to build a system and send it out without running it at least once. At the
other end of the spectrum, exhaustive testing would require an infinite amount
of time and resources. In the middle, however, there is a wide range of coverages
that are possible.

We will look at different reasons for testing to some of these different levels
of coverage later. In this section, we just want to discuss what these levels of
control-flow coverage are named.

At the low end of control-flow testing, we have statement coverage.
Synonyms that are used for this include instruction and code coverage; each one
means the same thing: Have we exercised, at one time or another, every single

__AST V3.book Seite 179 Freitag, 1. Juli 2011 1:06 13

180 4 Test Techniques

line of code in the system? That would give us 100 percent statement coverage.
It is possible to test less than that; people not doing white-box testing do it all
the time; they just don’t measure it. Remember, thorough black-box testing
without doing any white-box testing may total less than 30 percent statement
coverage.

The next step up in control-flow testing is called decision (or branch) cover-
age. This is determined by the total number of decisions in the code that we
have exercised, both ways. We will honor the ISTQB decision to treat branch
and decision testing as synonyms. There are very slight differences between the
two, but those differences are insignificant at the level we will examine them.8

Then we have condition coverage where we ensure that we evaluate each
condition that makes up a decision at least once and multiple-condition coverage
where we test all possible combinations of outcomes for individual conditions
inside all decisions.

The ISTQB Advanced syllabus lists a level of coverage called condition
determination (we will use the term decision/condition coverage) where we test
all combinations of outcomes for individual conditions that can affect a decision
outcome. Closely related to that is a mouthful we call multiple condition/decision
coverage (also known as MC/DC).

We will add a level of coverage called loop coverage, not discussed by
ISTQB, but we think it’s interesting anyway.

Then we will look at various path coverage testing schemes, including one
called Linear Code Sequence and Jump (LCSAJ) coverage.

If this sounds complex, well, it is a bit. In the upcoming pages, we will
explain what all of these terms and all the concepts mean. It is not as confusing
as it might be—we just need to take it one step at a time and all will be clear.
Each technique essentially builds on the shortcoming of the previous technique.

4.3.1.1 Building Control-Flow Graphs
Before we can discuss control-flow testing, we must define how to create a con-
trol-flow graph. In the next few paragraphs, we will discuss the individual pieces
that make up control-flow graphs.

8. The United States Federal Aviation Administration makes a distinction between branch
coverage and decision coverage with branch coverage deemed weaker. If you are interested in this
distinction, see Software Verification Tools Assessment Study, FAA, June 2007.

__AST V3.book Seite 180 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 181

Figure 4–31 The process block

In figure 4-31, we see the process block. Graphically, it consists of a node (bub-
ble or circle) with one path leading to it and one path leading from it. Essen-
tially, this represents a chunk of code that executes sequentially—that is, no
decisions are made inside of it. The flow of execution reaches the process block,
executes through that block of code in exactly the same way each time, and then
exits, going elsewhere.

This concept is essential to understanding control-flow testing. Decisions
are the most important part of the control-flow concept; individual lines of code
where no decisions are made do not affect the control-flow and thus can be
ignored. The process block has no decisions made inside it. Whether the pro-
cess block has one line or a million lines of code, we only need one test to exe-
cute it completely. The first line of code executes, the second executes, the
third... right up to the millionth line of code. There is no deviation no matter
how many different test cases are run. Entry is at the top, exit is at the bottom,
and every line of code executes every time.

Figure 4–32 The junction point

The second structure we need to discuss, seen in figure 4-32, is called a junction
point. This structure may have any number of different paths leading into the pro-
cess block with only one path leading out. No matter how many different paths we
have throughout a module, eventually they must converge. Again, no decisions are
made in this block; the indicated roads lead to it with only one road out.

Figure 4–33 Two decision points

__AST V3.book Seite 181 Freitag, 1. Juli 2011 1:06 13

182 4 Test Techniques

A decision point is very important; indeed, it’s key to the concept of control
flow. A decision point is represented as a node with one input and two or more
possible outputs. Its name describes the action inside the node: A decision as to
which way to go is made and control-flow continues out that path while ignor-
ing all of the other possible choices. In figure 4-33, we see two decision points:
one with two outputs, one with five outputs.

How is the choice of output path made? Each programming language has a
number of different ways of making decisions. In each case, a logical decision,
based on comparing specific values, is made. We will discuss these later; for
now, it is sufficient to say a decision is made and control-flow continues one
way and not others.

Note that these decision points force us to have multiple tests, at least one
test for each way to make the decision differently, changing the way we traverse
the code. In a very real way, it is the decisions that a computer can make that
make it interesting, useful, and complex to test.

The next step is to combine these three relatively simple structures into use-
ful control-flow graphs.

Figure 4–34 A simple control-flow graph

In figure 4-34, we have a small module of code. Written in C, this module con-
sists of a routine to calculate a factorial. Just to refresh your memory, a factorial

1 #include <stdio.h>
2 main ()
3 {
4 int i, n, f;
5 printf (“n = “);
6 scanf (“%d”, &n);
7 if (n < 0) {
8 printf (“Invalid: %d\n”, n);
9 n = -1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i++) {
13 f *= i;
14 }
15 printf(“d! = %d\n”, n, f);
16 }
17 return n;
18 }

if

for

Lines 4,5,6

Lines 7,10

Lines 8,9 Line 11

Line 12

Line 15Line 17

Line 13

__AST V3.book Seite 182 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 183

is the product of all positive integers less than or equal to n and is designated
mathematically as n!. 0! is a special case that is explicitly defined to be equal to
one. The following are the first three factorials:

1! = 1
2! = 1 * 2 ==> 2
3! = 1 * 2 * 3 ==> 6 etc.

To create a control-flow diagram from this code, we do the following:

1. The top process block contains up to and including line 6. Note that there
are no decisions, so all lines go into the same process block. By combining
multiple lines of code where there is no decision made into a single process
block, we can simplify the graph. Note that we could conceivably have
drawn a separate process block for each line of code.

2. At line 7 there is a reserved word in the C language: if. This denotes that the
code is going to make a decision. Note that the decision can go one of two
ways, but not both. If the decision resolves to TRUE, the left branch is taken
and lines 8 and 9 are executed and then the thread jumps to line 17.

3. On the other hand, if the decision resolves to FALSE, the thread jumps to
line 10 to execute the else clause.

4. Line 11 sets a value, and then goes to line 12 where another decision is
made. This is the reserved word, for, which means we may or may not loop.

5. At line 12, a decision is made in the for loop body using the second phrase
in the statement (i <= n). If this evaluates to TRUE, the loop will fire, caus-
ing the code to go to line 13 where it calculates the value of f and then goes
right back to the loop at line 12.

6. If the for loop evaluates to FALSE, the thread goes to line 15 and thence to
line 17.

7. Once the thread gets to line 17, the function ends at line 18.

To review the control-flow graph: There are six process blocks, two decision
blocks (lines 7 and 12), and two junction points (lines 12 and 17).

4.3.1.2 Statement Coverage
Now that we have discussed control-flow graphing, let’s take a look at the first
level of coverage we mentioned earlier, statement coverage (also called instruc-
tion or code coverage). The concept is relatively easy to understand: Executable

__AST V3.book Seite 183 Freitag, 1. Juli 2011 1:06 13

184 4 Test Techniques

statements are the basis for test design selection. To achieve statement coverage,
we pick test data that force the thread of execution to go through each line of
code that the system contains.

To calculate the current level of coverage that we have attained, we divide
the number of code statements that are executed by the number of code state-
ments in the entire system; if the quotient is equal to one, we have statement
coverage.

The bug hypothesis is pretty much as expected; bugs can lurk in code that
has not been executed.

Statement-level coverage is considered the least effective of all control-flow
techniques. To reach this modest level of coverage, a tester must come up with
enough test cases to force every line to execute at least once. While this does not
sound too onerous, it must be done purposefully. One good practice for an
advanced technical test analyst is to make sure that the developers they work
with are familiar with the concepts we are discussing here. Achieving (at least)
statement coverage should be done while unit testing.

There is incontrovertibly no guarantee that even college-educated develop-
ers learned how important this coverage level is. Jamie has an undergraduate
computer science major and a master’s degree in computer science from reputa-
ble colleges and yet was never exposed to any of this information until after
graduation when he started reading test books and attending conferences. Rex
can attest that the concepts of white-box coverage—indeed, test coverage in
general—were not discussed when he got his degree in computer science and
engineering at UCLA.

IEEE, in the standard ANSI 87B (1987), stated that statement coverage was
the minimum level of coverage that should be acceptable. Boris Beizer in his
seminal work, Software Testing Techniques, has a slightly more inflammatory
take on it, “...testing less than this for new software is unconscionable and
should be criminalized.” Also from that book, Beizer lays out some rules of
common sense:

ISTQB Glossary

statement testing: A white-box test design technique in which test cases are
designed to execute statements.

statement testing

__AST V3.book Seite 184 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 185

1. Not testing a piece of code leaves a residue of bugs in the program in pro-
portion to the size of the untested code and the probability of bugs.

2. The high probability paths are always thoroughly tested if only to demon-
strate that the system works properly. If you have to leave some code
untested at the unit level, it is more rational to leave the normal, high-prob-
ability paths untested, because someone else is sure to exercise them during
integration testing or system testing.

3. Logic errors and fuzzy thinking are inversely proportional to the probability
of the path’s execution.

4. The subjective probability of executing a path as seen by the routine’s
designer and its objective execution probability are far apart. Only analysis
can reveal the probability of a path, and most programmers’ intuition with
regard to path probabilities is miserable.

5. The subjective evaluation of the importance of a code segment as judged by
its programmer is biased by aesthetic sense, ego, and familiarity. Elegant
code might be heavily tested to demonstrate its elegance or to defend the
concept, whereas straightforward code might be given cursory testing
because “How could anything go wrong with that?”

Have we convinced you that this is important? Let’s go and look at how to do it.

Figure 4–35 Statement coverage example

1 #include <stdio.h>
2 main ()
3 {
4 int i, n, f;
5 printf (“n = “);
6 scanf (“%d”, &n);
7 if (n < 0) {
8 printf (“Invalid: %d\n”, n);
9 n = -1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i++) {
13 f *= i;
14 }
15 printf(“d! = %d\n”, n, f);
16 }
17 return n;
18 }

if

for

Lines 4,5,6

Lines 7,10

Lines 8,9 Line 11

Line 12

Line 15Line 17

Line 13

Test Values:
n < 0 (gray arrows)
n > 0 (black arrows)

__AST V3.book Seite 185 Freitag, 1. Juli 2011 1:06 13

186 4 Test Techniques

Looking at the same code and control-flow graph we looked at before, fig-
ure 4-35 shows the execution of our factorial function when an input value
less than zero is tested. The gray arrows show the path taken through the
code with this test. Note that we have covered some of the code, but not all.
Based on the graph, we still have a way to go to reach this minimum cover-
age.

Following the black arrows, we see the result of testing with a value greater
than 0. At this point, the if in line 7 resolves to FALSE and so we go down the
untested branch. Because the input value is at least one, the loop will fire at least
once (more times if the input is greater than one). When i increments to larger
than n, the loop will stop and the thread of execution will fall through to line 15,
line 17, and out.

Note that you do not really need the graph to calculate this coverage; you
could simply look at the code and see the same thing. However, for many peo-
ple, it is much easier to read the graph than the code.

At this point, we have achieved statement coverage. If you are unsure, go
back and look at figure 4-35 again. Every node (and line of code) has been cov-
ered by at least one arrow. We have run two test cases (n<0, n>0). At this point,
we might ask ourselves if we are done testing. If we were to do more testing than
we need, we are wasting resources and time. While it might be wonderful to
always test enough that there are no more bugs possible, it would (even if it were
possible) make software so expensive that no one could afford it.

Tools are available to determine if your testing has achieved statement cov-
erage. We will discuss those in chapter 9.

The real question we should ask is, “Did we test enough for the context of
our project?” And the answer, of course, is, “It depends on the project.” Doing
less testing than necessary will increase the risk of really bad things happening
to the system in production. Every test group walks a balance beam in making
the “do we need more testing?” decision.

Maybe we need to see where more coverage might come from and why we
might need it. Maybe we can do a little more testing and get a lot better cover-
age.

Figure 4-36 shows a really simple piece of code and a matching control-flow
graph. Test case 1 is represented by the gray arrows; the result of running this
single test with the given values is full 100 percent statement coverage. Notice

__AST V3.book Seite 186 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 187

on line 2, we have an if statement that compares a to b. Since the inputted values
(a = 3, b = 2), when plugged into this decision, will evaluate to TRUE, the line
z = 12 will be executed, and the code will fall out of the if statement to line 4
where the final line of code will execute and set the variable Rep to 6 by dividing
72 by 12.

Figure 4–36 Where statement coverage fails

A few moments ago, we asked if statement coverage was enough testing. Here,
we can see a potential problem with stopping at only statement coverage.
Notice that, if we pass in the values shown as test 2 (a = 2, b = 3), we have a dif-
ferent decision made at the conditional on line 2. In this case, a is not greater
than b (i.e., the decision resolves to FALSE) and line 3 is not executed. No big
deal, right? We still fall out of the if to line 4. There, the calculation 72/z is per-
formed, exactly the way we would expect. However, there is a nasty little sur-
prise at this point. Since z was not reset to 12 inside the branch, it remained set
to 0. Therefore, expanding the calculation performed on line 4, we have 72
divided by 0.

Oops!

You might remember from elementary school that anything divided by 0 is not
defined. Seriously, in our mathematics, it is simply not allowed. So what should
the computer do at this point? If there is an exception handler somewhere in the
execution stack, it should fire, unwinding all of the calculations that were made
since it was set. If there is no exception handler, the system may crash—hard!
The processor that our system is running on likely has a “hard stop” built into
its micro-code for this purpose. In reality, most operating systems are not going

1 z = 0;
2 if (a > b) then
3 z = 12;
4 Rep = 72/z; if

Test 1: Gray arrows
a = 3, b = 2 Rep = 6

Test 2: Black arrows
a =2, b = 3 Rep = ?

__AST V3.book Seite 187 Freitag, 1. Juli 2011 1:06 13

188 4 Test Techniques

to let the CPU crash with a divide by zero failure—but the OS will likely make
the offending application disappear like a bad dream.

“But,” you might say, “we had statement coverage when we tested! This
just isn’t fair!” As we noted earlier, statement coverage by itself is a bare mini-
mum coverage level which is almost guaranteed to miss defects. We need to
look at another, higher level of coverage that can catch this particular kind of
defect.

4.3.1.3 Decision Coverage

The next strongest level of structural coverage is called decision (or branch)
coverage.

Rather than looking at individual statements, this level of coverage looks at
the decisions themselves. Every decision has the possibility of being resolved as
either TRUE or FALSE. No other possibilities: binary results, TRUE or FALSE.
For those who point out that the switch statement can make more than two
decisions: well, conceptually that seems to be true. The switch statement is a
complex set of decisions, often built as a table by the compiler. The generated
code, however, is really just a number of binary compares which continue
sequentially until either a match is found or the default condition is reached.
Each atomic decision in the switch statement is still a comparison between two
values that evaluates either TRUE or FALSE.

To get to the decision level of coverage, every decision made by the code
must be tested both ways, TRUE and FALSE. That means—at minimum—two
test cases must be run: one with data that cause the evaluation to resolve TRUE
and a separate test case where the data cause the decision to resolve FALSE. If
you omit one test or the other, then you do not achieve decision coverage.

ISTQB Glossary

branch testing: A white-box test design technique in which test cases are
designed to execute branches. ISTQB deems this identical to decision testing.

decision testing: A white-box test design technique in which test cases are
designed to execute decision outcomes. ISTQB deems this identical to branch
testing.

branch testing
decision testing

__AST V3.book Seite 188 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 189

Our bug hypothesis was proved out in figure 4-36. An untested branch may
leave a landmine in the code that can cause a failure even though every line was
executed at least once. The example we went over may seem too simplistic to be
true, but this is exactly what often happens. The failure to set (or reset) a value
in the conditional causes a problem later on in the code.

Note that, if we execute each decision both ways, giving us decision cover-
age, it guarantees statement coverage in the same code. Therefore, decision cov-
erage is said to be stronger than statement coverage. Statement coverage, as the
weakest coverage, does not guarantee anything beyond each statement being
executed at least once.

As before, we could calculate the exact level of decision coverage by dividing
the number of decision outcomes tested by the total number of decision out-
comes in the code. For this book, we are going to speak as if we always want to
achieve full—that is, 100 percent—decision coverage. In real life, your mileage
might vary. There are tools available to measure the extent of decision coverage.

 Having defined this higher level of coverage, let’s dig into it.
The ability to take one rather than the other path in a computer is what

really makes a computer powerful. Each computer program likely makes mil-
lions of decisions a minute. But exactly what is a decision?

As noted earlier, each decision eventually must resolve to one of two values,
TRUE or FALSE. As seen in our code, this might be a really simple expression: if
a is greater than b, if n is less than zero. However, we often need to consider
more complex expressions in a decision. In fact, a decision can be arbitrarily
complex, as long as it eventually resolves to either TRUE or FALSE. The follow-
ing is a legal expression which resolves to a single Boolean value:

(a>b) || (x+y==-1) && ((d) != TRUE)

This expression has three sub-expressions in it, separated by Boolean operators.
First, we evaluate the sub-expression that determines if the sum of x plus y is
equal to -1. That will be either TRUE or FALSE. We then AND that to the third
sub-expression, which calculates whether d is FALSE or not. The result of that
calculation is then ORed to the TRUE or FALSE result testing whether a is
greater than b. If that order of execution is not intuitive, it is based on the rules
that govern the relative order of expression evaluation: ANDs are evaluated
before ORs, much the same way multiplications are evaluated before additions
in arithmetic.

__AST V3.book Seite 189 Freitag, 1. Juli 2011 1:06 13

190 4 Test Techniques

While this expression appears to be ugly, the compiler will evaluate the
entire predicate to inform us whether it is a legal expression or not. This actually
points out something every developer should do: Write code that is understand-
able! Frankly, we would not insult the term understandable by claiming this
expression is!

There are a variety of different decisions that a programming language can
make.

Table 4–28

Here, in table 4-28, you can see a short list of the decision constructs that the
popular language C uses. Other popular languages use similar constructs. The
commonality between all of these (and all of the other decision constructs in all
of the other languages) is that each makes a decision that can go only two ways:
TRUE or FALSE.

Looking back at our original example in figure 4-35, with just two test cases
we do not achieve decision coverage, even though we do attain statement cover-
age. We did not “not” execute the for loop. Remember, a for loop evaluates an
expression and decides whether to loop or not to loop based on the result.

In order to get decision coverage, we need to test with the value 0 inputted
as shown in figure 4-37. When 0 is entered, the first decision evaluates to
FALSE, so we take the else path. At line 12, the predicate (1 less than or equal to
0) evaluates to FALSE, so the loop is not taken. Recall that earlier, we had tested
with a value greater than 0, which did cause the loop to execute. Now we have
achieved decision coverage; it took three test cases.

Either/or Decisions Loop decisions

if (expr)
 {}
else
 {}

while(expr)
 {}

switch (expr) {
 case const_1: {} break;
 case const_2: {} break;
 case const_3: {} break;
 case const_4: {} break;
 default {}
}

do
 {}
while (expr)

for (expr_1; expr_2; expr_3)
 {}

__AST V3.book Seite 190 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 191

Figure 4–37 Decision coverage example

That brings us back to the same old question. Having tested to the decision level
of coverage, have we done enough testing?

Consider the loop itself. We executed it zero times when we inputted 0. We
executed it an indeterminate number of times when we inputted a value greater
than zero. Is that sufficient testing?

Well, not surprisingly, there is another level of coverage called loop cover-
age. We will look at that next.

4.3.1.4 Loop Coverage
While not strictly discussed in the ISTQB Advanced syllabus, loop testing
should be considered an important structural test technique. If we want to com-
pletely test a loop, we would need to test it zero times (i.e., did not loop), one
time, two times, three times, all the way up to n times where it hits the maxi-
mum it will ever loop. Bring your lunch; it might be an infinite wait!

Like other exhaustive testing techniques, full loop testing is not a reasonable
amount of coverage. Different theories have been offered that try to prescribe
how much testing we should give a loop. The basic minimum tends to be two
tests, zero times through the loop and one time through the loop. Others add a
third test, multiple times through the loop, although they do not specify how

1 #include <stdio.h>
2 main ()
3 {
4 int i, n, f;
5 printf (“n = “);
6 scanf (“%d”, &n);
7 if (n < 0) {
8 printf (“Invalid: %d\n”, n);
9 n = -1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i++) {
13 f *= i;
14 }
15 printf(“d! = %d\n”, n, f);
16 }
17 return n;
18 }

if

for

Lines 4,5,6

Lines 7,10

Lines 8,9 Line 11

Line 12

Line 15Line 17

Line 13

Test Values:
n == 0 (white arrows)

__AST V3.book Seite 191 Freitag, 1. Juli 2011 1:06 13

192 4 Test Techniques

many times. We prefer a stronger standard; we suggest that you try to test the
loop zero and one time and then test the maximum number of times it is
expected to cycle (if you know how many times that is likely to be). In a few
moments, we will discuss Boris Beizer’s standard, which is even more stringent.

We should be clear about loop testing. Some loops could execute an infinite
number of times; each time through the loop creates one or more extra paths
that could be tested. In the Foundation syllabus, a basic principle of testing was
stated: “Exhaustive testing is impossible.” Loops, and the possible infinite varia-
tions they can lead to are the main reason exhaustive testing is impossible. Since
we cannot test all of the ways loops will execute, we want to be pragmatic here,
coming up with a level of coverage that gives us the most information in the
least amount of tests. Our bug hypothesis is pretty clear; failing to test the loop
(especially when it does not loop even once) may cause bugs to be shipped to
production.

Figure 4–38 Loop coverage 0 and 1 times through

By entering a 1 (following the black arrows), we get the loop to execute just
once. Upon entering line 12, the condition evaluates to (1 is less than or equal
to 1), or TRUE. The loop executes and i is incremented. At this point, the condi-
tion is evaluated again, (2 is less than or equal to 1), or FALSE. This causes us to
drop out of the loop.

1 #include <stdio.h>
2 main ()
3 {
4 int i, n, f;
5 printf (“n = “);
6 scanf (“%d”, &n);
7 if (n < 0) {
8 printf (“Invalid: %d\n”, n);
9 n = -1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i++) {
13 f *= i;
14 }
15 printf(“d! = %d\n”, n, f);
16 }
17 return n;
18 }

if

for

Lines 4,5,6

Lines 7,10

Lines 8,9 Line 11

Line 12

Line 15Line 17

Line 13

Test Values:
n = 0 (white arrows)
n = 1 (black arrows)

__AST V3.book Seite 192 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 193

Zero and one time through the loop are relatively easy to come up with.
How about the maximum times through? Each loop is likely to have a different
way of figuring that out; for some loops, it will be impossible to determine.

In this code, we have a monotonically increasing value which makes it easy
to calculate the greatest number of loops possible. The maximum size of the
data type used in the collector variable, f, will allow us to calculate the maxi-
mum number of iterations. We need to compare the size of the calculated facto-
rial against the maximum integer size (the actual data type would have to be
confirmed in the code).

In table 4-29, we show a table with factorial values.

Table 4–29

Assuming a signed 32-bit integer being used to hold the calculation, the maxi-
mum value that can be stored is 2,147,483,647. An input of 12 should give us a
value of 479,001,600. An input value of 13 would cause an overflow
(6,227,020,800). If the programmer used an unsigned 32-bit integer with a max-
imum size of 4,294,967,295, notice that the same number of iterations would be
allowed; an input of 13 would still cause an overflow.

In figure 4-39, we would go ahead and test the input of 12 and check the
expected output of the function.

n n!

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

9 362,880

10 3,628,800

11 39,916,800

12 479,001,600

13 6,227,020,800

14 87,178,291,200

15 1,307,674,368,000

__AST V3.book Seite 193 Freitag, 1. Juli 2011 1:06 13

194 4 Test Techniques

Figure 4–39 Loop coverage max times through

It should be noted that our rule for loop coverage does not deal comprehensively
with negative testing. Remember that negative testing is checking invalid values
to make sure the failure they cause is graceful, giving us a meaningful error
message and being able to recover from the error. We probably want to test the
value 13 to make sure the overflow is handled gracefully. This is consistent with
the concept of boundary value testing discussed in the previous section.

Boris Beizer, in his book Software Testing Techniques, had suggestions for
how to test loops extensively. Note that he is essentially covering the three point
boundary values of the loop variable with a few extra tests thrown in.

1. If possible, test a value that is one less than the expected minimum value the
loop can take. For example, if we expect to loop with the control variable
going from 0 to 100, try -1 and see what happens.

2. Try the minimum number of iterations—usually zero iterations. Occasion-
ally, there will be a positive number as the minimum.

3. Try one more than the minimum number.
4. Try to loop once (this test case may be redundant and should be omitted if

it is.)
5. Try to loop twice (this might also be redundant.)

1 #include <stdio.h>
2 main ()
3 {
4 int i, n, f;
5 printf (“n = “);
6 scanf (“%d”, &n);
7 if (n < 0) {
8 printf (“Invalid: %d\n”, n);
9 n = -1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i++) {
13 f *= i;
14 }
15 printf(“d! = %d\n”, n, f);
16 }
17 return n;
18 }

if

for

Lines 4,5,6

Lines 7,10

Lines 8,9 Line 11

Line 12

Line 15Line 17

Line 13Test Values:
n = 12 (black arrows)

Loops 12 times
n = 13 (not shown)

Overflow failure

__AST V3.book Seite 194 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 195

6. Try to test a typical value. Beizer always believes in testing what he often
calls a nominal value. Note that the number of loops, from one to max is
actually an equivalence set. The nominal value is often an extra test that we
tend to leave out.

7. Try to test one less than the maximum value.
8. Try to test the maximum number of loops.
9. Try to test one more than the maximum value.

The most important differentiation between Beizer’s guidelines and our loop
coverage described earlier is that he advocates negative testing of loops. Frankly,
it is hard to argue against this thoroughness. Time and resources, of course, are
always factors that we must consider when testing. We would argue that his
guidelines are useful and should be considered when testing mission-critical or
safety-critical software.

Finally, one of the banes of testing loops is when they are nested inside each
other. We will end this topic with Beizer’s advice for reducing the number of
tests when dealing with nested loops.

1. Starting at the innermost loop, set all outer loops to minimum iteration set-
ting.

2. Test the boundary values for the innermost loop as shown previously.
3. If you have done the outermost loop already, go to step 5.
4. Continue outward, one loop at a time until you have tested all loops.
5. Test the boundaries of all loops simultaneously. That is, set all to 0 loops, 1

loop, maximum loops, 1 more than maximum loops.

Beizer points out that practicality may not allow hitting each one of these values
at the same time for step 5. As guidelines go, however, these will ensure pretty
good testing of looping structures.

4.3.1.5 Hexadecimal Converter Exercise
In figure 4-40, you’ll find a C program that accepts a string with hexadecimal
characters (among other unwanted characters). It ignores the other characters
and converts the hexadecimal characters to a numeric representation. If a Ctrl-C
is inputted, the last digit that was converted is removed from the buffer.

If you test with input strings “24ABd690BBCcc” and “ABCdef1234567890”,
what level of coverage will you achieve?

__AST V3.book Seite 195 Freitag, 1. Juli 2011 1:06 13

196 4 Test Techniques

What input strings could you add to achieve statement and branch cover-
age? Would those be sufficient for testing this program?

The answers are shown in the next section.

Figure 4–40 Hexadecimal converter code

__AST V3.book Seite 196 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 197

4.3.1.6 Hexadecimal Converter Exercise Debrief
The strings “24ABd690BBCcc” and “ABCdef1234567890” do not achieve any
specified level of coverage that we have discussed in this book.

To get statement and decision coverage, you would need to add the following:
■ At least one string containing a signal (Ctrl-C) to execute the signal() and

pophdigit() code
■ At least one string containing a non-hex digit

In order to get loop coverage, you would have to add the following:
■ At least one empty string to cause the while loop on line 17 not to loop
■ One test that inputs the maximum number of hex digits that can be stored

(based on the data type of nhex)

There are also some interesting test cases based on placement that we would
likely run. At least one of these we would expect to find a bug (hint, hint):
■ A string containing only a signal (Ctrl-C)
■ A string containing a signal at the first position
■ A string with more hex digits than can be stored
■ A string with more signals than hex digits

4.3.1.7 Condition Coverage

So far we have looked at statement coverage (have we exercised every line of
code?), decision coverage (have we exercised each decision both ways?), and
loop coverage (have we exercised the loop enough?).

As Ron Popeil, the purveyor of many a fancy gadget in all-night infomer-
cials used to say, “But wait! There’s more!”

While we have exercised the decision both ways, we have yet to discuss how
the decision is made. Earlier, when we discussed decisions, we saw that they
could be simple—such as A is greater than B—or arbitrarily complex as follows:

(a>b) || (x+y==-1) && (d) != TRUE

ISTQB Glossary

condition testing: A white-box test design technique in which test cases are
designed to execute condition outcomes.

__AST V3.book Seite 197 Freitag, 1. Juli 2011 1:06 13

198 4 Test Techniques

If we input data to force the entire condition to TRUE, then we go one way;
force it FALSE and we go the other way. At this point we have achieved decision
coverage. But is that enough testing?

Could there be bugs hiding in the condition itself? The answer, of course, is
a resounding yes! And, if we know there might be bugs there, we might want to
test more.

Our next level of coverage is called condition coverage. The basic concept is
that, when a decision is made by a complex expression that eventually evaluates
to TRUE or FALSE, we want to make sure that each atomic condition is tested
both ways, TRUE and FALSE.

An atomic condition is defined as “the simplest form of code that can result
in a TRUE or FALSE outcome.”9

Our bug hypothesis is that defects may lurk in untested atomic conditions,
even though the full decision has been tested both ways. As always, test data
must be selected to ensure that each atomic condition actually be forced TRUE
and FALSE at one time or another. Clearly, the more complex a decision expres-
sion is, the more test cases we will need to execute to achieve this level of cover-
age.

Once again, we could evaluate this coverage for values less than 100 percent
by dividing the number of Boolean operand values executed by the total num-
ber of Boolean operand values there are. But we won’t. Condition coverage, for
this book, will only be discussed as 100 percent coverage.

Note an interesting corollary to this coverage. Decision and condition cov-
erage will always be exactly the same when all decisions are made by simple
atomic expressions. For example, for the conditional if (a == 1) {}, condition
coverage will be identical to decision coverage.

Here, we’ll look at some examples of complex expressions, all of which eval-
uate to TRUE or FALSE.

x

The first, shown above, has a single Boolean variable, x, which might evaluate to
TRUE or FALSE. Note that in some languages, it does not even have to be a
Boolean variable. For example, if this were the C language, it could be an inte-

9. Definition from The Software Test Engineer's Handbook, Bath and McKay

__AST V3.book Seite 198 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 199

ger, as any non-zero value constitutes a TRUE value and zero is deemed to be
FALSE. The important thing to notice is that it is an atomic and it is also the
entire expression.

D && F

The second, shown above, has two atomic conditions, D and F, which are com-
bined together by the AND operator to determine the value of the whole
expression.

(A || B) && (C == D)

The third is a little tricky. In this case, A and B are both atomic conditions that
are combined together by the OR operator to calculate a value for the sub-
expression (A || B). Because A and B are both atomic conditions, the sub-
expression (A || B) cannot be an atomic condition. However, (C == D) is an
atomic condition as it cannot be broken down any further. That makes a total of
three atomic conditions.

(a>b)||(x+y==-1)&&((d)!=TRUE)

In the last complex expression, shown above, there are again three atomic con-
ditions. The first, (a>b), is an atomic condition that cannot be broken down fur-
ther. The second, (x+y == -1), is an atomic following the same rule. In the last
sub-expression, (d!=TRUE) is the atomic condition.

Just for the record, if we were to see the last expression in actual code dur-
ing a code review, we would jump all over it with both feet. Unfortunately, it is
an example of the way some people program.

In each of the preceding examples, we would need to come up with suffi-
cient test cases that each of these atomic conditions was tested where it evalu-
ated both TRUE and FALSE. Should we test to that extent, we would achieve
100 percent condition coverage. That means the following:

■ x, D, F, A, and B would each need a test case where it evaluated to TRUE and
one where it evaluated to FALSE.

■ (C==D) needs two test cases.
■ (a>b) needs two test cases.
■ (x+y==-1) needs two test cases.
■ ((d)!=TRUE) needs two test cases.

__AST V3.book Seite 199 Freitag, 1. Juli 2011 1:06 13

200 4 Test Techniques

Surely that must be enough testing. Maybe, maybe not. Consider the following
pseudo code:

if (A && B) then
{Do something}

else
{Do something else}

To achieve condition coverage, we need to ensure that each atomic condition go
both TRUE and FALSE in at least one test case each.

Test 1: A == FALSE, B == TRUE resolves to FALSE

Test 2: A == TRUE, B == FALSE resolves to FALSE

Assume that our first test case has the values inputted to make A equal to FALSE
and B equal to TRUE. That makes the entire expression evaluate to FALSE, so
we execute the else clause. For our second test, we reverse that so A is set to
TRUE and B is set to FALSE. That evaluates to FALSE, so we again execute the
else clause.

Do we now have condition coverage? A was set both TRUE and FALSE, as
was B. Sure, we have achieved condition coverage. But ask yourself, do we have
decision coverage? The answer is no! At no time, in either test case, did we force
the decision to resolve to TRUE. Condition coverage does not automatically
guarantee decision coverage.

We will look at two more levels of coverage that give stronger coverage than
simple condition coverage, at the cost of more testing, of course.

4.3.1.8 Decision/Condition Coverage
The first of these we will call decision/condition coverage. In the ISTQB
Advanced syllabus, this is called condition determination coverage. This level of
coverage is just a combination of decision and condition coverage (to solve the

ISTQB Glossary

condition determination testing: A white-box test design technique in
which test cases are designed to execute single condition outcomes that inde-
pendently affect a decision outcome.

__AST V3.book Seite 200 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 201

shortcoming of condition-only coverage pointed out in the last section). The
concept is that we need to achieve condition-level coverage where each atomic
condition is tested both ways, TRUE and FALSE, and we also need to make sure
that we achieve decision coverage by assuring that the overall expression be
tested both ways, TRUE and FALSE.

To test to this level of coverage, we must assure that we have condition cov-
erage, and then make sure we evaluate the full decision both ways. The bug
hypothesis should be clear from the preceding discussion; not testing for deci-
sion coverage even if we have condition coverage may allow bugs to remain in
the code.

Decision/condition coverage guarantees condition coverage, decision cov-
erage, and statement coverage.

Going back to the previous example again where we have condition cover-
age but not decision coverage, we already had two test cases as follows: one
where A is set to FALSE and B is set to TRUE and one where A is set to TRUE
and B is set to FALSE. By adding a third test case where both A and B are set to
TRUE, we now force the expression to evaluate to TRUE, so we now have deci-
sion coverage also.

Whew! Finally, with all of these techniques, we have done enough testing.
Right?

Well maybe.

4.3.1.9 Modified Condition/Decision Coverage (MC/DC)
There is yet a stronger level of coverage that we must discuss. This one is called
modified condition/decision coverage (usually abbreviated to MC/DC).

This level of coverage is considered stronger because we add another factor
to what we were already testing in decision/condition coverage. Like decision/
condition coverage, MC/DC requires that each atomic condition be tested both
ways and that decision coverage must be satisfied. It then adds one more factor:
Each condition must affect the outcome decision independently while the other
atomic conditions are held fixed.

To get to this level of coverage, we determine the test cases needed for deci-
sion/condition and then evaluate our tests to see if each atomic factor had the
possibility of affecting the outcome decision independently while not varying

__AST V3.book Seite 201 Freitag, 1. Juli 2011 1:06 13

202 4 Test Techniques

the other atomic condition values. Our bug hypothesis states that we might find
an example of a bug hiding in that last little space that we have not tested.

Many references use the term MC/DC as a synonym for exhaustive testing.
However, while achieving MC/DC will force a lot of testing, we do not feel it
rises to the level of exhaustive testing, which would include running every loop
every possible number of times, etc.

MC/DC coverage may not be useful to all testers. It was originally created at
Boeing for use when specific languages were to be used in safety-critical pro-
gramming. It is the required level of coverage under FAA DO/178B when the
software is judged to be Level A (possible catastrophic consequences in case of
failure). We discussed this standard in chapter 2.

Testing for MC/DC coverage can be complicated. There are two issues that
must be discussed: short circuiting and multiple occurrences of a condition.

First, we will look at short circuiting. What does short circuiting mean?
Some programming languages are defined in such a way that Boolean

expressions may be resolved without going through every sub-expression,
depending on the Boolean operator that is used.

Table 4–30

Consider what happens when a runtime system that has been built using a short-
circuiting compiler resolves the Boolean expression (A || B) (see table 4-30). If A
by itself evaluates to TRUE, then it does not matter what the value of B is. At exe-
cution time, when the runtime system sees that A is TRUE, it does not even
bother to evaluate B. This saves execution time.

C++ and Java are examples of languages exhibiting this behavior. Some fla-
vors of C short-circuit expressions. Pascal does not short-circuit, but Delphi has
a compiler option to allow short circuiting if the programmer wants it.

Note that both the OR and the AND short-circuit in different ways. Con-
sider the expression (A || B). When the Boolean operator is an OR, it will short-
circuit when the first term is TRUE since the second term does not matter. If the

Value of A Value of B A||B

T T T

T F T

F T T

F F F

__AST V3.book Seite 202 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 203

Boolean operator was an AND (&&), it would short-circuit when the first term
was FALSE, since no value of the second term would prevent the expression
evaluating as FALSE.

There may be a very serious bug issue with short circuiting. If an atomic
condition is supplied by a called function and it is short-circuited out of evalua-
tion, then any side effects that might have occurred through its execution are
lost. Oops! For example, assume that instead of

(A || B)

the actual expression is

(A || funcB())

Further suppose that a side effect of funcB() is to initialize a data structure that
is to be used later. In her code, the developer could easily assume that the data
structure is already initialized since she knew that the predicate had been used
in a conditional. When she tries to use the noninitialized data structure, it
causes a failure at runtime. To quote Robert Heinlein, for testers, “there ain't no
such thing as a free lunch.”

If B is never evaluated, the question then becomes, Can we still achieve MC/
DC coverage? The answer seems to be maybe. Our research shows that a num-
ber of organizations have weighed in on this subject in different ways; unfortu-
nately, it is beyond the scope of this book to cover all of the different opinions. If
your project is subject to regulatory statutes, and the development group is
using a language or compiler that short-circuits, our advice is to research
exactly how that regulatory body wants you to deal with the short circuiting.

The second issue to be discussed is when there are multiple occurrences of a
condition in an expression. Consider the following pseudo-code predicate:

A || (! A && B)

In this example, A and !A are said to be coupled. They cannot be varied inde-
pendently as MC/DC coverage says they must. As with short circuiting, there
are (at least) two approaches to this problem.

One approach is called Unique Cause MC/DC. In this approach, the term
condition in the definition of MC/DC is deemed to mean uncoupled condition
and the question becomes moot.

__AST V3.book Seite 203 Freitag, 1. Juli 2011 1:06 13

204 4 Test Techniques

The other approach is called Masking MC/DC, and it permits more than
one condition to vary at once; the tester must perform analysis, on a case-by-
case basis, the logic of the predicate to ensure that only one condition of interest
influences the decision. Once again, our suggestion is to follow whatever rules
are imposed upon you by the regulatory body that can prevent the release of
your system.

In the interest of looking at an example that does not lure us deep into the
weeds, let us assume we are using a compiler that does not short-circuit and we
will not use any coupled conditions. How do we achieve MC/DC coverage?

Consider the code snippet that follows:

if ((A OR B) AND C) then…

We have three atomic conditions, A, B and C. We can achieve decision/condi-
tion coverage by running two test cases as shown:

1. A set to TRUE, B set to TRUE, C set to TRUE where the expression evalu-
ates to TRUE

2. A set to FALSE, B set to FALSE, C set to FALSE where the expression evalu-
ates to FALSE

Note that B never independently affects the outcome of the decision since the
value of A always overrides it.

We can achieve the desired MC/DC coverage by changing the test inputs
slightly and adding a single test.

1. A set to TRUE, B set to FALSE, C set to TRUE, which evaluates to TRUE
2. A set to FALSE, B set to TRUE, C set to TRUE, which evaluates to TRUE
3. A set to TRUE, B set to TRUE, C set to FALSE, which evaluates to FALSE

As you can see, each one of the atomic conditions changes the output evaluation
at least once in the test set as long as the other conditions are held steady. If A
changed value in test 1, the result would be inverted, likewise B in test 2 and C
in test 3.

Wow! This is really down in the weeds. Should you test to MC/DC level?
Well, if your project needed to follow the standard FAA DO/178B and the par-
ticular software was of Level A criticality, the easy answer is yes, you would need
to test to this level. Remember, Level A criticality means that, if the software

__AST V3.book Seite 204 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 205

were to fail, catastrophic results would likely ensue. If you did not test to this
level, you would not be able to sell your software or incorporate it in any
module for the project.

As always, context matters. The amount of testing should be commensurate
with the amount of risk.

4.3.1.10 Multiple Condition Coverage
In this section, we come to the natural culmination of all of the previously dis-
cussed control-flow coverage schemes. Each one gave us a little more coverage,
often by adding more tests. Our final control-flow coverage level is called multi-
ple condition coverage. The concept: Test every possible combination of atomic
conditions in a decision! This one is truly exhaustive testing as far as the combi-
nations that atomic conditions can take on. Go through every possible permu-
tation—and test them all.

Creating a set of tests does not take much analysis. Simply create a truth
table with every combination of atomic conditions, TRUE and FALSE, and
come up with values that test each one. The number of tests is directly propor-
tional to the number of atomic conditions, using the formula 2n power where n
is the number of atomic conditions.

The bug hypothesis is really pretty simple also: Bugs could be anywhere!
Once again, we could conceivably measure the amount of multiple condition

coverage by calculating the theoretical possible numbers of permutations we
could have and dividing those into the number that we actually test. However,
instead we will simply discuss the hypothetical perfect: 100 percent coverage.

Using the same predicate we discussed earlier

if ((A OR B) AND (C)) then ...

we can devise the truth table shown in table 4-31. Since there are three atomic
conditions, we would expect to see 23, or 8 unique rows in the table.

multiple condition testing

ISTQB Glossary

multiple condition testing: A white-box test design technique in which test
cases are designed to execute combinations of single condition outcomes
(within one statement).

__AST V3.book Seite 205 Freitag, 1. Juli 2011 1:06 13

206 4 Test Techniques

Table 4–31

Theoretically, we would create a unique test case for every row.
Why theoretically? Well, we have the same issues that popped up earlier, the

concept of short circuiting and coupling. Depending on the order of the
Boolean operators, the number of test cases that are interesting (i.e., achievable
in a meaningful way) will differ when we have a shortcircuiting compiler.

As a further example, assume that we have five atomic conditions, A, B, C,
D, and E. Assuming that we have a compiler that does not short-circuit, we will
have 32 test cases to run, as shown by table 4-32. No matter how they are inter-
connected logically, these will be our test data.

Table 4–32

A B C (A OR B) AND C

FALSE FALSE FALSE FALSE

TRUE FALSE FALSE FALSE

FALSE TRUE FALSE FALSE

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

TRUE FALSE TRUE TRUE

FALSE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE

Test A B C D E

1 TRUE TRUE TRUE TRUE TRUE

2 TRUE TRUE TRUE TRUE FALSE

3 TRUE TRUE TRUE FALSE TRUE

4 TRUE TRUE TRUE FALSE FALSE

5 TRUE TRUE FALSE TRUE TRUE

6 TRUE TRUE FALSE TRUE FALSE

7 TRUE TRUE FALSE FALSE TRUE

8 TRUE TRUE FALSE FALSE FALSE

9 TRUE FALSE TRUE TRUE TRUE

10 TRUE FALSE TRUE TRUE FALSE

11 TRUE FALSE TRUE FALSE TRUE

12 TRUE FALSE TRUE FALSE FALSE

13 TRUE FALSE FALSE TRUE TRUE

14 TRUE FALSE FALSE TRUE FALSE

__AST V3.book Seite 206 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 207

Now, let’s assume that we are using a compiler that does short-circuit predicate
evaluation. The first example, using the same five atomic conditions, are logi-
cally connected as follows:

A && B && (C || (D && E))

Necessary test cases, taking into consideration short circuiting, are seen in table
4-33. Note we started off with 32 different rows depicting all of the possible
combinations that five atomic conditions could take, as shown in table 4-32.

Table 4–33

15 TRUE FALSE FALSE FALSE TRUE

16 TRUE FALSE FALSE FALSE FALSE

17 FALSE TRUE TRUE TRUE TRUE

18 FALSE TRUE TRUE TRUE FALSE

19 FALSE TRUE TRUE FALSE TRUE

20 FALSE TRUE TRUE FALSE FALSE

21 FALSE TRUE FALSE TRUE TRUE

22 FALSE TRUE FALSE TRUE FALSE

23 FALSE TRUE FALSE FALSE TRUE

24 FALSE TRUE FALSE FALSE FALSE

25 FALSE FALSE TRUE TRUE TRUE

26 FALSE FALSE TRUE TRUE FALSE

27 FALSE FALSE TRUE FALSE TRUE

28 FALSE FALSE TRUE FALSE FALSE

29 FALSE FALSE FALSE TRUE TRUE

30 FALSE FALSE FALSE TRUE FALSE

31 FALSE FALSE FALSE FALSE TRUE

32 FALSE FALSE FALSE FALSE FALSE

Test A B C D E Decision

1 FALSE - - - - FALSE

2 TRUE FALSE - - - FALSE

3 TRUE TRUE FALSE FALSE - FALSE

4 TRUE TRUE FALSE TRUE FALSE FALSE

5 TRUE TRUE FALSE TRUE TRUE TRUE

6 TRUE TRUE TRUE - - TRUE

__AST V3.book Seite 207 Freitag, 1. Juli 2011 1:06 13

208 4 Test Techniques

The first thing we see is that 16 of those rows start with A being set to FALSE.
Because of the AND operator, if A is FALSE, the other four terms are all short-
circuited out and never evaluated. We must test this once, in test 1, but the other
15 rows (18–32) are dropped as being redundant testing.

Likewise, if B is set to FALSE, even with A TRUE, the other terms are short-
circuited and dropped. Since there are eight rows where this occurs (9–16),
seven of those are dropped and we are left with test 2.

In test 3, if D is set to FALSE, the E is never evaluated.
In tests 4 and 5, each term matters and hence is included.
In test 6, once C evaluates to TRUE, D and E no longer matter and are

short-circuited.
Out of the original possible 32 tests, only 6 of them are interesting.
For our second example, we have the same five atomic conditions arranged

in a different logical configuration as follows:

((A || B) && (C || D)) && E

In this case, we again have five different atomic conditions and so we start with
the same 32 rows possible, as shown in table 4-32. Notice that anytime E is
FALSE, the expression is going to evaluate to false. Since there are 16 different
rows where E is FALSE, you might think that we would immediately get rid of
15 of them. While a smart compiler may be able to figure that out, most won’t
since the short circuiting normally goes from left to right.

This predicate results in a different number of tests, as seen in table 4-34.

Table 4–34

Test A B C D E Decision

1 FALSE FALSE - - - FALSE

2 FALSE TRUE FALSE FALSE - FALSE

3 FALSE TRUE FALSE TRUE FALSE FALSE

4 FALSE TRUE FALSE TRUE TRUE TRUE

5 FALSE TRUE TRUE - FALSE FALSE

6 FALSE TRUE TRUE - TRUE TRUE

7 TRUE - FALSE FALSE - FALSE

8 TRUE - FALSE TRUE FALSE FALSE

9 TRUE - FALSE TRUE TRUE TRUE

10 TRUE - TRUE - FALSE FALSE

11 TRUE - TRUE - TRUE TRUE

__AST V3.book Seite 208 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 209

For test 1, we have both A and B being set to FALSE. That makes the C and D
and E short-circuit because the AND signs will ensure that they do not matter.
We lose seven redundant cases right there.

For test 2, we lose a single test case because with C and D both evaluating to
FALSE, the entire first four terms evaluate to FALSE, making E short-circuit.

With tests 3 and 4, we must evaluate both expressions completely because
the expression in the parentheses evaluates to TRUE, making E the proximate
cause of the output expression.

For both tests 5 and 6, the D atomic condition is short-circuited because C
is TRUE; however, we still need to evaluate E because the entire calculation in
the parentheses evaluates to TRUE. You might ask how can we short-circuit D
but not E? Remember that the compiler will output code to compute values in
parentheses first; therefore, the calculation inside the parentheses can be short-
circuited, but the expression outside the parentheses is not affected.

Likewise, for tests 7, 8, 9 10, and 11, we short-circuit B since A is TRUE. For
test 7, we can ignore E since the sub-expression inside the parentheses evaluates
to FALSE. Tests 8 and 9 must evaluate to the end since the calculation in the
parentheses evaluates to TRUE. And finally, 10 and 11 also short-circuit D.

Essentially, when we’re testing to multiple condition coverage with a short-
circuiting language, each sub-expression must be considered to determine
whether short circuiting can be applied or not. Of course, this is an exercise that
can be done during the analysis and design phase of the project when we are not
on the critical path (before the code is delivered into test). Every test case that
can be thrown out because of this analysis of short circuiting will save us time
when we are on the critical path (i.e., actually executing test cases).

4.3.1.11 Control-Flow Exercise
Following is a snippet of Delphi code that Jamie wrote for a test management
tool. This code controls whether to allow a drag-and-drop action of a test case
artifact to continue or whether to return an error and disallow it.

■ Tests are leaf nodes in a hierarchical feature/requirement/use-case tree.
■ Each test is owned by a feature, a requirement, or a use case. Tests cannot

own other tests.
■ Tests can be copied, moved, or cloned from owner to owner.

__AST V3.book Seite 209 Freitag, 1. Juli 2011 1:06 13

210 4 Test Techniques

■ If a test is dropped on another test, it will be copied to the parent of the
target test.

■ This code was designed to prevent a test from being copied to its own
parent, unless the intent was to clone it.

■ This code was critical … and buggy.

Using the code snippet in figure 4-41:

1. Determine the total number of tests needed for multiple condition cover-
age.

2. If the compiler is set to short-circuit, which of those tests are actually
needed?

3. Determine the tests required for decision/condition (condition determina-
tion) coverage.

Figure 4–41

The answer is shown in the following section.

4.3.1.12 Control-Flow Exercise Debrief

1. Determine the total number of tests needed for multiple condition coverage.

We find it is almost always easier to rewrite this kind of predicate using simple
letters as variable names than to do the analysis using the long names. The long
names are great for documenting the code, just hard to use in an analysis.

If ((DDSourceNode.StringData2 = 'Test')

AND (DDTgtNode.StringData2 = 'Test')

AND (DDCtrlPressed OR DDShiftPressed)

AND (DDSourceNode.Parent = DDTgtNode.Parent)

AND (NOT DoingDuplicate)) Then Begin

// Don't allow test to be copied to its own parent when dropped on test
If ((DDSourceNode.StringData2 = 'Test')
 AND (DDTgtNode.StringData2 = 'Test')
 AND (DDCtrlPressed OR DDShiftPressed)
 AND (DDSourceNode.Parent = DDTgtNodeParent)
 AND (NOT DoingDuplicate)) Then Begin
 Raise TstBudExcept.Create("You may not copy test to its own parent.')
End;

__AST V3.book Seite 210 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 211

This code translates to

if ((A) AND (B) AND (C OR D) AND (E) AND (NOT F)) then

where

A = DDSourceNode.StringData2 = 'Test'

B = DDTgtNode.StringData2 = 'Test'

C = DDCtrlPressed

D = DDShiftPressed

E = DDSourceNode.Parent = DDTgtNode.Parent

F = DoingDuplicate

With six different atomic conditions, we can build a truth table to determine the
number of multiple condition tests that we would need to test without short-
circuiting. table 4-35 contains the truth tables to cover the six variables; hence
64 tests would be needed for multiple condition coverage.

Table 4–35

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

A T

B T T T T T T T T T T T T T T T T F F F F F F F F F F F F F F F F

C T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F

D T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F

E T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F

F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

A F

B T T T T T T T T T T T T T T T T F F F F F F F F F F F F F F F F

C T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F

D T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F

E T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F

F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F

__AST V3.book Seite 211 Freitag, 1. Juli 2011 1:06 13

212 4 Test Techniques

2. If the compiler is set to short-circuit, which of those tests are actually needed?

If the compiler generated short-circuiting code, the actual number of test cases
would be fewer. We try to do this in a pattern based on the rules of short circuit-
ing (i.e., the compiler generates code to evaluate from left to right subject to the
general rules of scoping and parentheses, and as soon as the outcome is deter-
mined, it stops evaluating).

Test cases:

1. A = FALSE, all others don’t matter, resolves to FALSE. With A FALSE, it
does not matter what any of the other atomic conditions are; the whole con-
dition evaluates to FALSE. Tests 33–64 are all covered by this one test.

2. A = TRUE, B FALSE, others don’t matter, resolves to FALSE. With A TRUE
and B FALSE, it does not matter what the other atomic conditions are; the
whole condition evaluates to FALSE. Tests 17–32 are covered by this one
test.

3. A,B = TRUE, C,D = FALSE, all others don’t matter, resolves to FALSE. With
A and B TRUE and both C and D FALSE, the remaining atomic conditions
will not be evaluated; the entire condition evaluates to FALSE. This test cov-
ers tests 13–16.

4. A,B = TRUE, one or both C,D = TRUE, E = FALSE, F does not matter,
resolves to FALSE. With A, B = TRUE and either one or both of C,D held
TRUE, if E is FALSE, it does not matter what value F takes; the entire condi-
tion evaluates to FALSE. This test covers tests 3, 4, 7, 8, 11, and 12.

All the rest of the tests (1, 2, 5, 6, 9, and 10) are singletons that must be tested
because the deciding factor in each is the value of F, the last atomic condition.
That is, A, B, C, D, and E together all evaluate to TRUE. They are ANDed to (NOT
F) to resolve the full expression, meaning the value of F determines the final
result. In these cases, when F is TRUE, the expression is FALSE and vice versa.

5. A,B,C,D,E,F = TRUE resolves to FALSE (1)
6. A,B,C,D,E = TRUE, F = FALSE resolves to TRUE (2)
7. A,B,C,E,F = TRUE, D = FALSE resolves to FALSE (5)
8. A,B,C,E = TRUE, D,F = FALSE resolves to TRUE (6)
9. A,B,D,E,F = TRUE, C = FALSE resolves to FALSE (9)
10. A,B,D,E = TRUE, C,F = FALSE resolves to TRUE (10)

__AST V3.book Seite 212 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 213

Therefore, we would actually need to run 10 test cases to achieve multiple con-
dition coverage when the compiler short circuits.

3. Determine the tests required for decision/condition (condition determination)
coverage.

The final portion of this exercise is to determine test cases needed for decision/
condition (condition determination) testing.

Remember from the earlier section that we need two separate rules to be
satisfied:

1. Each atomic condition must be tested both ways.
2. Decision coverage must be tested.

It is a matter then of making sure we have both of those covered.

Table 4–36

Tests 1 and 2 in table 4-36 evaluate each of the atomics both ways, and test 3
gives us decision coverage. Note that this does not seem like much testing. We
might want to go from here to MC/DC coverage. While this was not required in
the exercise, it is good practice.

There are three rules to modified condition/decision coverage:

1. Each atomic condition must be evaluated both ways.
2. Decision coverage must be satisfied.
3. Each condition must affect the outcome independently when the other con-

ditions are held steady.

Test # A B C D E F Result

1 T T T T T T F

2 F F F F F F F

3 T T T T T F T

__AST V3.book Seite 213 Freitag, 1. Juli 2011 1:06 13

214 4 Test Techniques

Table 4–37

Test 1: All values are set to TRUE with an output of FALSE.

Test 2: F affects output (if it moved to TRUE, it would change output).

Test 3: A affects output (if it moved to TRUE, it would change output).

Test 4: B affects output (if it moved to TRUE, it would change output).

Tests 5 and 6:
C and D affect output (if either one moved to TRUE while the other
held, it would change output).

Test 7: E affects output (if it moved TRUE, it would change output).

4.3.2 Path Testing

We have looked at many different control-flow coverage schemes. But there are
other ways to design test cases using the structure as a test basis. In this section,
we will look at path testing. Remember that we have covered three main differ-
ent ways of approaching test design so far:

1. Statement testing, where the statements themselves drove the coverage.
2. Decision testing, where the branches drove the coverage.
3. Condition, decision/condition, modified condition/decision coverage, and

multiple condition coverage, all of which looked at sub-expressions and
atomic conditions of a particular decision.

ISTQB Glossary

path testing: A white-box test design technique in which test cases are
designed to execute paths.

Test # A B C D E F Result

1 T T T T T T F

2 T T T T T F T

3 F T T T T F F

4 T F T T T F F

5 T T T F T F F

6 T T F T T F F

7 T T T T F F F

__AST V3.book Seite 214 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 215

Now we are going to look at path testing. Rather than concentrating on control-
flows, path testing is going to try to identify interesting paths through the code
that we may want to test. Frankly, in some cases we will get some of the same
tests we got through control-flow testing. On the other hand, we might come up
with some other interesting tests.

When we discuss path testing, we can start out with a bad idea. Brute force
testing: Test every independent path through the system. Got infinity? That’s
how long it would take for any non-trivial system. Loops are the killers here.
Every loop is a potential black hole where each different iteration through the
loop creates more paths. We would need infinite time and infinite resources.
Well, it was an idea...

Perhaps we can subset the infinite loops to come up with a smaller number
of possible test cases that are interesting. There are a couple ways of doing this.

4.3.2.1 LCSAJ

First, let’s start with Linear Code Sequence and Jump testing. Since that is such a
mouthful, we will simply call it LCSAJ testing. LCSAJs are small blocks of code
that fit a particular profile. There are three artifacts that constitute an LCSAJ,
each one a number that represents a line of code.

First, there is the starting line. There are two ways an LCSAJ can start: either
at the beginning of a module or at a line that was jumped to by another LCSAJ.

Second, there is the end of the LCSAJ. There are two ways one can end:
either at the end of a module or at a line of code where a jump occurs. A jump
means that we do not move to the next sequential line of code but rather load a
different address and jump to it, beginning execution there.

ISTQB Glossary

dd-path: A path of execution (usually through a graph representing a pro-
gram, such as a flow chart) that does not include any conditional nodes such
as the path of execution between two decisions.

LCSAJ: Linear Code Sequence and Jump, consists of the following three items
(conventionally identified by line numbers in a source code listing): the start of
the linear sequence of executable statements, the end of the linear sequence,
and the target line to which control-flow is transferred at the end of the linear
sequence.

__AST V3.book Seite 215 Freitag, 1. Juli 2011 1:06 13

216 4 Test Techniques

Third, there is the target of the jump. This is also a line number.
ISTQB, in the Advanced syllabus, has deemed that LCSAJ is synonymous to

DD-Path testing (where DD stands for decision to decision).10
The LCSAJ analysis method was devised by Professor Michael Hennell of

the University of Liverpool so he could perform quality assessments on mathe-
matical libraries for nuclear physics in 1976. The value of using LCSAJ will be
discussed in the upcoming section; for now, we can consider it a relatively high
overhead methodology for testing.

Formally, we say that software modules are made up of linear sequences of
code which are jumped to, executed, and then jumped from. Our earlier defini-
tion, small blocks of code, matches this formal definition well. Building tests
from LCSAJs starts with first identifying them and then creating data to force
their traversal.

Our coverage measurement should look familiar; it is the number of
LCSAJs that are executed divided by the total number that exist. This metric is
indeed interesting and we will discuss it later.

Finally, the bug hypothesis is pretty much what you might think: Bugs
might hide in blocks of code that escape execution.

We are going to show an example that is small enough to be clear and large
enough to be non-trivial. This example was taken from Wikipedia. Figure 4-42
contains the code and an LCSAJ table.

The algorithm for designing a test is straightforward:

1. A path starts at either the start of the module or a line that was jumped to
from somewhere.

2. Execution follows a linear, sequential path until it gets to a place where it
must jump.

3. Find data that force execution through that path and use it in a test case.

10. Not every source agrees with this analysis. Edward F. Miller was credited with devising deci-
sion-to-decision path testing as a structural testing technique in the tutorial Program Testing
Techniques, held during the first Computer Software and Applications Conference (COMPSAC),
1977. Since LCSAJ coverage is a relatively minor and seldom-used code coverage metric that does
not have the practical, real-world applicability of statement, branch/decision, condition decision,
modified condition decision, and multiple condition coverage, it’s of limited value to try to get to
the root of the disagreement.

__AST V3.book Seite 216 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 217

One hundred percent coverage depends on identifying all paths and then test-
ing them. Again, we will discuss this after the example.

We have identified eight separate LCSAJs in the code in figure 4-42.

Figure 4–42 LCSAJ example code and table

The first starts at the beginning of the module (line 10), executes to the while
loop (line 17), and then jumps to the end of the while loop (meaning it never
executed the loop). This block is a perfect example of why LCSAJs are so prob-
lematic for testing. In order for this block of code to execute this way, we would
need to find a time that the while loop does not loop. The Boolean expression
for the while loop (count < ITERATIONS) will always evaluate to TRUE and
thence always loop given the values that they are initialized to. The variable
count is initialized to 0 in line 16. That is always going to happen when this
function is started. Likewise, ITERATIONS is a named constant initialized to
750, a magic number that is also invariant. Since 0 is always going to be less than
750 upon first execution, this LCSAJ can never be executed unless we force it to

__AST V3.book Seite 217 Freitag, 1. Juli 2011 1:06 13

218 4 Test Techniques

through the use of a debugger. The question to be asked is, Is it worthwhile forc-
ing a test for a condition that can literally never happen?

LCSAJ 2 is going to execute. It also starts at the beginning of the module
and continues executing until it reaches line 21. That means the while loop fires.
Val is set with a random number between 0 and MAXCOLUMNS (26), the array
totals at index [val] is set to 1 (0 + 1 actually), and the if condition is evaluated.
Since the array at the index was just set to 1, the if statement on this first itera-
tion will always evaluate to FALSE, causing the jump to line 25.

LCSAJ 3 is never going to execute for the reason just given in LCSAJ 2. This
block would require the system to start, go to the while and loop, go to the if
statement in line 21, and evaluate TRUE. Since this is impossible given the val-
ues involved, it cannot be executed without forcing values through a debugger.

LCSAJ 4 will execute once each time through the function. It starts at line
17 and jumps from 17 to the end of the while loop at line 28. When does this
happen? The last time we evaluate the condition (count < ITERATIONS)—that
is, after the 750th time the while loops. At that point, count will have been incre-
mented 750 times and the condition will determine that (750 < 750), which is
FALSE. At this point the jump occurs.

LCSAJ 5 will occur a great number of times, every time the if condition
evaluates to FALSE. We start at the while loop (line 17), go to the if statement
(line 21), evaluate FALSE, and jump to the end of the if, line 25.

LCSAJ 6 may or may not execute, depending on the random numbers that
are generated. We start at the while loop, go into the loop, and continue to the if
statement. If the particular array cell pointed to by val has been incremented
enough times, then the condition comparing that cell’s value with MAXCOUNT
may actually be TRUE. At this point, with the condition evaluating TRUE, we
would continue into the then part of the if, executing line 23, continuing on to
line 25, and finally looping back to 17 from line 26.

LCSAJ 7 will occur every time we are in the loop and the if statement at line
21 evaluates to FALSE. The jump lands us at line 25, we increment count and
then loop back to 17, the while evaluation.

And finally, the last LCSAJ, 8, will occur after the while loop finally ends.
We jump to 28 to start the block, execute line 28 (the body of the block) and
then end the function.

Make sure you understand each of these blocks before continuing on.

__AST V3.book Seite 218 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 219

There are a number of issues that we must discuss when trying to use
LCSAJs. As shown, a number of LCSAJs are really not possible to execute—
there is no known way of testing them without radically changing initializations
or forcing the code by setting values with a debugger. That means we can almost
never get to 100 percent coverage. There are those who insist that forcing the
code to execute is essential for good testing, even when it would appear to be
nonsensical. We wonder whether the time needed to execute the “impossible”
might not be better spent executing other test cases.

A paper detailing LCSAJ testing states it this way:

“The large amount of analysis required for infeasible LCSAJs is the main
reason LCSAJ coverage is not a realistically achievable test metric”

11

All things are relative of course. If our lives depended on this code never failing
and we had unlimited resources, we might try to achieve LCSAJ coverage. We
certainly don’t believe that this is a reasonable technique to use on every project
we work on.

There are also some pragmatic reasons to think long and hard before invest-
ing time using this particular path design methodology. Since identifying
LCSAJs can only be done after the code has been delivered, we get no early test-
ing when performing this technique. And, since small changes to the code can
cause radical changes to the LCSAJs, it is a particularly brittle technique to use,
which is likely to lead to very expensive maintenance issues.

The holy grail of testing would be to achieve 100 percent path coverage.
Testing every single unique path would allow us to find all bugs, right? Well,
maybe not. We would still have failures due to different configurations, timing
and race conditions, etc. LCSAJs might lead to a partial solution by finding
some defects we might otherwise have missed, but the additional cost for mar-
ginal results might be problematic.

Path coverage is likely to remain low, frustratingly so if you do the math.
The standard way for determining coverage is to divide the entities tested by the
full number of entities there are, in this case the number of paths tested divided
by the full number of paths. Suppose we did a huge amount of testing resulting

11. IPL Structure Testing.pdf, Information Processing Ltd. (IPL.com); it is available on IPL’s
website.

__AST V3.book Seite 219 Freitag, 1. Juli 2011 1:06 13

220 4 Test Techniques

in testing 1 million paths. Since there are likely to be an infinite number of
paths, our percentage of paths tested approaches zero. Not too encouraging...

So, if full path coverage is not happening, and LCSAJ is too—shall we say—
iffy, how can we get some practical usage out of path theory? Perhaps we could
try to identify a practical subset of paths that would be interesting to test and
give us some information we might not otherwise find.

4.3.2.2 Basis Path/Cyclomatic Complexity Testing
One suggestion is to test the structure of the code to a reasonable amount.

Thomas McCabe was instrumental is coming up with the idea of basis path
testing. In December 1976, he published his paper “A Complexity Measure”12 in
the IEEE Transactions on Software Engineering. He theorized that any software
module has a small number of unique, independent paths (excluding iterations)
through it. He called these basis paths. The theory states that the structure of the
code can be tested by executing through this small number of paths and that all
of the infinity of different paths are actually just using and reusing the basis
paths.

To try to get the terminology right, consider the following definition from
Boris Beizer’s book, Software Testing Techniques:

A path through the software is a sequence of instructions or statements
that starts at an entry, junction, or decision and ends at another, or possi-
bly the same, junction, decision or exit. A path may go through several
junctions, processes or decisions one or more times.

12.http://portal.acm.org/citation.cfm?id=800253.807712 or
http://en.wikipedia.org/wiki/Cyclomatic_complexity and click the second reference at the bot-
tom.

ISTQB Glossary

basis test set: A set of test cases derived from the internal structure of a com-
ponent or specification to ensure that 100% of a specified coverage criterion
will be achieved.

basis test set

__AST V3.book Seite 220 Freitag, 1. Juli 2011 1:06 13

http://portal.acm.org/citation.cfm?id=800253.807712
http://en.wikipedia.org/wiki/Cyclomatic_complexity

 4.3 Structure-Based 221

A basis path is defined as a unique independent path through the module—
with no iterations or loops allowed. The basis path set is the smallest number of
basis paths that cover the structure of the code.

Creating a set of tests that cover these basis paths, the basis set, will guaran-
tee us both statement and decision coverage of testing. The basis path has also
been called the minimal path for coverage.

Cyclomatic complexity is what Thomas McCabe called this theory of basis
paths. The term cyclomatic refers to an imaginary loop from the end of a mod-
ule of code back to the beginning of it. How many times would you need to
cycle through the loop until the structure of the code has been completely cov-
ered? This cyclomatic complexity number is the number of loops needed, and—
not coincidentally—the number of test cases we need to test the set of basis
paths. The complexity depends not on the size of the module, but in the number
of decisions that are in it.

McCabe, in his paper, pointed out that the higher the complexity, the more
likely there will be a higher bug count. Subsequent studies predominately have
shown such a correlation; modules with the highest complexity tend to also
contain the highest number of defects. Since the more complex the code, the
harder it is to understand and maintain, a reasonable argument can be made to
keep the level of complexity down. McCabe’s suggestion was to split larger,
more-complex modules into smaller, less-complex modules.

We can measure cyclomatic complexity by creating a directed control-flow
graph. This works well for small modules, and we will do that next. However, in
real life, tools are generally used to measure module complexity.

In our control graph, we have nodes to represent entries, exits, and deci-
sions. Edges represent non-branching code statements that do not add to the
complexity.

In general, the higher the complexity, the more test cases we need to cover
the structure of the code. Remember, if we cover the basis path set, we are guar-
anteed both statement and decision coverage.

__AST V3.book Seite 221 Freitag, 1. Juli 2011 1:06 13

222 4 Test Techniques

Figure 4–43 Cyclomatic complexity example

On the left side of figure 4-43 we have a function to calculate the greatest com-
mon divisor of two numbers using Euclid’s algorithm. The dotted lines from the
code to the McCabe flow diagram in the center of the figure show how non-
branching sequences of zero or more statements become edges (arrows) and
how branching and looping constructs become nodes (bubbles).

On the right side of the figure, you see the two methods of calculating
McCabe’s Cyclomatic complexity metric. Seemingly the simplest is perhaps the
“enclosed region” calculation. The four enclosed regions (R1, R2, R3, R4), repre-
sented by R in the upper equation, are found in the diagram by noting that each
decision (bubble) has two branches that, in effect, enclose a region of the graph.

The other method of calculation involves counting the edges (arrows) and
the nodes (bubbles) and applying those values to the calculation, E - N + 2,
where E is the number of edges and N is the number of nodes.

Now, this is all simple enough for a small, simple method like this. For
larger functions, drawing the graph and doing the calculation from it can be
really painful. So, a simple rule of thumb is this: Count the branching and loop-
ing constructs and add 1. The if statements and the for, while, and do/while con-
structs, each count as one. For the switch/case constructs, each case block counts
as one. In if and ladder if constructs, the else does not count. For switch/case

EuclidGCD (int a, int b)
{

if (a <= 0)
return -1;

if (b <= 0)
return -1;

int t;
if (b > a) {

t = a;
a = b;
b = t;

}
t = a % b;
while (t != 0) {

a = b;
b = t;
t = a % b;

}
return b;

}

Cyclomatic Complexity

C = #R + 1
C = 4 + 1
C = 5

or

C = #E = #N + 2
C = 9 – 6 + 2
C = 5

__AST V3.book Seite 222 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 223

constructs, the default block does not count. This is a rule of thumb, but it usu-
ally seems to work. In the sample code, there are three if statements and one
while statement. 3 + 1 + 1 = 5.

When we introduced McCabe’s theory of cyclomatic complexity a bit ago,
we mentioned basis paths and basis tests. Figure 4-44 shows the basis paths and
basis tests on the right side.

Figure 4–44 Basis tests from directed flow graph

The number of basis paths is equal to the Cyclomatic complexity. You construct
the basis paths by starting with an arbitrary path through the diagram, from
entry to exit. Then add another path that covers a minimum number of previ-
ously uncovered edges, repeating this process until all edges have been covered
at least once.

Following the IEEE and ISTQB definition that a test case substantially con-
sists of input data and expected output data, the basis tests are the inputs and
expected results associated with each basis path. Usually, the basis tests will cor-
respond with the tests required to achieve branch coverage. This makes sense
because complexity increases anytime more than one edge leaves from a node in
a directed control-flow diagram. In this kind of a control-flow diagram, a situa-

EuclidGCD (int a, int b)
{

if (a <= 0)
return -1;

if (b <= 0)
return -1;

int t;
if (b > a) {

t = a;
a = b;
b = t;

}
t = a % b;
while (t != 0) {

a = b;
b = t;
t = a % b;

}
return b;

}

Basis Paths

1. ABF
2. ABCF
3. ABCDEF (1)
4. ABCDEF (2)
5. ABCDEEF

Basis Tests
1. -5, 2 -1
2. 2, -5 -1
3. 16, 8 8
4. 4, 8 4
5. 20, 8 4

__AST V3.book Seite 223 Freitag, 1. Juli 2011 1:06 13

224 4 Test Techniques

tion where “more than one edge from a node” represents a branching or looping
construct where a decision is made.

What use is this tidbit of information? Well, suppose you were talking to a
programmer about their unit testing. You ask how many different sets of inputs
they used. If they tell you a number that is less than the McCabe cyclomatic
complexity metric for the code they are testing, it’s a safe bet they did not
achieve branch coverage. That implies, as was mentioned earlier, that they did
not cover the equivalence partitions.

One more thing on cyclomatic complexity. Occasionally, you might hear
someone argue that the actual formula for McCabe’s cyclomatic complexity is

C = E - N + P

whereas we list it as

C = E - N + 2P

A careful reading of the original paper does show both formulae. However, the
directed graph that accompanies the former version of the formula (E - N + P)
also shows that there is an edge drawn from the exit node to the entrance node
that is not there when he uses the latter equation (E - N + 2P). This edge is
drawn differently than the other edges—as a dashed line rather than a solid line,
showing that while he is using it theoretically in the math proof, it is not actually
there in the code. This extra edge is counted when it is shown and must be
added when not shown (as in our example). The P value stands for the number
of connected components.13 In our examples, we do not have any connected
components, so by definition, P = 1. To avoid confusion, we abstract out the P
and simply use 2 (P equal to 1 plus the missing theoretical line, connecting exit
to the entrance node). The mathematics of this is beyond the scope of this book;
suffice it to say, unless an example directed graph contains an edge from the exit
node to the enter node, the formula that we used is correct.

We’ll revisit cyclomatic complexity later when we talk about static analysis.

13. A connected component, in this context, would be a called sub-routine.

__AST V3.book Seite 224 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 225

4.3.2.3 Cyclomatic Complexity Exercise
The following C code function loads an array with random values.

1. Create a directed control-flow graph for this code.
2. Using any of the methods given in the preceding section, calculate the

cyclomatic complexity.
3. List the basis tests that could be run.

The answers are in the following section.

4.3.2.4 Cyclomatic Complexity Exercise Debrief
The directed control-flow graph should look like figure 4-45. Note that the
edges D1 and D2 are labeled; D1 is where the if conditional in line 14 evaluates
to TRUE, D2 is where it evaluates to FALSE.

We could use three different ways to calculate the cyclomatic complexity of
the code as shown in the box on the right in figure 4-45.

1. int main (int MaxCols, int Iterations, int MaxCount)
2. {
3. int count = 0, totals[MaxCols], val = 0;
4.
5. memset (totals, 0, MaxCols * sizeof(int));
6.
7. count = 0;
8. if (MaxCount > Iterations)
9. {
10. while (count < Iterations)
11. {
12. val = abs(rand()) % MaxCols;
13. totals[val] += 1;
14. if (totals[val] > MaxCount)
15. {
16. totals[val] = MaxCount;
17. }
18. count++;
19. }
20. }
21. return (0);
22. }

__AST V3.book Seite 225 Freitag, 1. Juli 2011 1:06 13

226 4 Test Techniques

Figure 4–45 Cyclomatic complexity exercise

First, we could calculate the number of test cases by the region methods.
Remember, a region is an enclosed space. The first region can be seen on the left
side of the image. The curved line goes from B to E; it is enclosed by the nodes
(and edges between them) B-C-E. The second region is the top edge that goes
from C-D and is enclosed by line D1. The third is the region with the same top
edge, C-D, and is enclosed by D2. Here is the formula:

C = # Regions + 1
C = 3 + 1
C = 4

The second way to calculate cyclomatic complexity uses McCabe’s cyclomatic
complexity formula. Remember, we count up the edges (lines between bubbles)
and the nodes (the bubbles themselves) as follows:

C = E - N + 2
C = 7 - 5 + 2
C = 4

Entry
Line 1

if ()
Line 8

while ()
Line 10

Exit
Line 22

if ()
Line 14

A

B

C D

E

D1

D2

C = #R + 1
C = 3 + 1
C = 4

or

C = #E + #N + 2
C = 7 – 5 + 2
C = 4

or

C = # Conditionals + 1
C = 3 + 1
C = 4

__AST V3.book Seite 226 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 227

Finally, we could use our rule of thumb measure, which usually seems to work.
Count the number of places where decisions are made and add 1. So, in the
code itself, we have line 8 (an if() statement), line 10 (a while() loop), and line 14
(an if() statement):

C = # decisions + 1
C = 3 + 1
C = 4

In each case, our basis path is equal to 4. That means our basis set of tests would
also number 4. The following test cases would cover the basis paths:

1. ABE
2. ABCE
3. ABCD(D1)CE
4. ABCD(D2)CE

4.3.3 A Final Word on Structural Testing

Before we leave structural testing, a final word: Boris Beizer wrote a pithy argu-
ment seemingly against doing white-box structure-based testing in his book
Software Testing Techniques, first published in 1990. We think that he can
express it better than we can, so it is included here:

Path testing is more effective for unstructured rather than structured code.

Statistics indicate that path testing by itself has limited effectiveness for the
following reasons:

■ Planning to cover does not mean you will cover – especially when there
are bugs contained.

■ It does not show totally wrong or missing functionality.
■ Interface errors between modules will not show up in unit testing.
■ Database and data-flow errors may not be caught.
■ Incorrect interaction with other modules will not be caught in unit

testing.
■ Not all initialization errors can be caught by control-flow testing.
■ Requirements and specification errors will not be caught in unit testing.

__AST V3.book Seite 227 Freitag, 1. Juli 2011 1:06 13

228 4 Test Techniques

After going through all of those problems with structural testing, Beizer goes on
to say:

Creating the flowgraph, selecting a set of covering paths, finding input
data values to force those paths, setting up the loop cases and combina-
tions – it’s a lot of work. Perhaps as much work as it took to design the
routine and certainly more work than it took to code it. The statistics
indicate that you will spend half your time testing it and debugging –
presumably that time includes the time required to design and docu-
ment test cases. I would rather spend a few quiet hours in my office
doing test design than twice those hours on the test floor debugging,
going half deaf from the clatter of a high-speed printer that’s producing
massive dumps, the reading of which will make me half blind. Further-
more, the act of careful, complete, systematic, test design will catch as
many bugs as the act of testing.…The test design process, at all levels, is
at least as effective at catching bugs as is running the test designed by
that process.

4.3.4 Structure-Based Testing Exercise

Using the code in figure 4-46, answer the following questions:

1. How many test cases are needed for basis path coverage?
2. If we wanted to test this module to the level of multiple condition coverage

(ignoring the possibility of short circuiting), how many test cases would we
need?

3. If this code were in a system that was subject to FAA DO/178B and was
rated at Level A criticality, how many test cases would be needed for the
first if() statement alone?

4. To achieve only statement coverage, how many test cases would be
needed?

__AST V3.book Seite 228 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 229

Figure 4–46 Code for structure-based exercise

4.3.5 Structure-Based Testing Exercise Debrief

1. How many test cases are needed for basis path coverage?

The directed control-flow graph would look something like figure 4-47. It looks
a bit messy, but if you look closely at it, it does cover the code.

The number of test cases we need for cyclomatic complexity can be calcu-
lated in three different ways. Well maybe. The region method clearly is prob-
lematic because of the way the graph is drawn. This is a common problem when

1. void ObjTree::AddObj(const Obj& w) {

2. // Make sure we want to store it

3. if (!(isReq() && isBeq() && (isNort()||(isFlat() && isFreq())))){

4. return;

5. }

6. // If the tree is currently empty, create a new one

7. if (root == 0) {

8. // Add the first obj.

9. root = new TObjNode(w);

10. } else {

11. TObjNode* branch = root;

12. while (branch != 0) {

13. Obj CurrentObj = branch->TObjNodeDesig();

14. if (w < CurrentObj) {

15. // Obj is new or lies to 1eft of the current node.

16. if (branch->TObjNodeSubtree(LEFT) == 0) {

17. TObjNode* NewObjNode = new TObjNode(w);

18. branch->TObjNodeAddSubtree(LEFT, NewObjNode);

19. break;

20. } else {

21. branch = branch->TObjNodeSubtree(LEFT);

22. }

23. } else if (CurrentObj < w) {

24. // Obj is new or lies to right of the current node.

25. if (branch->TObjNodeSubtree(RIGHT) == 0) {

26. TObjNode* NewObjNode = new TObjNode(w);

27. branch->TObjNodeAddSubtree(RIGHT, NewObjNode);

28. break;

29. } else {

30. branch = branch->TObjNodeSubtree(RIGHT);

31. }

32. } else {

33. // Found match, so bump the counter and end the loop.

34. branch->TObjNodeCountIncr();

35. break;

36. }

37. } // whi1e

38. } // if

39. return;

40. }�

__AST V3.book Seite 229 Freitag, 1. Juli 2011 1:06 13

230 4 Test Techniques

drawing directed control-flow graphs; there is a real art to it, especially when
working in a timed atmosphere.

Figure 4–47 Structure-based testing exercise directed control-flow graph

Let’s try McCabe’s cyclomatic complexity formula:

C = E - N + 2
C = 15 - 9 + 2
C = 8

Alternately, we could try the rule of thumb method for finding cyclomatic com-
plexity: count the decisions and add one. There are decisions made in the fol-
lowing lines:

Line 3 : if
Line 7: if (Remember, the else in line 10 is not a decision.)
Line 12: while

Entry
Line 1

if()
Line 14

else if()
Line 23

if()
Line 16

if()
Line 25

Exit
Line 40

while()
Line 12

if ()
Line 7

if()
Line 3

T

F

T

F

F

F

T

F

F

A

B

T

C

D

E
G

F H

J

T T

TF

__AST V3.book Seite 230 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 231

Line 14: if
Line 16: if
Line 23: else if (This is really just an if, often called a ladder if con-
struct.)
Line 25: if

Therefore, the calculation is as follows:

C = 7 + 1
C = 8

All this means we have eight different test cases as follows:

1. ABJ
2. ABCJ
3. ABCDEFJ
4. ABCDEFDEFJ
5. ABCDEGHJ
6. ABCDEGHDEGHJ
7. ABCDEGJ
8. ABCDJ

Notice that test 8 is a bit of a problem. If you look closely at the code, it cannot
happen. Famous last words for a tester, right? It should not ever happen. We
would have to use a debugger to test it by changing the value of branch to 0.

2. If we wanted to test this module to the level of multiple condition coverage
(ignoring the possibility of short circuiting), how many test cases would we need?

The first conditional statement looks like this:

(! (isReq() && isBeq() && (isNort() || (isFlat() && isFreq()))))

Each of these functions would likely be a private method of the class we are
working with (ObjTree). We can rewrite the conditional to make it easier to
understand.

(! (A && B && (C || (D && E)))

__AST V3.book Seite 231 Freitag, 1. Juli 2011 1:06 13

232 4 Test Techniques

A good way to start is to come up with a truth table that covers all the possibili-
ties that the atomic conditions can take on. With five atomic conditions, there
are 32 possible combinations, as shown in table 4-38. Of course, you could just
calculate that by calculating 25. But since we want to discuss how many test
cases we would need if this code was written in a language that did short-circuit
Boolean evaluations (it is!), we’ll show it here.

Table 4–38

Thirty-two separate test cases would be needed. Note that 16 of these test cases
evaluate to TRUE. This evaluation would then be negated (see the negation
operator in the code). So 16 test cases would survive and move to line 7 of the
code. We would still need to achieve decision coverage on the other condition-
als in the code (more on that later).

While the exercise does not require us to figure out the number of tests
required in case of short circuiting, it is an interesting question. In table 4-39 are
the test cases we would need for the first if() statement (line 3) to achieve cover-
age.

Table 4–39

Test 1: If the first term goes FALSE, the other terms do not affect anything.
Test 2: If the second term goes FALSE while the first term is TRUE, the others

do not matter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A T T T T T T T T T T T T T T T T F F F F F F F F F F F F F F F F

B T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F

C T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F

D T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F

E T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F

A B C D E Expression Eval

1. FALSE - - - - FALSE

2. TRUE FALSE - - - FALSE

3. TRUE TRUE TRUE - - TRUE

4. TRUE TRUE FALSE FALSE - FALSE

5. TRUE TRUE FALSE TRUE TRUE TRUE

6. TRUE TRUE FALSE TRUE FALSE FALSE

__AST V3.book Seite 232 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 233

Test 3: If the third term goes TRUE when A and B are TRUE, C and D do not
matter.

Test 4: When A and B are TRUE, if C and D are FALSE, E does not matter.
Test 5: No short circuit is possible.
Test 6: No short circuit is possible.

Only two of these test cases evaluate to TRUE. Remember, this value gets
negated, so only these two tests would survive to continue on to line 7. That will
not be enough testing to get decision coverage throughout the rest of the code.
We will need to add test cases to achieve that level; likely we would want to test
some other combinations of atomic conditions just for kicks.

Test 1: Shown in table 4-39 as test 1. [ABJ]
Test 2: Shown in table 4-39 as test 2. [ABJ]
Test 3: Shown in table 4-39 as test 4. [ABJ]
Test 4: Shown in table 4-39 as test 6. [ABJ]
Test 5: Assume that the values from test 3 also have (root == 0) so the test ends

immediately after creating a new ObjNode in line 9. [ABCJ]
Test 6: Assume that the values from test 5 are included when root != 0. Further

assume that the object is new and belongs on the left side (w < Curren-
tObj). After creating a new ObjNode and populating it, test ends.
[ABCDEFJ]

Test 7: Assume that you pick a set of values for the first if (line 3) that causes
the expression to trigger FALSE. Root != 0. Obj lies to the left and down
one level and is not currently in the tree. [ABCDEFDEFJ]

Test 8: Assume that the values from test 5 are included when root != 0. Further
assume that the object is new and belongs on the right side (w > Cur-
rentObj). After creating a new ObjNode and populating it, test ends.
[ABCDEGHJ]

Test 9: Assume that you pick a set of values for the first if (line 3) that causes
the expression to trigger FALSE. Root != 0. Obj lies to the right and
down one level and is not currently in the tree. [ABCDEGHDEGHJ]

__AST V3.book Seite 233 Freitag, 1. Juli 2011 1:06 13

234 4 Test Techniques

Test 10: Assume that you pick a set of values for the first if (line 3) that causes
the expression to trigger FALSE. Root != 0. Object is the first object
tested and so the counter is incremented. [ABCDEGJ]

Note: With 10 tests, we do achieve multiple-condition-level coverage (assuming
that the compiler writes code to short-circuit the testing); however, we do not
have loop coverage for the while() on line12 because it cannot execute 0 times.
At the minimum, we would also want to test the loop a lot of times (i.e., a very
large binary tree where the object does not already exist).

3. If this code were in a system that was subject to FAA DO/178B and was rated at
Level A criticality, how many test cases would be needed for the first if() statement
alone?

The standard that we must meet mentions five different levels of criticality (see
table 4-40).

Table 4–40

This means that we must achieve MC/DC-level coverage for the first if() state-
ment. Note that there are no other compound conditional statements in the
other decisions, so we can ignore them; decision coverage will cover them.

To achieve MC/DC coverage, we must ensure the following:

A. Each atomic condition is evaluated both ways (T/F).
B. Decision coverage must be satisfied.
C. Each atomic condition must be able to affect the outcome independently

while other atomic conditions are held without changing.

The expression we are concerned with follows:

(! (A && B && (C || (D && E)))

Criticality Required Coverage

Level A: Catastrophic Modified condition/decision, decision and statement

Level B: Hazardous/Severe Decision and statement

Level C: Major Statement

Level D: Minor None

Level E: No effect None

__AST V3.book Seite 234 Freitag, 1. Juli 2011 1:06 13

 4.3 Structure-Based 235

We will start out by ignoring the first negation, shown by the exclamation
mark at the beginning. We don’t know about you, but inversion logic always
gives us a headache. Since we are inverting the entire expression (check out the
parentheses to see that), we can just look at the expression. First, let’s figure
out how to make sure that each atomic condition can affect the outcome inde-
pendently.

Table 4–41

Test 1: With these values, A controls the output independently. If it went
TRUE, the output would toggle.

Test 2: With these values, B controls the output independently. If it went
TRUE, the output would toggle.

Test 3: With these values, C controls the output independently. If it goes
TRUE, the output would toggle.

Test 4: With these values, E controls the output independently. If it goes TRUE,
the output would toggle.

Test 5: With these values, D controls the output independently. If it goes
FALSE, the output would toggle.

With these five tests, we can meet all three objectives (for the first if() state-
ment). Among the five tests, each atomic condition is tested both ways. Deci-
sion coverage is achieved by test 5 and any other single test. And in each case, as
shown, each atomic condition can affect the output independently.

4. To achieve only statement coverage, how many test cases would be needed?

Okay, so this one is relatively simple! You could trace through the code and
determine the number. Or, you could notice that the way it is written, statement
coverage is going to be the same as decision coverage. How do we know that?

A B C D E Expression Eval

1. F T T T T FALSE

2. T F T T T FALSE

3. T T F F T FALSE

4. T T F T F FALSE

5. T T F T T TRUE

__AST V3.book Seite 235 Freitag, 1. Juli 2011 1:06 13

236 4 Test Techniques

The first if() (line 3) needs to be tested both ways to get statement coverage.
When it’s TRUE, it does a quick return, which must be executed. When it’s
FALSE, we get to go further in the code.

The second if() (line 7) and third (line 14), fourth (line 16), and sixth
(line 25) each has a statement in both the TRUE and FALSE directions.

The else if() (line 23) is the else for the if() (line 14) and has an else of its
own, both of which have code that needs to execute for statement coverage.

The only confusing piece to this answer is the while() (line 12). The way the
code is written, it should not allow it to ever evaluate to FALSE. That means we
would have to use a debugger to change the value of branch to test it.

Since we have already gone through getting decision coverage in answer 3,
we will accept that answer.

4.4 Defect- and Experience-Based

Now we’re going to move from systematic techniques for test design into less-
structured but nonetheless useful techniques. We start with defect-based and
defect-taxonomy-based techniques.

Conceptually, we are doing defect-based testing anytime the type of the
defect sought is the basis for the test. Usually, the underlying model is some list

Learning objectives

(K2) Describe the principle and reasons for defect-based
techniques and differentiate its use from specification- and
structure-based techniques. (K2) Explain by examples defect
taxonomies and their use. (K2) Understand the principle of and
reasons for experience-based techniques and when to use them.

(K3) Specify, execute, and report tests using exploratory testing.

(K3) Specify tests using the different types of software fault attacks
according to the defects they target.

(K4) Analyze a system in order to determine which specification-
based, defect-based, or experience-based techniques to apply for
specific goals.

__AST V3.book Seite 236 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 237

of defects seen in the past. If this list is organized as a hierarchical taxonomy,
then the testing is defect taxonomy based.

To derive tests from the defect list or the defect taxonomy, we create tests
designed to reveal the presence of the defects in the list.

Now, for defect-based tests, we tend to be more relaxed about the concept of
coverage. The general criterion is that we will create a test for each defect type,
but it is often the case that the question of whether to create a test at all is risk
weighted. In other words, if the likelihood or impact of the defect doesn’t justify
the effort, don’t do it. However, if the likelihood or impact of the defect were
high, then you would create not just one test, but perhaps many. This should be
starting to sound familiar to you, yes?

The underlying bug hypothesis is that programmers tend to repeatedly
make the same mistakes. In other words, a team of programmers will introduce
roughly the same types of bugs in roughly the same proportion from one
project to the next. This allows us to allocate test design and execution effort
based on the likelihood and impact of the bugs.

4.4.1 Defect Taxonomies

Table 4-42 shows an example of a defect taxonomy. It occurs in Rex’s book
Managing the Testing Process but was originally derived from Boris Beizer’s
taxonomy in Software Testing Techniques.

ISTQB Glossary

defect-based technique: A procedure to derive and/or select test cases tar-
geted at one or more defect categories, with tests being developed from what
is known about the specific defect category.

experience-based technique: Procedure to derive and/or select test cases
based on the tester s experience, knowledge and intuition.

defect-based technique
experience-based tech-
nique

__AST V3.book Seite 237 Freitag, 1. Juli 2011 1:06 13

238 4 Test Techniques

Table 4–42

There are eight main categories along with five “bookkeeper” categories that are
useful when classifying bugs in a bug tracking system. Let’s go through these in
detail.

In the category of Functional defects, there are three subcategories:

■ Specification: The functional specification—perhaps in the requirements
document or in some other document—is wrong.

■ Function: The specification is right, but the implementation of it is wrong.
■ Test: Upon close research, we found a problem in test data, test designs, test

specifications, or somewhere else.

In the category of System defects, there are five subcategories:

■ Internal Interface: The internal system communication fails; in other
words, there is an integration problem of some sort internal to the test
object.

ISTQB Glossary

defect taxonomy: A system of (hierarchical) categories designed to be a use-
ful aid for reproducibly classifying defects.

• Functional

– Specification

– Function

– Test

• System

– Internal Interface

– Hardware Devices

– Operating System

– Software Architecture

– Resource Management

• Process

– Arithmetic

– Initialization

– Control or Sequence

– Static Logic

– Other

• Data

– Type

– Structure

– Initial Value

– Other

• Code

• Documentation

• Standards

• Other

• Duplicate

• Not a Problem

• Bad Unit

• Root Cause Needed

• Unknown

__AST V3.book Seite 238 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 239

■ Hardware Devices: The hardware that is part of the system or that hosts the
system fails.

■ Operating System: The operating system—which presumably is external to
the test object—fails.

■ Software Architecture: Some fundamental design assumption proves
invalid, such as an assumption that data could be moved from one table to
another or across some network in some constant period.

■ Resource Management: The design assumptions were okay, but some
implementation of the assumption was wrong; for example, the design of
the data tables introduces delays.

In the category of Process defects, there are five subcategories:

■ Arithmetic: The software does math wrong. This doesn’t mean just basic
math; it can also include sophisticated accounting or numerical analysis
functions, including problems that occur due to rounding and precision
issues.

■ Initialization: An operation fails on its first use, when there are no data in a
list, and so forth.

■ Control or Sequence: An action occurs at the wrong time or for the wrong
reason, like say, seeing screens or fields in the wrong order.

■ Static Logic: Boundaries are misdefined, equivalence classes don’t include
the right members and exclude the wrong members, and so forth.

■ Other: A control-flow or processing error that doesn’t fit in the preceding
categories has occurred.

In the category of Data defects, there are four subcategories:

■ Type: The wrong data type—whether a built-in or user-defined data type—
is used.

■ Structure: A complex data structure or type is invalid or inappropriately
used.

■ Initial Value: A data element’s initialized value is incorrect, like a list of
quantities to purchase that defaults to zero rather than one.

■ Other: A data-related error occurs that doesn’t fit in the preceding buckets.

The category of Code applies to some simple typo, misspelling, stylistic error, or
other coding error occurring and resulting in a failure. Theoretically, these

__AST V3.book Seite 239 Freitag, 1. Juli 2011 1:06 13

240 4 Test Techniques

couldn’t get past a compiler, but in these days of scripting on browsers, this stuff
does happen.

The category of Documentation applies to situations where the documenta-
tion says the system does X on condition Y, but the system does Z—a valid and
correct action—instead.

The category of Standards applies to situations where the system fails to
meet industry, governmental, or vendor standards or regulations or to follow
coding or user interface standards or to adhere to naming conventions, and so
forth.

Other: The root cause is known, but fits none of the preceding categories,
which should be rare if this is a useful taxonomy.

The five housekeeping categories are as follows:

■ Duplicate: You find that two bug reports describe the same bug.
■ Not a Problem: The behavior noted is correct. The report arose from a

misunderstanding on the part of the tester about correct behavior. This
situation is different than a test failure because this occurs during test
execution and is an issue of interpretation of an actual result.

■ Bad Unit: The bug is a real problem, but it arises from a random hardware
failure that is unlikely in the production environment.

■ Root Cause Needed: Applies when the bug is confirmed as closed by test
but no one in development has supplied a root cause.

■ Unknown: No one knows what is broken. Ideally, this applies to a small
number of reports, generally when an intermittent bug doesn’t appear for
quite awhile, leading to a conclusion that some other change fixed the bug
as a side effect.

Notice that this taxonomy is focused on root cause, at least in the sense of what
ultimately proved to be wrong in the code that caused the failure.

You could also have a “process root cause” taxonomy that showed at which
phase in the development process that bug was introduced. Notice that such a
taxonomy would be useless to us for designing tests. Even the root-cause-
focused taxonomy can be a bit hard to use for purposes of test design.

One concern that we always have when dealing with taxonomies: the cate-
gories that say other. Like a backyard swimming pool without a fence, these are

__AST V3.book Seite 240 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 241

trouble waiting to happen. We have seen cases where an analysis of a taxonomy
showed more than 80 percent of the issues to be set to other.

For a taxonomy to work, the users must be educated to think through each
issue thoroughly before assigning it to the other bucket. When Jamie wrote a test
management tool, he would allow the other category to be chosen only when an
associated field was filled with an explanation of why the issue did not fit other
categories. If there is no training, education, and mentoring on the use and
importance of categorizing issues correctly in a taxonomy, a taxonomy can
degrade to a simple waste of time.

Table 4-43 shows an example of a bug taxonomy—a rather coarse-grained
one—gathered from the Internet appliance case study we’ve looked at a few
times in this book. This one is focused on symptoms. Notice that this makes it
easier to think about the tests we might design. However, its coarse-grained
nature means that we’ll need to have additional information—lists of desired
functional areas, usability and user interface standards and requirements, reli-
ability specifications, and the like—to use this to design tests.

We’ve also showed the percentage of bugs we actually found in each cate-
gory during system test.

Table 4–43

Description Count %

Failed functionality 425 46%

Missing functionality 179 19%

Poor usability 106 11%

Build failed 62 7%

Bad system design/architecture 51 5%

Reliability problem 49 5%

Data loss 18 2%

Slow performance 16 2%

Code obsolete 16 2%

Deviation from specification 8 1%

Bad user documentation 2 0%

Total 932 100%

__AST V3.book Seite 241 Freitag, 1. Juli 2011 1:06 13

242 4 Test Techniques

4.4.2 Error Guessing

Error guessing is a term introduced by Glenford Myers.14

Conceptually, error guessing involves the tester taking guesses about a mistake
that a programmer might make and then developing tests for it. Notice that this
is what might be a called a “gray-box” test since it requires the tester to have
some idea about typical programming mistakes, how those mistakes become
bugs, how those bugs manifest themselves as failures, and how we can force fail-
ures to happen.

Now, if error guessing follows an organized hierarchical taxonomy—like
defect-taxonomy-based tests, then the taxonomy is the model. The taxonomy
also provides the coverage criterion, if it is used, because we again test to the
extent appropriate for the various elements of the taxonomy. Usually, the error
guessing follows mostly from tester inspiration.

As you can tell so far, the derivation of tests is based on the tester’s intuition
and knowledge about how errors (the programmer’s or designer’s mistake)
become defects that manifest themselves as failures if you poke and prod the
system in the right way. Now, error guessing tests can be part of an analytical,
predesigned, scripted test procedure. However, they often aren’t, but are added
to the scripts (ideally) or used instead of scripts (less ideal) at execution time.

The underlying bug hypothesis is very similar to that of defect-taxonomy-
based tests. Here, though, we not only count on the programmer to make the
same mistakes, we also count on the tester to have seen bugs like the ones in this
system before and to remember how to find them.

At this point, you’re probably thinking back to our earlier discussion about
quality risk analysis. Some of these concepts sound very familiar, don’t they?

ISTQB Glossary

error guessing: A test design technique where the experience of the tester is
used to anticipate what defects might be present in the component or system
under test as a result of errors made and to design tests specifically to expose
them.

14. You can find this technique and others we have discussed in the first book on software testing,
The Art of Software Testing by Glenford Myers.

__AST V3.book Seite 242 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 243

Certainly, error guessing is something that we do during quality risk analy-
sis. It’s an important part of determining the likelihood. Perhaps we as test ana-
lysts don’t do it, but rather we rely on the developers to do it for us. Or maybe
we participate with them. Depends on our experience, which is why error
guessing is an experience-based test technique.

Maybe a bug taxonomy is a form of risk analysis? It has elements of a quality
risk analysis, in that it has a list of potential failures and frequency ratings. How-
ever, it doesn’t always include impact.

Even if a bug taxonomy does include impact ratings for potential bugs, it’s
still not quite right. Remember that the way we described it, a quality risk anal-
ysis is organized around quality risk categories or quality characteristics. A bug
taxonomy is organized around categories of failures or root causes rather than
quality risk categories or quality.

4.4.3 Checklist Testing

With checklist testing, we now get into an area that is often very much like qual-
ity risk analysis in its structure. Conceptually, the tester takes a high-level list of
items to be noted, checked, or remembered. What is important for the system to
do? What is important for it not to do?

The checklist is the model for testing, and the checklist is usually organized
around a theme. The theme can be quality characteristics, user interface stan-
dards, key operations, or any other theme you’d like to pick. To derive tests from
a checklist, either during test execution time or during test design, you create
one to evaluate the system per the test objectives of the checklist.

Now, we can specify a coverage criterion, which is that there be at least one
test per checklist item. However, the checklist items are often very high-level
items. By very high-level, we don’t mean high-level test case. A high-level or
logical test case gives rules about how to generate the specific inputs and
expected results but doesn’t necessarily give the exact values as a low-level or
concrete test case would.

The level of a test checklist is even higher than that. It will give you a list of
areas to test, characteristics to evaluate, general rules for determining test pass
or failure, and the like. You can develop and execute one set of tests, while
another competent tester might cover the same checklist differently. Notice that

__AST V3.book Seite 243 Freitag, 1. Juli 2011 1:06 13

244 4 Test Techniques

this is not true for many of the specification-based techniques we covered,
where there was one right answer.

The underlying bug hypothesis in checklist testing is that bugs in the areas
of the checklist are either likely, important, or both. Notice again that much of
this harkens back to risk-based testing. But note that, in some cases, the check-
list is predetermined rather than developed by an analysis of the system. As
such, checklist testing is often the dominant technique when the testing follows
a methodical test strategy. When testing follows an analytical test strategy, the
list of test conditions is not a static checklist but rather is generated at the begin-
ning of the project and periodically refreshed during the project, through some
sort of analysis, such as quality risk analysis.

Table 4-44 is an example of a checklist, this one for reviewing code15. We'll
see more of these types of checklists in chapter 6 when we discuss reviews.

Table 4–44

Under declarations we ask the following questions:

■ Are all the literal constants correct? Are we using magic numbers that
might change in the future? Are we using them in multiple places? Should
we change those to declared constant values?

■ Have we ensured that every single variable has been initialized, especially
when we are in maintenance mode and have added more or changed
existing variables.

■ Are our data types correct? Are our variables big enough? Might there be a
good reason to use signed over unsigned (or vice versa)?

15. This particular checklist comes from Brian Marick's book The Craft of Software Testing.

• Declarations

– Are literal constants correct?

– Are all variables always initialized, especially in changed code?

– Are unsigned integers used when signed should be?

• Data Items

– Are all strings null-terminated—especially after manipulation?

– Are buffer size checks always done when manipulating them?

– Are bitfield manipulations portable to other architectures?

– Is sizeof() called with a pointer rather than the object pointed to?

__AST V3.book Seite 244 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 245

Under data items, we might ask these questions:

■ Are all strings handled correctly? If explicit buffers are used for them, are
they big enough? If null-terminated, do we manipulate them directly such
that the null-value is misplaced or lost?

■ Is every buffer usage checked for overrun? The hackers and crackers will be
checking your buffers. Did you?

■ When dealing with bitfields, is the code going to be portable? Does word
size matter when manipulating the bits? Will they work in both big-endian
and small-endian systems?

■ Have you used sizeof() correctly? If a pointer is passed in rather than a
reference, this function is going to return the size of the pointer.

Okay, so how do we use this for testing? Well, imagine going through the code,
methodically, checking off each of these main areas. If you see problems, you
report a bug against this heuristic for the module where you saw the problem.
Notice the subjectivity involved in the evaluation of test pass or fail results.

4.4.4 Exploratory Testing

Exploratory testing, like checklist testing, often follows some basic guidelines,
like a checklist, and often relies on tester judgment and experience to evaluate
the test results. However, exploratory testing is inherently more reactive, more
dynamic, in that most of the action with exploratory testing has to happen dur-
ing test execution.

Conceptually, exploratory testing is happening when a tester is simulta-
neously learning the system, designing tests, and then executing those tests. The
results of each test, largely, determine what we test next.

Now, that is not to say that this testing is random or driven entirely by
impulse or instinct. For example, we could use a list of usability heuristics not
only as a preplanned checklist, but also as a heuristic to guide us to important or

ISTQB Glossary

exploratory testing: An informal test design technique where the tester
actively controls the design of the tests as those tests are performed and uses
information gained while testing to design new and better tests.

__AST V3.book Seite 245 Freitag, 1. Juli 2011 1:06 13

246 4 Test Techniques

problematic software areas. The best kinds of exploratory testing usually do
have some type of model, either written or mental.

According to this model, we derive tests by thinking how best to explore
some area of testing interest. In some cases, to keep focus and provide some
amount of structure, the test areas to be covered are constrained by a test char-
ter.

As with checklist testing, we can specify a coverage criterion, which is that
there be at least one test per charter (if we have them). However, the charters,
like checklist items, are often very high level.

The underlying bug hypothesis is that the system will reveal buggy areas
during test execution that would be hidden during test basis analysis. In other
words, you can only learn so much about how a system behaves and misbehaves
by reading about it. This is, of course, true. It also suggests an important point,
which is that exploratory testing, and indeed experience-based tests in general,
make a good blend with scripted tests because they offset each other’s weak
spots.

The focus of testing in the ISTQB Foundation and Advanced syllabi is
primarily analytical; that is, following an analytical test strategy. Analytical
strategies are good at defect prevention, risk mitigation, and structured
coverage.

Experience-based tests usually follow a dynamic or reactive test strategy.
One way that analytical and dynamic strategies differ is in the process of test-
ing.

The exploratory testing process, unlike the ISTQB Fundamental testing
process, is very much focused on taking the system as we find it and going from
there. The tester simultaneously learns about the product and its defects, plans
the testing work to be done (or, if she has charters, adjusts the plan), designs and
executes the tests, and reports the results.

Now, when doing exploratory testing, it’s important not to degrade into
frenzied, aimless keyboard-pounding. Good exploratory tests are planned,
interactive, and creative.

As we mentioned, the test strategy is dynamic, and one manifestation of this
is that the tester dynamically adjusts test goals during execution.

__AST V3.book Seite 246 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 247

4.4.4.1 Test Charters
Because there is so much activity happening during exploratory test execu-
tion—activity that, in an analytical strategy, happens before execution—as you
can imagine some trade-offs must occur. One of those is in the extent of docu-
mentation of what was tested, how that related to the test basis, and what the
results were.

The inability to say what was tested during exploratory testing, to any
degree of accuracy, has long been seen as its Achilles heel. The whole confi-
dence-building objective of testing is undermined if we can’t say what we’ve
tested and how much we’ve tested it as well as being able to say what we haven’t
yet tested. Notice that analytical test strategies do a good job of this, at least
when traceability is present.

Another issue that comes up anytime we have multiple test analysts work-
ing concurrently on the same test object is redundancy; that is, to what extent
multiple analysts are testing the exact same test items.

One way people have come up with to reduce these problems with explor-
atory testing is to use test charters. A test charter specifies the tasks, objectives,
and deliverables, but in very few words. The charters can be developed well in
advance—even, in fact, based on analysis of risks as we have done for some cli-
ents—or they can be developed just immediately before test execution starts
and then continually adjusted based on the test results.

Right before test execution starts for a given period of testing, exploratory
testing sessions are planned around the charters. These plans are not formally
written following IEEE 829 or anything like that. In fact, they might not be writ-
ten at all. However, consensus should exist between test analyst and test man-
ager about the following:

■ What the test session is to achieve
■ Where the test session will focus
■ What is in and out of scope for the session

ISTQB Glossary

test charter: A statement of test objectives, and possibly test ideas about how
to test. Test charters are used in exploratory testing.

__AST V3.book Seite 247 Freitag, 1. Juli 2011 1:06 13

248 4 Test Techniques

■ What resources should be used, including how long it should last (often
called a timebox)

Now, given how lightweight the charters are—as you‘ll see in a moment—you
might expect that the tester would get more information. And, indeed, the char-
ters can be augmented with defect taxonomies, checklists, quality risk analyses,
requirements specifications, user manuals, and whatever else might be of use.
However, these augmentations are to be used as reference during test execution
rather than as objects of analysis—i.e., as a test basis—prior to the test execution
starting.

Figure 4–48

In figure 4-48 we see an example of how this works. This replicates an actual
exploratory testing session log from a project we did for a client recently. We
were in charge of running an acceptance test for the development organization
on behalf of the customers. If that sounds like a weird arrangement, by the way,
yes, it was.

At the top of the log, we have captured the tester’s name and when the test
was run. It also includes a log of how much time was spent and whether the
tester believes that the charter was completely explored—remember, this is sub-
jective, as with the checklists.

Exploratory Testing Session Log

Tester name ___________________ Da te ________________
Time on-task ___________________ Charter completed _______________

Charter

Test the security of the login page. See if it is possible to log in without a password.

Bugs reported

937 - Log in form vulnerable to SQL injection.
939 - System identifies a valid user name when the password is wrong.

Follow-up issues

* Lockout feature on three unsuccessful login attempts does not seem to work.

__AST V3.book Seite 248 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 249

Below the heading information you see the charter. Now, it’s not unusual to
have a test procedure called “test login security,” or even a sentence like this in
the description of a test procedure or listed as a condition in a test design speci-
fication. However, understand that this is all there is. There are no further details
specified in the test for the tester. You see how we are relying very heavily on the
tester’s knowledge and experience?

Under the charter section are two sections that indicate results. The first
lists the bugs that were found. The numbers correspond to numbers in a bug
tracking system. The second lists issues that need follow-up. These can be—as
they are here—things that might be bugs but that we didn’t have time to finish
researching. Or, it could indicate situations where testing was incomplete due to
blockages. In that case, of course, we’d expect that the charter would not be
complete.

4.4.4.2 Exploratory Testing Exercise
Consider the use of exploratory testing on the HELLOCARMS project.

The exercise consists of four parts:

1. Identify a list of test charters for testing an area.
2. Document your assumption about the testers who will use the charters.
3. Assign a priority to each charter and explain why.
4. Explain how you would report results.

As always, check your work on the preceding part before proceeding to the next
part. The solutions are shown in the next section.

4.4.4.3 Exploratory Testing Exercise Debrief
We selected requirements element 010-010-170, which has to do with allowing
applications over the Internet.

Support the submission of applications via the Internet, which includes
the capability of untrained users to properly enter applications.

We read that to mean we should use a mix of PC configurations, security set-
tings, connection speeds, customer personas, and existing customer relation-
ships to test applications over the Internet.

Let’s see what that might look like.

__AST V3.book Seite 249 Freitag, 1. Juli 2011 1:06 13

250 4 Test Techniques

First, we would use pairwise techniques16 to generate a set of target PC configu-
rations, including browser brand and version, operating system, and connection
speeds. We would build these configurations prior to test execution, storing
drive images for a quick restore during testing.

Next, we would create a list of customer personas. Personas refers to the
habits that a customer exhibits and experience that a customer has:

■ Nervous customer: Uses Back button a lot, revises entries, has long think
time

■ Novice Internet user: Makes a lot of data input mistakes, has long think
time

■ Power user: Types quickly, makes few mistakes, uses copy-and-paste from
other PC applications (e.g., account numbers), has very short think time

■ Impatient customer: Types quickly, makes many mistakes, has very short
think time, hits Next button multiple times

Now we would create a list of existing customer banking relationship types:

■ Limited accounts, none with Globobank
■ Limited accounts, some with Globobank
■ Limited accounts, all with Globobank
■ Extensive accounts, none with Globobank
■ Extensive accounts, some with Globobank
■ Extensive accounts, all with Globobank

Notice that these two lists allow a lot of tester latitude and discretion. Notice
also that for the existing customer banking relationships, as with the PC config-
urations, it would again make a lot of sense for the tester to create this customer
data before test execution started.

We would create some semiformal rules to cover testing with the test char-
ters, as shown in table 4-45.

16. These are covered in Advanced Software Testing Vol. 1 and are required for the ISTQB
Advanced Test Analyst certification, but not for the ISTQB Advanced Technical Test Analyst cer-
tification.

__AST V3.book Seite 250 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 251

Table 4–45

We would then write our charters as shown in table 4-46.

Table 4–46

Yes, these charters might revisit some areas covered by our other, specification-
based tests. However, because the testers will be taking side trips that wouldn’t
be in the scripts, the coverage of the scenarios will be broader.

Now, what is our assumption about the testers who will use these charters?
Obviously, they have to be experienced testers because the test specification
provided is very limited and provides a lot of discretion. They also have to
understand the application well because we are not giving them any instruc-
tions on how to carry out the charters. They also understand PC technology at
least well enough to restore a PC configuration from a drive image, though it

General rules for test charters:

• For each of the following charters, restore your test PC to a previously untested PC
configuration prior to starting the charter. Make sure each configuration is tested at least
once.

• For each of the following charters, select a persona. Make sure each persona is tested at
least once.

• For each of the following charters, select an existing customer banking relationship type.
Make sure each customer banking relationship type is tested at least once.

• Allocate 30–45 minutes for each application; thus, each charter is 30–120 minutes long.

Charters:

1. Test successful applications with both limited and extensive banking relationships, where
customer declines insurance.

2. Test a successful application where customer accepts insurance.

3. Test a successful application where the system declines insurance.

4. Test a successful application where property value escalates application.

5. Test a successful application where loan amount escalates application.

6. Test an application that was unsuccessful due to credit history.

7. Test an application that was unsuccessful due to insufficient income.

8. Test an unsuccessful application due to excessive debt.

9. Test an unsuccessful application due to insufficient equity.

10.Test cancellation of an application from all possible screens (120 minutes).

11.Test a fraudulent application, where material information provided by customer does not
match decisioning mainframe’s data.

12.Test a fraudulent application, where material information provided by customer does not
match LoDoPS data.

__AST V3.book Seite 251 Freitag, 1. Juli 2011 1:06 13

252 4 Test Techniques

would be possible to give unambiguous directions to someone on how to do
that.

In terms of the priority to each charter, we have listed them in priority
order. Notice that we start with the simplest case, a successful application with
no insurance, and then add complexity from there. Our objective is to use the
exploratory tests during the scripted tests, in parallel. As the test coverage under
the scripts gets greater and greater, so also the complexity of the exploratory
scenarios.

As for results reporting, we would have each charter tracked as a test case in
our test management system. For bug reports, though, it would be very impor-
tant that the tester perform adequate isolation to determine if the configuration,
the persona, the banking relationship, or the functionality itself was behind the
failure.

4.4.5 Software Attacks

Finally, we come to a technique that you can think of as an interesting synthesis
of all the defect- and experience-based techniques we’ve covered in this section,
software attacks. It combines elements of defect taxonomies, checklist-based
tests, error guessing, and exploratory tests.

Conceptually, you can think of a software attack as a directed and focused
form of testing that attempts to force specific failures to occur. As you can see,
this is like a defect taxonomy in that way.

However, it’s more structured than a defect taxonomy because it is built on a
fault model. The fault model talks about how bugs come to be and how and why
bugs manifest themselves as failures. We’ll look at this question of how bugs
come to be in a second when we talk about the bug hypothesis.

This question of manifestation is very important. It’s not enough to suspect
or believe a bug is there. In dynamic testing, since we aren’t looking at the code,
we have to look at behaviors.

ISTQB Glossary

software attacks: Directed and focused attempt to evaluate the quality,
especially reliability, of a test object by attempting to force specific failures to
occur.

software attacks

__AST V3.book Seite 252 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 253

Now, here comes the similarity with checklists. Based on this fault model,
James Whittaker and his students at Florida Tech (who originated this idea)
developed a simple list of attacks that go after these faults. This hierarchical list
of attacks—organized around the ways in which bugs come to be—provides
ways in which we can force bugs to manifest themselves as failures.

To derive tests, you analyze how each specific attack might apply to the sys-
tem you’re testing. You then design specific tests for each applicable attack. The
analysis, design, and assessment of adequate coverage are discretionary and
dependent on the skills, intuition, and experience of the tester. The technique
provides ideas on when to apply the attack, what bugs make the attack success-
ful, how to determine if the attack has forced a bug into the open as a failure,
and how to conduct the attack. However, two reasonable and experienced
testers might apply the same attack differently against the same system and
obtain different results.

So, from where does the fault model say bugs come? The underlying bug
hypothesis is that bugs arise from interactions between the software and its
environment during operation and from the capabilities the software possesses.
The software’s operating environment consists of the human user, the file sys-
tem, the operating system, and other cohabitating and interoperating software
in the same environment. The software’s capabilities consist of accepting inputs,
producing outputs, storing data, and performing computations.

Figure 4–49 Application in its operating environment

DBMS

interop app

cohab app

cohab app

cohab app

user interface

interop app
interop app

file
system

application
under test

operating system

interop app

kernel

__AST V3.book Seite 253 Freitag, 1. Juli 2011 1:06 13

254 4 Test Techniques

In figure 4-49, you see a picture of the application under test in its operating
environment. The application receives inputs from and sends outputs to its user
interface. It interacts in various direct ways with interoperating applications;
e.g., through copy-and-paste from one application to another or by sending
data to and retrieving data from an application that in turn manages that data
with a database management system.

The application also can interact indirectly by sharing data in a file with
another application. Yet other applications, with which it does not interact, can
potentially affect the application—and vice versa—due to the fact that they
cohabit the same system, sharing memory, disk, CPU, and network resources.

The application sends data to and from the file system when it creates,
updates, reads, and deletes files. It also relies on the operating system, both its
libraries and the kernel, to provide various services and to intermediate interac-
tion with the hardware.

So, how can we attack these interfaces? To start with the file system, the
technique provides the following attacks:

■ Fill the file system to capacity. In fact, you can test while you fill and watch
the bugs start to pop up.

■ Related to this is the attack of forcing storage to be busy or unavailable. This
is particularly true for things that do one thing at a time, like a DVD writer.

■ You can damage the storage media, either temporarily or permanently. Soil
or even scratch a CD.

■ Use invalid file names, especially file names with special characters.
■ Change a file’s access permissions, especially while it’s being used or

between uses.
■ And, one of Rex’s favorites—for reasons you’ll find out in a moment—vary

or corrupt file contents.

For interoperating and cohabiting software interfaces, along with the operating
system interfaces, the suggestions are to try the following attacks:

■ Force all possible incoming errors from the software/OS interfaces to the
application.

■ Exhaust resources like memory, CPU, and network resources.
■ Corrupt network flows and memory stores.

__AST V3.book Seite 254 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 255

All of these attacks can involve the use of tools, either homegrown, freeware, or
commercial.

You’ll notice that much of the technique focuses on the file system. We
think this is a shame, personally. We would like to see the technique extended to
be more useful for system integration testing, particularly for test types like
interoperability, end-to-end tests, data quality/data integrity tests with shared
databases, and the like. As it is, the technique’s interface attacks seem very much
focused on PC-based, stand-alone applications.

Figure 4–50 Capabilities to attack

In figure 4-50, you see a picture of the application under test in terms of its
capabilities. The application accepts inputs. The application performs computa-
tions. Data go into and come out of data storage (perhaps being persisted to the
file system or a database manager in the process, which we’ve not shown here).
The application produces outputs.

So, how can we attack these interfaces? In terms of inputs, we can do the fol-
lowing:

■ We can apply various inputs that will force all the error messages to occur.
Notice that we’ll need a list of error messages from somewhere: user’s guide,
requirements specification, programmers, or wherever.

■ We can force the software to use, establish, or revert to default values.
■ We can explore the various allowed inputs. You’ll notice that equivalence

partitioning and boundary value analysis are techniques we can draw upon
here.

■ We can overflow buffers by putting in really long inputs.

application under test

computation

inputs

data

outputs

__AST V3.book Seite 255 Freitag, 1. Juli 2011 1:06 13

256 4 Test Techniques

■ We can look for inputs that are supposed to interact and test various
combinations of their values, perhaps using techniques like equivalence
partitioning and decision tables (when we understand and can analyze the
interactions) or pairwise testing and classification trees17 (when we do not
understand and cannot analyze the interactions).

■ We can repeat the same or similar inputs over and over again.

In terms of outputs, we can do the following:

■ We can try to force outputs to be different, including for the same inputs.
■ We can try to force invalid outputs to occur.
■ We can force properties of outputs to change.
■ We can force screen refreshes.

The problem here is that these attacks are mostly focused on stuff we can do,
see, or make happen from the user interface. Now, that’s fertile ground for bugs,
but there are certainly other types of inputs, outputs, data, and computations
we’re interested in as testers. Some of that involves access to system interfaces—
which is definitely the province of the technical test analyst.

4.4.5.1 An Example of Effective Attacks

As you might guess, Rex has to use PowerPoint a lot. It’s an occupational hazard.
If this sounds like less than a ringing endorsement, it’s because PowerPoint
interoperates poorly with other Office applications and suffers from serious
reliability and data integrity problems.

During the time he was creating part of a live presentation for a live course,
he accidentally perpetrated two attacks on PowerPoint that resulted in some
serious grief for himself.

The first attack occurred when he tried to use some features in Word, Excel,
and PowerPoint that share data. Specifically, what he did was copy tables to and
from PowerPoint, Word, and Excel. Now, Word and Excel shared the tables well.
However, PowerPoint did not. In fact, he had to resort to things like copying
and pasting from Notepad (stripping off formatting) and copying and pasting
column by column.

17. Pairwise testing and classification trees are both covered in Rex's book Advanced Software
Testing, Vol. 1.

__AST V3.book Seite 256 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 257

Now, since he was copying formatted text from Word to PowerPoint, partic-
ularly putting that text into text boxes, he found another old nemesis in Power-
Point—doing that can cause unrecoverable errors in PowerPoint files. All of a
sudden, in the middle of your work, you get a message that says your file is cor-
rupted. You have to exit. All data since the last save are lost. And, worse yet,
sometimes the data that were saved are actually the data causing this problem!

To get a better sense of this, you could deliberately run the attack of varying
or corrupting file contents. Rex has a program that will allow him to randomly
change as few as 1 or 2 bits in a file. Now, if he uses this on a PowerPoint presen-
tation, that will often render the file unreadable, though special recovery soft-
ware (sold at an extra charge, naturally) can recover all of the text.

However, you don’t need to use his special program to corrupt your Power-
Point file. Just assume that you can share data across Office and other PC appli-
cations and try to do exactly that. Do it long enough, and PowerPoint will
clobber your file for you.

This situation where PowerPoint creates its own unrecoverable error and
file corruption is particularly absurd. You get an error message that says, “Pow-
erPoint has found an error from which it cannot recover” or something like
that. Sorry, but how can that be? It is its own file! No one else is managing the
file. No one else is writing the file. If an application does not understand its own
file format and how to get back to a known good state when it damages one of
its own files, that application suffers from serious data quality issues.

4.4.5.2 Other Attacks
So far, we’ve been describing the specific techniques for attacks referenced in
the Advanced syllabus, which is Whittaker’s technique. However, you should be
aware that if you are testing something other than reliability, interoperability,
and functionality of stand-alone, typically PC-based applications, there are
other types of attacks you can and should try.

For example, here is a list of basic security attacks:

■ Denial of service, which involves trying to tie up a server with so much
traffic that it becomes unavailable.

■ Distributed denial of service, which is similar, is the use of a network of
attacking systems to accomplish the denial of service.

__AST V3.book Seite 257 Freitag, 1. Juli 2011 1:06 13

258 4 Test Techniques

■ Trying to find a back door—an unsecured port or access point into the
system—or trying to install a back door that provides us with access (which
is often accomplished through a Trojan horse like an electronic greeting
card, an e-mail attachment, or pornographic websites).

■ Sniffing network traffic—watching it as it flows past a port on the system
acting as a sniffer—to capture sensitive information like passwords.

■ Spoofing traffic, sending out IP packets that appear to come from
somewhere else, impersonating another server, and the like.

■ Spoofing e-mail, sending out e-mail messages that appear to come from
somewhere else, often as a part of a phishing attack.

■ Replay attacks, where interactions between some user and a system, or
between two systems, are captured and played back later, e.g., to gain access
to an account.

■ TCP/IP hijacking, where an existing session between a client and a server is
taken over, generally after the client has authenticated.

■ Weak key detection in encryption systems.
■ Password guessing, either by logic or by brute-force password attack using a

dictionary of common or known passwords.
■ Virus, an infected payload that is attached or embedded in some file and

then run, causes replication of the virus and perhaps damage to the system
that ran the payload.

■ A worm, similar to a virus, can penetrate the system under attack itself—
generally through some security lapse—and then cause its replication and
perhaps damage.

■ War-dialing is finding an insecure modem connected to a system, which is
rare now, but war-driving is finding unsecured wireless access points, which
is amazingly common.

■ Finally, social engineering is not an attack on the system, but on the person
using the system. It is an attempt to get the user to, say, change her password
to something else, to e-mail a file, etc.

Security testing, particularly what’s called penetration testing, often follows an
attack list like this. The interesting thing about such tests is that in security test-
ing, as in some user acceptance testing, the tester attempts to emulate the
“user”—but in this case the user is a hacker.

__AST V3.book Seite 258 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 259

4.4.5.3 Software Attack Exercise
Considering the user interface for the Telephone Banker:

1. Outline a set of attacks that could be made.
2. For each attack, depict how you might make that attack.

For each attack, list the type of defect you are trying to force .

4.4.5.4 Software Attack Exercise Debrief

We would contemplate the following attacks:

■ Trigger all error messages. We would get a list of error messages that are
defined by the developers, analyze each message, and try to trigger each
one. The defect we are trying to isolate is where the developer tried to
handle an error condition but failed to do it effectively.

■ Attack all default values. We would bring up each screen. For any input field
that has a default value, we would remove it. At that point, we would try to
process the screen. If an error was correctly thrown due to the field being
NULL, we would try a different illegal value there. Often failure will occur
because the developer, having put a default value in the field, assumes it
does not need other error handling.

■ Attack input fields. We would want to try putting in illegal values (including
NULL). These would include the standards (chars, symbols, non-digit
values in integer fields) but would also include trying to put complex
expressions in numeric fields, using special characters that may affect the
programming language used (escape characters, pipes, redirection, etc.). If
the system does not parse inputs correctly, it may fail.

■ Overflow buffers. Our standard attack is to paste in 4,000 characters into
every input field. If the developer does not check length before using a
buffer, bad things are going to happen.

■ Attack dates. Try different formats, illegal values, leap year anomalies, etc.
We don’t find that this works often since developers tend to use well-tested
libraries for dates. But, every now and then...

■ Change calculated outputs. Sometimes, after inputting some values, a
system will calculate some values and then ask for more input. If we can
change that intermediate output, we will and see what happens when the

__AST V3.book Seite 259 Freitag, 1. Juli 2011 1:06 13

260 4 Test Techniques

other input is accepted. Sometimes, the system re-inputs the values that
were outputted without checking whether their values changed.

■ Look for recursive input fields. In HELLOCARMS, there may be recursive
fields for entering current debts or some such. We would try entering the
same debt over and over and find out how the system handles it. The
developer may have a limit of how many are allowed and did not document
it. She might also not check for redundancies.

Use inverted values. If the system is expecting positive, put in negative numbers
and vice versa. This includes silly values, like a negative interest rate. Again, we
want to check lack of rigor in error handling.

4.4.6 Specification-, Defect-, and Experience-Based Exercise

Consider the following test techniques that we’ve covered in this chapter:

■ Equivalence partitioning
■ Boundary value analysis
■ Decision tables
■ State-based tests
■ Defect-taxonomy tests
■ Error-guessing tests
■ Checklist-based tests
■ Exploratory tests
■ Software attacks

Without redundancy to previous exercises or examples, identify uses for the
techniques on the HELLOCARMS project. List specification element numbers
and descriptions of the application as appropriate.

The solutions are shown next.

4.4.7 Specification-, Defect-, and Experience-Based Exercise Debrief

Table 4-47 shows a listing of where we could apply the different techniques
covered in this chapter to the HELLOCARMS project.

__AST V3.book Seite 260 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 261

Table 4–47

4.4.8 Common Themes

So, what is true about applying these defect- and experience-based techniques?
You probably noticed a distinctly lower level of formality than the specifica-

tion-based techniques. In addition, the coverage criteria are informal and usu-
ally subjective.

Testers must apply knowledge of defects and other experiences to utilize
these techniques. Since many of them are defect focused, they are a good path to
defect detection.

Test Technique Requirements Section or Element/Description

Equivalence
partitioning

010-010-040
Armed with the list of the valid inputs for each field, check every input field
to ensure that they can reject invalid values.

Boundary value
analysis

010-010-040
Extend the testing of input validation using boundary value analysis.

Decision tables 010-020-010, 010-020-020, 010-020-030
Develop a decision table based on the credit policies (presumably in
another document), then design tests from that decision table.

State-based tests 010-010-060
Develop a state-transition diagram for the application (rather than the
Telephone Banker as was done in a previous exercise). Test the
application’s state-based behaviors, including the ability to interrupt and
return to the interview.

Defect-taxonomy
tests

010-010-040
Create a defect taxonomy for every security-related failure observed at
Globobank for similar applications, augmented by information on security-
related failures at other banks for similar applications. Design tests to
check for these defects.

Error-guessing
tests

Entire system
Obtain a list of known and/or past interfacing problems between LoDoPS,
GLADS, and other applications that will interoperate with HELLOCARMS.
Design tests to provoke those problems, where possible.

Checklist-based
tests

010-010-020
Identify every screen, flow between screens, and script. Ensure that each
was tested.

Exploratory tests 010-010-170
Use a mix of PC configurations, security settings, connection speeds,
customer personas, and existing customer relationships to test
applications over the Internet.

Software attacks 000 Introduction
Attempt attacks, especially security attacks, on the structure of the system.

__AST V3.book Seite 261 Freitag, 1. Juli 2011 1:06 13

262 4 Test Techniques

The extent to which they are dynamic and detection-focused rather than
analytical and prevention-focused varies. They can be quick tests integrated
into—or dominating—the test execution period. In these tests, the tester has no
formally preplanned activities to perform. They can involve preplanned ses-
sions with charters but no detail beyond that. They can involve the creation of
scripted test procedures.

They are useful in almost all projects, but are particularly valuable under
the following circumstances:

■ There are no specifications available.
■ There is poor documentation of the system under test.
■ You are forced to cope with a situation where insufficient time was allowed

for the test process earlier in the lifecycle; specifically, insufficient time to
plan, analyze, design, implement.

■ Testers have experience with the application domain, with the underlying
technology, and perhaps most important, with testing.

■ We can analyze operational failures and incorporate that information into
our taxonomies, error guesses, checklists, explorations, and attacks.

We particularly like to use defect- and experience-based techniques in conjunc-
tion with behavior-based and structure-based techniques. Each of the tech-
niques covered in the Advanced syllabus—both for test analysts and technical
test analysts, have their strengths and weakness. So, using defect- and experi-
ence-based tests fills the gaps in test coverage that result from systematic weak-
nesses in these more-structured techniques.

Table 4–48

Staff 7 Technicians 3 Engineers + 1 Mgr.

Experience <10 years total > 20 years total

Test Type Precise scripts Chartered exploratory

Test Hrs/Day 42 6

Bugs Found 928 (78%) 261 (22%)

Bug Effectiveness 22 44

Scripts run 850 0

Inputs submitted ~5,000-10,000 ~1,000

Results verified ~4,000-8,000 ~1,000

__AST V3.book Seite 262 Freitag, 1. Juli 2011 1:06 13

 4.4 Defect- and Experience-Based 263

Table 4-48 shows a case study for the Internet appliance project we have dis-
cussed several times. In it, we used a mixture of dynamic, chartered, exploratory
testing and analytical, risk-based, scripted testing. The test manager and the
three test engineers, who together had over 20 years total experience, did the
exploratory testing. Test technicians did the scripted testing; some of the test
technicians had no testing experience and others had just a little.

During test execution, the technicians each spent about six hours per day
running test scripts. The rest of the time, 3 to 4 hours per day, was spent reading
e-mail, attending meetings, updating bug reports, doing confirmation testing,
and the like.

The engineers and managers, being heavily engaged in other tasks, could only
spend 1 to 2 hours per day doing exploratory testing. Even so, due to their exten-
sive experience, you can see that the experienced testers were star bug finders.

However, when we start looking at coverage, we can see the picture change.
The technicians ran about 850 test scripts over the three months of system test.
That covered a lot of ground, well-documented ground yielding well-docu-
mented results that we could show to management. The exploratory testing
didn’t really leave any clear documentation behind. We weren’t using the ses-
sion-log approach that we showed earlier, in part because we were relying on the
technicians to gather the coverage evidence with the scripts.

Now, how about sheer volume of input. We can’t say for sure, but we’d estimate
that the manual scripted tests resulted in somewhere between 5 and 10 thousand
inputs of various kinds—strings, dates, radio buttons, etc—while the exploratory
testing was probably at best a fifth of that. Similarly, scripted tests probably
resulted in many more explicit checks of results. Now, hour for hour the explor-
atory testing was probably just as effective, but it would have been less effective if
we’d had to gather the session logs because that would have slowed us down.

So which was better? Ah, it wasn’t that kind of experiment. It wasn’t an
experiment at all; it was a proven way of mixing two strategies, each with differ-
ent strengths.

The exploratory testing was very effective at finding bugs on an hour-per-
hour basis, and we found a number of bugs that wouldn’t have been found by
the scripts. The reusable test scripts gave us good regression risk mitigation,
good risk mitigation, and good confidence building. Overall, a successful
blended approach.

__AST V3.book Seite 263 Freitag, 1. Juli 2011 1:06 13

264 4 Test Techniques

4.5 Static Analysis

So far in this chapter, we have seen a number of different ways to detect defects,
all of which require the tester to execute code to force failures to show them-
selves. There are other ways to find defects however; we will look at three of
them.

One of the most productive ways to find defects is manual static testing, or
reviews. In the Foundation syllabus, we discussed informal reviews, walk-
throughs, technical reviews, and inspections. We will review those a bit and add
some more material; we will do that in chapter 6.

The second way to find defects that we will discuss is called static analysis.
We examined this briefly at the Foundation level: how to apply tools to find
defects, anomalies, standards violations, and a whole host of maintainability
issues without executing a line of the code. In the Advanced syllabus, ISTQB
opens up the term to apply to more than just tool use. Here is the formal defini-
tion of static analysis, as given in the Advanced syllabus:

Static analysis is concerned with testing without actually executing the soft-
ware under test and may relate to code or the system architecture.

ISTQB Glossary

static analysis: Analysis of software artifacts, e.g., requirements or code, car-
ried out without execution of these software development artifacts. Static
analysis is usually carried out by means of a supporting tool.

Learning objectives

(K3) Use the algorithms “Control-flow analysis” and “Data-flow
analysis” to verify if code has no control or data-flow anomaly.

(K4) Interpret the control and data-flow results delivered from a
tool in order to assess if code has any control or data-flow anomaly.

(K2) Explain the use of call-graphs for the evaluation of the quality
of architecture. This shall include the defects to be identified, the
use for test design and test planning, limitations of results.

__AST V3.book Seite 264 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 265

Contrast that with the “official definition” found in the latest ISTQB glossary:

Analysis of software artifacts, e.g., requirements or code, carried out with-
out execution of these software development artifacts. Static analysis is
usually carried out by means of a supporting tool.

It may be that the glossary definition is too restricting. While tools are likely to
be used, there certainly may be times when we do the static analysis manually.

We will examine such topics as control-flow analysis, data-flow analysis,
compliance to standards, certain code metrics, and call-graphing. Finally, we
will look at dynamic analysis wherein we utilize tools while executing system
code to help us find a range of failures that we might otherwise miss; that will be
in the next section.

Remember to review the benefits of reviews and static analysis from the
Foundation syllabus; we will try not to cover the same materials.

4.5.1 Complexity Analysis

The more complex the code is, the more likely it is to have bugs. In his original
1976 paper, Thomas McCabe cited the (then new) practice of limiting the phys-
ical size of programs through modularization. A common technique he cited
was writing a 50-line program that consisted of 25 consecutive if-then state-
ments. He pointed out that such a program could have as many as 33.5 million
distinct control paths, few of which were likely to get tested. He presented sev-
eral examples of modules that were poorly structured having cyclomatic com-
plexity values ranging from 16 to 64 and argued that such modules tended to be
quite buggy. Then he gave examples of developers who consistently wrote low
complexity modules—in the three to seven cyclomatic complexity range—who
regularly had far lower defect density.

ISTQB Glossary

control-flow analysis: A form of static analysis based on a representation of
unique paths (sequences of events) in the execution through a component or
system. Control-flow analysis evaluates the integrity of control-flow structures,
looking for possible control-flow anomalies such as closed loops or logically
unreachable process steps.

__AST V3.book Seite 265 Freitag, 1. Juli 2011 1:06 13

266 4 Test Techniques

This kind of anecdotal proof is not sufficient for us to decide whether com-
plexity is truly the enemy. There have been a number of studies that concluded
that there is a strong correlation between higher complexity and higher defect
density. Other studies question direct causation.

The way we look at it, if you smell smoke, you don’t have to wait to actually
see the flames before getting worried. We believe that there is likely enough evi-
dence for us to err on the conservative side and try to avoid unnecessary com-
plexity.

 As someone who once wrote operating system code, Jamie can attest that
sometimes high complexity is essential. When his organization tried to write
some critical OS modules using a low-complexity approach, the speed of execu-
tion was just too slow. When they got rid of the nice structure and just wrote
highly complex, tightly coupled code, it executed fast enough for their needs. To
be sure, maintenance of it was highly problematic; it took much longer to bring
it to a high level of quality than it did other modules they had written. As a wise
man once said, “Ya pays your money and ya takes your choice.”

McCabe’s original paper suggested that 10 was a “reasonable but not magic
upper limit” for cyclomatic complexity. Over the years, a lot of research has been
done on acceptable levels of complexity; there appears to be general agreement
with McCabe’s recommended limit of 10. The National Institute of Standards
and Technology (NIST) agreed with this complexity upper end, although it
noted that certain modules should be permitted to reach an upper end of 15
(while suggesting a written explanation when the cyclomatic complexity is
structured that high).

Earlier in this chapter we discussed cyclomatic complexity and showed a
manual way to determine a module’s complexity. Now we will look at the output
of an automation tool that measures complexity, a much more realistic way to
deal with it.

The cyclomatic complexity graphs in figure 4-51 come from the McCabe IQ
tool, showing the difference between simple and complex code. Remember that
code that is very complex is not necessarily wrong, any more than simple code is
always correct. But all things being equal, if we can make our code less complex,
we will likely have fewer bugs and certainly should gain higher maintainability.
By graphically seeing exactly which regions are the most complex, we can focus
both testing and reengineering on the modules that are most likely to need it.

__AST V3.book Seite 266 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 267

Figure 4–51 Simple vs. complex graphs

We could conceivably have spent the time to map this out manually; however,
tools are at their most useful when they allow us to be more productive by auto-
mating the low level work for us.

Figure 4–52 Module complexity view

__AST V3.book Seite 267 Freitag, 1. Juli 2011 1:06 13

268 4 Test Techniques

If figure 4-51 was a 100-foot-high view of two different modules, figure 4-52 is
an overall view of our system from above 1,000 feet. This image shows the mod-
ules for a section of the system we are testing, both for how they are intercon-
nected and at individual module complexity. Different colors are assigned to
different levels of complexity. (In the original full-color image green modules
have low complexity ratings, yellow are considered somewhat complex, and red
means highly complex.) Clearly, a highly complex module as a “leaf ” node, not
interconnected with other modules, might be of less immediate concern than a
somewhat complex module in the middle of everything. Without such a static
analysis tool to help do the complexity analysis, however, we have very little in
the way of options to compare where we should put more time and effort.

While these tools tend to be somewhat pricey, their cost needs to be com-
pared with the price tag of releasing a system that might collapse under real
usage.

4.5.2 Code Parsing Tools

In figure 4-53 , we show the output of a static code parsing tool that is looking
for problems that the compiler would not flag because they are not syntactically
incorrect. The code on the left is an example of a very poorly written C language
module. The problem is that it does not necessarily look bad. Many developers
figure that as long as the compiler does not complain, the code probably will
work okay. Then they spend hours debugging it when it does not do what they
want. On the right is the output of a tool called Splint, an open source static
analysis tool for C that parsed this code.

Figure 4–53 Code parsing tools

#include <stdio.h>
int main () {
char c;
while (c != 'x'); {

c = getchar();
if (c = 'x') return 0;
switch (c) {

case '\n':
case '\r':

printf("Newline\n");
default:

printf("%c",c);
}

}

return 0; }

Output of Splint, an open-source
static analysis tool

1. Variable c used before definition
2. Suspected infinite loop. No value used in

loop test (c)

3. Assignment of into to char:
c = getchar()

4. Test expression for if() is
assignment expression: c = 'x'

5. Test expression for if() not Boolean,
type char: c = 'x'

6. Fall through case (no preceding break)

__AST V3.book Seite 268 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 269

Notice in item 1, the variable c is evaluated before it is set. That is not illegal, just
dim-witted. The variable c is set to whatever value it was when the code initial-
ized. It probably is not equal to the character 'x', and so it will probably work
almost every time. Almost! In those few cases when it does initialize to 'x', the
system will just return, having done nothing. Some new languages, such as C#,
will flag this as an error when compiled; most programming languages allow it.
Other programming languages allow it but also initialize the value of all vari-
ables to zero, which has the effect of preventing this particular problem but cre-
ating a certain problem if the value checked in the while condition were to be
zero.

In item 2, the code is probably not doing what the user wanted; the static
analysis tool is warning that there is no definite end to the loop. This is caused
by the semicolon following the while statement. That signifies an empty state-
ment (perfectly legal) but an infinite loop. Many programmers reading this
code do not see that the entire body of the while loop consists of the empty
statement represented by the semicolon.

Item 3 is a data typing mistake that might cause problems on some architec-
tures and may not on others. The output of the common library routine
getchar() is a data type int. It is being assigned to a data type char. It probably
will work in most instances; years ago, this kind of assignment was common
practice. We can foresee problems working with double-byte character sets and
some architectures where an int is much larger than a char. The programmer is
assuming that the assignment will always go correctly. They might be right...

Items 4 and 5 represent a definite bug. This is a common mistake that any-
one new to C is going to make again and again. In C, the assignment operator is
a single equal sign (=), while the Boolean equivalence operator is a double equal
sign (==). Oops. Rather than seeing if the inputted char is an ’x’, this code is
explicitly setting it to ’x’. Since the output of the assignment by definition is
TRUE, we will return 0 immediately. No matter what character is typed in, this
code will see it as an ’x’.

Even if the Boolean was evaluated correctly, even if the assignment of the
input was correct between the data types, this code would still not do what the
programmer expected. Item 6 points out that a break reserved word was not
used after the newline was outputted. That means that the default printf()
would also be executed each time, rather than only when a newline or carriage

__AST V3.book Seite 269 Freitag, 1. Juli 2011 1:06 13

270 4 Test Techniques

return was entered. That means the formatting of the output would be incor-
rect.

Oftentimes the output of this kind of static analysis tool is obtuse and diffi-
cult to understand. Sometimes the warning messages are for conditions that the
programmers understand and did on purpose. For these and many other rea-
sons, programmers often start ignoring various warning messages. Some of
these tools allow the user to selectively turn off certain classes of messages to
avoid the clutter.

As testers, however, it is likely worth our time to make sure every type of
warning is evaluated. The more safety or mission critical the software, the more
this is true. Some organizations require that all compiler and static analysis tool
warnings be turned over to the test team for evaluation.

As we mentioned earlier (and will further discuss when we get to non-func-
tional testing), maintainability is an important concept for an organization that
plans on surviving for more than a short time.

4.5.3 Standards and Guidelines

Programmers sometime consider programming standards and guidelines to be
wasteful and annoying. We can understand this viewpoint to a limited extent;
developers are often severely time and resource constrained. Better-written and
better-documented code takes a little more time to write. And, there may be
times when standards and guidelines are too onerous. Testers need to remind
developers that, long term, higher maintainability of the system will save time
and effort later.

Jamie once heard software developers described as the ultimate optimists.
No matter how many times they get burned, they always seem to assume that
“this time, we’ll get lucky and everything will work correctly.” A lament often
heard after a new build turns out to be chock-full of creepy-crawlers:

Why is it we never have time to do it right, but we always can take time to
do it over?

Perhaps it is time to take the tester’s attitude of professional pessimism seriously
and start taking the time to do it right up front.

There are a number of static analysis tools that can be customized to allow
local standards and guidelines to be enforced. And, some features might be
turned off at certain times if that makes economic or strategic sense. For exam-

__AST V3.book Seite 270 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 271

ple, if we are writing an emergency patch, we may be more relaxed about follow-
ing exact commenting guidelines for this session. “Heck, we can fix it
tomorrow!” Having said that, in many of the places we have worked, it often
seemed that we were always in emergency mode. The operative refrain was
always, “We'll get to that someday!” As Credence Clearwater Revival pointed
out, however, “Someday never comes.”

In the following paragraphs, we have recorded some of the standards and
guidelines that can be enforced if we were programming in Java and using a
static analysis tool called Checkstyle. This open source tool was created in 2001
and is currently in use around the world.

■ Check for embedded Javadoc comments. Javadoc is a protocol for
embedding documentation in code that can be parsed and exhibited in
HTML format. Essentially, this is a feature that allows an entire
organization to write formal documentation for a system. Of course, it only
works when every developer includes it in his or her code.

■ Enforce naming conventions to make code self-documenting. For example,
functions might be required to be named as action verbs with the return
data type encoded in them (e.g., strCalculateHeader(), recPlotPath(), etc.).
Constants may be required to be all caps. Variables might have their data
type encoded. There are many different naming conventions that have been
used; if everyone in an organization were to follow the standards and
guidelines, it would be much easier to understand everyone’s code, even if
you did not write it.

■ Check the cyclomatic complexity of a routine against a specified limit
automatically.

■ Ensure that required headers are in place. These are often designed to help
users pick the right routines to use in their own code rather than rewriting
them. Often the headers will enclose parameter lists, return value, side
effects, etc.

■ Check for magic numbers. Sometimes developers use constant values rather
than named constants in their code. This is particularly harmful when the
value changes because all occurrences must also be changed. Using a named
constant allows all changes to occur at once because the change is made in a
single location.

__AST V3.book Seite 271 Freitag, 1. Juli 2011 1:06 13

272 4 Test Techniques

■ Check for white space (or lack of same) around certain tokens or characters.
This gives the code a standardized look and often makes it easier to
understand.

■ Enforce generally agreed-upon conventions in the code. For example, there
is a document called “Code Conventions for the Java Programming
Language.”18 This document reflects the Java language coding standards
presented in the Java Language Specification19 by Sun Microsystems. As
such, it may be the closest thing to a standard that Java has. Checkstyle can
be set to enforce these conventions, which include details on how to build a
class correctly.

■ Search the code looking for duplicate code. This is designed to discourage
copy-and-paste operations, generally considered a really bad technique to
use. If the programmer needs to do the same thing multiple times, he
should refactor it into a callable routine.

■ Check for visibility problems. One of the features of object-oriented design
is the ability to hide sections of code. An object-oriented system is layered
with the idea of keeping the layers separated. If we know how a class is
designed, we might use some of that knowledge when deriving from that
class. However, using that knowledge may become problematic if the owner
of that class decides to change the code. Those changes might end up
breaking the code. In general, when we derive a new class, we should know
nothing about the super class beyond what the owner of it decides to
explicitly show us. Visibility errors occur when a class is not correctly
designed, showing more than it should.

These are just a few of the problems this kind of static analysis tool can expose.

18. http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
19. http://java.sun.com/docs/books/jls/

__AST V3.book Seite 272 Freitag, 1. Juli 2011 1:06 13

http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
http://java.sun.com/docs/books/jls/

 4.5 Static Analysis 273

4.5.4 Data-Flow Analysis

Our next topic is data-flow analysis; this covers a variety of techniques for gath-
ering information about the possible set of values that data can take during the
execution of the system. While control-flow analysis is concerned with the
paths that an execution thread may take through a code module, data-flow is
about the lifecycle of the data itself.

If we consider that a program is designed to create, set, read, evaluate (and
make decisions on), and destroy data, then we must consider the errors that
could occur during those processes.

Possible errors include performing the correct action on a data variable at
the wrong time in its lifecycle, doing the wrong thing at the right time, or the
trifecta, doing the wrong thing to the wrong data at the wrong time.

In Boris Beizer’s book Software Testing Techniques, when discussing why we
might want to perform data-flow testing, he quoted an even earlier work as fol-
lows:

It is our belief that, just as one would not feel confident about a program
without executing every statement in it as part of some test, one should not
feel confident about a program without having seen the effect of using the
value produced by each and every computation.20

Here are some examples of data-flow errors:

■ Assigning an incorrect or invalid value to a variable. These kinds of errors
include data-type conversion issues where the compiler allows a conversion
but there are side effects that are undesirable.

ISTQB Glossary

data-flow analysis: A form of static analysis based on the definition and
usage of variables.

data-flow testing: A white-box test design technique in which test cases are
designed to execute definition and use pairs of variables.

20. The earlier work was a paper: Rapps, S., and E. J. Weyuker. “Data-flow analysis techniques for
test data selection.” Sixth International Conference on Software Engineering, Tokyo, Japan.
September 13-16, 1982.

__AST V3.book Seite 273 Freitag, 1. Juli 2011 1:06 13

274 4 Test Techniques

■ Incorrect input results in the assignment of invalid values.
■ Failure to define a variable before using its value elsewhere.
■ Incorrect path taken due to the incorrect or unexpected value used in a

control predicate.
■ Trying to use a variable after it is destroyed or out of scope.
■ Redefining a variable before it is used.
■ Side effects of changing a value when the scope is not fully understood. For

example, a global or static variable’s change may cause ripples to other
processes or modules in the system.

Many data-flow issues are related to the programming languages being used.
Since some languages allow a programmer to implicitly declare variables

simply by naming and using them, a misspelling might cause a subtle bug in the
code. Other languages use very strong data typing where each variable must be
explicitly declared before use, but then allow the programmer to “cast” the vari-
able to another data type, assuming that the programmer knows what she is
doing (sometimes a dodgy assumption, we testers think).

Different languages have data scoping rules that can interact in very subtle
ways. Personally, we often find ourselves making mistakes in C++ because of its
scoping rules. A variable may be declared global or local, static or stack based; it
may even be specified that the variables be kept in registers to increase compu-
tation speed. A good rule of thumb for testers is to remember that when power
is given to the programmer by having special ways of dealing with data, the pro-
grammer will sometimes make mistakes.

Complex languages also tend to have gotchas. For example, C and C++ have
two different operators that look much the same. The single equal sign (=) is an
assignment operator, while the double equal sign (==) is a Boolean operator.
When it’s used in a Boolean expression, you would expect that the equal-equal
sign would be legal and the single equal sign would not be. But the output of an
assignment, for some arcane reason, evaluates to a Boolean TRUE. So it is really
easy to change the value of a variable unexpectedly by writing (X = 7) when the
programmer meant (X==7). As previously mentioned, this particular bug is a
really good reason to perform static analysis using tools.

The fact is that not all data anomalies are defects. Clever programmers
often do strange things, and sometimes there are even good reasons to do them.

__AST V3.book Seite 274 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 275

Written in a certain way, the code may execute faster. A good technical test ana-
lyst should be able to investigate the way data are used, no matter how good the
programmer; even great programmers generate bugs.

Unfortunately, as we shall see, data-flow analysis is not a universal remedy
for all of the ways defects can occur. Sometimes the static code will not contain
enough information to determine whether a bug exists. For example, the static
data may simply be a pointer into a dynamic structure that does not exist until
runtime. We may not be able to tell when another process or thread is going to
change the variable—race conditions are extremely difficult to track down even
when testing dynamically.

In complex code using interrupts to guide control-flow or when there are
multiple levels of prioritization that may occur, leaving the operating system to
decide what will execute when, static testing is pretty much guaranteed not to
find all of the interesting bugs that can occur.

It is important to remember that testing is a filtering process. We find some
bugs with this technique, some with that, some with another. There are many
times that data-flow analysis will find defects that might otherwise slip. As
always, we use the techniques that we can afford, based on the context of the
project we are testing. Data-flow analysis is one more weapon in your testing
arsenal.

4.5.5 Set-Use Pairs

Data-flow notation comes in a few different flavors; we are going to look at one
of them here. This one is sometimes called set-use pair notation.

We will split the lifecycle of a data variable into three separate patterns:

d: This stands for the time when the variable is created, defined, or initialized.
u: This stands for used. The variable may be used in a computation or in a deci-

sion predicate.
k: This stands for killed, destroyed. or has become out of scope.

These three atomic actions are then combined to show a data flow. A ~ (tilde) is
often used to show the first or last action that can occur.

__AST V3.book Seite 275 Freitag, 1. Juli 2011 1:06 13

276 4 Test Techniques

Table 4–49

Referring to table 4-49, there are 15 potential combinations of the atomic actions
we are concerned with:

1. ~d, or first define. This is the normal way a variable is originated; it is
declared. Note that this particular data-flow analysis scheme is somewhat
hazy as to whether at this point the value is defined or not. A variable is
declared in order to allocate space in memory for it; at that point, however, the
value the variable holds is unknown (although some languages have a default
value that is assigned, often zero or NULL). The variable needs to be set
before it is read (or in other words, used in the left side of an assignment state-
ment before it is used in the right side of an assignment statement, as an argu-
ment to a function, or in a decision predicate). Other data-flow schemes have
a special state for a ~d; when first declared, it holds a value of uninitialized.

2. du, or define-use. This is the normal way a variable is used. Defined first
and then used in an assignment or decision predicate.

3. dk, or define-kill. This is a likely bug; the variable was defined and then
killed off. The question must be asked as to why it was defined. Is it dead?

Anomaly Explanation

1. ~d first define Allowed.

2. du define-use Allowed, normal case.

3. dk define-kill Potential bug; data were never used.

4. ~u first use Potential bug; data were used without definition. It may be a
global variable, defined outside the routine.

5. ud use-define Allowed; data used and then redefined.

6. uk use-kill Allowed,

7. ~k first kill Potential bug; data are killed before definition.

8. ku kill-use Serious defect; data are used after being killed.

9. kd kill-define Usually allowed. Data are killed and then redefined. Some
theorists believe this should be disallowed.

10. dd define-define Potential bug; double definition.

11. uu use-use Allowed; normal case. Some do not bother testing this pair
since no redefinition occurred.

12. kk kill-kill Likely bug.

13. d~ define last Potential bug; dead variable? May be a global variable used
in another context.

14. u~ use last Allowed. Variable was used in this routine but not killed off.

15. k~ kill last Allowed; normal case.

__AST V3.book Seite 276 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 277

Or was there a thought of using it but the wrong variable was actually used
in later code? If creating the variable caused a desirable side effect to occur,
this might be done purposefully.

4. ~u, or first use. This is a potential bug since the data were used without a
known definition. It may not be a bug because the definition may have
occurred at a different scope. For example, it may be a global variable, set in
a different routine. This should be considered dodgy and should be investi-
gated by the tester. After all, race conditions may mean that the variable
never does get initialized in some cases. In addition, the best practice is to
limit the use of global variables to a few very special purposes.

5. ud, or use-define. This is allowed where the data are read and then set to a
different value. This can all occur in the same statement where the use is on
the right side of an assignment and the define is the left side of the state-
ment, such as X = X + 1, a simple increment of the value.

6. uk, or use-kill. This is expected and normal behavior.
7. ~k, or first kill. This is a potential bug where the variable is killed before it is

defined. It may simply be dead code, or it might be a serious failure waiting
to happen, such as when a dynamically allocated variable is destroyed
before actually being created, which would cause a runtime error.

8. ku, or kill-use. This is always a serious defect where the programmer has
tried to use the variable after it has gone out of scope or been destroyed. For
static variables, the compiler will normally catch this defect; for dynami-
cally allocated variables, it may cause a serious runtime error.

9. kd, or kill-define. This is usually allowed where a value is destroyed and
then redefined. Some theorists believe this should be disallowed; once a
variable is destroyed, bringing it back is begging for trouble. Others don’t
believe it should be an issue. Testers should evaluate this one carefully if it is
allowed.

10. dd, or define-define. This is a potential bug. The question should be asked
why the variable was defined the first time only to be defined again before
using it. At the very least, it is inefficient. As you will see in our example,
there may be a time when this is useful.

11. uu, or use-use. This is normal and done all of the time.
12. kk, or kill-kill. This is likely to be a bug, especially when using dynamically

created data. Once a variable is killed, trying to access it again—even to kill
it—will cause a runtime error.

__AST V3.book Seite 277 Freitag, 1. Juli 2011 1:06 13

278 4 Test Techniques

13. d~, or define last. While this is a potential bug, a dead variable that is never
used, it might just be that the variable is meant to be global and will be used
elsewhere. The tester should check all global variable use very carefully.

14. u~, or use last. This is common; it usually happens when variables simply
run out of scope at the end of a routine.

15. k~, or kill last. This is the normal case.

Following is an example to show how we use set-use pair analysis.

4.5.6 Set-Use Pair Example

Assume that a telephone company provides the following cell phone plan: If the
customer uses up to 100 minutes (inclusive), then there is a flat fee of $40 for the
plan. For all minutes used from 101 to 200 minutes (inclusive), there is an
added fee of $0.50 cents per minute. Any minutes used after that are billed at
$0.10 per minute. Finally, if the bill is over $100 or over, a 10 percent discount
on the entire bill is given.

A good tester would immediately ask the question as to how much is billed
if the user does not use the cell phone at all. Our assumption would be that they
still have to pay the $40. However, the code as given in figure 4-54 lets the user
off scot-free.

Figure 4–54

1. public static double calculateBill (int Usage) {
2. double Bill = 0;
3. if (Usage > 0) {
4. Bill = 40;
5.
6. if (Usage > 100) {
7. if (Usage <= 200) {
8. Bill = Bill + (Usage - 100) * 0.5;
9. }
10. else {
11. Bill = Bill + 50 + (Usage - 200) * 0.1;
12. if (Bill >= 100) {
13. Bill = Bill * 0.9;
14. }
15. }
16. }
17.
18. return Bill;
19. }

__AST V3.book Seite 278 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 279

Line 3 looks at the number of minutes billed. If none were billed, the initial $40
is not billed. Instead, it evaluates to FALSE and a $0.00 bill is sent. Frankly, we
wouldn’t mind if this were our phone company, but if we worked there, we
would flag this as an error.

Assuming a little time was used, however, the bill is set to $40 in line 4. In
line 6 we see if more than 100 minutes were used; in line 7 we check if more
than 200 minutes were used. If not, we simply calculate the extra minutes over
100 and add $0.50 cents for each one. If over 200 minutes, we take the base bill,
add $50.00 for the first extra 100 minutes, and then bill $0.10 per minute for all
extra minutes. Finally, we calculate the discount if the bill is over or equal to
$100.00.

For each variable, we create a d-u-k (define-use-kill) pattern list that tracks
all the changes to that variable through the module. In each case, we track the
line(s) in which an action takes place.

For the code in figure 4-54, table 4-50 shows the data-flow information for
the variable Usage:

Table 4–50

1. The Usage variable is created in line 1. It is actually a formal parameter that
is passed in as an argument when the function is called. In most languages,
this will be a variable that is created on the stack and immediately set to the
passed-in value.21

2. There is one du (define-use) pair at (1-3). This is simply saying that the
variable is defined on line 1 and used on line 3. This is expected behavior.

3. Each time that Usage is used following the previous du pair, it will be a uu
(use-use) pair until it is defined again or killed.

4. The Usage variable is used on line 3 and line 6. Then comes (6-7), (7-8), and
(7-11). Notice that there is no (8-11) pair because, under no circumstances,

Pattern Explanation

1. ~d (1) normal case

2. du (1-3) normal case

3. uu (3-6)(6-7)(7-8)(7-11) normal case

4. uk (6-19)(8-19)(11-19) normal case

5. k~ (19) normal case

__AST V3.book Seite 279 Freitag, 1. Juli 2011 1:06 13

280 4 Test Techniques

can we execute that path. Line 7 is in the TRUE branch of the conditional
and line 11 is in the FALSE path.

5. Under uk (use-kill), there are three possible pairs that we must deal with.
– (6-19) is possible when Usage has a value of 100 or less. We use it in

line 6 and then the next touch is when the function ends. At that time,
the stack frame is unrolled and the variable goes away.

– (8-19) is possible when Usage is between 101 and 200 inclusive. The
value of Bill is set and then we return.

– (11-19) is possible when Usage is greater than 200.
– Note that (3-19) and (7-19) are not possible because in each case, we

must touch Usage again before it is destroyed. For line 3, we must use it
again in line 6. For line 7, we must use it in either line 8 or 11.

6. Finally, at line 19 we have a kill last on Usage because the stack frame is
removed.

It is a little more complicated when we look at the local variable Bill, as shown in
table 4-51.

Table 4–51

21. To be a bit more precise, languages that create a copy of the value of the function’s parameter
when a function is called are said to use call-by-value parameters. If instead the function receives
a pointer to the memory location where the parameter resides, the language is said to use call-by-
reference parameters. Languages using call-by-value parameters can implement call-by-reference
parameters by passing in a pointer to the parameter explicitly. This can become a source of confu-
sion because, if the parameter is an array, then a pointer is passed even in call-by-value languages.
This aids efficiency because the entire contents of the array need not be copied to the stack, but
the programmer must remember that modifications to the values in the array will persist even
after the function returns.

Pattern Explanation

1. ~d (2) normal case

2. dd (2-4) suspicious

3. du (2-18)(4-8)(4-11)(11-12) normal case

4. ud (8-8)(11-11)(13-13) acceptable

5. uu (12-13)(12-18) normal case

6. uk (18-19) normal case

7. k~ (19) normal case

__AST V3.book Seite 280 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 281

1. ~d signifies that this is the first time this variable is defined. This is normal
for a local variable declaration.

2. dd (define-define) should be considered suspicious. Generally, you don’t
want to see a variable redefined before it is used. However, in this case it is
fine; we want to make sure that Bill is defined before first usage even though
it could be redefined. Note that if we did not set the value in line 2, then if
there was no phone minutes at all, we would have returned an undefined
value at the end. It might be zero, or it might not be. In some languages it is
not permissible to assign a value in a statement in which a variable is
declared. In such a case, the if() statement on line 3 would likely be given an
else clause where Bill would be set to the value of 0. The way this code is
currently written is likely more efficient than having another jump for the
else clause.

3. du (define-use) has a variety of usages:
■ The pair (2-18) happens when there are no phone minutes and ensures

that we do not return an undefined value.
■ The pair (4-8) occurs when Usage is between 101 and 200 inclusive.

Please note that the use part of it is on the right side of the statement—
not the left side. The value in Bill must be retrieved to perform the
calculation and then it is accessed again (after the calculation) to store
it.

■ (4-11) occurs when Usage is over 200 minutes. Again, it is used on the
right side of the statement, not the left.

■ (11-12) occurs when we reset the value (in the left side of the statement
on line 11) and then turn around and use it in the conditional in line 12.

4. ud (use-define) occurs when we assign a new value to a variable. Notice that
in lines 8, 11, and 13, we assign new values to the variable Bill. In each case,
we also use the old value for Bill in calculating the new value. Note that in
line 4, we do not use the value of Bill in the right side of the statement. How-
ever, because we do not actually use Bill before that line, it is not a ud pair;
instead, as mentioned in (2), it is a dd pair. In each case, this is considered
acceptable behavior.

5. uu (use-use) occurs in lines (12-13). In this case, the value of Bill is used in
the decision expression in line 12 and then reused in the right side of the
statement in line 13. It can also occur at (12-18) if the value of Bill is less
than $100.

__AST V3.book Seite 281 Freitag, 1. Juli 2011 1:06 13

282 4 Test Techniques

6. uk (use-kill) can occur only once in this code (18-19) since all execution is
serialized through line 18.

7. And finally, the k~ (kill last) occurs when the function ends at line 19. Since
the local variable goes out of scope automatically when the function
returns, it is killed.

Once the data-flow patterns are defined, testing becomes a relatively simple case
of selecting data such that each defined pair is covered. Of course, this does not
guarantee that all data-related bugs will be uncovered via this testing. Remem-
ber the factorial example earlier in this chapter? Data-flow testing would tell us
the code was sound; unfortunately, it would not tell us that when inputting a
value of 13 or higher, the loop would blow up.

A wise mentor who taught Jamie a great deal about testing once said, “If you
want a guarantee, buy a used car!”

If you followed the previous discussion where we were trying to do our
analysis directly from the code, you might guess where we are going next. Code
is confusing. Often, it is conceptually easier to go to a control-flow diagram and
perform the data-flow analysis from that.

In figure 4-55, you see the equivalent control-flow diagram that matches the
code. Make sure you match this to the code to ensure that you understand the
conversion. We will use this in an exercise directly. From this, we can build an
annotated control-flow diagram for any variable found in the code.

Figure 4–55 Control-flow diagram for example

2.
Usage > 0

0. Start

1. Bill = 0

3. Bill = 40

4.
Usage > 100

5.
Usage <= 200

7.
Bill >= 100

6. Bill = Bill + 50 +
(Usage-200) * 0.01

8. Bill = Bill * 0.9

10. return Bill

9. Bill +
(Usage – 100) * 0.5

11. End

YN

N

Y

N

Y

Y

N

__AST V3.book Seite 282 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 283

Figure 4–56 Annotated flow graph for variable Bill

Using the control-flow diagram from figure 4-55, we can build an annotated
flow graph for the variable Bill as seen in figure 4-56. It is much easier to find
the data connections when they are laid out this way, we believe. Note that we
have simply labeled each element of the flow with information about Bill based
on d-u-k values.

Table 4–52

Anomaly Explanation

~d 1 Normal case

dd 1-2-3 Potential bug

du 1-2-10
3-4-5-6
3-4-5-9
3-4-10
6-7
8-10
9-10

Normal case
Normal case
Normal case
Normal case
Normal case
Normal case
Normal case

ud 6-6
8-8
9-9

Normal case
Normal case
Normal case

uu 7-8
7-10

Normal case
Normal case

uk 10-11 Normal case

k~ 11 Normal case

2.

0. Start

1. Define Bill

3. Define Bill

4.

5.

7. Use Bill

6. Use Bill
Define Bill

8. Use Bill
Define Bill

10. Use Bill

9. Use Bill
Define Bill

11. Kill Bill

YN

N

Y

N

Y

Y

N

__AST V3.book Seite 283 Freitag, 1. Juli 2011 1:06 13

284 4 Test Techniques

From the annotated flow graph, we can create a table of set-use pairs as shown
in table 4-52. To make it more understandable, we have expanded the normal
notation (x-y) to show the intervening steps also.

Looking through this table of data-flows, we come up with the following:

■ One place where we have a first define (line 1)
■ One potential bug where we double-define (dd) in the flow 1-2-3
■ Seven separate du pairs where we define and then use Bill
■ Three separate ud pairs where we use and then redefine Bill
■ Two separate uu pairs where we use and then reuse Bill
■ One uk pair where we use and then kill Bill
■ And finally, one place where we kill Bill last

Why use an annotated control-flow rather than using the code directly? We
almost always find more data-flow pairs when looking at a control-flow graph
than at a piece of code.

4.5.7 Data-Flow Exercise

Using the control-flow and code previously shown, build an annotated control-
flow diagram for the variable Usage.

Perform the analysis for Usage, creating a d-u-k table for it.

4.5.8 Data-Flow Exercise Debrief

Figure 4-57 shows the annotated data-flow for the code.

Figure 4–57 Annotated flow graph for Usage

2. Use Usage

0. Define Usage

1.

3.

4. Use Usage

5. Use Usage

7.

6. Use Usage

8.

10.

9. Use Usage

11. Kill Usage

YN

N

Y

N

Y

Y

N

__AST V3.book Seite 284 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 285

Table 53 represents the data flows.

Table 4–53

■ The variable is defined in 0.
■ It is first used in 2 (0,1,2 is the path).
■ There are four use-use relationships, at (2-3-4), (4-5), (5-6), and (5-9).
■ There are five use-kill relationships, at (2-10-11), (4-10-11), (6-7-10-11),

(6-7-8-10-11), and (9-10-11).
■ There is a final kill at 11.

Note that all of the data flows appear normal.

4.5.9 Data-Flow Strategies

What we have examined so far for data-flow analysis is a technique for identify-
ing data flows; however, this does not rise to the status of being a full test strat-
egy. In this section, we will examine a number of possible data-flow testing
strategies that have been devised. Each of these strategies is intended to come
up with meaningful testing short of all path coverage. Since we don’t have infi-
nite time or resources, it is essential to figure out where we can trim testing
without losing too much value.

The strategies we will look at all turn on how variables are used in the code.
Remember that we have seen two different ways that variables can be used in this
chapter: in calculations (called c-use) or in predicate decisions (called p-use).

When we say that a variable is used in a calculation, we mean that it shows
up on the right-hand side of an assignment statement. For example, consider
the following line of code:

Z = A + X;

Both A and X are considered c-use variables; they are brought into the CPU
explicitly to be used in a computation where they are algebraically combined

Anomaly Explanation

~d 0 Normal case

du (0-1-2) Normal usage

uu (2-3-4), (4-5), (5-6), (5-9) Normal usage

uk (2-10-11), (4-10-11), (6-7-10-11), (6-7-8-10-11), (9-10-11) Normal usage

k~ 11 Normal usage

__AST V3.book Seite 285 Freitag, 1. Juli 2011 1:06 13

286 4 Test Techniques

and, in this case, assigned to a memory location. In this particular line of code,
Z is a define type use, so it’s not of interest to this discussion. Other uses of c-use
variables include as pointers, as parts of pointer calculations, and for file reads
and writes.

For predicate decision (p-use) variables, the most common usage is when
they appear directly in a condition expression. Consider this particular line of
code:

if (A < X) {}

This is an if() statement where the condition is (A<X). Both A and X are consid-
ered p-use variables. Other p-use examples include variables used as the control
variable of a loop, in expressions used to evaluate the selected branch of a case
statement, or as a pointer to an object that will direct control-flow.

In some languages a variable may be used as both p-use and c-use simulta-
neously; for example a test-and-clear machine language instruction. That type
of use is beyond the scope of this book, so we will ignore it for now. We will sim-
ply assume that each variable usage is one or the other, p-use or c-use.

The first strategy we will look at is also the strongest. That is, it encom-
passes all of the other strategies that we will discuss. It is called the all du path
strategy (ADUP). This strategy requires that every single du path from every
definition of every variable to every use of that variable (both p-use and c-use)
be exercised. While that sounds scary, it might not be as bad as it sounds since a
single test likely exercises many of the paths.

The second strategy, called all-uses (AU) relaxes the requirement that every
path be tested to require that at least one path segment from every definition to
every use (both p-use and c-use) that can be reached by that definition. For
ADUP coverage, we might have several paths that lead from a definition to a use
of the variable, even though those paths do not have any use of the variable in
question.

To differentiate the two, consider the following example: Assume a code
module wherein a variable X is defined in line 10 and then used in line 100
before being defined again. Further, assume that there is a switch statement with
10 different branches doing something that has nothing to do with the variable
X. To achieve ADUP, we would have to have 10 separate tests, one through each
branch of the switch statement leading to the use of the variable X. AU coverage

__AST V3.book Seite 286 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 287

would require only one test for the du pair, through any single branch of the
switch statement.

The all-definitions (AD) strategy requires only that every definition of every
variable be covered by at least one use of that variable regardless of whether it is
a p-use or c-use.

The remaining strategies we will discuss differentiate between testing p-use
and c-use instances for du pairs.

Two of these strategies are mirror images of each other. These include all p-
uses/some c-uses (APU+C) and all c-uses/some p-uses (ACU+P). Each of these
states that for every definition of a specific variable, you must test at least one
path from the definition to every use of it. That is, to achieve APU+C coverage,
for each variable (and each definition of that variable), test at least one defini-
tion-free path (du) to each predicate use of the variable. Likewise, for ACU+P, we
must test every variable (and every definition of that variable) with at least one
path to each computational use of the variable. Then, if there are definitions not
yet covered, fill in with paths to the off-type of use22. While the math is beyond
this book, Boris Beizer claims that APU+C is stronger than decision coverage but
ACU+P may be weaker or even not comparable to branch coverage.

Two more strategies, all p-uses (APU) and all c-uses (ACU), relax the
requirement that we test paths not covered by the p-use or c-use tests. Note that
this means some definition-use paths will not be tested.

We fully understand that the previous few paragraphs are information
dense. Remember, our overriding desire is to come up with a strategy that gives
us the right amount of testing for the context of our project at a cost we can
afford. There is a sizable body of research that has been done trying to answer
the most important question: Which of these strategies should I use for my
project? The correct answer, as so often in testing, is it depends.

A number of books have dedicated a lot of space discussing these strategies
in greater detail. A very thorough discussion can be found in The Compiler
Design Handbook.23 A somewhat more dense discussion can be found in Soft-
ware Testing Techniques.24

22.By off-type, we mean if the main tests are computational and we need more tests, then use
predicate use values (or vice versa).
23. The Compiler Design Handbook: Optimizations and Machine Code Generation, Second
Edition, by Y.N. Srikant and Priti Shankar.

__AST V3.book Seite 287 Freitag, 1. Juli 2011 1:06 13

288 4 Test Techniques

Figure 4–58 Rapps/Weyuker hierarchy of coverage metrics

Figure 4-58 may help as it tries to put the preceding discussion into context. At
the very top of the structure is all paths—the holy grail of testing that, in any
non-trivial system, is impossible to achieve. Below that is ADUP, which gives
the very best coverage at the highest cost in test cases. Next comes all uses,
which will require fewer tests at the cost of less coverage.

At this point, there is a discontinuity between the testing methods. The all
c-uses testing (ACU+P and ACU) are shown down the left side of the figure.
These are not comparable with their mirror image shown on the right side;
mathematically, they are inherently weaker than the other strategies at their
same level. The all p-uses (APU+C and APU) are comparable with and stronger
than branch coverage. The all defs (AD) strategy is weaker than APU+C and
ACU+P, but possibly stronger than APU and ACU.

Figure 4-58 should make the relative bug detection strengths—and also the
costs—of these strategies clearer. Bottom line, a technical tester should under-
stand that there are different strategies, and if the context of your project requires
a high level of coverage, one of these strategies may be the place to start.

4.5.10 Static Analysis for Integration Testing

In the Foundation syllabus, integration testing was discussed as being either
incremental or nonincremental. The incremental strategy was to build the
system a few pieces at a time, using drivers and stubs to replace missing
modules. We could start at the top level with stubs replacing modules lower in

24. Software Testing Techniques, Second Edition, by Boris Beizer

All Paths

All DU Paths

All Uses

All-C/Some-P

All-C Uses All Defs

All-P/Some-C

All-P Uses

Branch

Statement

__AST V3.book Seite 288 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 289

the hierarchy and build downward (i.e., top down). We could start at the bottom
level and, using drivers, build upward (i.e., bottom up). We could start in the
middle and build outward (the sandwich, or backbone, method).

What these methods have in common is the concept of test harnesses. Con-
sisting of drivers and stubs, they represent non-shippable code that we write to
be able to test a partial system.

There was a second strategy we discussed called the big bang, a nonincre-
mental methodology that required that all modules be available and built
together without incremental testing. Once the entire system was put together,
we would then test it all together. The Foundation syllabus is pretty specific in
its disdain for the big bang theory:

In order to ease fault isolation and detect defects early, integration
should normally be incremental rather than “big bang.”25

The incremental strategy has the advantage that it is intuitive. After all, if we
have a partial build that appears to work correctly, and then we add a new mod-
ule and the partial build fails, we all know where the problem is.

In some organizations, however, the biggest roadblock to good integration
testing is the large amount of non-shippable code that must be created. It is
often seen as wasteful; after all, why spend time writing code that is not
included in the build or destined for the final users? Frankly, extra coding that is
not meant to ship is very hard to sell to a project manager when other testing
techniques (i.e., the big bang) are available. In addition, when the system is non-
trivial, a great number of builds are needed to test in an incremental way.

In his book Software Testing, A Craftsman's Approach, Paul Jorgensen sug-
gests another reason that incremental testing might not be the best choice.
Functional decomposition of the structure—and therefore integration by that
structure—is designed to fit the needs of the project manager rather than the
needs of the software engineers. Jorgensen claims that the whole mechanism
presumes that correct behavior follows from individually correct units (that
have been fully unit-tested) and correct interfaces. Further, the thought is that
the physical structure has something to do with this. In other words, the entire
test basis is built upon the logic of the functional decomposition, which likely
was done based on the ease of creating the modules or the ability to assign cer-
tain modules to certain developers.

25. Foundation syllabus, Section 2.2.2

__AST V3.book Seite 289 Freitag, 1. Juli 2011 1:06 13

290 4 Test Techniques

4.5.11 Call-Graph Based Integration Testing

Rather than physical structure being paramount, Jorgensen suggests that call-
graph based integration makes more sense. Simply because two units are struc-
turally next to each other in a decomposition diagram, it does not necessarily
follow that it is meaningful to test them together. Instead, he suggests that what
makes sense is to look at which modules are working together, calling each
other. His suggestion is to look at the behavior of groups of modules that work
together using graph theory.

Two arguments against incremental integration are the large number of
builds needed and the amount of non-shippable code that must be written to
support the testing. If we can reduce both of those and still do good testing, we
should consider it. Of course, there are still two really good arguments for incre-
mental testing: It is early testing rather than late, and when we find bugs, it is
usually easier to identify the causes of them. Using call-graphs for integration
testing would be considered a success if we can reduce the former two (number
of builds and cost of non-shippable code) without exacerbating the latter two
(finding bugs late and difficulty of narrowing down where the bugs are).

Figure 4–59 Pairwise graph example

5

17

16

1

11

12

10

9

21

20

7

6 8 2 3

27 2526
24

23
19

13

4

22

18

14 15

__AST V3.book Seite 290 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 291

Take a look at figure 4-59. This graph from Paul Jorgensen’s book is called a
pairwise graph. The gray boxes shown on the graph denote pairs of components
to test together. The main impetus for pairwise integration is to reduce the
amount of test harness code that must be written. Each testing session uses the
entire build but targets pairs of components that work together (found by look-
ing at the call-graph as shown here). Theoretically, at least, this reduces the
problem of where the system is broken when we find a failure. Since we are not
concentrating on systemwide behavior but targeting a very specific set of behav-
iors, failure root cause should be easier to determine.

The number of testing sessions is not reduced appreciably, but many sessions
can be performed on the same build, so the number of needed builds may be
minimally reduced. On the other hand, the amount of non-shippable code that is
required is reduced to almost nothing since the entire build is being tested.

In the graph in figure 4-59, four sessions are shown, modules 9-16, 17-18,
22-24, and 4-27.

Figure 4–60 Neighborhood integration example

The second technique, shown in figure 4-60, is called neighborhood integra-
tion. This uses the same integration graph that you saw in figure 4-59 but

5

17

16

1

11

12

10

9

21

20

7

6 8 2 3

27 25
2624

23
19

13

4

22

18

14 15

__AST V3.book Seite 291 Freitag, 1. Juli 2011 1:06 13

292 4 Test Techniques

groups nodes differently. The neighborhood integration theory allows us to
reduce the number of test sessions needed by looking at the neighborhood of a
specific node. That means all of the immediate predecessor and successor nodes
of a given node are tested together. In figure 4-60, two neighborhoods are
shown: that of node 16 and that of node 26. By testing neighborhoods, we
reduce the number of sessions dramatically, though we do increase the possible
problem of localizing failures. Once again, there is little to no test harness cod-
ing needed. Jorgensen calls neighborhood testing medium bang testing.

Clearly we should discuss the good and bad points of call-graph integration
testing. On the positive side, we are now looking at the actual behavior of actual
code rather than simply basing our testing on where a module exists in the hier-
archy. Savings on test harness development and maintenance costs can be
appreciable. Builds can be staged based on groups of neighborhoods, so sched-
uling them can be more meaningful. In addition, while testing, neighborhoods
can be merged and tested together to give some incrementalism to the testing
(Jorgensen inevitably calls these merged areas villages).

The negative side of this strategy is appreciable. We can call it medium bang
or target specific sets of modules to test, but the entire system is still running.
And, since we have to wait until the system is reasonably complete so we can
avoid the test harnesses, we end up testing later than if we had used incremental
testing.

There is another, subtle issue that must be considered. Suppose we find a
failure in a node in the graph. It likely belongs to several different neighbor-
hoods. Each one of them should be retested after a fix is implemented; this
means the possibility of more regression testing during integration testing.

In our careers, we have never had the opportunity to perform pairwise or
neighborhood integration testing. In researching this course, we have not been
able to find many published documents even discussing the techniques. While
the stated goals of reducing extraneous coding and moving toward behavioral
testing are admirable, one must wonder whether the drawbacks of late testing
make these two methods less desirable.

4.5.12 McCabe Design Predicate Approach to Integration Testing

How many test cases do we need for doing integration testing? Good test
management practices and the ability to estimate how many resources we need

__AST V3.book Seite 292 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 293

both require an answer to this question. When we were looking at unit testing,
we found out that McCabe’s cyclomatic complexity could at least give us the
basis set—the minimum number of test cases we needed.

It turns out that McCabe also has some theories about how to approach
integration testing. This technique, which is called McCabe’s design predicate
approach, consists of three steps:

1. Draw a call-graph between the modules of a system showing how each unit
calls and is called by others. This graph has four separate kinds of interac-
tions, as you shall see in a moment.

2. Calculate the integration complexity.
3. Select tests to exercise each type of interaction, not every combination of all

interactions.

As with unit testing, this does not show us how to exhaustively test all the possi-
ble paths through the system. Instead, it gives us a minimum number of tests we
need to cover the structure of the system.

We will use the basis path/basis tests terminology to describe these tests.

Figure 4–61 Unconditional call

The first design predicate (figure 4-61) is an unconditional call. As shown here,
it is designated by a straight line arrow between two modules. Since there is
never a decision with an unconditional call, there is no increase in complexity
due to it. This is designated by the zero (0) that is placed at the source side of the
arrow connecting the modules.

Remember, it is decisions that increase complexity. Do we go here or there?
How many times do we do that? In an unconditional call, there is no decision
made. It always happens.

It is important to differentiate the integration testing from the functionality
of the modules we are testing. The inner workings of a module might be
extremely complex, with all kinds of calculations going on. For integration test-

__AST V3.book Seite 293 Freitag, 1. Juli 2011 1:06 13

294 4 Test Techniques

ing, those are all ignored; we are interested in testing how modules communi-
cate and work together.

Figure 4–62 Conditional call

We might decide to call another module, or we might not. figure 4-62 shows the
conditional call, where an internal decision is made as to whether we will call
the second unit. For integration testing, again, we don’t care how the decision is
made. Because it is a possibility only that a call may be made, we say that the
complexity goes up to one (1). Note that the arrow now has a small filled-in cir-
cle at the tail (source) end. Once again, we show the complexity increase by
placing a 1 by the tail of the arrow.

It is important to understand that number. The complexity is not one, it is
an increase of one. Suppose this graph represented the entire system. We have
an increase of complexity of one, but the question is an increase from what?
One way to look at it is to say that the first test is free, as it were. So the uncondi-
tional call does not increase the complexity, and we would need one test to
cover it. One test is the minimum—would you ever feel free to test zero times? If
you have gotten this far in this book, we would hope the answer is always a
resounding “no!”.

In this case, we start with that first test. Then, because we have an increase
of one, we would need a second test. As you might expect, one test is where we
call the module, the other is when we do not.

Figure 4–63 Mutually exclusive conditional call

__AST V3.book Seite 294 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 295

The third design predicate (figure 4-63) is called a mutually exclusive condi-
tional call. This happens when a module will call one—and only one—of a
number of different units. We are guaranteed to make a call to one of the units;
which one will be called will be decided by some internal logic to the module.

In this structure, it is clear that we will need to test all of the possible calls at
one time or another; that means there will be a complexity increase. This
increase in complexity can be calculated based on the number of possible tar-
gets; if there are three targets as shown, the complexity increase would be 2
(two), calculated by the number of possibilities minus one. Note in the graph
that a filled-in circle at the tail of the arrows shows that some of the targets will
not be called.

Figure 4–64 Unconditional calls

In the next graph (figure 4-64), we show something that looks about the same. It
is important, however, to see the difference. Without the dot in the tail, there is
no conditional. That means that the execution of any test must include Unit 0 to
Unit 1 execution as well as Unit 0 to Unit 2 execution and Unit 0 to Unit n at one
time or another. This would look much clearer if it were drawn with the three
arrows each touching Unit 0 in different places instead of converging to one
place. No matter how it is drawn, however, the meaning is the same. With no
conditional dot, they are unconditional connections, hence there is no increase
in complexity.

Figure 4–65 Iterative call

In (figure 4-65), we have the iterative call. This occurs when a unit is called at
least once but may be called multiple times. This is designated by the arcing

__AST V3.book Seite 295 Freitag, 1. Juli 2011 1:06 13

296 4 Test Techniques

arrow on the source module in the graph. In this case, the increase in complex-
ity is deemed to be one, as shown in the graph.

Figure 4–66 Iterative conditional call

Last but not least, we have the iterative conditional call. As seen in this last
graph (figure 4-66), if we add a conditional signifier to the iterative call, it
increases the complexity by one. That means Unit 0 may call Unit 1 zero times,
one time, or multiple times. Essentially this should be considered exactly the
same as the way we treated loop coverage earlier in the chapter.

4.5.13 Hex Converter Example

In an exercise earlier in this chapter, you saw the basic hex converter code. The
code in figure 4-67 is a hex converter, but now we have enhanced it for the real
world.

This code is for UNIX or Linux; it will not work with Windows without
modification of the interrupt handling. Here is the explanation of the code.

When the program is invoked, it calls the signal() function. If the return
value tells main() that SIGINT is not currently ignored, then main() calls
signal() again to set the function pophdigit() as the signal handler for SIGINT.
main() then calls setjmp() to save the program condition in anticipation of a
longjmp() back to this spot. Note that when we get ready to graph this, signal() is
definitely called once. After that, it may or may not be called again to set the
return value.

main() then calls getchar() at least once. If upon first call an EOF is
returned, the loop is ignored and fprint() is called to report the error. If not EOF,
the loop will be executed. All legal hex characters (A–F, a–f, 0–9) will be trans-
lated to a hex digit and appended to the hex number as the next logical digit. In
addition, a counter will be incremented for each hex char received. This contin-
ues to pick up input chars until the EOF is found.

__AST V3.book Seite 296 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 297

Figure 4–67 Enhanced hex code converter code

1. jmp_buf sjbuf;
2. unsigned long int hexnum;
3. unsigned long int nhex;
4.
5. main()
6. /* Classify and count input chars */
7. {
8. int c, qotnum;
9. void pophdigit();
10.
11. hexnum = nhex = 0;
12.
13. if (signal(SIGINT, SIG_IGN) != SIG_IGN) {
14. signal(SIGINT, pophdigit);
15. setjmp(sjbuf);
16. }
17. while ((c = getchar()) !=EOF) {
18. switch (c) {
19. case '0': case '1': case '2': case '3': case '4':
20. case '5': case '6': case '7': case '8': case '9':
21. /* Convert a decimal digit */
22. nhex++;
23. hexnum *= 0X10;
24. hexnum += (c – '0');
25. break;
26. case 'a': case 'b': case 'c':
27. case 'd': case 'e': case 'f':
28. /* Convert a lower case hex digit */
29. nhex++;
30. hexnum *= 0X10;
31. hexnum += (c – 'a' + 0xa);
32. break;
33. case 'A': case 'B': case 'C':
34. case 'D': case 'E': case 'F':
35. /* Convert an upper case hex digit */
36. nhex++;
37. hexnum *= 0X10;
38. hexnum += (c – 'A' + 0xA);
39. break;
40. default;
41. /* Skip any non-hex characters */
42. break;
43. }
44. }
45. if (nhex == 0) {
46. fprintf(stderr, "hexcvt: no hex digits to convert!\n");
47. } else {
48. printf("Got %d hex digits: %x\n", nhex, hexnum);
49. }
50.
51. return 0;
52. }
53. void pophdigit()
54. /* Pop the last hex input out of hexnum if interrupted */ {
55. signal(SIGINT, pophdigit);
56. hexnum /= 0x10;
57. nhex --;
58. longjmp(sjbuf, 0);
59. }

__AST V3.book Seite 297 Freitag, 1. Juli 2011 1:06 13

298 4 Test Techniques

If an interrupt (Ctrl-C) is received, it will call the pophdigit() routine, which will
pop off the latest value and decrement the hex digit count.

What we would like to do with this is figure out the minimum number of
tests we need for integration testing.

Figure 4–68 Enhanced hex converter integration graph

Figure 4-68 is the call-graph for the enhanced hex converter code. Let’s walk
through it from left to right.

Module main (A) calls signal (B) once with a possibility of a second call.
That makes it iterative, with an increase in complexity of 1.

The function pophdigit() (C) may be called any number of times; each time
there is a signal (Ctrl-C), this function is called. When it is called, it always calls
the signal (B) function. Since it might be called 0 time, 1 time, or multiple times,
the increase in complexity is 2.

The function setjmp (E) may occur once in that case when signal (B) is
called twice. That makes it conditional with an increase in complexity of 1.

The function getchar (F) is guaranteed to be called once and could be called
any number of times. That makes it iterative with an increase in complexity of 1.

One of the functions printf (G) or fprintf (H) will be called but not the other.
That makes it a mutually exclusive conditional call. Since there are two possibil-
ities, the increase in complexity is (N - 1), or 1.

__AST V3.book Seite 298 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 299

Finally, the function pophdigit (C) always calls signal (B) and longjmp (D),
so each of those has an increase in complexity of 0.

The integration complexity is seven, so we need seven distinct test cases,
right? Not necessarily! It simply means that there are seven separate paths that
must be covered. If that sounds confusing, well, this graph is different than the
directed graphs that we used when looking at cyclomatic complexity. When
using a call-graph, you must remember that after the call is completed, the
thread of execution goes back to the calling module.

So, when we start out, we are executing in main(). We call the signal() func-
tion, which returns back to main(). Depending on the return value, we may call
signal() again to set the handler and then return to main(). Then, if we called
signal(), the second time we call setjmp() and return back to main(). This is not a
directed graph where you go in only one direction and never return to the same
place unless there is a loop.

Therefore, several basis paths can be covered in a single test. You might ask
whether that is a good or bad thing. We have been saying all along that fewer
tests are good because we can save time and resources. Well, okay, that was not
really what we have been saying. The refrain we keep coming back to is that
fewer tests are better if they give us the amount of testing we need based on the
context of the project.

Fewer tests may cause us to miss some subtle bugs. Jamie remembers going
to a conference once and sitting through a presentation by a person who was
brand new to requirements-based testing. This person clearly had not really
gotten the full story on risk-based testing (RBT) because he kept on insisting
that as long as there was one test per requirement, that was enough testing.
When asked if some requirements might need more than one test, he refused to
admit that might even be possible.

A good rule of thumb is the more complex the software, the bigger the sys-
tem, the more difficult the system is to debug, the more test cases you should
plan on running—even if the strict minimum is fewer tests. Look for interesting
interactions between modules, and plan on executing more iterations and using
more and different data.

For now, let’s assume that we want the minimum number of tests. We
always like starting with a simple test to make sure some functionality works, a
Hello World–type test (see figure 4-68).

__AST V3.book Seite 299 Freitag, 1. Juli 2011 1:06 13

300 4 Test Techniques

1. We want to input just an A to make sure we get an output. We would expect
it to test the following path: ABBEFFG and give an output of a. This will test
the paths between main(), signal(), setjmp(), getchar(), and printf().

2. Our second test is to make sure the system works when no input is given.
This test will invoke the program but input an immediate EOF without any
other characters: ABFH. We would expect that it would exercise the main(),
signal(), and getchar() and, differently this time, the fprintf(). Output should
be the no input message.

3. Our third test would be designed to test the interrupt handler. The input
would be F5^CT9a. The interrupt is triggered by typing in the Ctrl and C
keys together (shown here by the caret C). Note that we have also included a
non-hex character to make sure it gets sloughed off. The paths covered
should be ABBEFFFCBDFFFG and should execute in the following order:
main(), signal, signal, setjmp(), getchar(), getchar(), getchar(), pophdigit(),
longjmp(), getchar(), getchar(), getchar(), printf(). We would expect an out-
put of f9a.

At this point, we have executed each one of the paths at least once. But have we
covered all of the design predicates? Notice that the connection from main (A)
to pophdigit (C) is an iterative, conditional call. We have tested it 0 times and
1 time, but not iteratively. So, we need a fourth test.

4. This test is designed to test the interrupt handler multiple times. Ideally we
would like to send a lot of characters at it with multiple Ctrl-C (signal) char-
acters. Our expected output would be all hex characters; the number of
them would be the number inputted less the number of Ctrl-Cs that were
inputted.

Would we want to test this further? Sure. In working with this example, we
found a really subtle bug. Try tracing out what happens if the first inputted
character is a Ctrl-C signal. In addition, the accumulator is defined as an
unsigned long int; we wonder what happens when we input more characters
than it can hold?

Typically, we want to start with the minimum test cases as sort of a smoke
test, and then continue with interesting test cases to check the nuances. Your
mileage may vary!

__AST V3.book Seite 300 Freitag, 1. Juli 2011 1:06 13

 4.5 Static Analysis 301

4.5.14 McCabe Design Predicate Exercise

Calculate the integration complexity of the call-graph in figure 4-69.

Figure 4–69 Design predicate exercise

4.5.15 McCabe Design Predicate Exercise Debrief

We tend to try to be systematic when going through a problem like this. We
have modules A through H, each one has zero to five arrows coming from it.
Our first pass through we just try to capture that information. We should have
as many predicates as arrows. Then, for each one, we identify the predicate type
and calculate the increase of paths needed. Don’t forget that the first test is free!

Module A
■ A to B: Conditional call (+1)
■ A to C, A to F, A to E: Mutually exclusive conditional call (n-1, therefore +2)
■ A to D: Iterative conditional call (+2)

Module B
■ B to C: Conditional call (+1)

Module C
■ C to H: Conditional call (+1)

__AST V3.book Seite 301 Freitag, 1. Juli 2011 1:06 13

302 4 Test Techniques

Module D
■ D to H: Conditional call (+1)

Module E
■ E to G: Iterative call (+1)

Module F
■ F to H: Unconditional call (+0)

Module G
■ G to H: Unconditional call (+0)

Therefore, the calculation is as follows:
IC = (1 + 2 + 2 + 1 + 1 + 1 + 1 + 1) == 10

4.6 Dynamic Analysis

In the previous section, we discussed static analysis. In this section we will dis-
cuss dynamic analysis. As the name suggests, this is something that is done
while the system is executing. Dynamic analysis almost always requires instru-
mentation of some kind. In some cases, a special compiler creates the build,
putting special code in that writes to a log. In other cases, a tool is run concur-
rently with the system under test; the tool monitors the system as it runs, some-
times reporting in real time and almost always logging results.

ISTQB Glossary

dynamic analysis: The process of evaluating behavior, e.g., memory perfor-
mance, CPU usage, of a system or component during execution.

Learning objectives
(K2) Explain how dynamic analysis for code can be executed and
summarize the defects that can be identified using that technique,
and its limitations.

__AST V3.book Seite 302 Freitag, 1. Juli 2011 1:06 13

 4.6 Dynamic Analysis 303

Dynamic analysis is a solution to a common problem in computer programs.
While the system is executing, a failure occurs at a point in time, but there are
no outward symptoms of the failure for the user to see. If a tree falls in the woods
and no one hears it, does it make a sound? We don’t know if a failure that we
don’t perceive right away makes a sound, but it almost always leaves damage
behind. The damage may be corrupted data, a land-mine waiting for a later user
to step on, a general slowdown of the system, or an upcoming blue screen of
death; there are a lot of eventual symptoms possible.

So what causes these failures? Here are some possibilities.
It may be a memory leak where a developer forgets to deallocate a small

piece of memory in a function that is run hundreds of times a minute. Each leak
is small, but the sum total is a crash when the system runs out of RAM a few
hours down the road.

It may be a wild pointer that changes a byte on the stack erroneously; the
byte that was changed is in the instruction flow so that when it is executed, it
does the wrong thing; instead of adding two values, it rotates the current word
in the processor.

It may be an application programming interface (API) call to the operating
system that has the wrong arguments, so the operating system allocates too
small a buffer and the input data from a device are corrupted by being trun-
cated.

The fact is, there are likely to be an uncountable number of different failures
that could be caused by the smallest errors.

Dynamic analysis tools work by monitoring the system as it runs. Some
dynamic analysis tools are intrusive; that is, they cause extra code to be inserted
right in the system code, often by a special compiler. These types of tools tend to

ISTQB Glossary

memory leak: A memory access failure due to a defect in a program's
dynamic store allocation logic that causes it to fail to release memory after it
has finished using it, eventually causing the program and/or other concurrent
processes to fail due to lack of memory.

wild pointer: A pointer that references a location that is out of scope for that
pointer or that does not exist.

memory leak

wild pointer

__AST V3.book Seite 303 Freitag, 1. Juli 2011 1:06 13

304 4 Test Techniques

be logging tools. Every module, every routine gets some extra logging code
inserted during the compile. When a routine starts executing, it writes a mes-
sage to the log; essentially a “Kilroy was here” type message.

The tool may cause special bit patterns to be automatically written to
dynamically allocated memory. Jamie remembers wondering what a DEAD-
BEEF was when he first started testing because he kept seeing it in test results. It
turns out that DEADBEEF is a 32-bit hex code that the compiler generated to
fill dynamically allocated memory with; it allowed them to find problems when
the (re)allocated heap memory was involved in anomalies. This bit pattern
made it relatively simple when looking at a memory dump to find areas where
the pattern is interrupted.

Other dynamic analysis tools are much more active. Some of them are ini-
tialized before the system is started. The system then (essentially) executes in a
resource bubble supplied by the tool. When a wild pointer is detected or a bad
API call is made, the tool determines it immediately. Some of these tools work
with a *.map file (created by the compiler and used in debugging) to isolate the
exact line of code that caused the failure. This information might be logged, or
the tool might stop execution immediately and bring up the IDE (integrated
development environment) with the module opened to the very line of code
that failed.

Logging-type dynamic analysis tools are very useful when being run by
testers; the logs that are created can be turned over to developers for defect iso-
lation. The interactive-type tools are appropriate when the developers or skilled
technical testers are testing their own code.

These tools are especially useful when failures occur that cannot be repli-
cated since they save data to the log that indicate what actually happened. Even
if we cannot re-create the failure conditions, we have a record of them. And by
capturing the actual execution profile in logs, developers often glean enough
information that they can improve the dynamic behavior of the runtime system.

Dynamic analysis tools can be used by developers during unit and integra-
tion testing and debugging. We have found it very useful for testers to use them
during system testing. Because they may slow down the system appreciably, and
because they are sometimes intrusive to the extent of changing the way a system
executes, we don’t recommend that they be used in every test session. There is a
need to execute at least some of the testing with the system configured the way

__AST V3.book Seite 304 Freitag, 1. Juli 2011 1:06 13

 4.6 Dynamic Analysis 305

the users will get it. But some testing, especially in early builds, can really bene-
fit from dynamic analysis tools.

There are some dynamic tools that are not intrusive. These do not change
the system code; instead, they sit in memory and extrapolate what the system is
doing by monitoring the memory that is being used during execution. While
these type tools tend to be more pricey, they may well be worth the investment.

All of these tools generate reports that can be analyzed after the test run and
turned over to developers for debugging purposes.

These tools are not perfect. Because many of them exhibit the probe effect,
that is, they change the execution profile of the system, they do force more test-
ing to be done. Timing and profile testing certainly should not be performed
with these tools active as the timing of the system can change radically. And
some of these tools require development artifacts be available, including code
modules, MAP files, etc.

In our experience, the advantages of these tools generally far outweigh the
disadvantages. Let’s look at a few different types of dynamic analysis tools.

4.6.1 Memory Leak Detection

Memory leaks are a critical side effect of developer errors when working in
environments that allow allocation of dynamic memory without having auto-
matic garbage collection. Garbage collection means that the system automati-
cally recovers allocated memory once the developer is done with it. For
example, Java has automatic garbage collection, while standard C and C++
compilers do not.

Memory can also be lost when operating system APIs are called with incor-
rect arguments or out of order. There have been times when compilers gener-
ated code that had memory leaks on their own; much more common, however,
is for developers to make subtle mistakes that cause these leaks.

The way we conduct testing is often not conducive to finding memory leaks
without the aid of a dynamic analysis tool. We tend to start a system, run it for a
relatively short time for a number of tests, and then shut it down. Since memory
leaks tend to be a long-term issue, we often don’t find them during normal test-
ing. Customers and users of our systems do find them because they often start the
system and run it 24/7, week after week, and month after month. What might be
a mere molehill in the test lab often becomes a mountain in production.

__AST V3.book Seite 305 Freitag, 1. Juli 2011 1:06 13

306 4 Test Techniques

A dynamic analysis tool that can track memory leaks generally monitors
both the allocation and deallocation of memory. When a dynamically allocated
block of memory goes out of scope without being explicitly deallocated, the tool
notes the location of the leak. Some tools then write that information to a log,
while others might stop the execution immediately and go to the line of code
where the allocation occurred.

All of these tools write voluminous reports that allow developers to trace
the root cause of failures.

Figure 4–70 Memory leak logging file

Figure 4-70 shows the output of such a tool. For a developer, this is very impor-
tant information. It shows the actual size of every allocated memory block that
was lost, the stack trace of the execution, and the line of code where the
memory was allocated. A wide variety of reports can be derived from this infor-
mation:

■ Leak detection source report (this one)
■ Heap status report

__AST V3.book Seite 306 Freitag, 1. Juli 2011 1:06 13

 4.6 Dynamic Analysis 307

■ Memory usage report
■ Corrupted memory report
■ Memory usage comparison report.

Some of this information is available only when certain artifacts are available to
the tool at runtime. For example, a MAP file and a full debug build would be
needed to get a report this detailed.

4.6.2 Wild Pointer Detection

Another major cause of failures that occur in systems written in certain lan-
guages is pointer problems. A pointer is an address of memory where some-
thing of importance is stored. C, C++, and many other programming languages
allow users to access these with impunity. Other languages (Delphi, C#, Java)
supply functionality that allows developers to do powerful things without
explicitly using pointers. Some languages do not allow the manipulation of
pointers at all due to their inherent danger.

The ability to manipulate memory using pointers gives a programmer a lot
of power., but with a lot of power comes a lot of responsibility. Misusing point-
ers causes some of the worst failures that can occur.

Compilers try to help the developers use pointers more safely by preventing
some usage and warning on others; however, the compilers can usually be over-
ridden by a developer who wants to do a certain thing. The sad fact is, for each
correct way to do something, there are usually many different ways to do it
poorly. Sometimes a particular use of pointers appears to work correctly; only
later do we get a failure when the (in)correct set of circumstances occurs.

The good news is that the same dynamic tools that help with memory leaks
can help with pointer problems.

Some of the consequences of pointer failures are listed here:

1. Sometimes we get lucky and nothing happens. A wild pointer corrupts
something that is not used throughout the rest of the test session. Unfortu-
nately, in production we are not this lucky; if you damage something with a
pointer, it usually shows a symptom eventually.

2. The system might crash. This might occur when the pointer trashes an
instruction of a return address on the stack.

__AST V3.book Seite 307 Freitag, 1. Juli 2011 1:06 13

308 4 Test Techniques

3. Functionality might be degraded slightly—sometimes with error messages,
sometimes not. This might occur with a gradual loss of memory due to
poor pointer arithmetic or other sloppy usage.

4. Data might be corrupted. Best case is when this happens in such a gross way
that we see it immediately. Worst case is when that data are stored in a per-
manent location where they will reside for a period before causing a failure
that affects the user.

Short of preventing developers from using pointers (not likely), the best preven-
tion of pointer-induced failures is the preventive use of dynamic analysis tools.

4.6.3 API Misuse Detection

The final target for dynamic analysis tools that we will address is API errors.
APIs (application programming interfaces) are everywhere and becoming more
prevalent. Essentially, an API is created when we have remote functionality that
can be shared. The operating system supplies almost all of its services through
APIs, as do networks, the Web, and most remote services. If we need to open a
file, allocate some memory, listen to the keyboard or external device, put some-
thing on the screen or monitor the mouse, we need to call the correct APIs in
the proper order and with the correct arguments. COM/DCOM objects in Win-
dows, ODBC and most middleware, sockets and synchronization structures:
these all depend on the proper usage of APIs.

With so much of the functionality of the working system supplied by other
entities through APIs, the possibilities for failure are endless. Often, many of the
APIs that are called are hidden by the compiler. For example, if we want to open
a stored file to read it, most programming languages have a simple function—
let’s call it OpenFile()—that does the work for us. What the compiler generates,
however, are a number of API calls to the operating system to actually do the
dirty work. Ideally, the compiler generates good code that makes calls in the
correct way. As a rule, the OpenFile() call will return an error code if there are
any problems during the task execution.

API errors are usually not surfaced explicitly to the user of a system.
Instead, errors are returned to the calling system, often as a return code value. If
the programmer does not evaluate the return code, the error goes unnoticed. So
if our programmer does not process the return value of OpenFile(), the failure to
correctly open the file may not be caught immediately.

__AST V3.book Seite 308 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 309

Unfortunately, simply because the error was not globally surfaced does not
mean it did not occur. Something has not worked as expected—in this case the
file didn’t open correctly, and the repercussions to that failure tend to snowball.
Often, a user-detected symptom at a given point may have been caused by a
simple API error billions of computer cycles in the past. It goes without saying
that trying to track down failures like this is time consuming and ultimately
frustrating.

Dynamic analysis tools work by catching the API call before it executes and
checking the given arguments against the expected parameter list. Likewise, the
order of related API calls are monitored. When a violation of given rules is found,
the system may log the anomaly or, in some cases, halt execution immediately.

Clearly, this level of interaction with the running program slows the system
down quite a bit. Most of the tools that we have used allow the user to limit the
scope of what is being monitored. This allows the user of a tool to fine-tune it as
needed.

Depending on the type of testing we are doing and the kind of system we
are testing, an appropriate dynamic analysis tool may be as important a tool as
we have in our toolbox.

4.7 Sample Exam Questions

1. While performing the post-mortem evaluation on a project, you are perus-
ing the fixes to a particular code module. You notice that there are a num-
ber of errors made using the operators >, >=, <, and <=. Which of the
following specification-based test design techniques would be best suited to
catch these type errors?

A. Equivalence class partitioning

B. Boundary value analysis

C. State transition table

D. State transition diagram

2. You are testing a data input screen for a software package. The data that is col-
lected is used in calculating the taxes for the organization being processed.
You are at the analysis and design phase of your lifecycle, going field by field

__AST V3.book Seite 309 Freitag, 1. Juli 2011 1:06 13

310 4 Test Techniques

trying to determine the minimum number of test cases you need to give you
BVA (boundary value analysis) coverage. Your stated objective is to perform
both positive and negative equivalence class testing on the screen. You have
an automated process that will automatically test all field values other than
the correct data type: that is, if the field requires an integer, the automated
program will test chars, symbols, spaces, real numbers, nulls, etc. Therefore,
you are going to leave all of those types of negative test cases out of your
design. One field you must consider is the customer type field, which
requires a single integer input. For historical purposes, there are five different
type customer classifications (1, 2, 4, 5, 6). What is the minimum number of
tests you must design for this field to achieve the desired coverage?

A. 2

B. 5

C. 6

D. 8

3. A bank has several different levels of awards/penalties that it showers on its
customers. Both are based on the amount of dollars in customers’ various
accounts. Assume that you have a test client with five (5) different accounts
that are subject to these rules. Different types of accounts are calculated dif-
ferently, even though the trigger amounts are the same for all accounts. The
rules for any given period are as follows:

■ Negative balances are penalized by a fee.
■ Balances at or below $25 are penalized by loss of interest.
■ Balances at or below $1,000 are penalized by low interest.
■ Balances above $1,000 get full interest.
■ Balances above $100,000 get full interest and a $200 interest bonus.

Assuming that we are interested in equivalence class testing, how many test
cases do we need minimum for this client?

A. 4

B. 5
C. 25
D. 40

__AST V3.book Seite 310 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 311

4. Consider the bank scenario as defined in question 3. Assuming that calcu-
lations are made to the cent, and that we are interested in boundary value
testing, what is the minimum set of test values we would need for an
account?

A. (-0.01; 0.00; 24.99; 25.00; 999.99; 1,000.00; 999, 999.99; 100,000.00)

B. (-0.01; 0.00; 25.00; 25.01; 1,000.00; 1,000.01; 100,000.00; 100,000.01)

C. (0.00; 0.01; 25.00; 25.01; 1,000.00;1,000.01;100,000.00;100,000.01)

D. (-0.001;0.001;24.999;25.001;999.999;1,000.001;999,999.999;100,000.001)

5. We have built a decision table to help us develop a solution to Glenford
Myers’s triangle test problem. A piece of software inputs three integer num-
bers. These numbers represent the lengths of the sides of a geometric figure:
a, b and c. The values are compared to see if they actually represent a legal
triangle. A triangle with three equal sides is called an equilateral triangle.
One with two equal sides is called an isosceles triangle. One with no equal
sides is called a scalene triangle. Using what you know of triangles and deci-
sion tables, collapse the given decision table and determine the number of
tests needed to achieve minimum coverage criteria.

A. 6
B. 7
C. 9
D. 12

Conditions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Legal triangle Y Y Y Y Y Y Y Y N N N N N N N N

a = b Y Y Y Y N N N N Y Y Y Y N N N N

a = c Y Y N N Y Y N N Y Y N N Y Y N N

b = c Y N Y N Y N Y N Y N Y N Y N Y N

Results

Scalene triangle

Isosceles triangle

Equilateral triangle

Not legal/
impossible

__AST V3.book Seite 311 Freitag, 1. Juli 2011 1:06 13

312 4 Test Techniques

6. Refer to the following decision table. Which of the following is correct
based on what you see in the decision table?

A. There are no non-exclusive rules in this decision table.

B. There is one non-exclusive rule: Balance OK?

C. All of the conditions in the decision table are non-exclusive rules

D. There is one non-exclusive rule: Payment late?

7. You are going to be testing a small camera. To keep it simple, there are only
two buttons: the power button and the shutter button. The camera will act
as an automatic focus and exposure camera when the shutter button is
pressed halfway and then stopped for 0.4 seconds before the button press is
completed. If the shutter button is simply pressed all the way without stop-
ping, the camera will act as a single-exposure, infinity focus camera. Given
the following state transition diagram, how many rows would its matching
state transition table contain?

Conditions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Balance OK? Y Y Y Y Y Y Y Y N N N N N N N N

Number of checks OK? Y Y Y Y N N N N Y Y Y Y N N N N

Savings account? Y Y N N Y Y N N Y Y N N Y Y N N

Payment late? Y N Y N Y N Y N Y N Y N Y N Y N

Results

Standard account fee? Y Y

Charge excess fee? Y Y Y Y Y Y Y Y Y Y Y Y

Charge late fee? Y N Y N Y N Y N Y N Y N Y N Y N

Charge no fee? Y Y

__AST V3.book Seite 312 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 313

A. 24

B. 20

C. 18

D. 6

8. Refer to the scenario as defined in question 7. Given the following partial
switch coverage table, how many 1-switch segments would there be?

0-switch 1-switch

A1

B2 B3 B4

C5

D6

A
Power off

B
Power on

D
Snap picture

C
Focus /

Exposure
Setting

Click power
button

Click power
button

Done taking
picture

Press shutter /
whole way

Press shutter /
1st halfway

Press shutter /
2nd halfway

1

2
6

4

3

5

A
Power off

B
Power on

D
Snap picture

C
Focus /

Exposure
Setting

Click power
button

Click power
button

Done taking
picture

Press shutter /
whole way

Press shutter /
1st halfway

Press shutter /
2nd halfway

1

2
6

4

3

5

__AST V3.book Seite 313 Freitag, 1. Juli 2011 1:06 13

314 4 Test Techniques

A. 5

B. 7

C. 9

D. 11

9. The following C code function will allow a browser to connect to a given
website.

#include<windows.h>
#include<wininet.h>
#include<stdio.h>
int main()
{

 HINTERNET Initialize,Connection,File;
 DWORD dwBytes;
 char ch;
 Connection = InternetConnect(Initialize,"www.xyz.com",
 INTERNET_DEFAULT_HTTP_PORT,NULL,NULL,
 INTERNET_SERVICE_HTTP,0,0);

 File = HttpOpenRequest(Connection,NULL,"/index.html",
 NULL,NULL,NULL,0,0);

 if(HttpSendRequest(File,NULL,0,NULL,0))
 {
 while(InternetReadFile(File,&ch,1,&dwBytes))
 {
 if(dwBytes != 1)break;
 putchar(ch);
 }
 }
 InternetCloseHandle(File);
 InternetCloseHandle(Connection);
 InternetCloseHandle(Initialize);
 return 0;
}

__AST V3.book Seite 314 Freitag, 1. Juli 2011 1:06 13

http://www.xyz.com

 4.7 Sample Exam Questions 315

What is the minimum number of test cases that would be required to
achieve statement coverage for this code?

A. 1

B. 2

C. 4

D. 6

10. Given the following snippet of code, which of the following values for the
variable Counter will give loop coverage with the fewest test cases?

A. (-13, 0,1,795)

B. (-1,0,1)

C. (0,1,1000)

D. (-7,0,500)

11. In a module of code you are testing, you are presented with the following
if() statement. How many different test cases would you need to achieve
multiple condition coverage (assume no short circuiting by the compiler)?

A. 24

B. 32

C. 48

D. 128

...
for (i=0; i<=Counter; i++) {
 Execute some statements;
}

if (A && B || (Delta < 1) && (Up < Down) || (Right
>= Left)) {
 Execute some statements;
}
Else {
 Execute some statements;
}

__AST V3.book Seite 315 Freitag, 1. Juli 2011 1:06 13

316 4 Test Techniques

12. In a module of code you are testing, you are presented with the following
if() statement. A number of tests are given in the form of 3-tuples, where A
will get the first value, B will get the second value, C will get the third.
Which test must be added to achieve full MC/DC coverage?

Test 1: (F, F, T)
Test 2: (F, F, F)

A. (F, T, F)

B. (T, F, T)

C. (T, F, F)

D. (T, T, F)

13. The following code snippet reads through a file and determines whether the
numbers contained are prime or not.

if ((A && B) || C) {
 Execute some statements;
}
Else {
 Execute some statements;
}

1 Read (Val);
2 While NOT End of File Do
3 Prime := TRUE;
4 For Holder := 2 TO Val DIV 2 Do
5 If Val - (Val DIV Holder)*Holder= 0 Then
6 Write (Holder, ` is a factor of', Val);
7 Prime := FALSE;
8 Endif;
9 Endfor;
10 If Prime = TRUE Then
11 Write (Val , ` is prime');
12 Endif;
13 Read (Val);
14 Endwhile;
15 Write('End of program')

__AST V3.book Seite 316 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 317

Which of the following 3-tuple represents a valid LCSAJ?

A. (1,2,14)

B. (2,2,14)

C. (2,4,10)

D. (5,10,12)

14. The following code snippet reads through a file and determines whether the
numbers contained are prime or not.

Calculate the cyclomatic complexity of the code.

A. 3

B. 5

C. 7

D. 9

1 Read (Val);
2 While NOT End of File Do
3 Prime := TRUE;
4 For Holder := 2 TO Val DIV 2 Do
5 If Val - (Val DIV Holder)*Holder= 0 Then
6 Write (Holder, ` is a factor of', Val);
7 Prime := FALSE;
8 Endif;
9 Endfor;
10 If Prime = TRUE Then
11 Write (Val , ` is prime');
12 Endif;
13 Read (Val);
14 Endwhile;
15 Write('End of run)

__AST V3.book Seite 317 Freitag, 1. Juli 2011 1:06 13

318 4 Test Techniques

15. The QA group has spent the last month mining the defect tracking system
looking for all of the failures that had been reported, not only in testing but
in production. The output of this research has been turned over to the test
group for use in the next software release. The use of this information for
testing would represent which of the following test design techniques?

A. Taxonomy based

B. Error guessing

C. Checklist based

D. Exploratory

16. Your test consists of starting up a huge number of applications to load both
existing RAM and virtual memory to capacity. You then will proceed to
execute a number of scenarios using the application under test. What kind
of testing are you most likely doing?

A. Charter-based exploratory testing

B. Error guessing

C. Structure-based testing

D. Software attack-based testing

__AST V3.book Seite 318 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 319

17. Consider the following code snippet:

With regards to the variable Connection and looking at lines 10 through 14,
what kind of data-flow pattern do we have?

A. du

B. ud

C. dk

D. There is no defined data-flow pattern there.

1. #include<windows.h>
2. #include<wininet.h>
3. #include<stdio.h>
4. int main()
5. {
6.
7. HINTERNET Initialize,Connection,File;
8. DWORD dwBytes;
9. char ch;
10. Connection = InternetConnect(Initialize,"www.xyz.com",
11. INTERNET_DEFAULT_HTTP_PORT,NULL,NULL,
12. INTERNET_SERVICE_HTTP,0,0);
13.
14. File = HttpOpenRequest(Connection,NULL,"/index.html",
15. NULL,NULL,NULL,0,0);
16.
17. if(HttpSendRequest(File,NULL,0,NULL,0))
18. {
19. while(InternetReadFile(File,&ch,1,&dwBytes))
20. {
21. if(dwBytes != 1)break;
22. putchar(ch);
23. }
24. }
25. InternetCloseHandle(File);
26. InternetCloseHandle(Connection);
27. InternetCloseHandle(Initialize);
28. return 0;
29. }

__AST V3.book Seite 319 Freitag, 1. Juli 2011 1:06 13

http://www.xyz.com

320 4 Test Techniques

18. Which of these data-flow coverage metrics is the strongest of the four
listed?

A. All-P uses

B. All-C uses

C. All Defs

D. All DU paths

19. Given the following integration call-graph, and using McCabe’s cyclomatic
complexity theory, how many basis paths are there to test?

A. 12

B. 10

C. 13

D. 14

B

C F

A

E

D

G

H

__AST V3.book Seite 320 Freitag, 1. Juli 2011 1:06 13

 4.7 Sample Exam Questions 321

20. Consider the following list:

I. Memory loss due to wild pointers

II. Profiling performance characteristics of a system

III. Failure to initialize a local variable

IV. Argument error in a Windows 32 API call

V. Incorrect use of equality operator in a predicate

VI. Failure to place a break in a switch statement

VII. Finding dead code

Which of these are most likely to be found through the use of a dynamic
analysis tool?

A. I, III, IV, and VII

B. I, II, III, IV, and VI

C. I, II, and IV

D. II, IV, and V

__AST V3.book Seite 321 Freitag, 1. Juli 2011 1:06 13

322 4 Test Techniques

__AST V3.book Seite 322 Freitag, 1. Juli 2011 1:06 13

323

5 Tests of Software Characteristics

–You can't just turn on creativity like a faucet. You have to be in the right mood.
–What mood is that?
–Last-minute panic.

 Bill Watterson, from Calvin and Hobbes
(Hobbes would have made a great tester!)

The fifth chapter of the Advanced syllabus is concerned with tests of software
characteristics. In this chapter, the Advanced syllabus expands on a concept
introduced in the Foundation syllabus, that of ISO 9126 software quality char-
acteristics, to explain testing as it relates to various attributes of functional and
non-functional software quality. There are three sections.

1. Introduction
2. Quality Attributes for Domain Testing
3. Quality Attributes for Technical Testing

Let’s look at each section and how it relates to technical test analysis.

5.1 Introduction

At the beginning of chapter 4, we introduced a taxonomy—a classification sys-
tem—for tests. Figure 5-1 shows that taxonomy. If you recall, we mentioned the
distinction between functional and non-functional black-box tests, based on
the ISO 9126 standard. We then went on in chapter 4 to talk about useful black-

Learning objectives

Recall of content only

__AST V3.book Seite 323 Freitag, 1. Juli 2011 1:06 13

324 5 Tests of Software Characteristics

box techniques, without returning to this distinction or to the characteristics
and subcharacteristics of quality defined in ISO 9126.

Figure 5–1 Advanced syllabus testing techniques

In this chapter, we will return to those topics. Here, we consider how to apply
the techniques from chapter 4 to evaluate the quality of software applications or
systems. While the focus will be different for technical test analysts in this book
than in the companion volume for test analysts (Advanced Software Testing,
Vol. 1), the common element is that we need to understand quality characteris-
tics in order to recognize typical risks, develop appropriate testing strategies,
and specify effective tests.

As we look at ISO 9126, it is important to understand exactly what the stan-
dard entails. There are four separate sections to this standard.

The first section, ISO 9126-1, is the quality model itself, enumerating the
six categories and the subcategories that go along with them.

ISO 9126-2 is for external (dynamic) measurements. Sets of metrics are
defined for assessing the quality subcharacteristics of the software. These exter-
nal metrics can be calculated by mining the incident tracking database and/or
making direct observations during testing.

ISO 9126-3 is for internal (static) measurements. Sets of metrics are defined
for assessing the quality subcharacteristics of the software. These measurements
tend to be somewhat abstract because they are often based on estimates of likely

Testing

Static Dynamic

Review

Black-box
White-box

Functional

ATA

ATTA

ATTA
ATTA ATA

ATTA

ATA ATTA ATTA

ATA ATTA

Static

analysis Experience-

based

Defect-

based

Dynamic

analysis

Non-

functional

ATA ATTA

__AST V3.book Seite 324 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 325

defects. ISO 9126-4 is for quality-in-use metrics1. This defines sets of metrics
for measuring the effects of using the software in a specific context of use. We
will not refer to this portion of the standard in this book.

5.2 Quality Attributes for Domain Testing

Functional testing focuses on what the system does rather than how it does it.
Non-functional testing is focused on how—or how well—the system does what
it does. Both functional and non-functional testing are predominately black-
box tests, being focused on behavior. White-box tests are focused on how the
system works internally, i.e., on its structure.

Non-functional testing may depend in part on the requirements, but many
of the tests will come from implicit requirements and from trying to ensure that
the system does what it is supposed to do—for lack of a better phrase—in an
elegant way.

Non-functional testing will vary by test level; we will discuss the proper lev-
els to test using different non-functional test types in the upcoming sections.
The technical test analyst can employ various test techniques during domain2

1. Metrics that are only available when the final product is used in actual production environ-
ment under actual conditions.

Learning objectives

(K2) Characterize non-functional test types for domain testing by
typical defects to be targeted (attacked), their typical application
within the application lifecycle, and test techniques suited to be
used for test design.

(K4) Specify test cases for particular types of non-functional test
types and covering given test objectives and defects to be
targeted.

2. The ISTQB Advanced syllabus appears to use the term domain testing for work that it assigns
to test analysts (i.e., the functional attribute of ISO 9126). However, there are many types of func-
tional tasks that call out for technical skills. These particular tasks are covered in this book; less-
technical tasks are covered in Advanced Software Testing Vol. 1.

__AST V3.book Seite 325 Freitag, 1. Juli 2011 1:06 13

326 5 Tests of Software Characteristics

testing at any level. All of the techniques discussed in chapter 4 will be useful at
some point or another.

You should keep in mind that the technical test analyst is a role, not a title,
job description, or position. In other words, some people play the role of techni-
cal test analyst exclusively, but others play that role as part of another job. So
when dedicated, professional testers do non-functional testing, they are techni-
cal test analysts both in position and in role. However, when technical experts
do the analysis, design, implementation, or execution of functional tests, they
are working as test analysts.

Technical test analysts, according to the ISTQB Advanced syllabus, should
be able to identify opportunities to use test techniques that are appropriate for
testing:

■ Accuracy
■ Suitability
■ Interoperability
■ Usability
■ Security

We’ll look more closely at each of these areas in the following sections.

5.2.1 Accuracy

Accuracy is defined as the capability of a system to provide the provably correct
(or at least agreed-upon) results to the needed level of precision. Ideally, the
requirements will give exact specifications for accuracy. Of course, in the real
world, this is often not the case. Technical test analysts often have to search for a
meaningful test oracle to determine what specifications the system is supposed
to perform to.

An important type of testing to determine accuracy will be boundary analy-
sis. Of course, to do meaningful testing of exactly where the boundaries are, the

accuracy

accuracy testing

ISTQB Glossary

accuracy: The capability of the software product to provide the right or
agreed-upon results or effects with the needed degree of precision.

accuracy testing: The process of testing to determine the accuracy of a soft-
ware product.

__AST V3.book Seite 326 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 327

tester must be familiar with the data representations that are going to be used.
This is especially critical as data is moved from one store to another. For exam-
ple, when data are moved from the database to the active process, are all data
transforms done correctly without loss of precision?

Decision tables will be required when the system calculates values based on
multiple inputs that interact. That interaction may cause disparate data types to
be combined during the calculations, possibly affecting the accuracy of the final
values.

A good synonym for accuracy is correctness; does the system always give the
correct answer to a given input or set of inputs?

So when is accuracy testing liable to occur? During unit testing, the tester
should use the correct data types to ensure that the correct data is stored in
memory. Likewise, when sent to permanent storage, the data must be stored in
such a way that it does not change the values in a material way.

During integration testing, we need to ensure that precision is not lost as
data travels between interfaces. Truncated and rounded values are a possible
source of problems during this transfer. Likewise, incorrect buffer size could
easily be an issue. When dealing with APIs to COM and DCOM3 objects, the
operating system, interoperating systems, remote procedure calls, middleware,
etc., data may be manipulated, massaged, and squeezed, causing a lack of preci-
sion. A technical test analyst must be ready to test the entire data path.

During system testing, the correctness of data and calculations is a primary
concern. Luckily, this is where we are most likely going to have good specifica-
tions to test to. A technical test analyst should be involved early, understanding
expected behavior with respect to correctness and accuracy. Reviewing the low-
level design and documentation and code will be useful in making sure that we
have a platform where accuracy is ensured.

Finally, in acceptance testing, if we do our job correctly throughout the rest
of the process, the customers should be happy with the results of their scenarios,
reports, and queries against the system. If we are accurate to the requirements
but the customer is unhappy, there is obviously a problem in our determination
of what correctness means.

3. COM: Component Object Model; DCOM: Distributed Component Object Model

__AST V3.book Seite 327 Freitag, 1. Juli 2011 1:06 13

328 5 Tests of Software Characteristics

Figure 5–2 Boundary testing for accuracy

As an example, look at figure 5-2. This is a screen that you saw earlier, in chapter
4. Let’s take a look at the test designs we might do for Quicken’s stock buy/add
screen, specifically the number of shares, price per share, and commission
fields. First we should investigate to make sure the data types behind the fields
are sufficient to hold the range of expected values. Are they adequate to support
the precision that the fields require? When there are long calculations, with a lot
of partial products, are we likely to lose precision?

We applied equivalence partitioning and boundary value analysis to these
fields and identified 13 specific input values for each field. In this case, we
would also want to add testing of the total cost field. This is a calculated output
field. It is calculated by using the three input fields. As you can see in this slide,
there is something not right with the calculation. The combination of maxi-
mum number of shares and price per share is not giving us the right result in the
total cost field. Or perhaps the number is right, internally, but is overflowing the
display space. Either way, we’d report this as a bug.

In testing HELLOCARMS, there are a good number of calculations that are
made throughout the process, including different customers with different
income patterns (married, co-signer, custodian, power of attorney, etc.), differ-
ent debt loads, and differing types of wealth. There is a huge variety of different

Equivalence
Partitioning

Not Number {letters, punctuation, null, ...}

Number # of
shares

price per
share

commis-
sion

BVA

EP

-max

-0.000 000 000 1 1,000,000,000.000.000001

0.000 000 499 99 999,999,999.99

0.000 000 5

0.000 000 9

max0

Valid
(zero)

Valid
(round)

Invalid
(negative)

Invalid
(too large)

Valid
(no round)

-max

-0.005 10,000,000.000.001

0.0049999 9,999,999.99

0.005

0.009

max0

Valid
(zero)

Valid
(round)

Valid?
(negative)

Invalid
(too large)

Valid
(no round)

__AST V3.book Seite 328 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 329

combinations that can occur for any given customer. Are all of the combina-
tions going to be tested? Unlikely; we probably do not have the resources to do
exhaustive testing.

What we will need to do is try to test a representative number of interesting
combinations of offerings, with the number of actual tests commensurate with
the risk we perceive and the resources we can expend. Good solid unit testing
will be essential to accuracy.

5.2.2 Suitability

Suitability testing is focused on the appropriateness of a set of functions relative
to its intended, specific tasks. In other words, given the problems we need to
solve, can the system solve them?

Technical test analysts will need to be on familiar terms with the domain
well enough to understand the users’ needs and wants, and then be able to apply
that understanding to the system to verify that what is being built will supply
those needs. Use cases, the existing system (if any), and interviews with users
will all likely be part of this process.

Like accuracy, this particular quality characteristic will be shared with the
test analysts. We would expect that we would share use cases and scenarios and
discover useful test oracles with them. Static testing at the low-level design and
code phases would be predominately done by technical testers with domain
testers being more involved in the requirements and high-level design phases.
Once code becomes available, technical test analysts would likely be more
involved at the lower levels (unit and integration testing) and test analysts
would be more involved at the system test level. Good coordination with them
would certainly be critical so there is little overlap of testing efforts.

Ongoing feedback from users would be an important input to make sure
suitability errors are rectified in later releases.

ISTQB Glossary

suitability: The capability of the software product to provide an appropriate
set of functions for specified tasks and user objectives.

suitability testing: The process of testing to determine the suitability of a
software product.

suitability

suitability testing

__AST V3.book Seite 329 Freitag, 1. Juli 2011 1:06 13

330 5 Tests of Software Characteristics

5.2.3 Interoperability

Interoperability is defined as the capability of the system to interact with one or
more specified systems in all target environments (so there is a certain aspect of
portability here, which we will discuss later).

Test analysts will be concerned with the end-to-end testing of scenarios
using use cases, pairwise testing, classification trees, and other techniques. The
facilitating mechanisms underneath that functionality is what technical test
analysts are concerned about. Interoperability testing for technical test analysts
will include ensuring the smooth functioning of data transfers between systems
and checking that the interfaces between systems integrate smoothly. This test-
ing is most visible during system integration and systems testing, but clearly the
foundation will have to be built before that.

To the technical test analyst, all parts of the integration between systems are
fair game, including hardware, middleware, firmware, operating systems, network
configurations, and so forth. Ideally, by the time we get to system integration, the
software between all of the involved systems should be able to work together. This,
of course, will not happen by accident. The technical test analyst should expect to
spend much time on preparation, researching the different systems and their
underlying mechanisms and the environments they are expected to work in.

One measure of interoperability will be how easily the systems fit together.
Once again, static testing of the plans for integration will be an important part
of preparing for the integration process.

Some of the testing that we would expect to do might include the following items:

■ Use of industry-wide communications protocols and standards, including
XML, JDBC, RPCs4, DCOM, etc.

4. XML: eXtensible markup language; JDBC: Java database connectivity; RPC: remote procedure calls

ISTQB Glossary

interoperability: The capability of the software product to interact with one or
more specified components or systems.

interoperability testing: The process of testing to determine the interopera-
bility of a software product.

interoperability

interoperability testing

__AST V3.book Seite 330 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 331

■ Efficient data transfer between systems, with special emphasis on systems
with different data representations and precisions

■ The ability to self-configure, that is, for the system to detect and adapt itself
to the needs of other systems

■ Relative performance when working with other systems

The following list includes some of the interoperability testing we might be
expected to do on the HELLOCARMS project:

■ Ensuring that the communications protocols between all of the active play-
ers are compatible

■ Testing to make sure data transfer between the Credit Bureau mainframe
and the Scoring mainframe are correct

■ Ensuring that each system can go offline and then be restored without data
loss

■ Testing to ensure that network slowdowns do not cause data loss or
corruption

■ Ensuring that changes to loan information made by LoDoPS are correctly
propagated back to HELLOCARMS

5.2.4 Usability

Usability testing, naturally enough, focuses on the users. This is why many notable
usability experts and usability test experts have a background in psychology rather
than simply being technologists or domain experts. Knowledge of sociology and
ergonomics is also helpful. An understanding of national standards related to
accessibility can be important for applications subject to such standards.

ISTQB Glossary

accessibility testing: Testing to determine the ease by which users with dis-
abilities can use a component or system.

usability: The capability of the software to be understood, learned, used, and
attractive to the user when used under specified conditions.

usability testing: Testing to determine the extent to which the software prod-
uct is understood, easy to learn, easy to operate, and attractive to the users
under specified conditions.

__AST V3.book Seite 331 Freitag, 1. Juli 2011 1:06 13

332 5 Tests of Software Characteristics

Users can vary in terms of their skills, abilities, and disabilities. Something
an expert technologist finds easy to understand can be absolutely mystifying to
another experienced tester whose background is in psychology. Children tend to
be remarkably clever in using technology. One day, Rex put an old laptop with a
CD-ROM player in the bedroom of his eldest daughter, Emma. At the time she
was five year old. He put some CD-ROMs in there, too, including an encyclope-
dia. Later that night, his wife was frightened by the sound of a man’s voice com-
ing from Emma’s room. It turns out Emma had figured out how to enable the
setting on the encyclopedia that reads the entries out loud and at random.

These kinds of settings and features—text-to-speech and speech-to-text—
can be very useful to the disabled, especially those who have limited hand
mobility or who are sight impaired. The hearing impaired or those with cogni-
tive disabilities might need different types of assistive technologies. These all
need to be tested.

Ultimately, a usable piece of software is one that is suitable for the users.
Therefore, usability testing measures whether the users are effective, efficient,
and satisfied with the software. Effectiveness implies that the software enables the
users to achieve their goals accurately and completely under expected usage con-
ditions. Efficiency implies that these goals can be achieved in some realistic, rea-
sonable period of time. Satisfaction, in this context, is really the antonym of
frustration; in other words, a satisfied user who has effectively and efficiently
reach her goals with the system feels that the software was about as helpful as it
could have been.

What attributes lead to a satisfied, effective, efficient user? One is under-
standability, the simplicity or difficulty of figuring out what the software does
and why you might need to use it. Another is learnability, the simplicity or diffi-
culty of figuring out how to make the software do what it does. Yet another is
operability, the degree of simplicity or difficulty inherent in carrying out certain
distinct tasks within the software’s feature set. Finally, there is attractiveness,
which is the extent to which the software is visibly pleasing, friendly, and invit-
ing to the user.

If we are performing usability testing, as with most other testing, we can
have as goals both the detection and removal of defects and the demonstration
of conformance or nonconformance to requirements. In usability testing, the
detection and removal of defects is sometimes referred to as formative evalua-

__AST V3.book Seite 332 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 333

tion, while the testing of requirements is sometimes referred to as summative
evaluation.

In usability testing, we want to observe the effect of the actual system on
real people, actual end users. (This is not to say that testers are not real people,
but rather that we are not really the people who must use the system in our day-
to-day lives.) To observe the effects, we need to monitor users interacting with
the system under realistic conditions, possibly with video cameras, mock-up
offices, and review panels.

Usability testing is sometimes seen as its own level, but it can also be inte-
grated into functional system testing. Since usability testing has a different focus
than standard functional testing, you can improve the consistency of the detec-
tion and reporting of usability bugs with usability guidelines. These guidelines
should apply in all stages of the lifecycle, to encourage developers to build
usable products in the first place.

There are three main techniques for usability testing.
The first is called inspection (also known as evaluation or review.). This

involves considering the specification and designs from a usability point of
view. Like all such reviews, it’s an effective and efficient way to find bugs sooner
rather than later. You can use actual users for this when you have artifacts like
screen shots and mock-ups.

A form of review, a heuristic evaluation, provides for a systematic inspec-
tion of a user interface design for usability. It allows us to find usability prob-
lems in the design, then resolve them, and then reevaluate. That process
continues until we are happy with the design from a usability point of view.
Often, a small set of evaluators are selected to evaluate the interface, including
evaluation with respect to known and recognized usability principles.

The second form of usability testing is validation of the actual implementa-
tion. This can involve running usability test scenarios. Unlike functional test
scenarios, which look at the inputs, outputs, and results, usability test scenarios
look at various usability attributes, such as speed of learning or operability.

ISTQB Glossary

heuristic evaluation: A static usability test technique to determine the com-
pliance of a user interface with recognized usability principles (the so-called
heuristics).

heuristic evaluation

__AST V3.book Seite 333 Freitag, 1. Juli 2011 1:06 13

334 5 Tests of Software Characteristics

Usability test scenarios will often go beyond a typical functional test scenario in
that they include pre- and posttest interviews for the users performing the tests.
In the pretest interviews, the testers receive instructions and guidelines for run-
ning the sessions. The guidelines might include a description of how to run the
test, time to allow for tests and even the test steps themselves, how to take notes
and log results, and the interview and survey methods that will be used.

There also are syntax tests, which evaluate the interface, what it allows, and
what it disallows. And there are semantic tests, which evaluate the meaningful-
ness of messages and outputs. As you might guess, some of the black-box tech-
niques we’ve looked at, including use cases, can be helpful here.

A final form of usability tests is surveys and questionnaires. These can be used
to gather observations of the users’ behavior during interaction with the system in
a usability test lab. There are standard and publicly available surveys like Software
Usability Measurement Inventory (SUMI) and Website Analysis and Measure-
Ment Inventory (WAMMI). Using a public standard allows you to benchmark
against other organizations and software. Also, SUMI provides usability metrics,
which can measure usability for completion or acceptance criteria.

Table 5–1 Usability checklist instructions example

Each item in this checklist pertains to a [usability characteristic] or quality of [the system under
test] that influences how effective a very novice user will be in unpacking, assembling, powering
on, and configuring software on [it]. This [checklist] is intended to predict an end user’s
experience with [the system].

This [checklist] consists of four major sections:
• Packaging and hardware (100 points)
• Software installation and configuration (100 points)
• Internet connection and online registration (50 points)
• Software discovery and usage (50 points)

For each section, complete the checklist by choosing the most appropriate answer to each
question. To score the section, add up the points corresponding to the selected answers, and
record the scores in the summary table at the end of the section.

ISTQB Glossary

Software Usability Measurement Inventory (SUMI): A questionnaire-based
usability test technique for measuring software quality from the end user's
point of view.

Software Usability Mea-
surement Inventory (SU-
MI)

__AST V3.book Seite 334 Freitag, 1. Juli 2011 1:06 13

 5.2 Quality Attributes for Domain Testing 335

As an example, in table 5-1 you see some introductory information from a
document that described the usability test scenarios for the Internet appliance
project we’ve referred to from time to time.

Notice that we define the goals of the test in the first paragraph.
The next paragraph describes the structure of the test set. Basically, it con-

sists of four major scenarios. The scenarios are weighted, which corresponds to
how important the test designer feels each one is. There are then some simple
instructions on how to use the checklist.

The final paragraph explains to the user how to score the test.

5.2.5 Usability Test Exercise

Review the HELLOCARMS system requirements document, specifically the
usability section. Analyze the risks and create an informal test design for usabil-
ity testing. The following section contains our solution. Of course, your solution
may differ based on your experience with usability testing.

5.2.6 Usability Test Exercise Debrief

Early in his career, Jamie had the chance to briefly work in a usability lab for a
large, international corporation. It had specially built rooms with multiple cam-
eras and two-way glass, and several observers watched every breath, twitch, and
movement of test subjects while they navigated their software prototypes. After
seeing the effort a prosperous company could put forth, Jamie always wondered
what it would be like to test usability in a smaller, less-provisioned way. This is a
good example.

There are several interesting requirements for HELLOCARMS under
usability. We selected 030-020-020 under the learnability attribute and 030-010-
020 under understandability.

Non-functional testing often forces us to be more creative in coming up
with test designs than functional testing. It is not always simply coming up with
input data, expected output data and behaviors, etc. In line with recommenda-
tions from ISO 9126, much of our non-functional testing will be static testing or
trying to measure metrics after a project has occurred.

__AST V3.book Seite 335 Freitag, 1. Juli 2011 1:06 13

336 5 Tests of Software Characteristics

Starting with 030-020-020:

HELLOCARMS will include a self-contained training wizard for all users.
This wizard will lead a new user through all of the screens using canned
data. The training will be sufficient that an average user will become profi-
cient in the use of HELLOCARMS within 8 hours of training.

Testing for this requirement would be straightforward static testing at first. It
would consist of working through the wizard, one screen at a time, and compar-
ing the information presented the users to the requirements and designs actu-
ally used. We would check for completeness, correctness, and order of
presentation.

Once the system was delivered into beta testing, we would send out ques-
tionnaires to Telephone Bankers and our partners asking for information on
their first week of using the system.

Specifically, we would target any errors, misunderstandings, or inefficien-
cies they run into, asking for feedback on upgrades or changes they might like
to see in the wizard.

Before each modification project for HELLOCARMS, we would scrutinize
all reported defect records looking for evidence of mistakes made by ignorance
of the system and make sure our documentation covers those areas correctly.

While going through the wizard, we would keep in mind the understand-
ability requirement, 030-010-020:

All screens, instructions, help, and error messages shall be understandable
at an eighth grade level.

We would make sure that little or no difficult domain-specific jargon was
thrown in to confuse a Telephone Banker or partner.

Looking at the understandability requirement, there are several different
ways to try to determine the grade level required to understand a document.
One of the most common ways is the Flesch-Kincaid grade level readability for-
mula (which just so happens to be built into MS Word). According to the Word
help file, the formula is as follows:

FKRA = (0.39 x ASL) + (11.8 x ASW) - 15.59

In this formula, FKRA = Flesch-Kincaid reading age, ASL = Average sentence
length, and ASW = average number of syllables per word.

__AST V3.book Seite 336 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 337

To test the help documents, wizard, and other source documents that will
be surfaced to the HELLOCARMS users, we would copy and paste them into
MS Word (if they are not already there), perform a spell check, and then view
the statistics. Any resulting value below 9.0 we would consider acceptable (9.0
being the upper boundary of ninth grade reading level).

Our questionnaires, mentioned earlier, would contain questions asking if
the help files and the training wizard were clear and understandable. As before,
we would also data mine the defect tracking tool before any SMLC (software
maintenance life cycle) project started.

5.3 Quality Attributes for Technical Testing

Learning objectives

(K2) Characterize non-functional test types for technical testing by
typical defects to be targeted (attacked), their typical application
within the application lifecycle, and test techniques suited to be
used for test design.

(K2) Understand and explain the stages in an application’s lifecycle
where security, reliability, and efficiency tests may be applied
(including their corresponding ISO 9126 sub-attributes).

(K2) Distinguish between the types of faults found by security,
reliability, and efficiency tests, (including their corresponding ISO
9126 subattributes).

(K2) Characterize testing approaches for security, reliability, and
efficiency quality attributes and their corresponding ISO 9126
subattributes.

(K3) Specify test cases for security, reliability, and efficiency quality
attributes and their corresponding ISO 9126 subattributes.

(K2) Understand and explain the reasons for including
maintainability, portability, and accessibility tests in a testing
strategy.

(K3) Specify test cases for maintainability and portability types of
non-functional tests.

__AST V3.book Seite 337 Freitag, 1. Juli 2011 1:06 13

338 5 Tests of Software Characteristics

For the remainder of this chapter, we will be discussing non-functional quality
characteristics as defined by ISO 9126. Remember from the Foundation level
that functional testing deals with what the system does while non-functional
testing deals with how or how well the system does something.

Before we address non-functional testing, however, we are going to address
technical security testing (Advanced Software Testing, Vol. 1, addresses func-
tional security testing). Then we will work our way down the ISO 9126 standard
discussing reliability, efficiency, maintainability, and portability. Usability was
addressed earlier.

Table 5–2 ISO 9126 categories and subcategories

Table 5-2 shows the elements of the ISO 9126 quality model that we saw before.
Reliability, usability, efficiency, maintainability and portability are the quality
attributes that technical test analysts are mostly interested in. First, however, we
will take a look at the technical side of security testing.

5.3.1 Technical Security

Security testing is often a prime concern for technical test analysts. Because so
often security risks are either hidden, subtle, or side effects of other characteris-
tics, we have to put special emphasis on testing for them.

Typically, other types of failures have symptoms that we can find, either
through manual testing or the use of tools. We know when a calculation fails;
the erroneous value is patently obvious. Security issues often have no symp-

ISTQB Glossary

security: Attributes of a software product that bear on its ability to prevent
unauthorized access, whether accidental or deliberate, to programs and data.

security testing: Testing to determine the security of the software product.

Functionality: Suitability, accuracy, interoperability, security, compliance
Reliability: Maturity (robustness), fault tolerance, recoverability, compliance
Usability: Understandability, learnability, operability, attractiveness, compliance
Efficiency: Time behavior, resource utilization, compliance
Maintainability: Analyzability, changeability, stability, testability, compliance
Portability: Adaptability, installability, coexistence, replaceability, compliance

__AST V3.book Seite 338 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 339

toms, right up until the time a hacker breaks in and torches the system. Or,
maybe worse, the hacker breaks in, steals critical data, and then exits without
leaving a trace. Ensuring that people can’t see what they should not have access
to is a major task of security testing.

The illusion of security can be a powerful deterrent to good testing because
no problems are perceived. The system appears to be operating correctly. Jamie
was once told to “stop wasting your time straining at gnats” when he continued
testing beyond what the project manager thought was appropriate. When they
later got hacked, the first question on her lips was how did he miss that security
hole?

Another deterrent to good security testing is that reporting bugs and the
subsequent tightening of security may markedly decrease perceived quality in
performance, usability, or functionality; the testers may be seen as worrying too
much about minor details, hurting the project.

Not every system is likely to be a target, but the problem, of course, is trying
to figure out which ones will be. It is simple to say that a banking system, a uni-
versity system, or a business system is going to be a target. But some systems
might be targeted for political reasons or monetary reasons, and many might
just be targeted for kicks. Vandalism is a growth industry in computers; some
people just want to prove they are smarter than everyone else by breaking some-
thing with a high profile.

5.3.2 Security Issues

We are going to look at a few different security issues. This list will not be
exhaustive; many security issues were discussed in Advanced Software Testing,
Vol. 1, and we will not be duplicating those. Here are the security topics we will
cover:

■ Piracy (unauthorized access to data)
■ Buffer overflow/malicious code insertion
■ Denial of service
■ Reading of data transfers
■ Breaking encryption meant to hide sensitive materials
■ Logic bombs/viruses/worms

__AST V3.book Seite 339 Freitag, 1. Juli 2011 1:06 13

340 5 Tests of Software Characteristics

As we get into this section, a single global editorial comment: Security, like
quality, is the responsibility of every single person on the project. All analysts
and developers had better be thinking about it. And every tester, at every level
of test, had better consider security issues during analysis and design of their
tests. If every person on the project does not take ownership of security, our sys-
tems are just not going to be secure.

Piracy

There are a lot of ways an intruder may get unauthorized access to data.
SQL injection is a hacker technique that causes a system to run a Structured

Query Language (SQL) query where it is not expected. Buffer overflow bugs,
which we will discuss in the next section, may allow this, but so might taking an
authorized SQL statement that is going to be sent to a web server and modifying
it. For example, a query is sent to the server to populate a certain page, but a
hacker modifies the underlying SQL to get other data back.

Passwords are good targets for information theft. It is often not hard to guess
them; organizations may require periodic update of passwords, and the human
brain is not really built for long, intricate passwords. So users tend to use patterns
of keys (q-w-e-r-t-y, a-s-d-f, etc.). Often, they use their name, birthday, dog’s
name, or even just the word password. And when forced to come up with a hard-
to-remember password, they write it down. It might be found underneath the
keyboard or in the top-right desk drawer. Interestingly enough, Microsoft pub-
lished a study that claims there is no actual value and often a high cost for chang-
ing passwords frequently.5 From their mouths to our sysadmin’s ear...

The single biggest security threat is often the physical location of the server.
A closet, under the system administrator’s desk, or in the hallway are all loca-
tions we have seen, providing access to whoever happens to be passing by.

Temporary files can be a target if they are unencrypted. Even the data in
EXE and DLL files can be discovered using a common binary editor.

Good testing techniques include careful testing of all functionality that can
be accessed from outside. When a query is received from beyond the firewall, it
should be checked to ensure that it is accessing only the expected area in the

5. http://microsoft-news.tmcnet.com/microsoft/articles/81726-microsoft-study-reveals-that-
regular-password-changes-useless.htm

__AST V3.book Seite 340 Freitag, 1. Juli 2011 1:06 13

http://microsoft-news.tmcnet.com/microsoft/articles/81726-microsoft-study-reveals-that-regular-password-changes-useless.htm
http://microsoft-news.tmcnet.com/microsoft/articles/81726-microsoft-study-reveals-that-regular-password-changes-useless.htm

 5.3 Quality Attributes for Technical Testing 341

database management system (DBMS). Strong password control processes
should be mandatory with testing regularly occurring to make sure they are
enforced. All data in the binaries and all data files should be encrypted. Tempo-
rary files should be scrambled and deleted after use.

Buffer Overflow

It seems like every time anyone turns on their computer nowadays, they are
reminded to install a security patch from one organization or another. A good
number of these patches are designed to fix the latest buffer overflow issue. A
buffer is a chunk of memory that is allocated to store some data. As such, it has
a finite length. The problems occur when the data to be stored is longer than the
buffer. If the buffer is allocated on the stack and the data is allowed to overrun
the size of the buffer, important information also kept on the stack might also
get overwritten.

When a function in a program is called, a chunk of space, called a stack frame,
is allocated. Various forms of data are stored there, including all local variables
and any statically declared buffers. At the bottom of that frame is a return address.
When the function is done executing, that return address is picked up and the
thread of execution jumps to there. If the buffer overflows and that address is
overwritten, the system will almost always crash because the next execution step
is not actually executable. But suppose the buffer overflow is done skillfully by a
hacker? They can determine the right length to overflow the buffer so they can
put in a pointer to their own code (malicious code insertion). When the function
returns, rather than going back to where it was called from, it goes to the line of
code the hacker wants to run. Oops! You just lost your computer.

Denial of Service

Denial of service attacks are sometimes simply pranks pulled by bored high
schoolers or college students. They all band together and try to access the same
site intensively with the intent of preventing other users from being able to get on.
Often, however, these attacks are planned and carried out with overwhelming
force. For example, recent military invasions around the world have often started
with well-planned attacks on military and governmental computer facilities.6

6. Just one example: http://defensetech.org/2008/08/13/cyber-war-2-0-russia-v-georgia/

__AST V3.book Seite 341 Freitag, 1. Juli 2011 1:06 13

http://defensetech.org/2008/08/13/cyber-war-2-0-russia-v-georgia/

342 5 Tests of Software Characteristics

Often, unknown perpetrators have attacked specific businesses by triggering
denial of service attacks by bots, zombie machines that were taken over through
successful virus attacks.

The intent of such an attack is to cause severe resource depletion of a web-
site, eventually causing it to fail or slow down to unacceptable speeds.

A variation on this is hacking a single HTTP request to contain thousands
of slashes, causing the web server to spin its wheels trying to decode the URL.

There is no complete answer to preventing denial of service attacks. Valida-
tion of input calls can prevent the latter type of attack. For the most part, the
best an organization can do is try to make the server and website as efficient as
possible. The more efficiently a site runs, the harder it will be to bring it down.

Anytime you have a data transfer between systems, this is a concern—espe-
cially if your organization did not write the connecting code. A security breach
can come during almost any DLL, API, COM, DCOM, or RPC call. One well-
known vulnerability was in the FreeBSD utility setlocale() in the libc module7.
Any program calling it was at risk of a buffer overflow bug.

All code using buffers should be statically inspected and dynamically
stressed by trying to overflow it. Testers should investigate all available literature
when developers use public libraries. If there are documented failures in the
library, extra testing should be put into place. If that seems excessive, we suggest
you check out the security updates that have been applied to your browser over
the last year.

Data Transfer Interception

The Internet consists of multiple computers transferring data to each other.
Many of the IP packets that a computer is passing back and forth are not meant
for that computer itself; they are just acting as a conduit for the packets to get
from here to there. The main protocol used on the internet, HTTP, does not
encrypt the contents of the packets. An unscrupulous organization might actu-
ally save off the passing packets and read them.

All critical data that your system is going to send over the Internet should
be strongly encrypted to prevent peeking. Likewise, the HTTPS protocol should
be used if the data is sensitive.

7. http://security.freebsd.org/advisories/FreeBSD-SA-00:53.catopen.asc

__AST V3.book Seite 342 Freitag, 1. Juli 2011 1:06 13

http://security.freebsd.org/advisories/FreeBSD-SA-00:53.catopen.asc

 5.3 Quality Attributes for Technical Testing 343

HTTPS is not infallible. It essentially relies on trust in a certification
authority (VeriSign, Microsoft, or others) to tell us whom we can trust and con-
tains some kind of encryption. However, it is better and more secure than
HTTP.

Breaking Encryption

Even with encryption, not all data will be secure. Weak encryption can be
beaten through brute force attacks by anyone with enough computing power.
Even when encryption is strong, the key may be stolen or accessed, especially if
it is stored with the data.

Because encryption is mathematically intense, it usually can be beaten by
better mathematical capabilities. In the United States, the National Security
Agency (NSA) often has first choice of graduating mathematicians for use in
their code/cipher breaking operations. If your data is valuable enough, there is
liable to be someone willing to try to break your security, even when the data is
encrypted.

The only advice we can give an organization is to use the strongest (legal)
encryption that you can afford, never leave the keys where they can be accessed,
and certainly never ever store the key with the data. Testers should include test-
ing against these points in every project. Many security holes are opened when a
“quick patch is made that won’t affect anything.”8

Logic Bombs/Viruses/Worms

Finally, in this short list of possible security gotchas are the old standbys:
viruses, worms, and logic bombs.

A logic bomb is a chunk of code that is placed in a system by a programmer
and gets triggered when specific conditions occur. It might be there for a pro-
grammer to get access to the code easily (a back door), or it might be there to do
specific damage. For example, in June 1992, an employee of the U.S, defense
contractor General Dynamics was arrested for inserting into a system a logic
bomb that would delete vital rocket project data. It was alleged that his plan was
to return as a highly paid consultant to fix the problem once it triggered.9

8. A quote we have heard enough times to scare us!
9. http://www.gfi.com/blog/insidious-threats-logical-bomb/

__AST V3.book Seite 343 Freitag, 1. Juli 2011 1:06 13

http://www.gfi.com/blog/insidious-threats-logical-bomb/

344 5 Tests of Software Characteristics

There are a great number of stories of developers inserting logic bombs that
would attack in case of their termination from the company they worked for.
Many of these stories are likely urban legends. Of much more interest to testers
is when the logic bombs are inserted via viruses or worms.

Certain viruses have left logic bombs that were to be triggered on a certain
date: April Fools’ Day and Friday the 13th are common targets.

Worms are self-replicating programs that spread throughout a network or
the Internet. A virus must attach itself to another program or file to become
active; a worm does not need to do that.

For testing purposes, we suggest that the best strategy is to have good anti-
virus software installed on all systems and a strict policy of standards and
guidelines for all users to prevent the possibility of infection.

To prevent logic bombs, all new and changed code should be subjected to
some level of static review.

5.3.3 Timely Information

Many years ago, Jamie was part of a team that did extensive security testing on a
small business website. After he left the organization, he was quite disheartened
to hear that the site had been hacked by a teenager. It seems like the more we
test, the more some cretin is liable to break it just for the kicks.

We recently read a report that claimed a fair amount of break-ins were suc-
cessful because organizations (and people) did not install security patches that
were publicly available.10 Like leaving the server in an open, unguarded room,
all of the security testing in the world will not prevent what we like to call stu-
pidity attacks.

If you are tasked with testing security on your systems, there are a variety of
websites that might help you with ideas and testing techniques. Access to timely
information can help you from falling victim to a “me too” hacker who exploits
known vulnerabilities.11 Far too often, damage is done by hackers because no
one thought of looking to see where the known vulnerabilities were.

10.http://www.sans.org/reading_room/whitepapers/windows/microsoft-windows-security-
patches_273
11.Of course, this won't help your organization if you are targeted by someone who invents the
hack.

__AST V3.book Seite 344 Freitag, 1. Juli 2011 1:06 13

http://www.sans.org/reading_room/whitepapers/windows/microsoft-windows-security-patches_273
http://www.sans.org/reading_room/whitepapers/windows/microsoft-windows-security-patches_273

 5.3 Quality Attributes for Technical Testing 345

Figure 5–3 List of top 25 security vulnerabilities from CVE website

Figure 5-3 shows an example from the Common Vulnerabilities and Exposures
(CVE) site.12 This international website is free to use; it is a dictionary of pub-
licly known security vulnerabilities. The goal of this website is to make it easier
to share data about common software vulnerabilities that have been found.

The site contains a huge number of resources like the page shown in figure
5-3, a list of the top 25 programming errors of 2010.

By facilitating information transfer between organizations, and giving com-
mon names to known failures, the organization running this website hopes to
make the Internet a safer community.

A related website (seen in figure 5-4) is called Common Attack Pattern Enu-
meration and Classification (CAPEC).13 It is designed to not only name com-
mon problems, but to give developers and testers information to detect and
fight against different attacks. From the site’s “about” page:

Building software with an adequate level of security assurance for its mis-
sion becomes more and more challenging every day as the size, complexity,
and tempo of software creation increases and the number and the skill level
of attackers continues to grow. These factors each exacerbate the issue that,
to build secure software, builders must ensure that they have protected

12. cve.mitre.org
13. capec.mitre.org

__AST V3.book Seite 345 Freitag, 1. Juli 2011 1:06 13

346 5 Tests of Software Characteristics

every relevant potential vulnerability; yet, to attack software, attackers
often have to find and exploit only a single exposed vulnerability. To iden-
tify and mitigate relevant vulnerabilities in software, the development com-
munity needs more than just good software engineering and analytical
practices, a solid grasp of software security features, and a powerful set of
tools. All of these things are necessary but not sufficient. To be effective, the
community needs to think outside of the box and to have a firm grasp of
the attacker's perspective and the approaches used to exploit software.
An appropriate defense can only be established once you know how it will
be attacked.14

Figure 5–4 Possible attack example from CAPEC site

This site is sponsored by the Department of Homeland Security as part of the
Software Assurance strategic initiative of the National Cyber Security Division
of the U.S. government. The objective of the site is to provide a publicly avail-
able catalog of attack patterns along with a comprehensive schema and classifi-
cation taxonomy.

Finally there is a good website for the Open Web Application Security Project
(OWASP).15 This not-for-profit website is dedicated to improving the security

14. http://capec.mitre.org/about/index.html
15. OWASP.org

__AST V3.book Seite 346 Freitag, 1. Juli 2011 1:06 13

http://capec.mitre.org/about/index.html
OWASP.org

 5.3 Quality Attributes for Technical Testing 347

of application software. This is a wiki-type website, so your mileage may vary
when using it. However, there are a large number of resources that we have
found on it that would be useful when trying to test security vulnerabilities,
including code snippets, threat agents, attacks, and other information.

Okay, so there are lots of security vulnerabilities and a few websites to help.
What should you do as a technical test analyst to help your organization?

As you might expect, the top of the list has to be static testing, with multiple
reviews, walk-throughs, and inspections at each phase of the development life-
cycle. These reviews should include adherence to standards and guidelines for
all work products in the system. While this adds bureaucracy and overhead, it
also allows the project team to carefully look for issues that will cause problems
later on. Information on security vulnerabilities should be supplied by check-
lists and taxonomies to improve the chance of finding problems before going
live.

What should you look for? Certain areas will be most at risk. Communica-
tion protocols are obvious targets, as are encryption methods. The configura-
tions in which the system is going to be used may be germane.

Don’t forget to look at processes that the organization using the system will
employ. What are the responsibilities of the system administrator? What pass-
word protocols will be used? Many times the system is secure, but the environ-
ment is not. What hardware, firmware, communication links, and networks will
be used? Where will the server be located?

Static analysis tools, preferably ones that can match patterns of vulnerabili-
ties, are useful, and dynamic analysis tools should also be used by both develop-
ers and testers at different levels of test.

There are hundreds, possibly thousands of tools that are used in security
testing. If truth be known, these are the same tools that the hackers are going to
use on your system. We did a simple Google search and came up with more list-
ings for security tools than we could read. The tools seem to change from day to
day as more vulnerabilities are found. Most of them seem to be open source and
require a certain competence to use.

Understanding what hackers are looking for and what your organization
could be vulnerable to is important. Where is your critical data kept? Where can
you be hurt worst?

__AST V3.book Seite 347 Freitag, 1. Juli 2011 1:06 13

348 5 Tests of Software Characteristics

If any of these steps are met with “we don’t know how to do this,” then the
engagement (or hiring) of a security specialist may be indicated. Frankly, in
today’s world, it is not a question of if you might be hit but really a question of
when and how hard. At the time we write this, our tips are already out-of-date.
Security issues are constantly morphing, no matter how much effort your orga-
nization puts into them.

Helen Keller once said, “Security is mostly superstition. It does not exist in
nature.” In software, security comes only from eternal vigilance and constant
testing.

ISTQB Glossary

operational acceptance testing: Operational testing in the acceptance test
phase, typically performed in a (simulated) operational environment by opera-
tions and/or system administration staff focusing on operational aspects, e.g.,
recoverability, resource behavior, installability, and technical compliance.

operational profile: The representation of a distinct set of tasks performed by
the component or system, possibly based on the behavior of users when inter-
acting with the component or system, and their probabilities of occurrence. A
task is logical rather that physical and can be executed over several machines
or be executed in noncontiguous time segments.

recoverability: The capability of the software product to reestablish a specified
level of performance and recover the data directly affected in case of failure.
[ISO 9126]

recoverability testing: The process of testing to determine the recoverability
of a software product.

reliability: The ability of the software product to perform its required functions
under stated conditions for a specified period of time or for a specified num-
ber of operations. [ISO 9126]

reliability growth model: A model that shows the growth in reliability over
time during continuous testing of a component or system as a result of the
removal of defects that result in reliability failures.

reliability testing: The process of testing to determine the reliability of a soft-
ware product.

__AST V3.book Seite 348 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 349

5.3.4 Reliability

While software reliability is always important; it is essential for mission-criti-
cal, safety-critical, and high-usage systems. As you might expect, reliability
testing can be used to reduce the risk of reliability problems. Frequent bugs
underlying reliability failures include memory leaks, disk fragmentation and
exhaustion, intermittent infrastructure problems, and lower-than-feasible
time-out values.

ISO 9126 defines reliability as “the ability of the software product to per-
form its required functions under stated conditions for a specified period of
time or for a specified number of operations.” While there are specific tests we
can run to measure reliability, much of our information will come from evaluat-
ing metrics that we collect from other testing.

A precise, mathematical science has grown up around the topic of reliabil-
ity. This involves the study of patterns of system use, sometimes called opera-
tional profiles. The reliability growth model and other mathematical elements of
reliability testing should be tuned with empirical data; otherwise, the results are
meaningless.

One term that is often used when discussing reliability is maturity. This is
one of three subcharacteristics that are defined by ISO 9126. Maturity is defined
as the capability of the system to avoid failure as a result of faults in the software.
We often use this term in relation to the software development lifecycle (SDLC);
the more mature the system, the closer it is to being ready to move on to the
next development phase.

The second subcharacteristic of reliability is fault tolerance, defined as the
capability of a system to maintain a specified level of performance in case of
software faults. When fault tolerance is built into the software, it often consists
of extra code to avoid and/or survive and handle exceptional conditions. The
more critical it is for the system to exhibit fault tolerance, the more code and
complexity must be added.

Negative testing is often used to test fault tolerance. We partially or fully
degrade the system operation via testing while measuring specific performance
metrics. Fault tolerance tends to be tested at each phase of testing.

During unit test, we test error and exception handling with interface values
that are erroneous, including out of range, poorly formed, or semantically
incorrect. During integration test, we test incorrect inputs from user interface,

__AST V3.book Seite 349 Freitag, 1. Juli 2011 1:06 13

350 5 Tests of Software Characteristics

files, and devices. During system test, we might test incorrect inputs from OS,
interoperating systems, devices, and user input. Valuable testing techniques
include invalid boundary testing, exploratory testing, state transition testing
(especially looking for invalid transitions), and attacks.

The last subcharacteristic is called recoverability, defined as the capability to
reestablish a specified level of performance and recover the data directly
affected in case of a failure.

Clearly, recoverability must be built into the system before we can test it.
Assuming that the system has such capabilities, typical testing would include
running negative tests to cause a failure and then measuring the time the system
takes to recover and the level of recovery that occurs. According to ISO 9126,
the only meaningful measurement is the recovery that the system is capable of
doing automatically. Manual intervention does not count.

Overt reliability testing is really only meaningful at later stages of testing,
including system, acceptance, and system integration testing. However, as you
shall see, we can use metrics to calculate reliability earlier in the SDLC.

Finally, availability is not a formal subcharacteristic of reliability. It is closely
related, however. It is defined as the capability of the system to be in a state to
perform required functions at a given time and under stated conditions of use.
This can be said to consist of a combination of maturity, fault tolerance, and
recoverability (how long the system will be down after a failure).

It is interesting to compare hardware reliability to that of software. Hard-
ware tends to wear out over time; in other words, there are usually physical
faults that occur to cause hardware to fail. Software, on the other hand, never
wears out. Limitations in software reliability over time almost always can be
traced to defects originating in requirements, design, and implementation of
the system.

Figure 5–5 Hardware reliability graph

__AST V3.book Seite 350 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 351

In figure 5-5, you see a graph that shows—in general—the reliability of hard-
ware over time. Early in the development life cycle, there are a good number of
failures that must be fixed. By the time the hardware is put into production,
there are a low number of failures throughout its useful life. As the hardware
starts approaching the end of its useful life, the failure rate starts to climb again.
With hardware, many failures occur early during the burn-in period. If the
hardware does not fail within the first n days, it often never will throughout its
useful life.

Figure 5–6 Software reliability graph

Compare that with the software reliability graph of figure 5-6. Software has a
relatively high failure rate during the testing and debugging period; during the
SDLC, the failure rate will trend downward (we hope!). While hardware tends
to be stable over its useful life, however, software tends to start becoming obso-
lescent fairly early in its life, requiring upgrades. The cynical might say that
those upgrades are often not needed but pushed by a software industry that is
not making money if it is not upgrading product. Others might note that there
are always features missing that require upgrades and enhancements. Whatever
the truth of the argument, each upgrade tends to bring a spike of failures (hence
a lowering of reliability), which then tails off over time until the next upgrade.

Finally, as can be seen in figure 5-6, as we get upgrades, complexity also
tends to increase, which can lower reliability somewhat.

In reliability testing, we monitor software maturity and compare it to
desired, statistically valid goals. The goal can be the mean time between failures
(MTBF), the mean time to repair (MTTR), or any other metric that counts the
number of failures in terms of some interval or intensity. During reliability test-
ing, as we find bugs that are repaired, we’d expect the reliability to improve. Var-

__AST V3.book Seite 351 Freitag, 1. Juli 2011 1:06 13

352 5 Tests of Software Characteristics

ious mathematical models, called software reliability growth models, can be
used to monitor this growth.

Defect density—how many defects per thousand lines of source code
(KLOC) or per function point—is one metric that has been used for measuring
reliability. Cyclomatic complexity, number of modules, and counting certain
constructs (such as GOTOs) have all been used to try to determine correlation
of complexity, size, and programming techniques to number of failures.

Object-oriented development comes with its own ways of measuring com-
plexity, including number of classes, average number of methods per class,
cohesion in classes and coupling between classes, depth of inheritance used, and
many more.

While there are techniques for accelerated reliability testing for hardware—
so-called Highly Accelerated Life Tests (or HALT testing)—software reliability
tests usually involve extended duration testing. The tests can be a small set of
prescripted tests, run repeatedly, which is fine if the workflows are very similar.
(For example, an ATM could be tested this way.) The tests might be selected
from a pool of different tests, selected randomly, which would work if the varia-
tion between tests were something that could be predicted or limited. (For
example, an e-commerce system could be tested this way.) The test can be gen-
erated on the fly, using some statistical model, which is called stochastic testing.
(For example, telephone switches are tested this way, as the variability in called
number, call duration, and the like is very large.) The test data can also be ran-
domly generated, sometimes according to a model.

In addition, standard tools and scripting techniques exist for reliability test-
ing. This kind of testing is almost always automated; we’ve never seen an exam-
ple of manual reliability testing that we would consider anything other than an
exercise in self-deception at best.

Given a target level of reliability, we can use our reliability tests and metrics
as exit criteria. In other words, we continue until we achieve a level of consistent
reliability that is sufficient. In some cases, service level agreements and con-
tracts specify what “sufficient” means.

In the real world, reliability is a fickle thing. For example, you might expect
that the longer a system is run without changes, the more reliable it will become.
Balancing that is the observation that the longer a system runs, the more people

__AST V3.book Seite 352 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 353

might try to use it differently; this may result in using some capability that had
never been tried before and, incidentally, causing the system to fail.

We tend to try to develop reliability measures during test so that we can
predict how the system will work in the real world. But balancing that in the real
world tends to be much more complex than our testing environment. As you
might guess, that means there are going to be a whole host of issues that are then
going to affect reliability. In test, we need to allow for the artificiality of our test-
ing when trying to predict the future.

So what does it all mean? Exact real numbers for reliability might not be as
meaningful as trends. Are we trending down in failures (meaning reliability is
trending up)?

The National Aeronautics and Space Administration (NASA) is responsible
for trying to keep mankind in space. When their software fails, it might mean
the end of a multibillion dollar mission (not to mention many lives).

The NASA Software Assurance Standard, NASA-STD-8739.8, defines soft-
ware reliability as a discipline of software assurance that meets the following
requirements:

■ Defines the requirements for software controlled system fault/failure detec-
tion, isolation, and recovery

■ Reviews the software development processes and products for software
error prevention and/or reduced functionality states

■ Defines the process for measuring and analyzing defects and defines/
derives the reliability and maintainability factors

NASA uses both trending and predictive techniques when looking at reliability.
Trending techniques track the metrics of failures and defects found over

time. The intent is to develop a reliability operational profile of a given system
over a specified time period. NASA uses four separate techniques for trending:

■ Error seeding: Estimates the number of errors in a program by using multi-
stage sampling. Defects are introduced to the system intentionally. The
number of unknown errors is estimated from the ratio of induced errors to
noninduced errors from debugging data.

■ The failure rate: Study the failure rate per fault at the failure intervals. The
theory goes that as the remaining number of faults change, the failure rate
of the program changes accordingly.

__AST V3.book Seite 353 Freitag, 1. Juli 2011 1:06 13

354 5 Tests of Software Characteristics

■ Curve fitting: NASA uses statistical regression analysis to study the
relationship between software complexity and the number of faults in a
program as well as the number of changes and the failure rate.

■ Reliability growth: Measures and predicts the improvement of reliability
programs throughout the testing process. Reliability growth also represents
the failure rate of the system as a function of time and the number of test
cases run.

NASA also uses predictive reliability techniques: These assign probabilities to
the operational profile of a software system. For example, the system has a
5 percent chance of failure over the next 60 operational hours. This clearly
involves a capability for statistical analysis that is far beyond the capabilities of
most organizations (due to lack of resources and skills).

Metrics that NASA collects and evaluates can be split into two categories:
static and dynamic.

Static measures include the following:

1. Line count, including lines of code (LOC) and source lines of code (SLOC)
2. Complexity and structure, including cyclomatic complexity, number of

modules, and number of GOTO statements
3. Object-oriented metrics, including number of classes, weighted methods

per class, coupling between objects, response for a class, number of child
classes, and depth of inheritance tree

Dynamic measures include failure rate data and number of problem reports.
The question that must be asked when discussing reliability testing is,

Which faults are we going to be concerned with? A complex system can fail at
hundreds or thousands of places. Since there is probably a great deal of cost
involved, and as reliability needs go up, the costs escalate even faster, so an orga-
nization must plan carefully. While NASA can afford to pull out all stops when
it comes to reliability testing, most other organizations are not so lucky.

Here are some events that are often of concern:

1. An external event that should occur does not, a device that should be online
is not, an interface or process that the system needs is not available.

2. The network is slow or not available or suddenly crashes.

__AST V3.book Seite 354 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 355

3. The operating system capabilities that the system relies on are not available
or degraded.

4. User input is inappropriate, unexpected, or incorrect.

A test team must determine which of these (or other possibilities) are important
for the system’s mission. The team would create (usually negative) tests to
degrade or remove those capabilities and then measure the response of the sys-
tem. Measurements from these tests are then used to determine if the system
reliability was acceptable.

5.3.5 Efficiency

ISO 9126 defines efficiency as the capability of the software product to provide
appropriate performance relative to the amount of resources used and under
stated conditions. When speaking of resources, we could mean anything on the
system, software, hardware, or any other abstract entities. For example, network
bandwidth would be included in this definition.

Efficiency of a distributed system is almost always important. When might
it not be important? Several years ago, Jamie was teaching a class in Juneau,
Alaska. After class, he struck up a conversation, in a bar, with a tester who said
he worked at the Alaska Department of Transportation. Discussion turned to a
new distributed system that was going to be going live, allowing people from all
over the state to renew their driver’s licenses online. When Jamie asked about
performance testing the new system, the tester laughed. He claimed that on a
good day, there might have 10 to 12 users on the site. While the tester was likely
exaggerating, the point we should draw from it is that efficiency testing, like all
other testing, must be based on risk. Not every type of testing must always be
done to every software system.

ISTQB Glossary

efficiency: The capability of the software product to provide appropriate per-
formance, relative to the amount of resources used under stated conditions.
[ISO 9126]

efficiency testing: The process of testing to determine the efficiency of a soft-
ware product.

__AST V3.book Seite 355 Freitag, 1. Juli 2011 1:06 13

356 5 Tests of Software Characteristics

ISO identifies two important subcharacteristics for efficiency: time behavior
and resource utilization.

Time-critical systems, which include most safety-critical, real-time, and
mission-critical systems, must be able to provide their functions in a given
amount of time. Even less-critical systems like e-commerce and point-of-sales
systems should have good time response to keep users happy.

In addition, for some systems, including real-time, consumer-electronics,
and embedded systems, resource usage is important. You can’t always just add a
disk or add memory when resources get tight, as the NASA team managing one
of the Mars missions found out when storage space ran out.16

Efficiency failures can include slow response times, inadequate throughput,
reliability failures under conditions of load, and excessive resource require-
ments. Efficiency defects are often design flaws at their core, which make them
very hard to fix during late-stage testing. So efficiency testing can and should be
done at every test level, particularly during design and coding (via reviews and
static analysis).

There are a lot of myths surrounding performance testing. Let’s discuss a
few.

Some testers think that the way to performance test is to throw hundreds
(or even thousands?) of virtual users against the system and keep ramping them
up until the system finally breaks down. The truth is that most performance
testing is done while measuring the working system without causing it to fail.
There is a kind of performance testing that does try to find the breaking point of
the system, but it is a small part of the entire range of ways we test.

A second myth states that we can do performance testing only at the end of
system test. This is dangerously wrong and we will address it extensively. As
noted, performance testing, like all other testing, should be pervasive through-
out the lifecycle.

Last is the myth that a good performance tester only needs to know about a
performance tool. Learn the tool and you can walk into any organization and
start making big money running tests tomorrow. Turns out this is also danger-

16. A memory shortage caused the Spirit Mars rover to become unresponsive on January 2, 2004.
A brief summary can be found at: http://www.computerworld.com/s/article/89829/
Out_of_memory_problem_caused_Mars_rover_s_glitch.

__AST V3.book Seite 356 Freitag, 1. Juli 2011 1:06 13

http://www.computerworld.com/s/article/89829/Out_of_memory_problem_caused_Mars_rover_s_glitch
http://www.computerworld.com/s/article/89829/Out_of_memory_problem_caused_Mars_rover_s_glitch

 5.3 Quality Attributes for Technical Testing 357

ously false. We will discuss all of the tasks that must be done for good perfor-
mance testing before we ever turn on a tool.

5.3.6 Multiple Flavors of Efficiency Testing

There is an urban myth that the native Inuit peoples have more than 30 differ-
ent names for snow, based on nuances in snow that they can see. While
researching this story, we found that there is wide dispute as to whether this is
myth or provable fact. If factual, the theory is that they have so many names
because to the Inuit, who live in the snow through much of the year, the fine
distinctions are important, but to others, the differences are negligible. It
depends on your viewpoint. Consider that in America, we have machines that
have very little difference between them; these go by the names Chevy, Buick,
Cadillac, Ford, etc. Show them to an Inuit; they might fail to see any big dis-
tinction between them.

One of the most talented performance testers that Jamie ever met once
showed Jamie a paper he was writing that enumerated some 40 different flavors
of performance testing. Frankly, as Jamie read it, he did not understand many of
the subtle differentiations the author was making. However, listening to others
review the paper was an education in itself as they discussed subtle differences
that Jamie had never considered.

The one thing we know for sure is that efficiency testing covers a lot of dif-
ferent test types. What follows is a sampling of the kinds of testing that might be
performed. We have used definitions from the ISTQB glossary and ISTQB
Advanced syllabus when available. Other definitions come from a performance
testing class that was written by Rex. A few of the definitions come from a book
by Graham Bath and Judy McKay.17 In each case, we tried to pick definitions
that a wide array of testers have agreed on.

Most of these disparate test types go by the generic name performance test-
ing. From the ISTQB glossary comes the following definition for performance
testing itself:

The process of testing to determine the performance of a software product.

17. The Software Test Engineer's Handbook

__AST V3.book Seite 357 Freitag, 1. Juli 2011 1:06 13

358 5 Tests of Software Characteristics

We really like Rex’s definition better:

Testing to evaluate the degree to which a system or component accom-
plishes its designated functions, within given constraints, regarding process-
ing time and throughput rate.

A classic performance or response-time test looks at the ability of a component
or system to respond to user or system inputs within a specified period of time,
under various legal conditions. It can also look at the problem slightly differ-
ently, by counting the number of functions, records, or transactions completed
in a given period; this is often called throughput. The metrics vary according to
the objectives of the test.

So, with that in mind, here are some specific types of efficiency testing:

■ Load testing: A type of performance testing conducted to evaluate the
behavior of a component or system with increasing load (e.g., numbers of
parallel users and/or numbers of transactions) to determine what load can
be handled by the component or system. Typically, load testing involves
various mixes and levels of load, usually focused on anticipated and realistic
loads. The loads often are designed to look like the transaction requests
generated by certain numbers of parallel users. We can then measure
response time or throughput. Some people distinguish between multi-user
load testing (with realistic numbers of users) and volume load testing (with
large numbers of users), but we’ve not encountered that too often.

■ Stress testing: A type of performance testing conducted to evaluate a system
or component at or beyond the limits of its anticipated or specified
workloads or with reduced availability of resources such as access to
memory or servers. Stress testing takes load testing to the extreme and
beyond by reaching and then exceeding maximum capacity and volume.
The goal here is to ensure that response times, reliability, and functionality
degrade slowly and predictably, culminating in some sort of “go away I’m
busy” message rather than an application or OS crash, lockup, data
corruption, or other antisocial failure mode.

■ Scalability testing: Takes stress testing even further by finding the
bottlenecks and then testing the ability of the system to be enhanced to
resolve the problem. In other words, if the plan for handling growth in

__AST V3.book Seite 358 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 359

terms of customers is to add more CPUs to servers, then a scalability test
verifies that this will suffice. Having identified the bottlenecks, scalability
testing can also help establish load monitoring thresholds for production.

■ Resource utilization testing: Evaluates the usage of various resources (CPU,
memory, disk, etc.) while the system is running at a given load.

■ Endurance or soak testing: Running a system at high levels of load for
prolonged periods of time. A soak test would normally execute several
times more transactions in an entire day (or night) than would be expected
in a busy day to identify any performance problems that appear after a large
number of transactions have been executed. It is possible that a system may
stop working after a certain number of transactions have been processed
due to memory leaks or other defects. Soak tests provide an opportunity to
identify such defects, whereas load tests and stress tests may not find such
problems due to their relatively short duration.

■ Spike testing: The object of spike testing is to verify a system’s stability
during a burst of concurrent user and/or system activity to varying degrees
of load over varying time periods. Here are some examples of business
situations that this type of test looks to verify a system against:
– A fire alarm goes off in a major business center and all employees

evacuate. The first alarm drill completes and all employees return to
work and log into an IT system within a 20-minute period.

– A new system is released into production and multiple users access the
system within a very small time period.

– A system or service outage causes all users to lose access to a system.
After the outage has been rectified, all users then log back onto the
system at the same time.

– Spike testing should also verify that an application recovers between
periods of spike activity.

■ Reliability testing: Testing the ability of the system to perform required
functions under stated conditions for a specified period of time or number
of operations.

■ Background testing: Executing tests with active background load, often to
test functionality or usability under realistic conditions.

■ Tip-over testing: Designed to find the point where total saturation or failure
occurs. The resource that was exhausted at that point is the weak link.

__AST V3.book Seite 359 Freitag, 1. Juli 2011 1:06 13

360 5 Tests of Software Characteristics

Design changes (ideally) or more hardware (if necessary) can often improve
handling and sometimes response time in these extreme conditions.

And lots more, but our brains hurt. Unless we have a specific test in mind, we
are just going to call all efficiency type testing by the umbrella name of perfor-
mance testing for this chapter.

Not all of the previously mentioned tests are completely disjoint; we could
actually run some of them concurrently by changing the way we ramp up the
load and which metrics we monitor.

No matter which of these we run, there is much more to creating a perfor-
mance test that’s meaningful than buying a really expensive tool with a 1,000
virtual user licenses and start cranking up the volume. We will discuss how to
model a performance test correctly in the next section.

We have been in a number of organizations that seemed to believe that per-
formance testing could not even be started until late in system testing. The the-
ory goes that performance testing has to wait until the system is pretty well
complete, with all the functionality in and mostly working.

Of course, if you wait until then to do the testing, and you find a whole raft
of bugs when you do test (usually the case), your organization will have the
choice of two really bad options: delay the delivery of the system into produc-
tion while fixes are made (that could happen, but don’t hold your breath), or go
ahead and deliver a crippled system while desperately scrambling to fix the
worst of the failures. The latter is what we have mostly seen occur.

Good performance testing, like most good testing, should be distributed
throughout all of the phases of the SDLC:

■ During the development phases, from requirements through implementa-
tion, static testing should be done to ensure meaningful requirements and
designs from an efficiency viewpoint.

■ During unit testing, performance testing of individual units (e.g., functions
or classes) should be done. All message and exception handling should be
scrutinized; each message type could be a bottleneck. Any synchronization
code, use of locks, semaphores, and threading must be tested thoroughly,
both statically and dynamically.

■ During integration testing, performance testing of collection of units
(builds or backbones) should be performed. Any code that transfers data

__AST V3.book Seite 360 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 361

between modules should be tested. All interfaces should be scrutinized for
deadlock problems.

■ During system testing, performance testing of the whole system should be
done as early as possible. The delivery of functionality into test should be
mapped so that those pieces that are delivered can be scheduled for the
performance testing that can be done.

■ During acceptance testing, the performance of the whole system in
production should be demonstrated (after making sure it is going to work
with earlier testing, right?).

Realism of the test environment generally increases with each level, until system
test, which should (ideally) test in a replica of the production or customer envi-
ronment.

5.3.7 Modeling the System

In the early days of performance testing, many an organization would buy or
lease a tool, pick a single process, record a transaction, and immediately start
testing. They would create multiple virtual users using the same profile and the
same data. To call such testing meaningless is to tread too lightly.

If a performance test is to be meaningful, there are a lot of questions that
must be answered that are more important than, How many users can we get on
the system at one time? Come to think of it, that question (by itself) is about as
meaningful as the old days when the raging question was how many teens can
you get in a phone booth?

Here then are some important questions that should be asked before we get
into the physical performance testing process.

What is the proposed scope of the effort? Exactly which subsystems are we
going to be testing? Which interfaces are important? Which components are
we going to be testing? Are we doing the full end-to-end customer experience
or is there a particular target we are after? Which configurations will be
tested?

How realistic is the test going to be? If production has several hundred mas-
sive servers and we are going to be testing against a pair of small, slow, ancient
servers, there is not a powerful enough calculator made to get a meaningful
extrapolation of what our testing is telling us.

__AST V3.book Seite 361 Freitag, 1. Juli 2011 1:06 13

362 5 Tests of Software Characteristics

How many concurrent users do we expect? Average? Peak? Spike? What
tasks are they going to be doing? Odds are really good that all of the users will
not be touching the same record with the same user ID.

What is the application workload mix that we want to simulate? In other
words, how many different types of users will we be simulating on the system
and what percentages do they make up (for example, 20 percent login, 40 per-
cent search, 15 percent checkout, etc.)?

And while we are at it, how many different application workload mixes do
we want on the system while we are testing? Many systems support several dif-
ferent concurrent applications running on the same servers. Testing only one
may not be meaningful.

In that same vein, is virtualization going to be used? Will we be sharing a
server with other virtualized processes? Will our processes be spread over mul-
tiple servers? Our research and discussions with a number of performance
testers shows that there are a lot of different opinions as to how virtualization
will affect performance testing.

Which back-end processes are going to be running during the testing?
Any batch processes? Any dating processes? Month end processing? Those
processes are going to happen in real life; do we need to model them for this
test?

Be of good cheer—there are dozens more questions, but performance test-
ing is possible to do successfully.

To give an example of a coherent methodology that an organization might
use for doing performance testing of a web application, we have pulled one from
the Microsoft Developer Network.18 This methodology consists of seven steps,
as follows:

1. Identify the test environment—and the production environment, including
hardware, software, and network configurations.

Assess the expected test environment and evaluate how it compares to
the expected production environment. Clearly, the closer our test system is
to the expected production system, the more meaningful our test results
can be. Balanced against that is the cost. Replicating the environment

18. Performance Testing Guidance for Web Applications,
http://msdn.microsoft.com/en-us/library/bb924375.aspx

__AST V3.book Seite 362 Freitag, 1. Juli 2011 1:06 13

http://msdn.microsoft.com/en-us/library/bb924375.aspx

 5.3 Quality Attributes for Technical Testing 363

exactly as it is found in production is usually not going to happen. Some-
where we need to strike a balance.

Understand the tools and resources available to the test team. Having
the latest and greatest of every tool along with an unlimited budget for vir-
tual users would be a dream. If you are working in the kind of organizations
in which we have worked, dreaming of that is as close as you will get.

Identify challenges that must be met during the process. Realistically,
consider what is likely to happen. Many software people are unquenchable
optimists; we just know that everything is going to go right this time. While
we can hope, we need to plan as realists—or, as the Foundation syllabus
says, be professional pessimists.

This first step is likely to be one that is revisited throughout the process
as compromises and changes are made. As with risk analysis, which we dis-
cussed in chapter 3, we need to always be reevaluating the future based on
what we discover during the process.

2. Identify the performance acceptance criteria. Identify the goals and con-
straints for the system. Remember that many in the project may not have
thought these issues through. Testers can help focus the project on what we
really can achieve. There are three main ways of looking at what we are
interested in:
■ Response time: user’s main concern
■ Throughput: often the business’s concern
■ Resource utilization: system concerns
Identify system configurations that might result in the most desirable com-
binations of the preceding items. This might take some doing since people
in the project may not have considered these issues yet.

Identify project success criteria. How will you know when you are
done? While it is tempting for testers to want to determine what success
looks like, it is up to the project manager to make that determination. Our
job is to capture information that allows the other project members to
make informed decisions as to pass/fail. So which metrics are we going to
collect? Don’t try to capture every metric that is possible. Settle on a given
set of measurements that are meaningful to proving success—or disprov-
ing it.

__AST V3.book Seite 363 Freitag, 1. Juli 2011 1:06 13

364 5 Tests of Software Characteristics

3. Plan and design tests. Model the system as mentioned earlier to identify key
scenarios and likely usage.

Determine how to simulate the inevitable variability of scenarios. What
do different users do and how do they do it? What is the business context in
which the system is used. Focus on groups of users; look for common ways
they interact with the system.

Define test data—and enough of it! Remember that different user
groups will likely have distinctive differences in the data they use. Log files
from production can be very helpful in gathering data information.
Don’t forget to review the data you will be using with the actual users them-
selves when possible; they can help you find what you might have over-
looked.

Make sure you consider timing as part of the data collection. Different
groups will work at different rates. Not accounting for actual work patterns
will very likely skew results. Don’t forget user abandonment; not every task
is completed by all users. Consolidate all of the preceding designs into dif-
ferent models of system usage to be tested.

4. Configure the test environment. Prepare the test environment, tools, and
resources needed to execute the models designed in step 3. Validate that
your environment matches production to the extent that it can and
document where it doesn’t. Differences between test and production envi-
ronments must be taken into account or the test results will not model
reality.

Create a schedule that outlines when the necessary features will
become available (i.e., match up with the SDLC). Not all functionality will
likely be available on day one of testing.

And, finally, instrument the test environment to enable collection of
the desired metrics.

5. Implement the test design. Create the performance testing scripts using the
tools available.

Ensure that the data parameterization is as needed. This is a good place
to double-check that you have sufficient data to run your tests. If you are
performing soak testing, you will need a lot of data.

Smoke test the design and modify scripts as needed. One phrase Jamie
remembers vividly from his five years of Latin language classes: Quis custo-

__AST V3.book Seite 364 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 365

diet ipsos custodes?19 Who will guard the guardians themselves? Nonvali-
dated tests could easily be giving us bogus information. Always ensure—
before beginning the actual testing—that the test scripts are meaningful and
performing the actual tasks you are expecting them to. Make sure to ask
yourself if the results make sense. Do not report the results of the smoke test
as part of the official test results.

6. Execute the test. Run the tests, monitoring the results. Work with database,
network, and system personnel to facilitate the testing (first runs often show
serious issues that must be addressed). Ideally, any issues would have been
addressed during the validation of the scripts, but expecting the unexpected
is pretty much par for the course in performance as with all testing.

Validate the tests as being able to run successfully, end to end. Run the
testing in one- to two-day batches to constantly ask the reasonableness
question: Are the results we are getting sensible? Beware of a common mis-
take made among scientists, however. When the results are not what was
expected, sometimes scientists believe that the tests are invalid rather than
there might be something wrong with their hypotheses. It might just be that
your expectations were wrong.20

Execute the validated tests for the specified time and under the defined
conditions to collect the metrics. It often makes sense to repeat tests to
ensure that the results are similar. If they are not similar, why not? Often
there are hidden factors that might be missed if tests are run only once.
When you stop getting valuable information, you have run the tests enough.

7. Analyze the results, tune, and retest. Analyze the completed metrics. Do
they prove what you wanted to prove? If they do not match expected results,
why not?

Consolidate and share results data with stakeholders. As with all other
testing, remember that you must report the results to stakeholders in a
meaningful way. The fact that you had 1,534 users active at the same time is

19. Satires of Juvenal. Probably not talking about software, but still worth considering...
20. Arno A. Penzias and Robert W. Wilson, working for Bell Labs in the early '60s, accidentally
discovered the first observational proof of the "Big Bang" when nothing they could do would
eliminate the static they kept picking up with their microwave receiver. However, they spent
months not believing what their tests were telling them. See http://www.amnh.org/education/
resources/rfl/web/essaybooks/cosmic/cs_radiation.html.

__AST V3.book Seite 365 Freitag, 1. Juli 2011 1:06 13

http://www.amnh.org/education/resources/rfl/web/essaybooks/cosmic/cs_radiation.html
http://www.amnh.org/education/resources/rfl/web/essaybooks/cosmic/cs_radiation.html

366 5 Tests of Software Characteristics

really cool; however, the stakeholders are more interested in whether the
system will support their business goals.

Tune the system. Can you make changes to the system to positively
affect its performance. This becomes more important the closer to produc-
tion your test environment is. Small changes can often create huge differ-
ences in the performance of the system. Our experience is that those
changes are often negative. This task will, of course, depend on time and
resources.

How do you know when you are done with efficiency testing? According to the
Microsoft test guide, “When all of the metric values are within accepted limits,
none of the set thresholds have been violated, and all of the desired information
has been collected, you have finished testing that particular scenario on that
particular configuration.”

In the real world, of course, you are likely to run out of time long before you
get to this point. Remember that testing has to be aligned with the needs of the
project. Don’t let the perfect be the enemy of the good!

5.3.8 Efficiency Measurements

When we discussed reliability, some of the internal measurements were kind of
soft. We could use math and statistics, and wave a magic wand, but the sad fact
is many of the metrics were guesses.

The good thing for technical test analysts is that many of our measurements
for efficiency testing are completely quantifiable. We can measure them directly.
Well, kind of. The truth is, every time we make a measurement, we can get an
exact value. It took 3 milliseconds for this thing to occur. We had 100 virtual
users running concurrently, doing this, this, and this.

In performance testing, we often have to run the same test over and over
again so that we can average out the results. Because the system is extremely
complex, and other things may be going on, and timing of all the things going
on may not be completely deterministic, and CPU loading may be affected by
internal processes, and a hundred other things...well, you get the picture. So we
run the tests multiple times, measure the things we want to an exact amount,
and average them over the multiple runs.

When Jamie was in the military, they used to joke about how suppliers met
government specifications. Measure something with a micrometer and then cut

__AST V3.book Seite 366 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 367

it with a chainsaw. Sometimes that is how we feel about the metrics we get from
performance testing.

There are two main categories of metrics that are interesting in efficiency
testing; not surprisingly, these are also the subcharacteristics that we mentioned
earlier. One is time behavior, measurements that look at the amount of time it
takes to do something. And the second is resource utilization, measurements of
actual or projected resource usage that it takes to perform a task. And, in some
cases, a third subcharacteristic may be important, efficiency compliance that
references any applicable laws, standards or guidelines that the project must be
concerned with.

Inside those categories, there are dozens of different metrics that can be
captured. Here we have listed some of the most important metrics that an orga-
nization might want to collect:21

■ Processor utilization percentage at key points of the test.
■ Available memory, both RAM and virtual, at different points through the

test. That includes memory page usage.
■ Top n processes active, remembering that some of them may not be part of

the test but may be internal or external processes running concurrently.
■ Number of context switches per second.
■ Length on queues (processor, disk, etc.) at any given time.
■ Disk saturation and usage.
■ Network errors, both inbound and outbound.
■ Network packet round-trip time.
■ Client data presentation time: How long does it take from the time a person

clicks “go” until they see a result.

Remember, too, that many measurements waste time and resources, but too few
and you don’t learn what you need to know. Using metrics is both a science and
an art, and they are perhaps the most frustrating thing we deal with when test-
ing.

21. These come from a book by Ian Molyneaux, The Art of Application Performance Testing.

__AST V3.book Seite 367 Freitag, 1. Juli 2011 1:06 13

368 5 Tests of Software Characteristics

5.3.9 Examples of Efficiency Bugs

Good testing methodology tells us that when we are testing, we should have
some kind of idea of what we are looking for. So in this section, we are going to
discuss four separate scenarios that we may discover when performance testing:

■ Slow response under all load levels
■ Slow response under moderate loading of the system where the amount of

loading is expected and allowed
■ Response that degrades over time
■ Inadequate error handling when loaded

First, let’s discuss the underlying graph that we will use to illustrate these bugs.
In figure 5-7, the vertical scale represents the amount of time transactions are
taking to process on average. In general, the less time a transaction takes to exe-
cute, the happier the user will be. The horizontal scale shows the arrival time
rate; in other words, how many transactions the system is trying to execute over
a specified time.

Figure 5–7 Unacceptable performance at any load example

Normally, as more and more transactions arrive, we would expect that the sys-
tem may get a little slower (shown by the line getting a little higher on the graph
the farther to the right it travels). Ideally, the line will stay in the gray, lower

__AST V3.book Seite 368 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 369

area, which is labeled the acceptable performance area. As long as the line stays
in the gray, we are within the expected performance range and we would expect
our users to be satisfied with the service they are getting.

In figure 5-7, you can see that we definitely have a problem. Even with no
loading at all, the performance is just barely acceptable; as load just begins to
ramp up, we move immediately out of the acceptable range. This is something
we would expect [hope] to find during functional testing, long before we start
performance testing. However, we often miss it because functional testing tends
to test the system with a single user.

A bad database design and implementation where trying to access data just
takes too long may be causing this. Network latency may be problematic, or the
server might be too loaded with other processes. This is a case where monitor-
ing a variety of different metrics should quickly point out the problem.

Figure 5–8 Slow response under moderate loading example

In figure 5-8, we start out well within the acceptable range. However, there is a
definite knee before we get to 400 transactions per hour. Where the response
had degraded slightly in a linear fashion, all of a sudden the degradation got
much faster, rapidly moving out of the acceptable range at about 500 trans-
actions per hour.

__AST V3.book Seite 369 Freitag, 1. Juli 2011 1:06 13

370 5 Tests of Software Characteristics

This is representative of a resource reaching its capacity limit and saturat-
ing. Looking at the key performance indicator metrics at this point will gener-
ally show this; we may have high CPU utilization, insufficient memory, or some
other similar problem. Again, the problem could also be that there are back-
ground processes that are chewing up the resources.

In figure 5-9, we show several curves. The first, solid green line shows a
sample run early in the test. The next, dashed line shows a run that was made
somewhat later, and the dotted line shows a run made even later into the test.

What we are seeing here is a system that is degrading with time. The exact
same load run later in the test was markedly slower that the previous run, and
the third run was worse yet.

Figure 5–9 Response that degrades over time example

This looks like a classic case of memory leaking, or disk access slowing down
due to fragmentation. Notice that there is no knee in this graph; no sudden dis-
location of resources. It is just a balloon losing air; eventually, if the system kept
running, we would expect that performance would eventually reach unaccept-
able levels even at low loading.

__AST V3.book Seite 370 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 371

Figure 5–10 Inadequate error handling example

Finally, in figure 5-10, we see a system that does not look too bad right up until
it is fairly heavily loaded. At about 900 transactions per hour, we see a knee
where response starts rapidly rolling off. Is this good or bad? Anytime you see a
graph or are presented with metrics, remember that everything is relative. It
might be really good if the server were rated at 500 transactions per hour, but in
this case we want to achieve 1,000 transactions per hour.

Suppose it were rated at 900 transactions per hour, and it is (barely) in toler-
ance; what else does the graph show? Looking at the legend on the graph, the
assumption is that error handling is problematic. The real concern should be
seen as what is happening at the very tail end of the curve. The only way the
curve can go down after being in the unacceptable range is if the system is
sloughing off requested transactions. In other words, more transactions are
being requested, but the system is denying them. These transactions may be
explicitly denied (not good but understandable to the user) or simply lost
(which would be totally unacceptable).

Possible causes of the symptoms might be insufficient resources, queues
and stacks that are too small, or time-out settings that are too short.

Ideally, performance testing will be run with experts standing by to investi-
gate anomalies. Unlike with other testing, where we might write an incident

__AST V3.book Seite 371 Freitag, 1. Juli 2011 1:06 13

372 5 Tests of Software Characteristics

report to be read sometime later by the developer, the symptoms of perfor-
mance test failures are often investigated right away, while the test continues. In
this case, the server, network, and database experts are liable to be standing by
to troubleshoot the problems right away.

We will discuss the tools that they are likely to be using in chapter 9.

5.3.10 Exercise: Security, Reliability, and Efficiency

Using the HELLOCARMS system requirements document, analyze the risks
and create an informal test design for each of the following using one require-
ment for each:

■ Security
■ Reliability
■ Efficiency

Our results are shown in the next section.

5.3.11 Exercise: Security, Reliability, and Efficiency Debrief

Security

For security, we picked 010-040-040 which states, “Support the submission of
applications via the Internet, providing security against unintentional and
intentional security attacks.” As soon as we open this system up to the Internet,
security issues (and thus testing) come to the forefront.

During our analysis phase, we would try to ascertain exactly how much
security testing had already been done on HELLOCARMS itself and the inter-
operating systems. Since up until now the systems had been reasonably closed,
we would expect to find some untested holes. These holes would prompt an
estimate for testing them, to make sure we have the resources we need.

Next, as part of our analysis, we would investigate the most common web
security holes on sites mentioned earlier in this chapter: CVE (Common Vul-
nerabilities and Exposures), CAPEC (Common Attack Pattern Enumeration
and Classification), and OWASP (Open Web Application Security Project). We
would want all the help we could find.

We would ensure that we were active in static testing at every level as the
design and code were being developed.

__AST V3.book Seite 372 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 373

Our test suite would likely contain tests to cover the following:

■ Injection flaws, where untrusted data is sent to our site trying to trick us
into executing unintended commands

■ Cross-site scripting, where the application takes untrusted data and sends it
to the web server without proper validation

■ Authentication and session management functions to make sure unauthor-
ized users are not allowed to log in

■ HELLOCARMS code, to make sure direct objects (files, directories, data-
base keys, etc.) were not available from the browsers

■ Ensuring that no unencrypted or lightly encrypted data was sent to
browsers (including making sure the keys are not sent with the data)

■ Making sure all certificates are tested correctly to avoid corrupted or invalid
certificate acceptance

■ Testing any links on our pages to ensure that we only use trusted data in our
links (to avoid getting a reputation for forwarding our customers to
malware sites)

Reliability

We selected two related requirements, 020-010-020 and 020-010-030. The first,
set in release two, requires that fewer than five (5) failures in production occur
per month. The second requires that the number of failures per month in pro-
duction be fewer than one (1) per month by release four. In essence, we are
going to test mean time between failures (MTBF). Frankly, we might challenge
this kind of a firm requirement in review because it sets a (seemingly) arbitrary
value that may be impossible to meet within project constraints.

However, since the requirement is firm, it strikes us as an opportunity to
create a long-running automated test that could be run over long periods (over-
night, weekends, or perhaps a dedicated workstation running for weeks).

This would depend on having automated tests available that exercise the
GUI screens of the Telephone Banker. To be useful, the tests would need to be
data-driven or keyword-driven tests, tests that can be run randomly with a very
large data set.

__AST V3.book Seite 373 Freitag, 1. Juli 2011 1:06 13

374 5 Tests of Software Characteristics

Based on the workflow of the Telephone Banker, we would create a variety of
scenarios, using random customer data:

■ Accepted and rejected loans of all sorts and amounts
■ Accepted but declined-by-customer loans
■ Hang-ups and disconnects
■ Insurance accepts and declines

The defect theory that we would be testing is that the system may have reliabil-
ity issues, especially when unusual scenarios are run in random order. Each test
would clearly need to check for expected vs. actual results. We would be looking
for the number of failures that occur within the testing time period so we can
get a read on the overall reliability of the system over time.

Each test build’s metrics would be compared to the previous build’s to
determine if the maturity of the system is growing (fewer failures per time
period would indicate growing maturity).

Fault tolerance metrics would be extrapolated by determining how often
the entire system fails when a single transaction fails as compared to being able
to continue running further transactions despite the failure.

In those cases where the entire system does fail, recoverability would be
measured by the amount of time it takes to get the entire HELLOCARMS sys-
tem up and running again.

Efficiency

We selected requirement 040-010-080. This requirement states that “once a
Senior Banker has made a determination, the information shall be transmitted
to the Telephone Banker within two (2) seconds.”

Once again, we would use automation to test this requirement. This one
interests us because of the issue of measuring time on two different worksta-
tions. If their real-time clocks were set to appreciably different times, then any
measurements that we could make would be suspect.

Jamie actually had a similar problem a few years ago that he had to solve; we
would use the same solution here. The solution consists of writing a simple lis-
tener application on a separate workstation. When the Telephone Banker’s
workstation is triggered to escalate a loan to the Senior Banker, a message is sent
to the listener, which logs it in a text file using a time stamp from its own real-

__AST V3.book Seite 374 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 375

time clock. Automation on the Senior Banker workstation will handle the
request. When it finishes, it sends a message to the same listener, which logs it
in the same file, again with a time stamp. When the Telephone Banker automa-
tion, which has been in a waiting state for the return, gets the notification, it
sends another message to the listener.

Note that this same test would also satisfy the conditions necessary to test
requirement 040-010-070, which requires no more than a 1-second delay for
the escalation to occur.

We are disregarding the transport time from both automated workstations.
This may be problematic, but we are going to assume (with later testing to con-
firm) that three local test workstations in the same lab running on the same net-
work will incur pretty much the same transport time, cancelling them out. Even
so, because the times we are testing are relatively large (1 second and 2 seconds),
we believe the testing would likely be valid.

5.3.12 Maintainability

Maintainability refers to the ability to update, modify, reuse and test the system.
This is important for most systems because most will be updated, modified, and
tested many times during their life. Often pieces of systems and even whole sys-
tems are used in new and different situations.

Why all of the changes to a system? Remember when we discussed reliabil-
ity, we said that software does not wear out, but it does become obsolete. We will
want new and extended functionality. There will also be patches and updates to
make the system run better. New environments will be released that we must
adapt to, and interoperating systems will be updated, usually requiring updates
on our system.

ISTQB Glossary

maintainability: The ease with which a software product can be modified to
correct defects, modified to meet new requirements, modified to make future
maintenance easier, or adapted to a changed environment.

maintainability testing: The process of testing to determine the maintain-
ability of a software product.

maintainability
maintainability testing

__AST V3.book Seite 375 Freitag, 1. Juli 2011 1:06 13

376 5 Tests of Software Characteristics

Jamie remembers one of his first software experiences; they had worked for
over six months putting together and delivering the new system. Jamie was so
glad to see it go that he spoke out loud, “Hope I never see that software again!”
Everyone laughed at him, not believing that he did not know how often that
boomerang was going to come back at them.

What Jamie did not know at the time was that only a small fraction of the
overall cost of a system was spent in the original creation and rollout. On the
day you ship that first release, you can be pretty sure that 80 percent or more of
the eventual cost has not yet been incurred. Or, as Arnold Schwarzenegger said
in The Terminator, “I’ll be back.”

In the ISTQB Foundation syllabus, it was discussed that we could not do
maintenance testing on a system that was not already in production. After we
ship the first time, we start what some call the SMLC: software maintenance
lifecycle.

Okay, quick! Just off the top of your head come up with a dynamic main-
tainability test for HELLOCARMS. We’ll wait. Hmmmmmmm.

Tough to do, isn’t it?
The simple fact is that much of maintainability testing is not going to be

done by scripting test cases and then running them when the code gets deliv-
ered. Many, if not most, maintainability defects are invisible to dynamic testing.

Maintainability defects include hard-to-understand code, environment
dependencies, hidden information and states, and excessive complexity. They
can also include “painted yourself into a corner” problems when software is
released without any practical mechanism for updating it in the field. For exam-
ple, think of all the problems Microsoft had stabilizing their security-patch pro-
cess in the mid-2000s.

Design problems. Conceptual problems. Standards and guidelines (or lack
of same) compliance. We have a good way of finding these kinds of issues. It’s
called static testing. From the first requirements to the latest patch, there is
likely no better way to ensure that the system is maintainable. This is one case
where the pig’s ear is not going to be magically transformed into a silk purse by
a new tool, a couple of scripted tests, or a reasonably attentive tester.

Management must be made to understand the investment that good main-
tainability is going to entail. This must be seen as a long-term investment
because much of the reward is going to come down the road. And it is the worst

__AST V3.book Seite 376 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 377

kind of investment to try to sell—one that is mostly invisible. If we do a good
job building a maintainable system, how do we show management the rewards
in a physical, tangible way?

Well, we won’t have as many patches, but we can’t prove without a doubt it
was due to the investment. Our maintenance programmers will make fewer
mistakes leading to fewer regression bugs, but we can’t necessarily point to the
mistakes we did not make.

This is not just theoretical. Jamie was a test lead in a small start-up organi-
zation and he kept on arguing to put some standards and guidelines around the
code: to spend some of the design time thinking about making sure that the
application was going to be changeable, to spend some extra time documenting
the assumptions being made, to write self-documenting code using naming
conventions. For each argument he made, he was challenged to prove the pay-
back in empirical terms. He pretty much failed and the system that was built
turned out to be a nightmare.

To say that we need to test the above mentioned maintenance issues is not
to say you shouldn’t test updates, patches, upgrades, and migration. You defi-
nitely should. You should not only test the software pieces of this, but also the
procedures and infrastructure involved. For example, verifying that you can
patch a system with a 100 MB patch is all well and good until you find you have
forgotten that real users will have to download this patch through a dial-up con-
nection and will need a PhD in computer science to hand-install half of the
files!

Here are a few of the project issues that exacerbate maintainability problems:

Schedules: Get the system out the door. Push it, prod it, nudge it, just get it out
the door. Is it maintainable? Come on, be serious, we don’t have time to think
about that. Often, the general consensus of the team seems to be that we can
always fix it when we have time. Let us ask the question that needs to come after
that statement. Do we ever have time? We get this thing out the door, the next
project is right there, in our inbox. In our entire careers, we have never enjoyed
that downtime that we were led to expect when we could catch up on the things
we shelved.

Frankly, this may not be the fault of the team, entirely. The human brain
seems to be hardwired for this short-term/long-term calculation.

__AST V3.book Seite 377 Freitag, 1. Juli 2011 1:06 13

378 5 Tests of Software Characteristics

If I eat this cookie now, I intellectually know that I will have to work out—
some time later—much harder that I like to. But what the heck—the cookie
looks so good right now.22

Testers must learn to push the idea of short-term pain, long-term value when it
comes to maintainability.

Optimism: If we can get it to work now it likely will always work. Why invest
a lot of effort into improving the maintainability since we probably won’t have
any problems with it.

We wish we had a nickel for every time we heard a development manager
(or project manager) say that they have hired the very best people available so of
course it will work. Robert Heinlein once wrote about the optimism of a reli-
gious man sitting in a poker game with four aces in the hole...

Of course, when the project doesn’t work out successfully, it must have been
the failure of the testers. And the regression bugs were simply one-time things.
And on and on. While each incident is unique, the pattern of failures isn’t.

Contracts are often the problem. The contract might specify minimum
functionality that has to be delivered. We don’t have time to build a better sys-
tem—it is not what they asked for. We lowballed the estimate to get the job, so
we can’t afford to make it good too.

Initiation: One issue that we have seen repeatedly is the idea of initiation
into the club. Many developers start their career doing maintenance program-
ming on lousy systems. They have “paid their dues”! One might think that this
would teach the necessity of building a maintainable system, and sometimes it
does. But often we run into the mind-set of “we had to do it, you should have to
do it.”

Jamie’s wife is a nurse, so he has had the chance to socialize with a number
of doctors at holiday parties, picnics, and such. You might be surprised how
little sympathy there is for interns and residents who often have to work 36- to
48-hour shifts. The prevailing opinion of many doctors is that, “we had to do it
and we survived—they should do it also.” It goes with the territory! Frankly, we
hate that phrase.

22. An amusing take on this, the "marshmallow test," can be found at http://www.newyorker.com/
reporting/2009/05/18/090518fa_fact_lehrer?currentPage=1.

__AST V3.book Seite 378 Freitag, 1. Juli 2011 1:06 13

http://www.newyorker.com/reporting/2009/05/18/090518fa_fact_lehrer?currentPage=1
http://www.newyorker.com/reporting/2009/05/18/090518fa_fact_lehrer?currentPage=1

 5.3 Quality Attributes for Technical Testing 379

Lack of ownership is clearly a problem. Maintainability, as well as quality,
should be owned by the team as a whole, but it rarely is.

Short-timer syndrome: And finally, this one is probably not as big a problem
as many think. We have occasionally heard that “I won’t be here anymore when
the bill comes due.” We called that short-timer thinking and used to see it in the
United States military during the ’60s and ’70s when the military draft was the
norm rather than voluntary service.

There are probably a dozen more issues that we have not thought of. The
fact is that education is the solution to many of the reasons given for ignoring
maintainability. But, we have to make sure that the reasons we give to insist on
maintainable development are colored green. It is about dollars or Euros or
pounds, or whatever term you think in. Money is the reason we should care
about maintainability. Time and resources are important, but the tie-in to cost
must be made for management to care.

5.3.13 Subcharacteristics of Maintainability

Because maintainability is such a broad category, perhaps the best way to dis-
cuss it is to break it up into its subcategories as defined by the ISO 9126 stan-
dard. These include analyzability, changeability, stability, and testability.

The definition of analyzability, as given in ISO 9126, is the capability of the
software product to be diagnosed for deficiencies or causes of failures in the
software or for the parts to be modified to be identified. In other words, how
much effort will it take to diagnose defects in the system or to identify where
changes can be made when needed?

Here are four common causes of poor analyzability, in no particular order.
In the old days, we called it spaghetti code. Huge modules tied together

with GOTO or jump constructs. No one we know still writes code like that, but
some techniques are still being used that are not much better.

One of the basic tenets of agile programming is a tactic called refactoring.
When you do something more than once, you rewrite the code to create a call-
able function and then call it in each place it is needed. This is a great idea that
every programmer should follow. Instead, what many programmers do is copy
and paste code they want to reuse. Each module then begins to be a junior ver-
sion of spaghetti code. Code should be modular. Modules should be relatively
small, unless speed is of paramount issue. Each module should be understand-

__AST V3.book Seite 379 Freitag, 1. Juli 2011 1:06 13

380 5 Tests of Software Characteristics

able. Thomas McCabe understood this when he came up with cyclomatic com-
plexity.

Back in the 1990s, while working at a large, multinational company, Jamie
worked with a group that completely rewrote the operating system for a very
popular minicomputer (going from PL/MP to C++). One main intention was to
create a library of C++ classes that were reusable throughout the operating sys-
tem. Management found that the library was not really being used extensively,
so they investigated. It turned out, we were told, that when a programmer
needed a particular class, he was likely to search through the library for fewer
than 10 minutes before giving up and writing his own class. What made this
confusing was that writing his own class might take several days, and at that
point, he would have a class where the code was not yet debugged. Had he
searched for a little more time, he likely would have found a completely
debugged module that supplied the functionality he needed. Management
termed this behavior the “not created here” problem.

The second reason for poor analyzability is lack of good documentation.
Many organizations try to save time by limiting the documentation that is cre-
ated. Or sometimes when documentation is required, it is just done poorly. Or
after changes are made, the documentation is not updated. Or documentation is
not under version control, so there are a dozen different versions of a document
floating around. Whatever the reason, good documentation helps us under-
stand and helps analyze a system more easily.

The third reason for poor analyzability is poor—or nonexistent—standards
and guidelines. Each programmer is liable to program in her own style, unless
she is told to follow some kind of standards. That might include the following
standards:

■ Indentation and other structure guidelines
■ Naming conventions
■ Modular guidelines (At the company mentioned earlier, the rule of thumb

was that no module should be longer than one printed page.)
■ Meaningful error messages and standard exception handling
■ Meaningful comments

Clearly, following some standards would help us analyze the system more easily.

__AST V3.book Seite 380 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 381

The fourth reason involves code abstraction. Code abstraction, theoreti-
cally, is a good thing; like all good things, however, you can get too much of it.
Object-oriented code is supposed to have a level of abstraction that allows the
developers to build good, inheritable classes. By hiding the gory details in
super-classes, a developer can ensure that other developers who inherit from
those classes don’t depend on the details in their implementation. That way, if
the details have to change, it should not cause failures in the derived classes.

For example, suppose we supply a calculation for the sine of an angle. How
that calculation works should not matter to any consumer of the calculation—as
long as the calculation is correct. If we decide in a later release to change the way
we make the calculation, it should not break any existing code that uses the
value calculated. However, it is conceivable that a clever developer may decide
to utilize some side effect of our original method of calculation because she
understands how we originally made it. Now, changing our code is likely to
break her code, and worse, we would not be aware of it.

The more abstraction there is in a module, however, the harder it is to
understand exactly what is being done. Each organization must decide how
much to abstract and how much to clarify.

The fix for most of these problems is the same: good, solid standards and
guidelines. Enforcement via static testing at all times, especially when time is
pinched. No excuses. Organizations that make it clear that poor analyzability is
an important class of defects on its own that will not be tolerated often do not
suffer from problems with this quality subcharacteristic.

The second subcharacteristic for maintainability is called changeability. The
definition in ISO 9126 is the capability of the software product to enable the
implementation of a specified modification. Once again, no dynamic test cases
come to mind to ensure changeability. There are a number of metrics that ISO
9126 defines, but they are all retrospective, essentially asking, Was the software
changeable? after the fact.

Virtually all of the factors that influence changeability are design and imple-
mentation practices.

Problems based on design include coupling and cohesion. Coupling and
cohesion are terms that reference how a system is split into modules. Larry Con-
stantine is credited with pointing out that high coupling and low cohesion are
detriments to good software design.

__AST V3.book Seite 381 Freitag, 1. Juli 2011 1:06 13

382 5 Tests of Software Characteristics

Coupling refers to the degree that modules rely on each other during execu-
tion. High coupling means that there are a lot of dependencies and shared code
between modules. When that happens, it becomes very difficult to make
changes to a single module; changes here generally mean that there are more
changes there and there and there. Low coupling is desirable; each module has a
task to do and is essentially self-contained in doing it.

There are a number of different types of coupling:

■ Content coupling: One module accesses local data in another.
■ Common coupling: Two or more modules share global data.
■ External coupling: Two or more modules share an external interface or

device.
■ Control coupling: One module tells another module what to do.
■ Data-structure coupling: Multiple modules share a data structure, each

using only part of it.
■ Data coupling: Data is passed from one module to another, often via

parameters.
■ Message coupling: Modules are not dependent on each other and pass

messages without data back and forth.
■ No coupling: Modules do not communicate at all.

Some coupling is usually required; modules usually have to be able to commu-
nicate. Generally, message coupling or data coupling would be the best options
here.

Cohesion, on the other hand, describes how focused the responsibilities of
the module are. In general, a module should do a single thing and do it well.
Indicators that cohesion is low include when there are many functions or meth-
ods in the module that do different things that are unrelated or when they work
on completely different sets of data.

In general, low coupling and high cohesion go together and are a sign
that changeability is going to be good. High coupling and low cohesion are
generally symptoms of a poor design process and an indicator of poor
changeability.

Changeability problems caused by improper implementation practices run
the gamut of many of the things we were told not to do in programming
classes.

__AST V3.book Seite 382 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 383

Using global variables is one of the biggest problems; it causes a high degree
of coupling in that a change to the variable in one module may have any number
of side effects in other modules.

Hard-coding values into a module should be considered a serious potential
bug generator. Using named constants is a much better way for developers to
write code; when they decide to change the value, all instances are changed at
once. When hard-coded values (which some call magic numbers) are used,
invariably some get changed and some don’t.

Hard-coding design to the hardware is also a problem. In the interest of
speed, some developers like to program right down to the metal of the platform
they are writing for. That might mean using implementation details of the oper-
ating system, hardware platform, or device that is being used. Of course, when
time passes and hardware, operating systems, and/or devices change, the soft-
ware is in trouble,

The more complex the system, the worse changeability is affected; as
always, there is a trade-off in that sometimes we need the complexity.

The project Jamie was on that we mentioned earlier, rewriting a mid-range
computer operating system, was an example of software engineering done right!
Every developer and most testers were given several weeks of full-time object-
oriented development and design training. They were moving 25 million lines
of PL/MP (an elegant procedural language) code to C++, not as a patch, but a
complete rewrite. They spent a lot of time coming up with standards and guide-
lines that every developer had to follow. They made a huge investment in static
testing with training for everyone.

Low coupling and high cohesion were the buzzwords de jour. Perhaps
buzzword is incorrect; they truly believed in what they were doing. Maintain-
ability was the rule.

Their rule of thumb was to limit any method, function, or piece of code to
what would fit on one page printed out. Maybe 20 to 25 lines of code. They used
good object-oriented rules with classes, inheritance, and data hiding. They used
messaging between modules to avoid any global variables. They had people
writing libraries of classes and testing the heck out of them so they could really
get reuse.

So you might assume that everything went fabulously. Well, the final result
was outstanding, but there were more than a few stumbles along the way. They

__AST V3.book Seite 383 Freitag, 1. Juli 2011 1:06 13

384 5 Tests of Software Characteristics

had one particular capability that the operating system had to deliver; their esti-
mate was that, using the new processor, they had to complete the capability
within 7,000 CPU cycles. After the rewrite, they found that it took over 99,000
CPU cycles to perform the action. They were off by a huge amount. And,
because this action might occur thousands of times a minute, their design
needed to be completely rethought. The fact is, low coupling, high cohesion,
inheritance, and data hiding have their own cost.

Every design decision has trade-offs. For many systems, good design and
techniques are worth every penny we spend on them. But when speed of execu-
tion is paramount, very often those same techniques do not work well. To make
this system work, they had to throw out all of the rules. For this module, they
went back to huge functions with straight procedural code, global variables, low
cohesion, and high coupling. And, they made it fast enough. However, as you
might expect, it was very trouble prone; it took quite a while to stabilize it.

And finally, poor documentation will adversely affect changeability. When a
maintenance programmer must guess at how to make changes, to infer as to
what the original programmer was thinking, it can adversely affect changeabil-
ity greatly. Documentation includes internal (comments in the code, self-docu-
menting code, good naming conventions, etc.) and external documentation,
including high- and low-level design documents.

The third subcharacteristic of maintainability is stability, defined as the abil-
ity of the system to avoid unexpected effects from modifications of the software.
After we make a change to the system, how many defects are going to be gener-
ated simply from the change?

This subcharacteristic is essentially the side effect of all of the issues we
dealt with in changeability. The lower the cohesion, the higher the coupling; the
worse the programming styles and documentation, the lower the stability of the
system.

In addition, we need to consider the quality of the requirements. If the
requirements are well delineated, well understood, and competently managed,
the system will tend to be more stable. If they are constantly changing and
poorly documented and understood, then not so much.

System timing matters to stability. In real-time systems or when timing is crit-
ical, change will tend to throw timing chains off, causing failures in other places.

__AST V3.book Seite 384 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 385

Last, there is the subcharacteristic of testability. This is defined as the capa-
bility of a software product to be validated after change occurs. This certainly
should be a concern to all technical test analysts.

A number of issues can challenge the testability of a system.
One of our all-time favorites is documentation. When documentation is

poor or nonexistent, testers have a very hard time trying to figure out what to
test. When a requirement or functional specification clearly states that, “the sys-
tem works this way!” we can test to validate that it does. When we have no
requirements, no previous system, no oracle as to what to expect, testing
becomes a crap shoot. Is it working right? Shrug! Who knows?

Related to documentation is our old standby, lack of comments in the code
and poor naming conventions, which make it harder to understand exactly
what the code is supposed to do.

Implementing independent test teams can lead to unintentional (or even
sometimes intentional) breakdowns in communications. Good communication
between the test and development teams is important when dealing with test-
ability.

Certain programming styles make the code harder to test. For example,
object orientation was designed with data hiding as one of its main objectives.
Of course, data hiding can also make it really difficult to figure out whether a
test passed or not. And multiple levels of inheritance make it even harder; you
might not know exactly where something happened, which class (object) actu-
ally was responsible for the action that was to be taken.

Lack of instrumentation in the code causes testability issues. Many systems
are built with the ability to diagnose themselves; extra code is written to make
sure tasks are completed correctly and to log issues that occur. Unfortunately,
this instrumentation is often seen as fluff rather than being required.

And as a final point, data issues can cause testability issues on their own.
This is a case where better security and good encryption may make the sys-
tem less testable. If you cannot find, measure, or understand the data, the sys-
tem is harder to test. Like so much in software, intelligent trade-offs must be
made.

__AST V3.book Seite 385 Freitag, 1. Juli 2011 1:06 13

386 5 Tests of Software Characteristics

5.3.14 Portability

Portability refers to the ability of the application to install to, use in, and perhaps
move to various environments. Of course, the first two are important for all sys-
tems. In the case of PC software, given the rapid pace of changes in operating
systems, cohabitating and interoperating applications, hardware, bandwidth
availability, and the like, being able to move and adapt to new environments is
critical too.

Back when the computer field was just starting out, there was very little idea
of portability. A computer program started out as a set of patch cords connect-
ing up logic gates made out of vacuum tubes. Later on, assembly language
evolved to facilitate easier programming. But still no portability—the assembler
was based on the specific CPU that the computer used. The push to engineer
higher-level languages was driven by the need for programs to be portable
between systems and processors.

A number of classes of defects can cause portability problems, but certainly
environment dependencies, resource hogging, and nonstandard operating sys-
tem interactions are high on the list. For example, changing shared Registry
keys during installation or removing shared files during de-installation are clas-
sic portability problems on the Windows platform.

Fortunately, portability defects are amenable to straightforward test design
techniques like pairwise testing, classification trees,23 equivalence partitioning,
decision tables, and state-based testing. Portability issues often require a large
number of configurations for testing.

Some software is not designed to be portable, nor should it be. If an organi-
zation designs an embedded system that runs in real time, we would expect that
portability is the least of its worries. Indeed, in a review, we would question any

ISTQB Glossary

portability: The ease with which the software product can be transferred from
one hardware or software environment to another.

portability testing: The process of testing to determine the portability of a
software product.

23. Pairwise testing and classification trees are discussed in Advanced Software Testing, Vol. 1.

__AST V3.book Seite 386 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 387

compromises that were made to try to make the system portable if there was the
possibility of marginalizing the operation of the system. However, there may
come a day when the system must be moved to a different chip, a different type
of hardware. At that point, it might be good if the system had some portability
features built into it.

More than the other quality characteristics we have discussed in this chap-
ter, portability requires compromises. A technical test analyst should under-
stand the need for compromise but still make sure the system, as designed and
delivered into test, is still suitable for the tasks it will be called to do.

The best way to discuss portability is to look at each of its subcharacteris-
tics. This is a case of the total being a sum of its parts. Very little is published
about portability without specifying these subcharacteristics:

■ Adaptability: The capability to be adapted for different specified environ-
ments without applying actions other than those provided for that purpose.

■ Replaceability: The capability to be used in place of another specified
software product for the same purpose in the same environment.

■ Installability: The capability to be installed in a specific environment. We
will include uninstallability in this category.

■ Coexistence: The capability to coexist with other independent software in a
common environment sharing common resources.

As we mentioned earlier, the more tightly a system is designed to fit a particular
environment, the more suitable it will be for that environment and the less
adaptable to other environments. Adaptability, for its own sake, is not all that
desirable, frankly. On the other hand, adaptability for solid business or technical
reasons is a very good idea. It is essential to understand the business (or techni-
cal) case in determining which trade-offs are advantageous.

When Jamie was a child, his mother read about a mysterious piece of cloth-
ing called a Hawaiian muumuu. They lived in a small town in the early 1960s;
she was excited to be able to order such an exotic item. The catalog she ordered
it from said, “One size fits all.” Jamie learned from that muumuu that, while one
size fits all, it also fits nothing. The thing his mother was sent was huge—they
thought of using it for a tent.

So what is the point? If we try to write software that will run on every plat-
form everywhere, it likely will not fit any environment well. There are program-

__AST V3.book Seite 387 Freitag, 1. Juli 2011 1:06 13

388 5 Tests of Software Characteristics

ming languages—such as Java—that you are supposed to be able to “write once,
run anywhere.” The ultimate portability! However, Java runs everywhere by
having its own runtime virtual machine for each different platform. The Java
byte code is portable, but only at a huge cost of engineering each virtual
machine for each specific platform.

You don’t get anything for nothing. Adaptability comes at a price: more
design work, more complexity, more code bloat, and with those, more defects.
So, when your organization is looking into designing adaptability, make sure
you know the targeted environments and the business case.

When testing adaptability, we must check that an application can function
correctly in all intended target environments. Confusingly, this is also com-
monly referred to as compatibility testing. As you might imagine, when there
are lots of options, specifying adaptability or compatibility tests involves pair-
wise testing, classification trees, and equivalence partitioning.

Since you likely will need to install the application into the environment,
adaptability and installation might both be tested at the same time. Functional
tests should then be run in those environments. Sometimes, a small sample of
functions is sufficient to reveal any problems. More likely, many tests will be
needed to get a reasonable picture. Unfortunately, many times, a small amount
of testing is all that organizations can afford to invest. Given the potentially
enormous size of this task, our adaptability testing is often insufficient. As
always in testing, the decision of how much to test, how deeply to dig in, will
depend on risk and available resources.

There might also be procedural elements of adaptability that need testing.
Perhaps data migration is required to move from one environment to another.
In that case, we might have to test the procedures as well as the adaptability of
the software.

Replaceability testing is concerned with checking into whether software
components within a system can be exchanged for others.

The Microsoft style of system architecture has been a primary driver of the
concept of software components, although Microsoft did not invent the idea.
Remote procedure calls (RPCs) have been around a long time, allowing some of
a system’s processing to be done on an external CPU rather than having all pro-
cessing performed on the local processor. In Windows, the basic design was for
much of the application functionality to be placed outside the EXE file and into

__AST V3.book Seite 388 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 389

replaceable components called dynamic link libraries (DLLs). Early Windows
functionality was mainly stored in three large DLLs. For testers, the idea of split
functionality has created a number of problems; any tester who has sat for hours
trying to emerge from DLL hell where incompatible versions of the same file
cause cryptic failures can testify to that.

However, over the years, things have gotten better. From the Component
Object Model (COM) to the Distributed Component Object Model (DCOM)
all the way to Service-Oriented Architecture (SOA), the idea of having tasks
removed from the central executable has become more and more popular. Few
organizations would now consider building a single, monolithic executable file
containing all functionality. Many complex systems now consist of commercial
off-the-shelf (COTS) components, wrapped together with some connecting
code. HELLOCARMS is a perfect example of that.

The design of Microsoft Office is a pretty good example of replaceable/reus-
able components, even if it often does not seem that way. Much of the Office
functionality is stored in COM objects; these may be updated individually with-
out replacing the entire EXE. This architecture allows Office components to
share, upgrade, and extend functionality on the fly. It also facilitates the use of
macros and automation of tasks between the applications.

Many applications now come with the ability to use different major data-
base management system (DBMS) packages. Moving forward, many in the
industry expect this trend to only accelerate.

Testers must consider this whole range of replaceable components when
they consider how they are going to test. The best way to consider distributed
component architecture, from RPCs to COTS packages, is to think of loosely
coupled functionality where good interface design is paramount. Essentially, we
need to consider the interface to understand what to test. Much of this testing,
therefore, is integration-type testing.

We should start with static testing of the interface. How will we call distrib-
uted functionality? How will the modules communicate? In integration test, we
want to test all of the different components that we expect may be used. In sys-
tem test, we certainly should consider the different configurations that we
expect to see in production.

Low coupling is the key to successful replaceability. When designing a sys-
tem, if the intent of the design is to allow multiple components to be used, then

__AST V3.book Seite 389 Freitag, 1. Juli 2011 1:06 13

390 5 Tests of Software Characteristics

coupling too tightly to any one interface will cause irreplaceability. At this point
the system is dependent on those external modules—that are likely not con-
trolled by your organization.

This is an issue that must be considered by management when moving
along a path of component-based systems. When everything was in one execut-
able, we could responsibly test all of that functionality. With the growth of
decentralization through replaceability of components, the question of who is
responsible for testing what becomes paramount. That is a discussion we leave
to the book about advanced test management, Advanced Software Testing, Vol. 2.

Installability is the capability of a system to be installed into a specific envi-
ronment. Testers have to consider uninstallability at the same time.

Good news and bad news about installability testing: Conceptually it is
straightforward. That is the good news. We must install the software, using its
standard installation, update, and patch facilities, onto its target environment or
environments. How hard can that be? Well, that is the bad news. There are an
almost infinite number of possible gotchas during that testing.

Here are just some of the risks that must be considered:

■ We install a system and the success of the install is dependent on all of the
other software that the new system depends on working correctly. Are all
coinstalled systems working correctly? Are they all the right versions? Does
the install procedure even check?

■ We find that the typical people involved in doing the installation can’t figure
out how to do it properly, so they are confused, frustrated, and making lots
of mistakes (resulting in systems left in an undefined, crashed, or even
completely corrupted state). This type of problem should be revealed
during a usability test of the installation. You are testing the usability of the
install, right?

■ We can’t install the software according to the instructions in an installation
or user’s manual or via an installation wizard.

■ We observe failures during installation (e.g., failure to load particular DLLs)
that are not cleaned up correctly, so they leave the system in a corrupted
state. It’s the variations in possibilities that make this a challenge.

■ We find that we can’t partially install, can’t abort the install, or can’t
uninstall.

__AST V3.book Seite 390 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 391

■ We find that the installation process or wizard will not shield us from—or
perhaps won’t even detect—invalid hardware, software, operating systems,
or configurations.

■ We find that trying to uninstall and clean up the machine destroys the
system software load. We find that the installation takes an unbearable
amount of time to complete, or perhaps never completes.

■ We can’t downgrade or uninstall after a successful or unsuccessful
installation.

■ We find that some of the error messages are neither meaningful nor
informational.

By the way, for each of the types of risks we just mentioned, we have to consider
not only installation problems, but also similar problems with updates and
patches.

Not only do these tests involve monitoring the install, update, or patch pro-
cess, they also require some amount of functionality testing afterward to detect
any problems that might have been silently introduced. At the end of the day,
the most important question to ask is, When we are all done installing, will it
work?

And, just because it was not already interesting enough, we have to think
about security. During the install, we need to have a high level of access to be
able to perform all of the tasks. Are we opening up a security hole for someone
to jump into?

How do we know that the install worked? Does all the functionality work?
All the interoperating systems working okay?

At the beginning of discussing installability, we said it was a good news, bad
news scenario, the good news being that install was conceptually straightfor-
ward. We lied. It’s not. The best way we know to deal with install testing is to
make sure it is treated as a completely different component to test. Some organi-
zations have a separate install test team; that actually makes a lot of sense to us.

And one final note: As an automator, Jamie once thought it would be great
to take all of the stuff we just talked about and automate the entire process, test
it all by pushing a button. Unfortunately, we’ve never seen that done and don’t
believe it can work. With all of the problems possible in trying to test install and
uninstall, with all of the different ways it can fail, it takes a human brain to deal

__AST V3.book Seite 391 Freitag, 1. Juli 2011 1:06 13

392 5 Tests of Software Characteristics

with it. Until our tools and methodologies get a whole lot better, we think we
will be doing this testing manually.

During Jamie’s first opportunity at being lead tester on a project, he decided
to facilitate better communication between the test team and the support team
by setting up a brown-bag lunch with both teams. They were testing a very
complex system that included an IBM AS/400 host module, a custom ODBC
driver, and a full Windows application. They were responsible for testing every-
thing that they sold.

During the lunch, Jamie asked the support team to list the top 10 customer
complaints. It turned out that 7 of the top 10 complaints were install related.
Oops! They weren’t even testing the install because Jamie figured it was not a
big deal. He had come from an organization where they tested an operating sys-
tem; there the install was tested by another group in another state.

Very often, install complaints rank very high in all problems reported to
support.

Finally, we need to discuss coexistence testing, which is also called sociabil-
ity or compatibility testing. Here, we check that one or more systems that work
in the same environment do so without conflict. Notice that this is not the same
as interoperability because the systems might not be directly interacting. Earlier,
we referred to these as “cohabiting” systems, though that phrase is a bit mislead-
ing since human cohabitation usually involves a fair amount of direct interac-
tion.

It’s easy to forget coexistence testing and test applications by themselves.
This problem is often found in siloed organizations where application develop-
ment takes place separately in different groups. Once everything is installed into
the data center, though, you are then doing de facto compatibility testing in pro-
duction, which is not really a good idea. There are times when we might need to
share testing with other project teams to try to avoid coexistence problems.

By the way, the ISTQB Advanced syllabus mentions that compatibility test-
ing is normally performed when system and user acceptance testing have been
successfully completed. This is a good idea only if you don’t care about nasty
surprises at the end of a project. Seriously, coexistence testing should occur no
later than system test.

With coexistence testing, we are looking for problems like the following:

__AST V3.book Seite 392 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 393

■ Applications have an adverse impact on each other’s functionality when
loaded on the same environment, either directly (by crashing each other) or
indirectly (by consuming all the resources). Resource contention is a com-
mon point of failure.

■ Applications work fine at first but then are damaged by patches and
upgrades to other applications because of undefined dependencies.

■ DLL hell. Shared resources are not compatible, and the last one installed
will work, breaking the others.

Assume that we just installed this system. How do we know what other applica-
tions are on that system, much less which ones are going to fail to play nice?
This is yet another install issue that must be considered. In systems where there
is no shared functionality (i.e., one without DLLs), this is less important.

One solution that is becoming more common is the concept of virtual
machines. We can control everything in the virtual machine so we can avoid
direct resource contention between processes.

5.3.15 Maintainability and Portability Exercise

Using the HELLOCARMS system requirements document, analyze the risks
and create an informal test design for each of the following using one require-
ment for each:

■ Maintainability
■ Portability

The debrief follows.

5.3.16 Maintainability and Portability Exercise Debrief

Maintainability is an interesting quality characteristic for testers to deal with.
Most maintainability issues are not amenable to our normal concept of a
dynamic test, with input data, expected output data, etc. Certainly some main-
tainability testing is done that way, when dealing with patches, updates, and so
forth.

For this exercise, we are going to select requirement 050-010-010 :

Standards and guidelines will be developed and used for all code and other
generated materials used in this project to enhance maintainability.

__AST V3.book Seite 393 Freitag, 1. Juli 2011 1:06 13

394 5 Tests of Software Characteristics

Our first effort, therefore, done as early as possible, would be to review the pro-
gramming standards and guidelines with the rest of the test team and the devel-
opment group. Assuming, of course, that we have standards and guidelines. If
there were none defined, we would try to get a cross-functional team busy
defining them.

The majority of our effort would be during static testing. Starting (specifi-
cally for this requirement) at the low-level design phase, we would want to
attend reviews, walk-throughs, and inspections. We would use available check-
lists, including Marick’s, Laszlo’s24 and our own internal checklists based on
defects found previously.

Throughout each review, we would be asking the same questions: Are we
actually adhering to the standards and guidelines we have? Are we building a
system that we will be able to troubleshoot when failures occur? Are we build-
ing a system with low coupling and high cohesion? Is it modular? How much
effort will it take to test?

Since these standards and guidelines are not optional, we would work with
the developers to make sure they understood them, and then we would start
processing exceptions to them through the defect tracking database as we
would any other issues.

Beyond the standards and guidelines, there would still be some dynamic
testing of changes made to the system, specifically for regression after patches
and other modifications. We would want to mine the defect tracking database
and the support database to try to learn where regression bugs have occurred.
New testing would be predicated on those findings, especially if we found hot
spots where failures occurred with regularity.

Many of our metrics would have to come from analyzing other metrics.
How hard was it to figure out what was wrong (analyzability)? When changes
are needed, how much effort and time does it take to make them (changeabil-
ity)? How many regression bugs are found (in test and in the field) after changes
are made (stability)? And, how much effort has it taken for testers to be able to
test the system (testability)?

Portability testing consists of adaptability, installability, coexistence, and
replaceability subattributes. Because HELLOCARMS is surfaced on browsers,

24. Discussed in chapter 6.

__AST V3.book Seite 394 Freitag, 1. Juli 2011 1:06 13

 5.3 Quality Attributes for Technical Testing 395

we find the compelling attribute to be adaptability. Therefore, we have selected
requirement 060-010-030 for discussion. It reads as follows:

HELLOCARMS shall be configured to work with all popular browsers that
represent 5 percent or more of the currently deployed browsers in any coun-
tries where Globobank does business.

Our first effort would be to try to get a small change to this requirement during
the requirements review period. The way it is written, it appears that, by release
3, we need to be concerned about all versions of browsers rather than just the
latest two versions as expressed in requirements 060-010-010 and 060-010-020.
We hope this is an oversight and will move forward in our design assuming that
we need only the latest two versions.

This particular requirement is not enforced until release 3. However, we
would start informally testing it with the first release. This is because we would
not want the developers to have to remove technologies they used after the first
two releases simply because they are not compatible with a seldom-used
browser that still meets the 5 percent threshold. We would make sure that we
stressed this upcoming requirement at low-level design and code review meet-
ings.

We would have to survey what browsers are available. This entails discover-
ing what countries Globobank is active in and performing web research. We
would hope to get our marketing group interested in helping out to prevent
spending too much time on the research ourselves.

We would create a matrix of all the possible browsers that meet the criteria,
including the current version and one previous version for each. We would also
build into that matrix popular operating systems and connection speeds (dial-
up and two speeds of wideband).

This matrix is likely to be fairly large. We do not cover pairwise techniques
in this book.25 However, if we did not know how to deal with this powerful con-
figuration testing technique, we would enlist a test analyst to help us out. We
would spread out our various planned tests over the matrix to get acceptable
coverage, focusing most tests on those browser/operating system speeds that
represented most of our prospective users.

25. Interested readers can find this technique in Advanced Software Testing, Vol. 1, or at the web-
site pairwise.org.

__AST V3.book Seite 395 Freitag, 1. Juli 2011 1:06 13

396 5 Tests of Software Characteristics

After release, we would make sure to monitor reported production failures
through support, ensuring that we were tracking environment-related failures.
We would use that information to tweak our testing as we move into the main-
tenance cycle.

5.4 Sample Exam Questions

1. You have been asked to research testing interoperability on the system cur-
rently under development. It consists of a number of COTS packages that
will be used to process insurance payments through a number of existing
systems. Which of the following capabilities are you likely to be trying to
test?

A. Validating the methods used to manipulate the data used by the
system

B. The computational accuracy of each individual stage

C. Ability of the software to self-configure communications

D. Ability of users to achieve specified goals using all of the modules

2. You are new to the organization and have been placed in a technical testing
role. You’re asked to investigate a number of complaints from customers
who have made mistakes using the system in places that were not predicted.
You have been tasked with trying to find a way of avoiding these kinds of
errors in the future. Which of the following artifacts are you not liable to
use while performing this task?

A. Heuristic evaluation

B. CAPEC

C. SUMI

D. WAMMI

3. Since releasing the latest version two weeks ago, your software system has
been broken into at least 10 different times. So far no important customer
data has been stolen, but it is only a matter of time. You have been tasked

__AST V3.book Seite 396 Freitag, 1. Juli 2011 1:06 13

 5.4 Sample Exam Questions 397

with determining as quickly as possible if there are more vulnerabilities so a
quick patch can be sent out. Which of the following test design techniques
would most likely give you the information you need?

A. MC/DC

B. Failure-based taxonomy

C. Chartered exploratory testing

D. Software attacks

4. Non-functional testing has never been done at your organization, but your
new director of quality has decided that it will be done in the future. And,
she wants metrics to show that the system is getting better. One metric you
are calculating is based on a period of testing that occurred last week. You
are measuring the time that the system was actually working correctly com-
pared to the time that it was automatically repairing itself after a failure.
Which of the following metrics are you actually measuring?

A. MTBF
B. Mean down time
C. Mean recovery time
D. Availability

5. Non-functional testing has never been done at your organization, but your
new director of quality has decided that it will be done in the future. And,
she wants metrics to show that the system is getting better. You find out that
marketing has put a new claim into the literature for the system, saying that
the software will work on Windows 95 through Win 7. For which of the fol-
lowing non-functional attributes would you most likely be interested in
testing and collecting metrics?

A. Adaptability

B. Portability compliance

C. Coexistence

D. Stability

__AST V3.book Seite 397 Freitag, 1. Juli 2011 1:06 13

398 5 Tests of Software Characteristics

6. You are doing performance testing for the system your company sells. You
have been running the system for over a week straight, pumping huge
volumes of data through it. What kind of testing are you most likely per-
forming?

A. Stress testing

B. Soak testing

C. Resource utilization testing

D. Spike testing

7. Rather than developing all of your own software from the ground up, your
management team has decided to use available COTS packages in addition
to new code for an upcoming project. You have been given the task of test-
ing the entire system with a view to making sure that your organization
retains its independence from the COTS suppliers. Which of the following
non-functional attributes would you most likely investigate?

A. Replaceability

B. Portability compliance

C. Coexistence

D. Adaptability

__AST V3.book Seite 398 Freitag, 1. Juli 2011 1:06 13

399

6 Reviews

“Anything becomes interesting if you look at it long enough.”

Gustave Flaubert

The sixth chapter of the Advanced syllabus is concerned with reviews. As you
will recall from the Foundation syllabus, reviews are a form of static testing
where people, rather than tools, analyze the project or one of the project’s work
products, such as a requirements specification. The primary goal is typically to
find defects in that work product before it serves as a basis for further project
activity, though other goals can also apply. The Advanced syllabus introduces
additional types of reviews and covers strategies for effective and successful
reviews. Chapter 6 of the Advanced syllabus has five sections.

1. Introduction
2. The Principles of Reviews
3. Types of Reviews
4. Introducing Reviews
5. Success Factors for Reviews

Let’s look at each section and how it relates to technical test analysis.

6.1 Introduction

Learning objectives

Recall of content only

__AST V3.book Seite 399 Freitag, 1. Juli 2011 1:06 13

400 6 Reviews

Again, think back to the beginning of chapter 4. We introduced a taxonomy for
tests, shown in figure 6-1. We mentioned the distinction between static and
dynamic tests. Static tests are those tests that do not involve execution of the test
object. Dynamic tests do involve execution of the test object. In chapters 4 and
5, we talked about test techniques and quality characteristics, mostly from the
point of view of dynamic testing.

Figure 6–1 Advanced syllabus testing techniques

In this chapter, we cover static testing. In fact, we are going to focus on one
branch of the static test tree, that of reviews. (We covered static analysis earlier
in chapter 4.) Largely, the material in this chapter expands upon what was
covered on reviews in the Foundation syllabus.

To have success with reviews, an organization must invest in and ensure
good planning, participation, and follow-up. It’s more than a room full of
people reading a document.

Good testers make excellent reviewers. Good testers have curious minds
and a willingness to ask skeptical questions (referred to as professional pessi-
mism in the Foundation). That outlook makes them useful in a review, though
they have to remain aware of the need to contribute in a positive way.

This is true not only of testers, but of everyone involved. Being a group
activity, all review participants must commit to well-conducted reviews. One

Testing

Static Dynamic

Review

Black-box
White-box

Functional

ATA

ATTA

ATTA
ATTA ATA

ATTA

ATA ATTA ATTA

ATA ATTA

Static

analysis Experience-

based

Defect-

based

Dynamic

analysis

Non-

functional

ATA ATTA

__AST V3.book Seite 400 Freitag, 1. Juli 2011 1:06 13

 6.1 Introduction 401

negative, confrontational, or belligerent participant can damage the entire pro-
cess profoundly.

Reviews are easy to do poorly and hard to do well, so many organizations
abandon them. However, done properly, reviews have one of the highest payoff
rates of any quality-related activity.

Figure 6–2 IEEE 1028 standard for software reviews

ISTQB Glossary

review: An evaluation of a product or project status to ascertain discrepancies
from planned results and to recommend improvements. Examples include
management review, informal review, technical review, inspection, and walk-
through.

reviewer: The person involved in the review that identifies and describes
anomalies in the product or project under review. Reviewers can be chosen to
represent different viewpoints and roles in the review process.

review
reviewer

1. Overview

z

2. References

3. Definitions

4. Management reviews

5. Technical reviews

it criteria, procedures

6. Inspections

process improvement

7. Walk-throughs

process improvement

8. Audits

__AST V3.book Seite 401 Freitag, 1. Juli 2011 1:06 13

402 6 Reviews

Let’s review the IEEE 1028 standard for reviews, shown in figure 6-2, which was
introduced at the Foundation level. The first section of the standard is an over-
view. It covers the purpose of the standard, the scope of coverage, and guide-
lines for conformance with the standard, the organization of the standard, and
how to apply the standard in an organization.

The second section is “References,” which, as you might imagine, refers to
other documents, standards, and so forth. The third section, “Definitions,”
defines terms used in the standard.

The fourth section addresses management reviews. Management reviews
were out of scope at the Foundation level, you might recall. In this section, the
standard talks about who has what responsibilities in a management review, the
inputs to and outputs from a management review, the entry criteria to start such
a review and the exit criteria to recognize when it’s complete, and the proce-
dures a management review should follow.

The fifth section addresses technical reviews. In this section, the standard
talks about who has what responsibilities in a technical review, the inputs to and
outputs from a technical review, the entry criteria to start such a review and the
exit criteria to recognize when it’s complete, and the procedures a technical
review should follow.

The sixth section addresses inspections. As with the previous two sections,
the standard talks about who has what responsibilities in an inspection, the
inputs to and outputs from an inspection, the entry criteria to start an inspec-
tion and the exit criteria to recognize when it’s complete, and the procedures an
inspection should follow. However, because inspections are more formal than
technical reviews, the standard also discusses collecting data from the inspec-
tion process and implementing improvements to the inspection process.

The seventh section addresses walk-throughs. As with the other sections,
the standard talks about who has what responsibilities in a walk-through, the
inputs to and outputs from a walk-through, the entry criteria to start a walk-
through and the exit criteria to recognize when it’s complete, and the proce-
dures a walk-through should follow. Since the level of formality for walk-
throughs is similar to that of inspections, the standard also discusses collecting
data from the walk-through process and implementing improvements to the
walk-through process.

Finally, the eighth section addresses audits. As with the other sections, the
standard talks about who has what responsibilities in an audit, the inputs to and

__AST V3.book Seite 402 Freitag, 1. Juli 2011 1:06 13

 6.2 The Principles of Reviews 403

outputs from an audit, the entry criteria to start an audit and the exit criteria to
recognize when it’s complete, and the procedures an audit should follow.

6.2 The Principles of Reviews

Learning objectives

Recall of content only

ISTQB Glossary

audit: An independent evaluation of software products or processes to ascer-
tain compliance to standards, guidelines, specifications, and/or procedures
based on objective criteria, including documents that specify (1) the form or
content of the products to be produced, (2) the process by which the products
shall be produced, and (3) how compliance to standards or guidelines shall be
measured.

inspection: A type of peer review that relies on visual examination of docu-
ments to detect defects, e.g., violations of development standards and non-
conformance to higher-level documentation. The most formal review
technique and therefore always based on a documented procedure.

management review: A systematic evaluation of software acquisition, supply,
development, operation, or the maintenance process. The management
review is performed by or on behalf of management and monitors progress,
determines the status of plans and schedules, confirms requirements and their
system allocation, and evaluates the effectiveness of management
approaches to achieve fitness for purpose.

technical review: A peer group discussion activity that focuses on achieving
consensus on the technical approach to be taken. See also peer review.

walk-through: A step-by-step presentation by the author of a document in
order to gather information and to establish a common understanding of its
content. See also peer review.

peer review: A review of a software work product by colleagues of the pro-
ducer of the product for the purpose of identifying defects and improvements.
Examples are inspection, technical review, and walk-through.

audit
inspection
management review
technical review
walk-through
peer review

__AST V3.book Seite 403 Freitag, 1. Juli 2011 1:06 13

404 6 Reviews

Let’s look at some review principles that were explained in the Foundation syl-
labus. First, as mentioned, a review is a type of static test. The object being
reviewed is not executed or run during the review. Like any test activity, reviews
can have various objectives. One common objective is finding defects. Others,
typical of all testing, are building confidence that we can proceed with the item
under review, reducing risks associated with the item under review, and gener-
ating information for management. Unique to reviews is the addition of another
common objective, that of ensuring uniform understanding of the document—
and its implications for the project—and building consensus around the state-
ments in the document. Some types of reviews also include suggesting improve-
ments to the document as an objective.

Reviews usually precede dynamic tests. They should complement dynamic
tests. Because the cost of a defect increases the longer that defect remains in the
system, reviews should happen as soon as possible. However, because not all
defects are easy to find in reviews, dynamic tests should still occur.

Woody Allen, the New York film director, is reported to have once said that
“80 percent of success is showing up”. That might be true in the film business,
but Woody Allen would not be a useful review participant. Reviews require ade-
quate preparation. If you spend no time preparing for a review, expect to add lit-
tle value during the review meeting.

In fact, you can easily remove value by asking dumb questions that you
could have answered on your own had you read the document thoroughly
before showing up. You might think that’s a harsh statement, especially in light
of the management platitude that “there are no dumb questions.” Well, sorry,
there are plenty of dumb questions. Any question that someone asks in a meet-
ing because of their own failure to prepare, resulting in a whole roomful of peo-
ple having to watch someone else spend their time educating the ill-prepared
attendee on something he should have known when he came in the room, qual-
ifies as a dumb question. In fact, to us, showing up for a review meeting unpre-
pared qualifies as rude and unprofessional behavior, disrespectful of the time of
the others in the room.

Because reviews are so effective when done properly, organizations should
review all important documents. That includes test documents: test plans, test
cases, quality risk analyses, bug reports, test status report, you name it. Our rule

__AST V3.book Seite 404 Freitag, 1. Juli 2011 1:06 13

 6.2 The Principles of Reviews 405

of thumb is, anything that matters is not done until it’s been looked at by at least
two pairs of eyes. You don’t have to review documents that don’t matter, but
here’s a question for you: Why would you be writing a document that didn’t
matter?

So, what can happen after a review? There are three possible outcomes. The
ideal case is that the document is okay as is or with minor changes. Another
possibility is that the document requires some non-trivial changes but not a re-
review. The most costly outcome—in terms of both effort and schedule time—is
that the document requires extensive changes and a re-review. Now, when that
happens, keep in mind that while this is a costly outcome, it’s less costly than
simply ignoring the serious problems and then dealing with them during com-
ponent, integration, system, or—worse yet—acceptance testing.

In an informal review, there are no defined rules, no defined roles, no
defined responsibilities, so you can approach these however you please. Of
course, keep in mind that Capers Jones has reported that informal reviews typi-
cally find only around 20 percent of defects, while very formal reviews like
inspections can find up to 85 percent of defects.1 If something is important, you
probably want to have a formal review—unless you think that you and your
team are so smart that no one is going to make any mistakes.

During a formal review, there are some essential roles and responsibilities:

■ The manager. The manager allocates resources, schedules reviews, and the
like. However, the manager might not be allowed to attend based on the
review type.

■ The moderator or leader: This is the chair of the review meeting.

1. See Capers Jones’s book Software Assessments, Benchmarks, and Best Practices.

informal review
inspection leader (or mo-
derator)

ISTQB Glossary

informal review: A review not based on a formal (documented) procedure.

inspection leader (or moderator): The leader and main person responsible
for an inspection or other review process.

__AST V3.book Seite 405 Freitag, 1. Juli 2011 1:06 13

406 6 Reviews

■ The author: This is the person who wrote the item under review. A review
meeting, done properly, should not be a sad or humiliating experience for
the author.

■ The reviewers: These are the people who examine the item under review,
possibly finding defects in it. Reviewers can play specialized roles based on
their expertise or based on some type of defect they should target.

■ The scribe or secretary or recorder: This is the person who writes down the
findings.

Now, in some types of reviews, roles can be combined. For example, the author,
moderator, and secretary can be the same person. In fact, as test manager, when
Rex has had the test team review his test plans, he’s often been the manager, the
author, the moderator, and the secretary.

Some additional roles might be involved, depending on the review. We
might involve decision makers or project stakeholders. This is especially true if
an ancillary or even primary objective of the review is to build consensus or to
disseminate information. In some cases, the stakeholders involved can be cus-
tomer or user representatives. As an example, Rex did a review of mock-ups for
the RBCS website with the marketing team, the outsource web development
team, and the company executives. Since RBCS had hired the web development
team, the executives were the customers and, for some features, the users.

Certain very formal review types also use a reader, who is the person
responsible for reading, paraphrasing, and explaining the item under review.

You can use more than one review type in an organization. For some docu-
ments, time is more important than perfection. For example, on our test teams,
we apply the “two pairs of eyes” rule to mean that a tester must read another
tester’s bug report before it can be filed. However, for more visible documents
like test plans, we use a walk-through with the entire test team. For critical doc-
uments, you can use more than one review type on a single item. For example,
when writing this book, Jamie and Rex did an informal review of each other’s
writing followed by a broader, more formal review as the final book came
together.

__AST V3.book Seite 406 Freitag, 1. Juli 2011 1:06 13

 6.3 Types of Reviews 407

6.3 Types of Reviews

The Foundation syllabus discussed four types of reviews.

■ At the lowest level of formality (and, usually, defect removal effectiveness),
we find the informal review. This can be as simple as two people, the author
and a colleague, discussing a design document over the phone.

■ Technical reviews are more formalized, but still not highly formal.
■ Walk-throughs are reviews where the author is the moderator and the item

under review itself is the agenda. That is, the author leads the review, and in
the review, the reviewers go section by section through the item under
review.

■ Inspections are the most formalized reviews. The roles are well defined.
Managers may not attend. The author may be neither moderator nor
secretary. A reader is typically involved.

As you can imagine, as the level of formality goes up, the rate of review—the
number of pages per hour—goes down.

As a further note on terminology, Rex has heard technical reviews referred
to as peer reviews, while Jamie has heard that term applied to any type of review,
formal or informal. The ISTQB glossary and the Foundation syllabus say that
the term peer review applies to more formal reviews only, with the Foundation
syllabus adding the note that, in a peer review, the participants are “colleagues at
the same organizational level.” This terminological stew can constitute a confus-
ing deviation between the ISTQB terminology and common usage; you have to
be aware of this for any ISTQB exams.

You should remember that the IEEE 1028 standard and the Foundation syl-
labus are discussing idealized situations. In real-world practice, it is quite com-
mon to find organizations blending the parts they like from each type and
discarding parts they don’t like. It’s also quite common to hear organizations
talking about walk-throughs when the approach they use for the walk-through
does not adhere to the IEEE 1028 rules.

Learning objectives

(K2) Compare review types with each other and show their relative
strengths, weaknesses, and fields of use.

__AST V3.book Seite 407 Freitag, 1. Juli 2011 1:06 13

408 6 Reviews

While at the Foundation level we ignored management reviews and audits
from the IEEE 1028 standard, let’s fill that gap here. Let’s start with management
reviews. Common purposes of management reviews are to monitor progress,
assess status, and make decisions about some project, system, ongoing activity,
or process. (Of course, in some organizations, management reviews are orga-
nized for various political reasons too, but we can ignore that for the moment.)

Managers involved with the item being reviewed often perform manage-
ment reviews. Various stakeholders and decision makers can assist them as well.
The level of involvement of each of the participants can vary. In some cases,
organizations will hire outside consultants to come in and do reviews. For
example, a large portion of RBCS’s business is doing test process and quality
process assessments of various kinds for organizations. These are a hybrid
between a management review and an audit, which we’ll discuss in a moment.
Test managers often drive these test assessments, in which case they are more
like a management review. When outside test stakeholders drive these test
assessments, they are more like an audit.

Part of a management review is often to assess how a project is doing in
terms of plans, estimates, project risk management, and so forth. Another part
of a management review is looking at the adequacy of various procedures and
controls. Participants must prepare for these reviews, especially those who are
going to deliver status information. We’ve done test assessments for organiza-
tions where people had so tenuous a grasp on what was going on in their testing
group that our foremost recommendation was, “Get some metrics and tracking
mechanisms in place immediately.”

Typically, the outcome of a management review includes action items,
recommendations, issues to be resolved, and the like. The decisions should be
documented and the execution of action items and recommendations checked
regularly. Unfortunately, it’s not unusual for follow-up to be less than ideal.

Moving on to audits, these can be quite formal and, in some cases, quite
adversarial. In an audit, there’s a strong chance that the auditors are measuring
people against a contract, a standard, an industry best practice, or the like. This
can provoke defensiveness. The Advanced syllabus says that audits are least
effective at revealing defects, but that really depends on the auditing and
audited organization. When we do testing audits for our clients, we are very,
very good at finding defects, both project defects and process defects.

__AST V3.book Seite 408 Freitag, 1. Juli 2011 1:06 13

 6.3 Types of Reviews 409

One essential element of an audit is the independent evaluation. As with a
management review, we can measure a process, a project, an ongoing activity, or
a system. However, another essential element of an audit is the idea of being in
or out of compliance. Audits can be done by a lead auditor with an auditor team
or by a single auditor. The auditors collect evidence through interviews, wit-
nessing, examining documents, analyzing metrics, and so forth. We find that
the interviews can be particularly interesting, especially when an audit has
become high stakes for some of the participants. Attempts to spin, mislead, mis-
direct, convince, and stall the auditor occur in such situations.

As with the management review, the outcome of an audit can include action
items, recommendations, issues to be resolved, and the like. However, it also
includes an assessment of compliance (or noncompliance). This is often mea-
sured against a multidimensional scale or checklist, so even if 99 items are in
compliance, if 1 is out of compliance, the organization might fail the audit. If
noncompliance is the finding, then corrective actions for the item or items that
failed would be typical. Again, the decisions should be documented and the
execution of action items, recommendations, and corrective actions should be
checked regularly, along with periodic reassessment of compliance. In regulated
industries or for legally mandated audits, follow-up on audit results are usually
excellent, but in nonregulated industries, follow-up is often less than ideal.

In addition to the types of reviews laid out in the IEEE 1028 standard, we
can classify reviews in terms of the work products or activities subject to review.
A contractual review, naturally enough, corresponds to some sort of project
milestone, often one linked to payment or continuation of a contract. It could
also be a management review for a safety-critical or safety-related system. The
review could involve managers, vendors, customers, and technical staff. When a
project is going well, these are routine. When a project starts to go poorly, par-
ticularly if there are multiple vendors involved, expect massive amounts of time
and energy to be spent by each vendor trying to obscure who is responsible for
the problems.

We can consider requirements reviews. A requirements review can be infor-
mal, it can be a walk-through, it can be a technical review, or it can be an
inspection. The scope of a requirements review should be whatever it needs to
be. If we are building a safety-critical system, a review or part of a review should
consider safety. If we are building a high-availability system, a review or part of

__AST V3.book Seite 409 Freitag, 1. Juli 2011 1:06 13

410 6 Reviews

a review should consider availability and reliability. For all systems, require-
ments and the requirements reviews should address both functional and non-
functional requirements. We can include in a requirements review acceptance
criteria and test conditions.

We can also consider design reviews. A design review can range from infor-
mal to technical reviews and inspections. Like a requirements review, they can
involve technical staff and customers and stakeholders, though you’d expect that
as the level of detail becomes more intense, the participants would become
more technical. In some organizations, there is a concept of preliminary design
review and a critical design review. The preliminary design review is a technical
review (also a peer review due to the attendees) where technical peers propose
the initial approach to deal with technical issues related to system or test
designs. The critical design review covers the proposed design solutions, which
can include test cases and procedures in some cases.

The operational readiness review, acceptance review, or qualification review
is a combination of technical and managerial review. This is sort of a final safety
net. We want to review all the data to make a final decision on readiness for pro-
duction. As important as this is, Rex has seen situations where the project was
so intensive and exhausting that by the time the operational readiness review—
or exit meeting or project launch meeting or whatever it was called—occurred,
everyone rubber-stamped a decision to go ahead with production even though
there were lots of good reasons to say, “Wait, don’t do this.” In one case, that
decision lead to months of extremely poor system performance in production.

As discussed in the Foundation syllabus, there are six phases for a formal
review:2

1. Planning, including for each work product to be reviewed and for all
reviews to occur on a project

2. Kickoff, again for each work product and for all reviews
3. Individual preparation for each work product; reading the document and

noting problems
4. The review meeting itself, for each work product

2. At the time of writing this book, due to a formatting error, the Foundation 2010 syllabus
showed the process as having 12 steps. This problem has been rectified in the 2011 version of the
Foundation syllabus.

__AST V3.book Seite 410 Freitag, 1. Juli 2011 1:06 13

 6.3 Types of Reviews 411

5. Any rework necessary based on the changes required by the review results
6. Finally, follow-up both for individual work products if needed and for the

overall reviews done on the project

Now, remember that good process is important, but the right participants are
essential. The participants must match the work product to be reviewed. Invit-
ing the wrong people to reviews guarantees ineffectual reviews, even if you fol-
low the process to the letter.

Capers Jones, in his studies of thousands of projects across hundreds of cli-
ents, has found some interesting data on reviews, their applications, and the
effectiveness of various types of reviews. Jones mentions that the informal
reviews are the least effective, reviews that have some but not all elements of
formality are about average, and the most effective are the highly formalized
inspections. Of course, to be effective at any level of formality, you have to do
the reviews well and you have to have organizational support for the process.3

As you can see in table 6-1, both the level of formality and the type of item
to which the review is applied has a strong influence on the percentage of
defects found and removed. If you think of the reviews as a series of filters—
which is a good way to think of all quality assurance and testing activities—
here’s a quick mathematical demonstration of how effective reviews can be.

First, imagine that you started with 1,000 defects. You follow worst practices
in reviews, but at least you review all types of items. In this case, you would
enter testing with about 166 defects. Now, imagine that you started with 1,000
defects again. However, this time you follow best practices (and again you
review all types of items). This time, you go into testing with 3 defects.

Table 6–1

3. These figures and table 6-1 are derived from Software Assessments, Benchmarks, and Best Prac-
tices by Capers Jones.

Least Average Most

Requirements review 20% 30% 50%

High-level design review 30% 40% 60%

Functional design review 30% 45% 65%

Detailed design review 35% 55% 75%

Code review 35% 60% 85%

__AST V3.book Seite 411 Freitag, 1. Juli 2011 1:06 13

412 6 Reviews

6.4 Introducing Reviews

The following steps are useful in successfully introducing reviews:

■ Secure management support: Reviews are not expensive from a budget
point of view, as test automation is, but they do require a time commitment,
especially when time is tight.

■ Educate managers: You need to have an honest conversation about the
business case for reviews, including the costs, benefits, and potential issues.
Avoid exaggerating the benefits because, if your exaggeration is detected
later, reviews might be cancelled.

■ Put structure in place: Have documented review procedures for the various
types of reviews you’ll use. Have templates and forms available. Establish an
infrastructure such as the reviews metrics database. If you intend to do
geographically distributed reviews, make sure you have the tools in place
for that.

■ Train: Educate the participants on review techniques and procedures.
■ Obtain participant support: Make sure those who will do the reviews and

those whose work will be reviewed are comfortable and supportive.
■ Do some pilot reviews: Expect to make some mistakes—and plan to learn

from them.
■ Demonstrate the benefit: You have a defined business case, right? Now

show management that you achieved what you promised!
■ Apply reviews to all (or at least the most important) documents:

Requirements, contracts, project plans, test plans, quality risk analyses, and
similar high-visibility documents are obvious targets. However, we have
found simply ensuring informal reviews of bug reports to be amazingly
valuable.

You won’t necessarily need to do every step in every organization, and you don’t
need to do these steps in perfect, sequential order, but you should think long
and hard about why it’s okay to skip a step if you think it is.

Learning objectives

(K2) Compare review types with each other and show their relative
strengths, weaknesses, and fields of use.

__AST V3.book Seite 412 Freitag, 1. Juli 2011 1:06 13

 6.5 Success Factors for Reviews 413

Your organization will invest time and money in reviews. Managers will
expect a return on that investment. To demonstrate a return on the review
investment, you can use metrics like the reduced or avoided cost of fixing
defects or dealing with failures. What does a defect cost in system test? How
about after release? A simple spreadsheet can show the benefits of reviews and
evaluate the success of the reviews after their implementation.

Don’t forget to measure the return in terms of saved time too. Money is not
always the biggest concern for managers. In fact, time to market is usually a big-
ger issue. So, if you can document that a defect takes 5 hours to resolve when
found in a review and 25 hours when found in system test, you have a solid
business case for how time investment in reviews during the early stages of a
project reduces the likelihood of project delay at the end of the project.

Having established metrics, it’s important to continue to monitor them. It’s
easy for review processes to become ritualistic and stuck, and then the value
goes down. If you see the benefit dropping off, ask yourself why? In fact, the
benefit should constantly be going up. You should be looking for metrics-based,
measurable ways to improve the review processes. Make sure that you—and
your managers—see reviews and review process improvement as a long-term
investment.

6.5 Success Factors for Reviews

A number of factors influence the success—or, if absent, the failure—of reviews.
The Advanced syllabus classifies those into three groups. Let’s start with the
technical factors.

Ensure that you are following the defined process correctly. This can be par-
ticularly tricky for formal types of reviews like inspection. Now, that doesn’t
mean you can’t tailor these processes, but it’s usually a good idea to master the
defined processes, as described in standards or authoritative texts, first.

Learning objectives

(K4) Outline a review checklist in order to find typical defects to be
found with code and architecture review.

__AST V3.book Seite 413 Freitag, 1. Juli 2011 1:06 13

414 6 Reviews

We mentioned the importance of the business case. To support your busi-
ness case, you have to record the costs of reviews (particularly in terms of effort)
and the benefits that the organization obtains. A problem with reviews is that
the benefits accrue long after the cost was incurred. That’s true for all testing, of
course, but it’s especially acute for reviews, particularly if you forget to measure
the value.

You don’t have to wait until a document is done before you start reviewing
it. You can and should review early drafts or partial documents when you’re
dealing with something critical. This can help to identify and prevent patterns
of defects before they are built into the whole document.

That said, make sure you have some rules about what it means for some-
thing to be ready for review. You can waste people’s time by sending them mate-
rials that aren’t sufficiently mature to be reviewed. You can also waste people’s
time and frustrate them by sending them stuff to review that’s still changing.
People who are frustrated because they are wasting their time on some activity
tend to find ways to stop wasting their time on that activity, which means that
the review process can wither away. So have some entry criteria. These should
also include the simple rule that everyone has to show up prepared.

Checklists are helpful for reviews. It’s too easy to forget important areas
without them. Have some checklists. You can start with checklists from reputa-
ble industry experts, such as the ones included in this book, but make sure to
extend those to be organization specific. They should address common defects
based on what you find. Also, have different checklists for different kinds of
documents, such as requirements, use cases, and designs. Finally, have different
checklists for different review processes.

The appropriate level of formality varies. So be ready to use more than one
type of review. Consider your objectives. Is the idea to do a quick document
cleanup before sending to a client? To improve some technical design decisions?
To educate stakeholders? To generate information for management?

We’ve mentioned the rule of “two pairs of eyes,” and we try hard not to vio-
late that rule. Sometimes, deadlines intervene. However, you should review—or,
better yet, inspect—all documents that are vitally important. If a document is
involved in making an important decision, such as signing a contract, be sure to
inspect the proposal, contract, or high-level requirements specification first. If a

__AST V3.book Seite 414 Freitag, 1. Juli 2011 1:06 13

 6.5 Success Factors for Reviews 415

major expenditure is being contemplated, have a management review to autho-
rize it.

For large documents, you can use a sampling of a limited subset to estimate
the number of defects in the entire document. This can help to determine if a
re-review is needed. Keep in mind that this sampling approach won’t work for a
document cleanup or edit.

Watch out for distractions. It’s easy to find a bunch of minor format, spell-
ing, and grammar errors. Focus on finding the most important defects, based
on content not format.

Finally, as we mentioned earlier, continuously improve the review process.
Now, some organizational factors.
Make sure managers will plan and estimate for adequate time, especially

under deadline pressures. It is a false economy to think that if you skip highly
efficient bug removal activities early in the process, somehow the schedule end
date will be accelerated, but that kind of thinking is rampant in software engi-
neering.

Be careful with the metrics. For one thing, remember that some reviews will
find many defects per person-hour invested, while others won’t. There are some
mathematical models for predicting defect density, which are beyond the scope
of this book. Be careful not to use simplistic models. Most importantly, never
ever let review defect metrics be used for individual performance evaluations.
That introduces a level of defensiveness that will kill the process.

Make sure to allow time for rework of defects. It’s a classic testing worst
practice to assume that a test activity will conclude without finding any defects.

Make sure the process involves the right participants. A study by Motorola
in 2003 showed that the right participants were the strongest indicator of review
success.4 This includes technical or subject matter expertise, of course. It also
includes the issue of balance, making sure the review team has representatives
from all key groups. And, it includes understanding the review process, usually
through training, especially for formal types of reviews. The second-strongest
indicator, they found, was having the right number of participants, so make sure
to think carefully about who and how many.

4. Jeff Holmes, “Identifying Code-Inspection Improvements Using Statistical Black Belt
Techniques,” Software Quality Professional, December 2003.

__AST V3.book Seite 415 Freitag, 1. Juli 2011 1:06 13

416 6 Reviews

If you are in a medium-to-large organization that is using reviews, have a
review forum to allow people to share their experience and ideas. This can be
reserved for moderators or leaders.

There’s no point in having people at a review meeting if they don’t contrib-
ute. So ensure that the participants participate. Part of this is ensuring proper
preparation. Another part is to draw less-vocal participants into the meeting.
Just because someone doesn’t have a forceful personality doesn’t mean they
don’t have good ideas.

Again, when dealing with critical documents, apply the strongest, most for-
mal techniques. Remember Jones’s figures on review effectiveness. What per-
centage of defects can you afford to leave in each kind of document?

Make sure to have a process in place for review process improvement. If this
isn’t supported by metrics, it’s likely to point you in the wrong direction. Make
sure the process for improving the review process includes a mechanism to rec-
ognize and celebrate the improvements gained.

Finally, some people issues.
As with managers, educate all stakeholders and participants to expect

defects. Make sure that’s not an unpleasant surprise to them. Make sure they
have allowed for rework and re-review time. People tend to overbook them-
selves in today’s workplace. If they do so, being confronted with a list of issues to
resolve in their document is likely to be a traumatic experience because it means
overtime.

The review leader is not Torquemada, the Grand Inquisitor of the Spanish
Inquisition. The rack, the iron maiden, and waterboarding are not review tools
or techniques. Reviews should be a positive experience for authors, where they
learn how to do their job better from respected peers. Both Rex and Jamie can
still remember review sessions with two or three mentors early in their careers
that helped them grow significantly. That said, if authors have had bad experi-
ences, be careful with forcing an author to consent to a review. It’s best if man-
agement handles this.

Given how efficient defect location and removal is during reviews, we
should be happy, not unhappy, when we find defects. Make sure people see that
as an opportunity to save time and money. Don’t look to point fingers or assign
blame when defects are found.

__AST V3.book Seite 416 Freitag, 1. Juli 2011 1:06 13

 6.5 Success Factors for Reviews 417

Monitor the dialog in the room. We want constructive, helpful, thoughtful,
and objective discussion. Make sure that people are thinking about the deeper
issues, including how the document under review fits into the broader picture
of the project.5

6.5.1 Deutsch’s Design Review Checklist

You can and should apply reviews to designs, not just requirements and use
cases. Let’s look at an example of a checklist we can use to review distributed
applications. The checklist comes from some work done by L. Peter Deutsch
and others at Sun Microsystems in the 1990s. You might remember Sun’s early
slogan: “The network is the computer.” They were in the forefront of distributed
application design and development. Deutsch and his colleagues recognized
that people designing and developing distributed applications kept making the
same mistakes over and over again.

We can create a checklist based on Deutsch’s observations. The idea of a
checklist is to force you to think. When performing a review, we want you to
think. That makes a checklist a good tool to use. Failing to consider these falla-
cies when designing a distributed application is guaranteed to cause issues once
the application is delivered.

1. The network is reliable. It will never go down. Murphy once said that what
can go wrong will go wrong. Heinlein’s corollary to that is, "Murphy was an
optimist." The network is made up of hardware and software. We already
know that software can fail (we are, after all, professional pessimists). Any-
one who has ever owned hardware knows that it can fail. Power can get
interrupted, cables can get disconnected. People can do stupid things. In the
long run, you can be assured that the network will occasionally go down.
The question is what will happen to your application when it does.

2. Latency is zero. How long does it take for your data to go from here to
there? It seems like it is fast—speed of light, right? If the network is local,
it might be close to zero. What happens if it is a wide area network? The
user is two continents away. Well, it is still pretty fast. Is it fast enough?
Why would it need to be so fast anyway? In today’s world, you might be

5. For a discussion of reviews from a formal perspective, see Tom Gilb and Dorothy Graham’s
book Software Inspection.

__AST V3.book Seite 417 Freitag, 1. Juli 2011 1:06 13

418 6 Reviews

doing some distributed processing. Running web services from...any-
where. RPC calls from...anywhere. When they are local, they are almost
instantaneous; when they are remote, they are not. How is a delay in get-
ting an answer to a called function going to affect the computation? What
happens when that answer is needed in real time? How about if there are
multiple processors waiting for the answer? There are suddenly failure
possibilities due to timing. Are you holding locks while you wait? These
are all things to consider.

3. Bandwidth is infinite. Each year it is getting better, in most countries if not
the United States. The United States is actually falling behind, although
there are plans to bring us into the twenty-first century. As we travel around
the country teaching classes, it surprises us to see how many people are still
on dial-up connections. So when our fancy distributed application is down-
loading five megabytes of company logos to our customer’s computer
through that 40k dial-up, that could create some performance issues.

4. The network is secure. If you truly believe that, you might want to go back
and review the technical security section in chapter 5. As Jamie was writing
this section, he looked up and saw that his virus checker icon in the toolbar
had become disabled. Several times an hour that occurs when it is accessing
the update center, so he did not think about it— not until, that is, he looked
at it minutes later and saw that it had not yet come back. Checking the other
three computers in his office, Jamie saw that each was showing disabled
icons. He immediately killed the network, shut down all four computers,
and spent the next three hours going through each one trying to find the
issue. When he couldn’t find any problems, he shut down for the night. It
turned out to be a false alarm, but the fact is, if you have been in computers
for more than a couple of hours, you have heard of hackers, crackers, thrill
seekers, and assorted mopes who break stuff just for kicks. The network is
never secure.

5. Topology doesn’t change. At least, it doesn’t until you put the application
into production. It doesn’t matter if your distributed app is in-house or
worldwide; the only constant in networks is change. It may not change
today, or tomorrow. How long is your application going to be in use? Even
the best prognosticators in the business have no idea what technical
advances are going to come out next week or next year. The network must

__AST V3.book Seite 418 Freitag, 1. Juli 2011 1:06 13

 6.5 Success Factors for Reviews 419

be abstracted away without depending on any given resource being con-
stant.

6. There is one administrator. Sorry, there will be a bunch. Even if your
application is in-house, people move on. What does it matter? Expertise,
training, problem solving: All of these and more are going to be handled by
the administrator of the system. Tools will be needed to solve issues with
deployment. Where will they get the tools, the training, the expertise? How
user friendly will the system actually be? When you start looking at the
details of deployment, you will have to look at the lowest common denomi-
nator and figure out how to deal with the administrators.

7. Transport cost is zero. Here you need to look at both time and money. To
get the data from here to there takes time. This has to do with the idea of
latency we discussed earlier. It takes time to go through the stacks of soft-
ware, firmware, and hardware, then the copper or fiber, through to the
hardware, firmware, and software at the other end. This takes time and pro-
cessing cycles, and those are not free. In addition, you are putting more load
on already overloaded systems; there are times when new software and
hardware are going to be needed. The less efficient your system, the more
this will be true.

8. And finally, the network is homogenous. Writing a Windows application?
What happens if your client uses Linux? Your application works in UNIX,
but your client has a Series 5 app server? Proprietary protocols and services
will get you every time. Interoperability is going to be essential to any appli-
cation that is ever going to be moved outside the lab. Did you design for
that?

As you can see, much of your design and implementation for any system you
might want to build would require discussion of all these points. Hence a check-
list.

6.5.2 Marick’s Code Review Checklist

Technical test analysts are likely to be invited to code reviews. So, let’s go
through Brian Marick’s code review checklist, which he calls a “question cata-
log.” This catalog has several categories of questions that developers should ask
themselves when going through their code. These questions are useful for many

__AST V3.book Seite 419 Freitag, 1. Juli 2011 1:06 13

420 6 Reviews

procedural and object-oriented programming languages, though in some cases
certain questions might not apply.6

For variable declarations, Marick says we should ask the following questions:

■ Are the literal values correct? How do we know?
■ Has every single variable been set to a known value before first use? When

the code changes, it is easy to miss changing these.
■ Have we picked the right data type for the need? Can the value ever go

negative?

For each data item and operations on data items, Marick says we should ask the
following questions:

■ Are all strings NULL terminated? If we have shortened or lengthened a
string, or processed it in any way, did the final byte get changed?

■ Did we check every assignment to a buffer for length?
■ When using bitfields, are our manipulations (shifts, rotates, etc.) going to be

portable to other architectures and endian schemes?
■ Does every sizeof() function call actually go to the object we meant it to?

For every allocation, deallocation, and reallocation of memory, Marick says we
should ask the following questions:

■ Is the amount of memory sufficient to the purpose without being wasteful?
■ How will the memory be initialized?
■ Are all fields being initialized correctly if it is a complex data structure?
■ Is the memory freed correctly after use?
■ Do we ever have side effects from static storage in functions or methods?
■ After reallocating memory, do we still have any pointers to the old memory

location?
■ Is there any chance that the memory might be freed multiple times?
■ After deallocation, are there still pointers to the memory?
■ Are we mistakenly freeing data we don’t mean to?
■ Is it possible that the pointer we are using to free the memory is already

NULL?

6. This is drawn from Brian Marick’s The Craft of Software Testing.

__AST V3.book Seite 420 Freitag, 1. Juli 2011 1:06 13

 6.5 Success Factors for Reviews 421

For all operations on files, Marick says we should ask the following questions:

■ Do we have a way of ensuring that each temp file we create is unique?
■ Is it possible to reuse a file pointer while it is pointing to an open file?
■ Do we recover each file handle when we are done with it?
■ Do we close each file explicitly when we are done with it?

For every computation, Marick says we should ask the following questions:

■ Are parentheses correct? Do they mean what we want them to mean?
■ When using synchronization, are we updating variables in the critical

sections together?
■ Do we allow division by zero to occur?
■ Are floating point numbers compared for exact equality?

For every operation that involves a pointer, Marick says we should ask the fol-
lowing questions:

■ Is there any place in the code where we might try to dereference a NULL
pointer?

■ When dealing with objects, do we want to copy pointers (shallow copy) or
content (deep copy)?

For all assignments, Marick says we should ask the following question:

■ Are we assigning dissimilar data types where we can lose precision?

For every function call, Marick says we should ask the following questions:

■ Was the correct function with the correct arguments called?
■ Are the preconditions of the function actually met?

Finally, Marick provides a couple of miscellaneous questions:

■ Have we removed all of the debug code and bogus error messages?
■ Does the program have a specific return value when exiting?

As you can see, this is a very detailed code review checklist. However, custom-
ization based on your own experience, and your organization’s needs, is encour-
aged.

__AST V3.book Seite 421 Freitag, 1. Juli 2011 1:06 13

422 6 Reviews

6.5.3 The OpenLaszlo Code Review Checklist

In the previous section, we discussed Marick’s questions that should be asked
about the code itself. In this section, we will discuss questions that should be
asked about the changes to the system. These are essentially meta-questions
about the changes that occurred during maintenance. These come from the
OpenLaszlo website.7

For all changes in code, here are the main questions we should ask:

■ Do we understand all of the code changes that were made and the reasons
for them?

■ Are there test cases for all changes? Have they been run?
■ Were the changes formally documented as per our guidelines?
■ Were any unauthorized changes slipped in?

In terms of coding standards, here are some additional questions to ask (assum-
ing you are not enforcing coding standards via static analysis):

■ Do all of the code changes meet our standards and guidelines? If not, why
not?

■ Are all data values to be passed parameterized correctly?

In terms of design changes, here are the questions to ask:

■ Do you understand the design changes and the reasons they were made?
■ Does the actual implementation match the designs?

Here are the maintainability questions to ask:

■ Are there enough comments? Are they correct and sufficient?
■ Are all variables documented with enough information to understand why

they were chosen?

7. The complete list can be found at http://wiki.openlaszlo.org/Code_Review_Checklist.

__AST V3.book Seite 422 Freitag, 1. Juli 2011 1:06 13

http://wiki.openlaszlo.org/Code_Review_Checklist

 6.6 Code Review Exercise 423

Finally, here are the documentation questions included in the OpenLaszlo
checklist:

■ Are all command-line arguments documented?
■ Are all environmental variables needed to run the system defined and

documented?
■ Has all user-facing functionality been documented in the user manual and

help file?
■ Does the implementation match the documentation?

Jamie and Rex would also add one additional question that should be checked
by the testers for every release: Do the examples in the documentation
actually work? We have both been burned too often by inconsistencies—in
some cases quite serious—between examples and the way the system actually
works.

6.6 Code Review Exercise

In this exercise, you apply Marick’s and the OpenLaszlo code review checklists
to the following code shown following the instructions.

1. Prepare: Review the code, using Marick’s questions, Laszlo’s checklist, and
any other C knowledge you have. Consider maintainability issues as you
review the code. Document the issues you find.

2. Hold a review meeting: If you are using this book to support a class, work
in a small group to perform a walk-through, creating a single list of prob-
lems.

3. Discuss: After the walk-through, discuss your findings with other groups
and the instructor.

The solution to the first part is shown in the next section.
Here is the code that you are reviewing. This code performs a task by get-

ting values from the user, performing a calculation, and then printing out the
result. On subsequent pages, we will present a debrief for this exercise.

__AST V3.book Seite 423 Freitag, 1. Juli 2011 1:06 13

424 6 Reviews

1. getInputs(float *, float *, float *);
2. float doCalcs(float, float, float);
3. ShowIt(float);
4. main(){
5. float base, *power;
6. float Scaler;
7. getInputs(&base, power, &Scaler);
8. ShowIt(doCalculations(base, *power));
9. }
10. void getInputs(float *base, float power, float *S){
11. float base, power;
12. float i;
13. printf("\nInput the radix for calculation => ");
14. scanf("%f", *base);
15. printf("\nInput power => ");
16. scanf("%f", *power);
17. printf ("/nScale value => ")
18. scanf("i", i);
19. *Base = &base;
20. *P = &power; }
21. float doCalcs(float base, float power, float Scale){
22. float total;
23. if (Scale != 1) total == pow(base, power) * Scale;
24. else total == pow(base, power);
25. return;}
26. void ShowIt(float Val){
27. printf("The scaled power value is %f W.\n", Val);
28. }

6.7 Code Review Exercise Debrief

This code is representative of code that Jamie frequently worked with when he
was doing maintenance programming. Rex will let Jamie describe his findings
here.

Let’s start with some general maintainability issues with this code:

1. No comments
2. No function headers. I have a standard that says that every callable function

gets a formal header, explaining what it does, the arguments it takes, the

__AST V3.book Seite 424 Freitag, 1. Juli 2011 1:06 13

 6.7 Code Review Exercise Debrief 425

return value, and what the value means. I also include change flags and
dates, with explanation for each change.

3. No reasonable naming conventions are followed. I would prefer Hungarian
notation so we can discern the data type automatically.8

4. No particular spacing standards used, so code is not as readable as it might
be.

Based on Marick’s checklist and a general knowledge of C programming weak-
nesses and features, here are some specific issues with this code:

■ Line 0: Not shown: We need the includes for the library functions we are
calling. We would need stdio.h (for printf() and scanf()) and math.h (for
pow()). These problems would actually prevent the program from compil-
ing, which should be a requirement before having a code review.

■ Line 1: Every function should have a return value, in this case void.
■ Line 2: No issues.
■ Line 3: Once again, the function should have a return value.
■ Line 4. This might work in some compilers, but the main should return a

value (int), and if it takes no explicit arguments, it should have void. This is
a violation of Marick’s miscellaneous question, Does the program have a
specific exit value?

■ Line 5: The variable power is defined as a pointer to float, but no storage is
allocated for it. Near as I can tell, there is no reason to declare it as a pointer,
and it should simply be a local float declared. Note that these variables are
passed in to a function call before being initialized. This could be seen as a
violation of Marick’s declaration question, Are all variables always
initialized? Since no data has been allocated, this is a violation of Marick’s
allocation question, Is too little (or too much) data being allocated? And,
just to make it interesting, assuming that the code was run this way, it would
be possible to try to dereference the pointer *power, which breaks Marick’s
pointer question, Can a pointer ever be dereferenced when NULL?

8. Hungarian notation is a term that originated at Microsoft, thanks to Chief Architect
Dr. Charles Simonyi. In Hungarian notation, the variable has a prefix that indicates the type.
After its adoption within Microsoft, it spread to other companies, with the name Hungarian nota-
tion since it makes variables look foreign and because Simonyi was born in Hungary.

__AST V3.book Seite 425 Freitag, 1. Juli 2011 1:06 13

426 6 Reviews

■ Line 6: Variable is passed in to a function call before being initialized. This
is a violation of Marick’s declaration question, Are all variables always
initialized?

■ Line 7: The function call arguments are technically correct since the
variable power was defined as a pointer. However, the way it is written, it
will blow up since there is no storage allocated. This is a violation of
Marick’s allocation question, Is too little (or too much) data being allocated?
Since I would change power to a float in line 5, this argument would have to
be passed in as &power just like the other arguments.

■ Line 8: Same issue with power; it should be passed by value as just power.
Also, the function doCalculations() does not exist. It should be doCalcs().
And, if they are meant to be the same function, the argument count is
incorrect.

■ Line 9: No issue.
■ Line 10: S is not a good name for a variable.
■ Line 11: The local variables have exactly the same name as the formal

parameters passed in. I would like to think that this naming would prevent
the module from compiling; I fear it won’t. It certainly will be confusing. If
we must name the local variables the same as the parameters (considering
the way they are used, it makes a little sense), then we should change the
capitalization to make them explicitly different. I would capitalize the local
variables Base and Power.

■ Line 12: While this is legal, it is a bad naming technique. The variable i,
when used, almost always stands for an integer; here it is a float. At the very
least it is confusing. This should likely match the others and be renamed
Scaler.

■ Line 13: No issue although the prompt message is weak.
■ Line 14: No issue.
■ Line 15: No issue.
■ Line 16: No issue.
■ Line 17: The line feed is backwards: should be \n and not /n.
■ Line 18: We should be loading the value of S with this scanf() function.

There is no need for the local variable i.
■ Line 19: Let me say that I hate pointer notation with a passion. Here, we are

assigning a pointer to the value pointed to by *Base. What we really want to

__AST V3.book Seite 426 Freitag, 1. Juli 2011 1:06 13

 6.7 Code Review Exercise Debrief 427

do is assign the actual value; the statement should read *base = Base
(assuming we made the change in Line 11 to its name).

■ Line 20: Same as Line 19, and I still really hate pointer notation. Also, we are
not returning any value to the third argument of the getInputs() function.
There should be a statement that goes *Scaler = scaler (assuming we change
the name of the variable as suggested in line 12). *P is never declared; it is
also a really poor name for a variable. Finally, the closing curly brace should
not be on this line but moved down to the following line. That is the same
indentation convention that we use for the other curly braces.

■ Line 21: No issue.
■ Line 22: No issue.
■ Line 23: We are doing an explicit equivalence check on a float [if (Scale != 1)].

This is a violation of Marick’s computation question, Are exact equality tests
used on floating point numbers? On some architectures, I would worry
about whether the float representation of 1 is actually going to be equal to
one. The problem is that I really don’t know what this scalar is supposed to
do. It looks like, the way the code is written, Scale is only there to save a
multiplication if it is equal to one. I would want to know if the user can scale
at 5.3 (or any other real number) or if they could use only integers. If they
could input only integers, I would change the data type to int everywhere it
is used. If there is a valid reason to input a real number (i.e., one with a
decimal), then I would lose the if statement and simply do the
multiplication each time. Comments would help me understand the logic
being used. The wrong operator has been used; it should be an assignment
statement (=) rather than a Boolean compare (==).

■ Line 24: Incorrect operator; need a single equal sign.
■ Line 25: The calculation is being lost because we are returning nothing. It

should return the local variable value, total.
■ Line 26: No issue.
■ Line 27: No issue.

While this is not required in the exercise, here’s the way Jamie rewrote the code
to address some of these issues.

__AST V3.book Seite 427 Freitag, 1. Juli 2011 1:06 13

428 6 Reviews

1. #include <stdio.h> // Need for I/O functions
2. #include <math.h>// Need for pow() function
3.
4. // We need to start with valid function prototypes
5. void getInputs(float *, float *, float *);
6. float doCalcs(float, float, float);
7. void ShowIt(float);
8.
9. // This program will prompt the user for 3 inputs. It will
10. // use those to calculate (Base ^^ Power) * Scaler.
11. // It will then print out the calculated value
12. int main(void){
13. float base, power, scaler;
14. getInputs(&base, &power, &scaler);
15. ShowIt(doCalcs(base, power, scaler));
16. }
17.
18. // This function prompts the user for 3 inputs and returns them
19. void getInputs(float *Base, float *Power, float *Scaler){
20. float base, power, scaler;
21. printf("\nInput the radix for calculation => ");
22. scanf("%f", &base);
23. printf("\nInput power => ");
24. scanf("%f", &power);
25. printf ("/nScale value => ")
26. scanf("%f", &scaler);
27. *Base = base;
28. *Power = power;
29. *Scaler = scaler;
30. }
31.
32. // This function performs the calculation
33. float doCalcs(float base, float power, float Scale){
34. float total;
35. if (Scale != 1) {
36. total = pow(base, power) * Scale;
37. }
38. else {
39. total = pow(base, power);
40. }
41. return total;
42. }
43.
44. // This function prints out the returned value
45. void ShowIt(float Val){
46. printf("The scaled power value is %f W.\n", Val);
47. }

__AST V3.book Seite 428 Freitag, 1. Juli 2011 1:06 13

 6.8 Deutsch Checklist Review Exercise 429

Finally, OpenLaszlo’s checklist is concerned with changes, but there are some
good rules there for any code. Let’s go through this one explicitly.

■ Main questions
– Do you understand the code? No! I have no idea what this code is doing.
– Are there test cases for all changes? No! No test cases were defined at all.
– Were the changes formally documented as per guidelines? Unknown;

this might be new code.
– Were any changes made without new feature or bug fix requests?

Unknown.
■ Coding standards

– Do the code changes adhere to the standards and guidelines? Absolutely
not. No comments. No function headers. Poor naming of variables.

– Are any literal constants used (rather than parameterization)? Yes. On
line 23, the literal constant 1 is used.

■ Design
– Do you understand the design? Unknown. No design document avail-

able.
– Does the actual implementation match that design? Unknown.

■ Maintainability
– Are the comments necessary? Accurate? No comments.
– Are variables documented with units of measure, bounds, and legal

values? No.
■ Documentation

– Are command-line arguments and environmental variables docu-
mented? No.

– Is all user-visible functionality in the user documentation? No docu-
mentation.

– Does the implementation match the documentation? No documenta-
tion.

6.8 Deutsch Checklist Review Exercise

As you can see in the diagram at the beginning of the HELLOCARMS system
requirements document, the HELLOCARMS system is distributed. In fact, it’s

__AST V3.book Seite 429 Freitag, 1. Juli 2011 1:06 13

430 6 Reviews

highly distributed because multiple network links must work for the application
to function.

In this exercise, you apply Deutsch’s distributed application design review
checklist to the HELLOCARMS system requirements document.

This exercise consists of three parts:

1. Prepare: Based on Deutsch’s checklist, review the HELLOCARMS system
requirements document, identifying potential design issues.

2. Review meeting: Assuming you are working through this class with others,
work in a small group to perform a walk-through, creating a single list of
problems.

3. Discuss: After the walk-through, discuss your findings with other groups
and the instructor.

The solution to the first part is shown in the next section.

6.9 Deutsch Checklist Review Exercise Debrief

Senior RBCS Associate Jose Mata reviewed an early version of the HELLO-
CARMS system requirements document (which did not include the non-func-
tional sections). Jamie Mitchell reviewed the latest version of the document.
Both used Deutsch’s checklist to guide their reviews.

■ The network is reliable. It will not go down, or will do so only very infre-
quently.

Jose: HELLOCARMS design in figure 6-1 does not include any redundancy
as in failover servers, backup switches, alternate networking paths. Contin-
gencies for how the system will not lose information when communication
is lost are not defined.

Jamie: This version of the requirements still does not address system-wide
reliability. Both fault tolerance (020-020-010) and recoverability (020-030-
010) are seen only from the Telephone Banker’s point of view.

__AST V3.book Seite 430 Freitag, 1. Juli 2011 1:06 13

 6.9 Deutsch Checklist Review Exercise Debrief 431

■ Latency is zero. Information arrives at the receiver at the exact instant it left
the sender.

Jose: Efficiency was not discussed in the draft of the requirements that was
reviewed.

Jamie: Time behavior is fairly well defined for the Telephone Banker front-
end side (040-010-010, 040-010-060, 040-010-070 and 040-010-080). Some
system-wide latency has been addressed (040-010-040 and 040-010-050).
Other systems are not so defined.

■ Bandwidth is infinite. You can send as much information as you want
across the network.

Jose: Efficiency was not discussed in the draft of the requirements that was
reviewed.

Jamie: While the amount of information to be transmitted has not been
defined (nor should it be in the requirements document), resource utiliza-
tion has been addressed for the database server (040-020-010), web server
(040-020-020) and app server (040-020-030). While some definitions are
not complete, we would expect to clarify them based on the static review.

■ The network is secure. No one can hack in, disrupt data flows, steal data,
etc.

Jose: Section 010-040-010 doesn’t include enough detail to lend confidence.

Jamie: In this latest version, the security section has not changed. Overall
security has not been well defined or (seemingly) considered.

■ Topology doesn’t change. Every computer, once on the network, stays on
the network.

Jose: In the earlier version of the requirements document, fault tolerance
and recoverability, in section 020, were marked as TBD. The part regarding
application is covered in section 010-010-060.

Jamie: Fault tolerance and recoverability are defined only at the Telephone
Banker front-end level. Reliability for the rest of the system is currently
under-defined.

__AST V3.book Seite 431 Freitag, 1. Juli 2011 1:06 13

432 6 Reviews

■ There is one administrator. All changes made to the network will be made
by this one person. Problems can be escalated to this one person. This
person is infallible and doesn’t make mistakes.

Jose: Specific types of users, and their permissions, are not defined.

Jamie: Some attempts at defining usability (learnability: 030-020-010 and
-020) have been made, but only at the Telephone Banker front-end level.
Actual administration of the system has yet to be addressed.

■ Transport cost is zero. So you can send as much information as you want
and no one is paying for it.

Jose: There are no size limitations in section 010-010-160, “Support brokers
and other business partners by providing limited partner-specific screens,
logos, interfaces, and branding.” Some graphics can be large, if left unde-
fined.

Jamie: Throughput values have been defined (040-010-110 to 040-010-160).
The actual issue of cost of that throughput has not been defined.

■ The network is homogeneous. It’s all the same hardware. It’s all the same
operating system. It’s all the same security software. The configurations of
the network infrastructure are all the same.

Jose: Supported computer systems, operating systems, browsers, proto-
cols, etc. are not defined. Versions should be specified, though perhaps
this detail should be in a design document rather than a requirements
specification.

Jamie: The new version of the requirements document does not change
this.

6.10 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to rein-
force your knowledge and understanding of the material and to prepare for the
ISTQB Advanced Level Technical Test Analyst exam. The questions in this sec-
tion illustrate what is called a scenario question.

__AST V3.book Seite 432 Freitag, 1. Juli 2011 1:06 13

 6.10 Sample Exam Questions 433

Walk-Through Scenario

Assume you are building an online application that allows for the secure trans-
fer of encrypted financial data between banks, stock and bond trading compa-
nies, insurance companies, and other similar companies. This system will use
public key infrastructure, and users will post their public keys on the system.
The users’ private keys will be used by a thin client-side applet to decrypt the
information on their local systems.

1 During preparation for a design specification walk-through, you notice the
following statement: A 10 Mbps or better network connection using TCP/
IP provides the interface between the database server and the application
server. Suppose the system under test will need to transfer data blocks of up
to 1 gigabyte in size in less than a minute. Which of the following
statements best describes the likely consequences of this situation?

A. The system will suffer from usability problems.

B. The system will suffer from performance problems

C. The system will suffer from maintainability problems.

D. This situation does not indicate any likely problems.

2 During preparation for a code inspection, you notice the following header
in a member function for the object ubcd:

/* PURPOSE: Provides unsigned binary coded decimal integers,

 * via a class of unsigned integers of almost
 * unlimited precision. It can store a little over
 * 4 billion 8 bit bytes, with each byte representing
 * an unsigned pair of decimal digits. One digit is
 * in each nibble (half-byte).

Which of the following statements best describes why a programmer for a
financial application would need to use such a binary coded decimal repre-
sentation for data?

A. This approach ensures fast performance of calculations.

B. This approach indicates a serious design defect.

__AST V3.book Seite 433 Freitag, 1. Juli 2011 1:06 13

434 6 Reviews

C. This approach maximizes memory resource efficiency.

D. This approach preserves accuracy of calculations.

3 During preparation for a peer review of the requirements specification, you
notice the following statement:

The system shall support transactions in all major currencies.
Which of the following statements is true?

A. The statement is ambiguous in terms of supported currencies.

B. The statement indicates potential performance problems.

C. The statement provides clear transaction limits.

D. The statement indicates potential usability problems.

4 During the project, your manager schedules a private interview between
you and a person from an international accounting firm. This person asks
you some questions about the processes used to design, implement, and test
the system. What process is this interview most likely part of?

A. Management review

B. Process inspection

C. Regulatory audit

D. Project walk-through

__AST V3.book Seite 434 Freitag, 1. Juli 2011 1:06 13

435

7 Incident Management

“Tell your testers they're finding too many defects.”

A real quote from a real project manager, shared with us
by Susan Herrick.

The seventh chapter of the Advanced syllabus is concerned with incident
management. As was discussed in the Foundation syllabus, an incident has
occurred anytime the actual results of a test and the expected results of that test
differ. The Advanced syllabus uses the IEEE 1044 standard to focus on incident
lifecycles and the information testers should gather for incident reports. Chap-
ter 7 of the Advanced syllabus has six sections.

1. Introduction
2. When Can a Defect Be Detected?
3. Defect Lifecycle
4. Defect Fields
5. Metrics and Incident Management
6. Communicating Incidents

Let’s look at each section and how it relates to technical test analysis.

7.1 Introduction

Learning objectives

Recall of content only

__AST V3.book Seite 435 Freitag, 1. Juli 2011 1:06 13

436 7 Incident Management

Incident management is an essential skill for all testers. Test managers are
more concerned with the process. There must be a smooth, timely flow from
recognition to investigation to action to disposition. Testers—both technical
test analysts and test analysts—are mostly concerned with accurately record-
ing incidents and then carrying out the proper confirmation testing and
regression testing during the disposition part of the process.

Testers have a somewhat different emphasis depending on their role. Test
analysts compare actual and expected behavior in terms of business and user
needs. Technical test analysts evaluate behavior of the software itself and might
need to apply further technical insight.

7.2 When Can a Defect Be Detected?

We can detect defects through static testing, which can start as soon as we have
a draft requirements specification. We can detect failures, being the symptoms
of defects, through dynamic testing, which can start as soon as we have an exe-
cutable unit.

Testing is a filtering activity, so to achieve the highest possible quality, we
should have static and dynamic test activities pervasive in the software lifecycle.
In addition to filtering out defects, if we have lots of earlier filters like require-
ments reviews, design reviews, code reviews, code analysis, and the like, we will
have early defect detection and removal. That reduces overall costs and reduces
the risk of schedule slips.

When we see a failure, we should not automatically assume that this indi-
cates a defect in the system under test. Defects can exist in tests too.

Learning objectives

Recall of content only

__AST V3.book Seite 436 Freitag, 1. Juli 2011 1:06 13

 7.3 Defect Lifecycle 437

7.3 Defect Lifecycle

In figure 7-1, you see a diagram that shows the IEEE 1044 incident management
lifecycle, including a mapping from IEEE 1044 that shows how typical incident
report states in an incident tracking system would fit into this lifecycle. Let’s
look at this lifecycle.

Learning objectives

(K4) Analyze, classify, and describe functional and non-functional
defects in understandable defect reports.

ISTQB Glossary

defect (or bug or fault or problem): A flaw in a component or system that can
cause the component or system to fail to perform its required function, e.g., an
incorrect statement or data definition. A defect, if encountered during execu-
tion, may cause a failure of the component or system.

error (or mistake): A human action that produces an incorrect result.

failure: Deviation of the component or system from its expected delivery, ser-
vice, or result.

incident (or deviation): Any event occurring that requires investigation.

incident logging: Recording the details of any incident that occurred, e.g.,
during testing.

incident report (or deviation report): A document reporting on any event that
occurred (e.g., during the testing) that requires investigation.

root cause analysis: An analysis technique aimed at identifying the root
causes of defects. By directing corrective measures at root causes, it is hoped
that the likelihood of defect recurrence will be minimized.

root cause: A source of a defect such that if it is removed, the occurrence of the
defect type is decreased or removed.

defect
error
failure
incident
incident logging
incident report
root cause analysis
root cause

__AST V3.book Seite 437 Freitag, 1. Juli 2011 1:06 13

438 7 Incident Management

Figure 7–1 IEEE 1044 incident management lifecycle

We assume that all incidents will follow some sequence of states in their lifecy-
cle, from initial recognition to ultimate disposition. Not all incidents will travel
through the exact same sequence of states, as you can see from figure 7-1. The
IEEE 1044 defect lifecycle consists of four steps:

Step 1: Recognition. Recognition occurs when we observe an anomaly, that
observation being an incident, which is a potential defect. This can
occur in any phase of the software lifecycle.

Step 2: Investigation. After recognition, investigation of the incident occurs.
Investigation can reveal related issues. Investigation can propose solu-
tions. One solution is to conclude that the incident does not arise from
an actual defect; e.g., it might be a problem in the test data.

Step 3: Action. The results of the investigation trigger the action step. We
might decide to resolve the defect. We might want to take action indi-
cated to prevent future similar defects. If the defect is resolved, regres-
sion testing and confirmation testing must occur. Any tests that were
blocked by the defect can now progress.

Step 4: Disposition. With action concluded, the incident moves to the disposi-
tion step. Here we are principally interested in capturing further infor-
mation and moving the incident into a terminal state.

Open Submit Build QA Verified Closed

Archive

New

Defer

Recognition/
Investigation Action Disposition

Invalid

__AST V3.book Seite 438 Freitag, 1. Juli 2011 1:06 13

 7.3 Defect Lifecycle 439

Of course, what’s driving the incidents from one state to another, and thus from
one step in the lifecycle to another, is what we learn about the incident. We need
the states since defects are handed off from one owner to another owner, so we
must capture that learning. Therefore, within each step—and indeed, embedded
in each state—are three information capture activities:

■ Recording
■ Classifying
■ Identifying impact

The way this works is shown in Table 7-1. This process of continually refining
our understanding of the incident through classification and data gathering is
the essence of the IEEE 1044 standard.

Table 7–1 IEEE 1044 classification process

During the recognition step, we will record supporting data. We will classify
based on important attributes that we have observed. We will identify impact
based on perceived impact, which might differ from the final impact assess-
ment.

During the investigation step, we will update and record more supporting
data. We will update and add classification information on importance based on
attributes uncovered during the investigation. We will update the impact based
on investigation too.

During the action step, we will record new supporting data based on the
action taken. We will also add classification data based on the action taken. We
will update the impact based on the action too.

Step Activities

Record… Classify… Identify impact…

1. Recognition Include supporting
data

Based on important
attributes

Based on perceived impact

2. Investigation Update and add
supporting data

Update and add
classification on
important attributes

Update based on
investigation

3. Action Add data based on
action taken

Add data based on the
action taken

Update based on action

4. Disposition Add data based on
disposition

Based on disposition Update based on
disposition

__AST V3.book Seite 439 Freitag, 1. Juli 2011 1:06 13

440 7 Incident Management

Finally, during the disposition step, we will record final data based on disposi-
tion. The classifications will be adjusted and finalized based on the disposition.
The final impact assessment will be captured.

Notice we’ve been talking about data and classifications. The IEEE 1044
standard includes mandatory and optional supporting data and classifications
for each activity in each step. We’ll review these in the next few sections. By the
way, when we say “mandatory supporting data and classifications,” we mean
mandatory for IEEE 1044 standard compliance.

Each of these data items and classifications is associated with a step or activ-
ity. The IEEE has assigned a two-character code in the standard: RR (recogni-
tion), IV (investigation), AC (action), IM (impact identification), and DP
(disposition).

We’ll go through these data items and classifications. As we do so, don’t get
lost in the trees and fail to see the forest. The important thing to think about is
not—usually—“Is my incident management system IEEE 1044 compliant?” but
rather “Might this data or classification be useful to capture?”

The following are the recognition step classifications:

■ Project Activity (RR1nn): What were you doing when the incident was
observed? This is a mandatory field for IEEE 1044 compliance.

■ Project Phase (RR2nn): What phase was the project in (mandatory)? This
will have to be tailored to your lifecycle.

■ Suspected Cause (RR3nn): What do you think might be the cause
(optional)? We’ve found that, in many cases, capturing this data can be
useful for the developers, especially if you have very competent technical
testers.

ISTQB Glossary

anomaly: Any condition that deviates from expectation based on require-
ments specifications, design documents, user documents, standards, etc. or
from someone’s perception or experience. Anomalies may be found during,
but not limited to, reviewing, testing, analysis, compilation, or use of software
products or applicable documentation. See also bug, defect, deviation, error,
fault, failure, incident, problem.

__AST V3.book Seite 440 Freitag, 1. Juli 2011 1:06 13

 7.3 Defect Lifecycle 441

■ Repeatability (RR4nn): Could you make the incident happen more than
once (optional)? We have a problem with IEEE 1044 calling this optional
because we think that reproducibility is an absolute must in terms of an
incident report.

■ Symptom (RR5nn): How did the incident manifest itself (mandatory)?
■ Product Status (RR6nn): What is the usefulness of the product if the

incident isn’t resolved (optional)? We disagree with the optional category
for this one too.

The nn characters at the end of the codes indicate that these are hierarchies.
Subclassifications exist within each one. For example, each of the project activ-
ity choices has a specific code like RR110, RR120, etc. IEEE 1044 defines
choices for these as well, but we’re not going to review down to that level of
detail here.

The following are the recognition step data:

■ What environment were you working in when you saw the incident? You
should capture product hardware, product software, database, test support
software, platform, firmware, and other useful information.

■ What origination details can be captured (including who was the tester)?
You should capture your name, the date the incident was observed, the code
or functional area, the distribution (what is the version of the test object),
and contact information like e-mail address, address, phone number, and
company ID.

■ At what time did you see the incident? This is operating time (i.e., time
since last reboot or total uptime), wall clock time, system time, and CPU
time.

■ What, if any, vendor information applies? This includes company, contact
name, vendor ID, expected resolution, and expected resolution date.

The following are the investigation step classifications:

■ Actual Cause (IV1nn): What really caused the incident (mandatory)?
■ Source (IV2nn): What was the incident’s origin (mandatory)? This question

involves the underlying mistake that was made.
■ Type (IV3nn): What type of defect caused the failure (mandatory)? This is a

question of defect taxonomy.

__AST V3.book Seite 441 Freitag, 1. Juli 2011 1:06 13

442 7 Incident Management

Remember that classifications from previous steps can be updated during this
step.

The following are the investigation step data:

■ What acknowledgement information can you capture? What data was
received, what report number was assigned, who is the investigator, what
are the estimated start and end dates of the investigation, when
(subsequently) did the actual start and end dates of the investigation occur,
how many person-hours were spent, on what date did you receive this
acknowledgment, and what documents were used in the investigation?

■ What verification information can you capture? What was the source of
anomaly (or incident) and how did you verify the data from the recognition
process?

Remember that data from previous steps can be updated during this step.

The following are the action step classifications:

■ Resolution (AC1nn): When and how should the incident be resolved
(mandatory)?

■ Corrective Action (AC2nn): What can be done to prevent such incidents in
the future (optional)?

Remember that classifications from previous steps can be updated during this
step.

The following are the action step data:

■ What resolution identification information can you capture? What test item
is to be fixed, what specific component within the item is to be fixed, how
can you describe (in text) the fix, when is the planned date for action
completion, who is the person assigned, what is the planned date of fix
completion, or, if the fix is deferred, where is your reference or authority for
that?

__AST V3.book Seite 442 Freitag, 1. Juli 2011 1:06 13

 7.3 Defect Lifecycle 443

■ What resolution action information can you capture? What is the date on
which it was completed, which organization is assigned to verify resolution,
and which person is assigned to verify resolution?

Remember that data from previous steps can be updated during this step.

The following are the disposition step classifications and supporting data:

■ Disposition (DP1nn): How was the problem finally resolved (mandatory)?
■ What anomaly (or incident) disposition information should you capture?

What action was implemented, on what date was the report closed, on what
date was document updating complete, when was the customer notified,
and what reference document numbers might exist?

■ What verification information should you capture? What is the name of the
person doing the verification, on what date did the verification occur, what
version and revision levels were verified, what method did you use to verify,
and what is the test case you used to verify?

Remember that classifications and data from previous steps can be updated
during this step.

Now, throughout the lifecycle, impact classifications are made and revised. Let’s
look at some of those impact classifications:

■ Severity (IM1nn): What is the impact on the system (mandatory)?
■ Priority (IM2nn): What is the relative importance of the incident

(optional)? We disagree with this being optional. In fact, we’d say it’s more
important than severity in many cases.

■ Customer Value (IM3nn): How does this incident affect customer(s) or
market value (optional)? Again, this strikes us as essential information.

■ Mission Safety (IM4nn): How does this affect mission objectives or safety
(optional)? This would apply only to certain systems, of course.

ISTQB Glossary

priority: The level of (business) importance assigned to an item, e.g., defect.

severity: The degree of impact that a defect has on the development or oper-
ation of a component or system.

__AST V3.book Seite 443 Freitag, 1. Juli 2011 1:06 13

444 7 Incident Management

■ Project Schedule (IM5nn): How will resolving this incident affect the
project schedule (mandatory)?

■ Project Cost (IM6nn): How will resolving this incident affect the project
cost (mandatory)?

■ Project Risk (IM7nn): What is the project risk associated with fixing this
incident (optional)? This seems like another one that should be required.

■ Project Quality/Reliability (IM8nn): What is the project quality/reliability
impact associated with fixing this incident (optional)? Yet another
important variable.

■ Societal (IM9nn): What are the societal issues associated with fixing this
incident (optional)? This would apply only to certain systems, e.g., nuclear
power plant control software.

The following are the impact data:

■ What is the cost impact of this incident? That includes cost to analyze,
estimated cost if the fix is done, estimated cost if the fix is not done, and
other costs of resolution.

■ What is the time impact of this incident? That includes estimated time
required if the fix is done, estimated verification time if the fix is done,
estimated time if the fix is not done, and actual implementation time if the
fix is done.

■ What is the risk of this incident? This is a text description.
■ What is the schedule impact? This includes assuming the incident is

resolved, assuming it’s not resolved, and if it is resolved, what the actual
schedule impact was.

■ What is the contract change, if any?

Again, remember that these data items can be changed later in the lifecycle if
required.

__AST V3.book Seite 444 Freitag, 1. Juli 2011 1:06 13

 7.4 Defect Fields 445

7.4 Defect Fields

Having looked at the fields defined in IEEE 1044, let’s look at how to apply
IEEE 1044, particularly how to make its lifecycle and fields map to your situa-
tion. As you saw in the previous section, IEEE 1044 specifies a set of mandatory
and optional classifications and data fields. People involved with an incident
report set and update those fields at various points in the incident report’s life-
cycle. Typically, that occurs as part of a state transition, when the report moves
from one state to another. Remember that figure 7-1 showed how IEEE 1044
maps the lifecycle onto a typical incident report state-transition diagram.

The companion standard to IEEE 1044, IEEE 1044.1, is about how to imple-
ment an IEEE 1044–compliant incident management system in your organiza-
tion. The authors of that standard understand that different organizations have
different names for incident classifications and data. So IEEE 1044.1 defines a
process for mapping the IEEE terms for fields and data to the names used at a
particular organization. Your organization can be compliant with the IEEE 1044
standard without having to rename classifications and data and without having
to rework your incident lifecycle.

Why bother with IEEE conformance? Well, it certainly makes sense to use a
consistent incident management process within your company across projects.
Rex did an assessment for a client once where they tried to compare the quality
of the software in a current project with similar software from past projects.
Because the incident management processes were not the same—not just the
tools, which he could have handled, but the meanings of the classifications and
the data gathered—it was not possible to do this comparison. If you have IEEE
conformance throughout your organization, then you can compare not only
from one project to another, but also with other organizations that are also IEEE
compliant.

Learning objectives

(K4) Analyze, classify, and describe functional and non-functional
defects in understandable defect reports.

__AST V3.book Seite 445 Freitag, 1. Juli 2011 1:06 13

446 7 Incident Management

The following is the process for applying the IEEE 1044 standard to your orga-
nization:

Step 1. Map your current classifications to IEEE 1044 classifications. This will
give you an idea of the size of the job.

Step 2. Determine the need to conform to IEEE 1044, based on the size of the
effort required. Keep in mind that conformance need not be an all-or-
nothing proposition. You can decide to achieve conformance in certain
areas, for certain classifications and data elements, but not for others.

Step 3. Review the IEEE 1044 classifications, considering especially those clas-
sifications that are easy to gather, currently useful, or worth analyzing
in the future. You’ll want to have those in your system.

Step 4. Select essential classifications for implementation.
Step 5. Define how to use these classifications. For example, what type of anal-

ysis do you intend to do on incident data, and when? It’s important to
know this because your incident management process must be set up
to collect the data in such a way as to be useful for these analyses and in
such a way as to provide the data in time.

Step 6. Document the categories associated with the classifications. For exam-
ple, which one is a recognition category, which one is an impact cate-
gory, and so forth? The less you have diverged from the IEEE 1044
standard in terms of naming, of course, the easier this will be.

Step 7. Document the classifications and their use.
Step 8. If you care about IEEE compliance, this is the point to document con-

formance or nonconformance with IEEE 1044. What value is this?
Well, probably none if your incident management system is for your
own use. However, if you are a software or testing services company
and you intend to connect your incident management system with
your clients’, then IEEE compliance might provide a common point of
reference.

Step 9. Define the supporting data to collect at each step.
Step 10. Document the supporting data to be collected. (Now, personally, while

the IEEE 1044.1 standard puts steps 9 and 10 down here, we’d actually
do these in parallel with steps 1 and 5.)

__AST V3.book Seite 446 Freitag, 1. Juli 2011 1:06 13

 7.4 Defect Fields 447

Step 11. Map the classifications and data to the states in your current incident,
bug, issue, or defect tracking system. Yes, the correct name, from
IEEE’s point of view, is incident because you don’t know if a behavior is
a bug or defect until after investigation. Really, though, call it whatever
you’d prefer.

Step 12. Determine and document the process for gathering classifications and
data in the incident tracking system. In other words, during what state
is a classification or piece of data initially input? During what states
may it be updated? During what states must it be updated? Who may
or must input? Who may update? Who must update?

Step 13. Plan for use of the information. Again, to us this is backwards in the
order of things. We’d do this in parallel with step 2.

Step 14. Provide training to users and management. Users need to know how to
input and update classifications and data. Managers need to know how
to use the metrics and other information from it.

So, these last couple of sections have given you some ideas on how to expand
your incident management system based on IEEE 1044 compliance. However,
IEEE 1044 compliance is just a means to an end. What are we trying to accom-
plish?

Remember that we capture all of this information in the interest of doing
something with it. What we want to do immediately is to take action to resolve
the incident. Incident reports should capture actionable information. An
actionable incident report has the following properties:

■ It is complete. It is not missing any important details.
■ It is concise. It does not drone on and on about unimportant matters.
■ It is accurate. It does not misdirect or misinform the reader.
■ It is objective. It is based on facts, as much as possible, and it is not an attack

on the developers.

In addition to taking action for the individual incident report, remember that
many test metrics are derived from aggregate analysis of incident reports. This
was discussed in the Foundation syllabus in the chapter about managing testing.
So it’s important for incident reports to capture accurate classification, risk anal-
ysis, and process improvement information.

__AST V3.book Seite 447 Freitag, 1. Juli 2011 1:06 13

448 7 Incident Management

Figure 7-2 shows an example of using classification information to learn
something interesting about a project. This Pareto chart analyzes the number
and percentage of bugs associated with each major subsystem—system, really—
in a large complex project. This project, called the NOP1 project, tied together
10 systems via a wide area network, a local area network, and the phone system
to implement a large distributed entertainment application.

As you can see in figure 7-2, the interactive voice response (or IVR) applica-
tion is responsible for about half of the bugs. The customer service application
(or CSA) adds about 30 percent more. The rest of the applications are relatively
solid. The content management (or CM) application is less than 10 percent of
the bugs. The interactive voice response server’s telephony and OS/hardware
layers each are around 5 percent, with the remaining applications and infra-
structure accounting for the other 4 percent.

Figure 7–2 Classification

1. New operating paradigm

100%900

NOP Bugs
Subsystem Affected Breakdown

764

85%
91%

96%
100% 100% 100% 100% 100% 100% 100% 100%

80%

90%

100%

700

800

900

476

77%

50%

60%

70%

500

600

48%

30%

40%

50%

200

300

400

123 101
68 63

4 3 0 0 0 0 0
0%

10%

20%

0

100

200

Subsystem

__AST V3.book Seite 448 Freitag, 1. Juli 2011 1:06 13

 7.5 Metrics and Incident Management 449

7.5 Metrics and Incident Management

The use of the textual descriptive information in the incident reports is usually
obvious to technical test analysts, but it’s easy to get confused about the use of
the classifications. Rex had one client tell him about spending hundreds of
thousands of dollars on consulting to improve their incident tracking system to
use the latest in classification schemes, orthogonal defect classification. How-
ever, they tried to save money on the project by not training people in how to
use the fields, so all of the classification information was worthless!

Incident classification information needs to be seen from the immediate
point of view of the project and from the long-term point of view of organiza-
tional and process improvement. From the project point of view, incident classi-
fications should support test progress monitoring as discussed in the
Foundation syllabus. Various metrics like bug cluster analysis, defect density
analysis, and convergence (also called open/closed charts) are used during a
project to manage defect trends and check readiness for release.

From the organization and process point of view, we want to assess how
we’re doing and figure out how to do better. So, incident classifications should
support process improvement initiatives. We should be able to assess phase
containment, which is the percentage of defects that are detected and removed
in the same phase they were introduced. We should be able to assess root
causes so we can reduce the total number of defects. And, we should be able to
assess defect trends across projects to see where best—and worst—practices
exist.

Learning objectives

Recall of content only

__AST V3.book Seite 449 Freitag, 1. Juli 2011 1:06 13

450 7 Incident Management

7.6 Communicating Incidents

Bad incident reports are a major cause of friction and poor relationships in
project teams. We see it all the time. To maintain good relations in the team,
keep the following in mind.

It is usually not the tester’s job to apportion blame or affix fault. Avoid any
statements that could be construed as accusations or blaming. Avoid comments
that someone could take personally.

A good incident report should provide objective information. Stick to the
facts. If you are going to make an assumption or state a theory, state your rea-
sons for doing so. If you do decide to make such assumptions or theories, be
sure to remember the first rule about not getting personal.

An incident report is usually an assertion that something is wrong. So,
when you are saying that a problem exists, it helps to be right. Strive for utmost
accuracy.

Finally—and this is more of a mindset but it’s really an important one—
start to see incident reports as a service you provide not just to managers but
also to developers. Ask developers what information you can include in your
reports to help them out. You’d be surprised what a difference this can make.

Some testers get frustrated when “their” bugs don’t get fixed. When we see
that during an assessment, our first thought is that something is broken in the
incident management process. Ideally, a bug triage or incident triage meeting
occurs, involving a cross-functional group of stakeholders, to prioritize inci-
dents. It’s seldom good to rely on just developer or tester opinions about what
should be fixed or deferred. That’s not to say that developers’ and testers’ opin-
ions and input don’t count, but rather that good incident management requires
careful consideration of the options for handling an incident. Few projects have
the luxury of fixing every single incident that comes along.

To sum it all up, good communication and relations within the team, good
defect tracking tools, and good defect triage are all important for a good inci-

Learning objectives

Recall of content only

__AST V3.book Seite 450 Freitag, 1. Juli 2011 1:06 13

 7.7 Incident Management Exercise 451

dent management process. Incident management is a testing fundamental that
all test analysts should master.

7.7 Incident Management Exercise

Assume that a select group of Telephone Bankers will participate in HELLO-
CARMS testing as a beta test. The bankers will enter live applications from cus-
tomers, but they will also capture the information and enter it into the current
system afterward to ensure that no HELLOCARMS defects affect the custom-
ers.

The bankers are not trained testers and are unwilling to spend time to learn
testing fundamentals. So, to avoid having the bankers enter poorly written inci-
dent reports and introduce noise into the incident report metrics, management
has decided that, when a banker finds a problem, he or she will send an e-mail
to a test analyst to enter the report.

ISTQB Glossary

configuration control board (or change control board or bug triage commit-
tee or incident triage committee): A group of people responsible for evaluat-
ing and approving or disapproving proposed changes to configuration items
and for ensuring implementation of approved changes.

configuration item: An aggregation of hardware and software, or both, that is
designated for configuration management and treated as a single entity in the
configuration management process.

configuration management: A discipline applying technical and administra-
tive direction and surveillance to identify and document the functional and
physical characteristics of a configuration item, control changes to those char-
acteristics, record and report change processing and implementation status,
and verify compliance with specified requirements.

configuration control
board
configuration item
configuration manage-
ment

__AST V3.book Seite 451 Freitag, 1. Juli 2011 1:06 13

452 7 Incident Management

You receive the following e-mail from a banker describing a problem:

I was entering a home equity loan application for a customer with good
credit. She owns a high-value house, though the loan amount is not very
large.

At the proper screen, HELLOCARMS popped up the “escalate to Senior
Telephone Banker” message. However, I clicked continue and it allowed me
to proceed, even though no Senior Telephone Bank Authorization Code
had been entered.

From that point forward in this customer’s application, everything behaved
normally.

I had another customer with a similar application—high-value house,
medium-sized loan amount—call in later that day. Again, it would let me
proceed without entering the authorization code.

The exercise consists of two parts:

1. What IEEE 1044 recognition and recognition impact classification
fields and data are available from this e-mail?

2. What steps would you take to clarify this report?

The solutions are shown on the following pages.

7.8 Incident Management Exercise Debrief

Rex did the solution to this exercise, so he’ll describe it here.

First, I evaluated each of the pertinent recognition and recognition impact clas-
sifications and data fields to see if this e-mail or other information I assume I
have is presented. My analysis is shown in table 7-2.

__AST V3.book Seite 452 Freitag, 1. Juli 2011 1:06 13

 7.8 Incident Management Exercise Debrief 453

Table 7–2 Incident report IEEE 1044 coverage

Next, I have annotated the report with some steps I’d take to clarify it before
putting it into the system. The original information is shown in italic, while my
text is shown in regular font.

I was entering a home equity loan application for a customer with good credit.

IEEE Information Available?
Project Activity Presumably, we know this for all such beta tests.

Project Phase Presumably, we know this for all such beta tests.

Suspected Cause Not available.

Repeatability Available, but more isolation and replication of this issue is needed.

Symptom Available.

Product Status Not available, but we can presume that it’s unacceptable for the
product to allow the Telephone Bankers to bypass a risk management
policy like this.

Environment Presumably, we know this for all such beta tests.

Originator Presumably given in the sender information for the e-mail.

Time Not available.

Vendor Some of the vendor information we can presume to know, while the
other information, such as about when they will supply a fix, is not
applicable at this point.

Severity Available.

Priority Not available, but again we can presume this is a high priority.

Customer Value Not available, but inferable.

Mission Safety Not applicable.

Project Schedule Not applicable at this point because investigation is required.

Project Cost Not applicable at this point because investigation is required.

Project Risk Not applicable at this point because investigation is required.

Project Quality/
Reliability

Not applicable at this point because investigation is required.

Societal Not applicable at this point because investigation is required.

Cost Not applicable at this point because investigation is required.

Time Not applicable at this point because investigation is required.

Risk Not available, but again we can make some inferences and describe
the risk associated with letting Telephone Bankers bypass bank risk
management policies.

Schedule Not applicable at this point because investigation is required.

Contract Change Not applicable at this point because investigation is required.

__AST V3.book Seite 453 Freitag, 1. Juli 2011 1:06 13

454 7 Incident Management

I would want to find out her exact data, including income, debts, assets, credit
score, etc.

She owns a high-value house, though the loan amount is not very large.

I would want to find out the exact value of the house and the loan amount.

I would test various combinations of values and loan amounts to see if I could
find a pattern.

At the proper screen, HELLOCARMS popped up the “escalate to Senior Telephone
Banker” message. However, I clicked continue and it allowed me to proceed, even
though no Senior Telephone Bank Authorization Code had been entered.

I would want to find out if the banker entered anything at all into that field.

I would test leaving it empty, input blanks, input valid characters that were not
valid authorization codes, and conduct some other checks to see whether it is
ignoring the field completely.

From that point forward in this customer’s application, everything behaved nor-
mally.

I would test to see whether such applications are transferred to LoDoPS or are
silently discarded. If they are transferred to LoDoPS, does LoDoPS proceed or
does it catch the fact that this step was missed?

I had another customer with a similar application—high-value house, medium-
sized loan amount—call in later that day. Again, it would let me proceed without
entering the authorization code.

Here also I would want to find out the exact details on this applicant, the prop-
erty value, and the loan amount.

7.9 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to rein-
force your knowledge and understanding of the material and to prepare for the
ISTQB Advanced Level Technical Test Analyst exam. The last two questions are
examples of scenario questions.

__AST V3.book Seite 454 Freitag, 1. Juli 2011 1:06 13

 7.9 Sample Exam Questions 455

1. Which of the following is a section included in an IEEE 829–compliant
incident report?

A. Test items

B. Procedure steps

C. Location

D. Steps to reproduce

2. Which of the following shows the steps of IEEE 1044–compliant incident
management in proper order?

A. Recognition, investigation, action, disposition

B. Recognition, action, investigation, disposition

C. Investigation, recognition, action, disposition

D. Recognition, investigation, removal, disposition

3. Which of the following is a classification that you would make for the first
time during the investigation step of an IEEE 1044–compliant incident
management process?

A. Suspected cause

B. Source

C. Resolution

D. Disposition

Scenario

Assume you are a test analyst working on a banking project to upgrade an exist-
ing automated teller machine system to allow customers to obtain cash
advances from supported credit cards. The requirements specification contains
the following paragraph:

The system shall allow cash advances from 20 dollars to 500 dollars, inclu-
sively, for all supported credit cards. The correct list of supported credit
cards is American Express, Visa, Japan Credit Bank, Eurocard, and Master-
Card.

__AST V3.book Seite 455 Freitag, 1. Juli 2011 1:06 13

456 7 Incident Management

You are reviewing an incident report written by one of your peers. The steps to
reproduce section of the report contains the following statement:

1. Inserted an American Express card into the ATM.
2. Properly authenticated a test account with $1,000 available cash

advance balance.
3. Attempted to withdraw $20 from the account.
4. Error message “Amount requested exceeds available funds” appeared.
5. Reproduced this failure with two other accounts that also had sufficient

available credit to cover a $20 withdrawal.
6. Verified that the ATM itself had sufficient cash to service the

request.
7. Problem did not occur with Visa, Japan Credit Bank, Eurocard, or

MasterCard.

4. Assume the defect report is currently in a new state, indicating it needs a
review. Relying on the information given in this scenario and assuming that
your organization follows an IEEE 1044–compliant lifecycle, which of the
following statements best describes what should happen next to this report?

A. Move it to an invalid state because it does not describe a valid defect.

B. Move it to a defer state because it does not describe an important
defect.

C. Move it to an open state for prioritization by project stakeholders.

D. Move it to a build state so that the tester will check the fix.

5. Assume the defect report is currently in a new state, indicating it needs a
review. Also assume that your organization follows an IEEE 1044–compli-
ant incident-classification scheme. Rely on the information given in this
scenario. Which of the following IEEE 1044 classification fields cannot yet
be classified?

A. Suspected Cause

B. Actual Cause

C. Repeatability

D. Symptom

__AST V3.book Seite 456 Freitag, 1. Juli 2011 1:06 13

457

8 Standards and Test Process
Improvement

“Create constancy of purpose toward improvement of product and
service, with the aim to become competitive and to stay in business,
and to provide jobs.”

W. Edwards Deming, in point 1 of his famous 14 points for
management.

The eighth chapter of the Advanced syllabus is concerned with standards and
test process improvement. The concepts in this chapter apply primarily for test
managers. There are no learning objectives at any level defined for test manag-
ers in this chapter. However, as a test analyst or technical test analyst working on
a test team that might be subject to standards or test process improvement
efforts, it’s good to be familiar with the main concepts and terms of their work.
In addition, if you’re studying for the ISTQB Advanced Level Technical Test
Analyst exam, remember that certain concepts related to standards are covered
in the Foundation syllabus and thus are examinable. So you should read chapter
8 of the Advanced syllabus for familiarity and recall only. You should also
review the standards discussed in the Foundation syllabus, ensuring that you
have mastered the learning objectives related to them.

__AST V3.book Seite 457 Freitag, 1. Juli 2011 1:06 13

458 8 Standards and Test Process Improvement

ISTQB Glossary

Capability Maturity Model (CMM): A five-level staged framework that
describes the key elements of an effective software process. The Capability
Maturity Model covers best practices for planning, engineering, and managing
software development and maintenance. See also Capability Maturity Model
Integration (CMMI).

Capability Maturity Model Integration (CMMI): A framework that describes
the key elements of an effective product development and maintenance pro-
cess. The Capability Maturity Model Integration covers best practices for plan-
ning, engineering, and managing product development and maintenance.
CMMI is the designated successor of the CMM. See also Capability Maturity
Model (CMM).

Critical Testing Processes (CTP): A content-based model for test process
improvement built around 12 critical processes. These include highly visible
processes, by which peers and management judge competence, and mission-
critical processes, in which performance affects the company's profits and rep-
utation.

Test Maturity Model (TMM): A five-level staged framework for test process
improvement, related to the Capability Maturity Model (CMM), that describes
the key elements of an effective test process.

Test Maturity Model Integration (TMMi): A five-level staged framework for
test process improvement, related to the Capability Maturity Model Integra-
tion (CMMI), that describes the key elements of an effective test process.

Test Process Improvement (TPI): A continuous framework for test process
improvement that describes the key elements of an effective test process,
especially targeted at system testing and acceptance testing.

__AST V3.book Seite 458 Freitag, 1. Juli 2011 1:06 13

459

9 Test Techniques

"A worker may be the hammer's master, but the hammer still prevails.
A tool knows exactly how it is meant to be handled, while the user of the
tool can only have an approximate idea."

Milan Kundera

The ninth chapter of the Advanced syllabus is concerned with test tools, auto-
mation, and performance testing. While the Foundation syllabus covers this
topic as well, the Advanced syllabus goes beyond the Foundation material to
provide a solid conceptual background for using and administering tools. In
addition, the Advanced syllabus elaborates on the categorization of tools intro-
duced in the Foundation syllabus. Chapter 9 of the Advanced syllabus has three
sections.

1. Introduction
2. Test Tool Concepts
3. Test Tool Categories

Let’s look at each section and how it relates to technical test analysis.

9.1 Introduction

In this chapter, we’ll expand on some basic tool ideas described in the Founda-
tion syllabus. We first address general tool concepts and then specific tools.
Then we will spend some time discussing both automation and performance
testing.

Learning objectives

Recall of content only

__AST V3.book Seite 459 Freitag, 1. Juli 2011 1:06 13

460 9 Test Techniques

All testers need a basic grasp of the test tools available and what they can—
and can’t—do. Too often, organizations and individuals bring unrealistic expec-
tations to the use of test tools, commonly the expectation that the choice of the
right (often expensive) tool will solve most of their testing problems. Many of
the tools-related failures that we have seen can be laid on the altar of unrealistic
and uninformed expectations.

The Advanced syllabus groups the tools according to role; i.e., those for test
managers, those for test analysts, and those for technical test analysts. Of
course, some tools have broader use, across multiple roles.

9.2 Test Tool Concepts

Test tools can be very useful, and, indeed, some are essential. For example, it’s
hard to imagine a test project that involves more than two or three people get-
ting along without some kind of incident tracking system. Generally, test tools
can improve efficiency and accuracy of testing. However, you must select and
implement tools carefully to receive the benefits.

While we often think of test automation in terms of test execution, we can
automate other parts of the test process as well. You would be correct in think-
ing that most of the test automation that happens involves attempts to automate
tasks that are tedious or difficult to do manually. These tasks include test and
requirements management, defect tracking and workflow, configuration man-
agement, and certainly test execution tasks such as regression and performance
testing.

Getting the full benefit from test tools involves not only careful selection
and implementation, but also careful ongoing management. You should plan to
use configuration management for all test tool artifacts, including test scripts,
test data, and any other outputs of the tool, and remember to link the version

Learning objectives

(K2) Compare the elements and aspects within each of the test tool
concepts: benefits and risks, test tool strategies, tool integration,
automation languages, test oracles, tool deployment, open-source
tools, tool development, and tool classification.

__AST V3.book Seite 460 Freitag, 1. Juli 2011 1:06 13

 9.2 Test Tool Concepts 461

numbers of tests and test tools with the version numbers of the items tested with
them.

When automating test execution, you should plan to create a proper frame-
work1 for your automation system. Too often as consultants and practitioners
we’ve seen test teams saddle themselves with constraints due to poor design
decisions made at the outset of automation. There is only one way to start an
automation program: thinking long term. The decisions that you make at the
beginning will be with you for years, unless, like many organizations, you paint
yourselves into a corner and have to start fresh down the road.

A good framework supports another important aspect of good test execu-
tion automation, which is creating and maintaining libraries of tests. With con-
sistent decisions in place about size of test cases, naming conventions for test
cases and test data, interactions with the test environment, and such, you can
now create a set of reusable test building blocks with your tools. You’ll need
libraries in which to store those.

Automated tests are programs for testing other programs. So, as with any
program, the level of complexity and the time required to learn it often means
that you’ll want to have some documentation in place about how it works, why
it is like it is, and so forth. Eventually, the original architects will be gone; any
knowledge not documented will be long gone too. Documentation doesn’t have
to be fancy, but any automated test system of any complexity needs it.

Finally, remember to plan for expansion and maintenance. Failure to think
ahead, particularly in terms of how the tests can be maintained, will reduce the
scalability of the automated system; that will reduce the possibility of getting a
positive return on your investment.

9.2.1 The Business Case for Automation

We will examine many of these issues in more depth, starting with the business
case for automated testing. Remember, test automation should occur only when

1. We will use two related terms in this book, architecture and framework. These two terms are
often used interchangeably, but we will not. An architecture is a conceptual way of building an
automated system. Architectures we will discuss include record/replay, simple framework, data-
driven, and keyword-driven architectures. A framework is a specific set of techniques, modules,
tools, etc. that are molded together to create a solution using a particular architecture. We will dis-
cuss these differences in detail later in the chapter.

__AST V3.book Seite 461 Freitag, 1. Juli 2011 1:06 13

462 9 Test Techniques

there is a strong business case for it, usually one that involves shrinking the test
execution period, reducing the overall test effort, and/or covering additional
quality risks.

When we talk about automation benefits, notice that we are referring to
benefits involving duration, effort, or coverage we wouldn’t have with manual
testing. The return on investment has to be considered in terms of comparison
to other alternatives. In addition, those alternatives must be alternatives that
actually would be pursued. In other words, if we automate a large number of
tests, but those are tests that we would not bother to run manually, we should
not claim a return on investment in terms of time savings compared to manual
execution of those tests. As Rex often says, just because something’s on sale
doesn’t mean that it’s a bargain if you don’t need it.

In any business case, we have to consider costs, risks, and benefits. Let’s
start with the costs. We can think of costs in terms of initial costs and recurring
costs. Let’s look first at some examples of initial costs:

■ Evaluating and selecting the right tool. Many companies try to shortcut this
and pay the price later, so don’t succumb to the temptation.

■ Purchasing the tool, or adapting an open-source tool, or developing your
own tool.

■ Learning the tool and how to use it properly. This includes all costs of intra-
organizational knowledge transfer and knowledge building, including
designing and documenting the test automation architecture.

■ Integrating the tool with your existing test process, other test tools, and
your team. Your test processes will have to change. If they don’t change,
then what benefit are you getting from the tool?

Here are some examples of recurring costs:

■ Maintaining the tool(s) and the test scripts. This issue of test script
durability—how long a script lasts before it has to be updated—is huge.
Make sure you design your test system architecture to minimize this cost, or
to put it the other way, to maximize test durability.

■ Ongoing license fees.
■ Support fees for the tool.
■ Ongoing training costs; e.g., for new staff that come on-board or tool

upgrades.

__AST V3.book Seite 462 Freitag, 1. Juli 2011 1:06 13

 9.2 Test Tool Concepts 463

■ Porting the tests to new platforms.
■ Extending the coverage to new features and applications.
■ Dealing with issues that arise in terms of tool availability, constraints, and

dependencies.
■ Instituting continuous quality improvement for your test scripts.

It’s a natural temptation to skip thinking about planned quality improvement of
the automation system. However, with a disparate team of people doing test
automation, not thinking about it means that the tool usage and scripts will
evolve in incompatible ways and your reuse opportunities will plummet. Trust
us on this; we saw a client waste well over $250,000 and miss a project deadline
because they had two automation people creating what was substantially the
same tool using incompatible approaches.

In the Foundation syllabus, you’ll remember that there was a recommenda-
tion to use pilot projects to introduce automation. That’s a great idea. However,
keep in mind that pilot projects based on business case will often miss impor-
tant recurring costs, especially maintenance.

We can also think of costs in terms of fixed costs and variable costs. Fixed
costs are those that we incur no matter how many test cases we want to auto-
mate. Tool purchase, training, and licenses are primarily fixed costs. Variable
costs are those that vary depending on the number of tests we have. Test script
development, test data development, and the like are primarily variable costs.

Due to the very high fixed costs of automation, we will usually have to
worry about the scalability of the testing strategy. That is, we usually need to do
a lot of testing to amortize the fixed costs and try to get a positive return on our
investment. The scalability of the system will determine how much investment
of time and resources are needed to add and maintain more tests.

When determining the business case, we must also consider risks. In the
Foundation syllabus, we discussed these risks:

■ Dealing with the unrealistic expectations of automation in general.
Management often believes that spending money on automation guarantees
success: the silver bullet theory.

■ Underestimating the time and resources needed to succeed with
automation. Included in this underestimation are initial costs, time, and

__AST V3.book Seite 463 Freitag, 1. Juli 2011 1:06 13

464 9 Test Techniques

effort needed to get started, and ongoing costs of maintenance of the assets
created by the effort.

■ Overestimation of what automation can do in general. This often manifests
itself in management’s desire to lay off manual testers, believing that the
automation effectively replaces the need for manual testing.

■ Overreliance on the output of a single tool; misunderstanding all of the
components needed that go into a successful automation project.

■ Forgetting that automation consists of a series of processes—the same
processes that go into any successful software project.

■ Various vendor issues, including poor support, vendor organizational
health, open-source tools becoming orphans, and the inability to adapt to
new platforms.

In this advanced book, we must also consider these risks:

■ Your existing manual testing could be incomplete or incorrect. If you use
that as a basis for your automated tests, guess what, you’re just doing the
wrong thing faster! You need to double-check manual test cases, data, and
scripts before automating because it will be more expensive to fix them
later. Automation is not a cure for bad testing, no matter how much
management often wants to think so.

■ You produce brittle, hard-to-maintain test scripts, test frameworks, and test
data that frequently needs updates when the software under test changes.
This is the classic test automation bugaboo. Careful design of maintainable,
robust, modular test automation architectures, design for test script and
data reuse, and other techniques can reduce the likelihood of this
happening. If it does happen, it’s a test automation project killer,
guaranteed, because the test maintenance work will soon consume all
resources available for test automation, bringing progress in automation
coverage to a standstill. We will discuss this to some depth in an upcoming
section.

■ You see an overall drop in defect detection effectiveness because everyone is
fixated with running the scripted, invariable, no-human-in-the-loop
automated tests. Automated tests are great at building confidence,
managing regression risks, and repeating tests the same way, every time.
However, the natural exploration that occurs when people run test cases

__AST V3.book Seite 464 Freitag, 1. Juli 2011 1:06 13

 9.2 Test Tool Concepts 465

manually doesn’t happen with scripts. You need to ensure that an adequate
mix of human testing is included. Most bugs will still be found via manual
testing because regression test bugs, reliability bugs, and performance
bugs—which are the main types of bugs found with automated tests—
account for a relatively small percentage of the bugs found in software
systems.

Now, as you can see, all of these risks can—and should—be managed. There is
no reason not to use test automation where it makes sense.

Of course, the reason we incur the costs and accept the risks is to receive
benefits. What are the benefits of test automation?

First, it must be emphasized that smart test teams invest—and invest
heavily—in developing automated test cases, test data, test frameworks, and
other automation support items with an aim of reaping the rewards on repeat-
able, low-maintenance automated test execution over months and years. When
we say “invest heavily,” what we mean is that smart test teams do not take short-
cuts during initial test automation development and rollout because they know
that will reduce the benefits down the road.

Smart test teams are also judicious about which test cases they automate,
picking each test case based on the benefit they expect to receive from automat-
ing it. Brain-dead approaches like trying to automate every existing manual test
case usually end in well-deserved—and expensive—failures.

Once they are in place, we can expect well-designed, carefully chosen auto-
mated tests to run efficiently and with little effort. Because the cost and dura-
tion are low, we can run them at will, pushing up overall coverage and thus
confidence upon release.

Given the size of the initial investment, you have to remember that the ben-
efits will take many months if not years to equal the initial costs. Understand, in
most cases, there is no shortcut. If you try to reduce the initial costs of develop-
ment, you will create a situation where the benefits of automated test execution
are zero or less than zero; you can do the math yourself on how long it takes to
reach the break-even point in that situation.

So above and beyond the benefits of saved time, reduced effort, and better
coverage (and thus lower risk), what else do we get from test automation done
well?

__AST V3.book Seite 465 Freitag, 1. Juli 2011 1:06 13

466 9 Test Techniques

For one thing, we have better predictability of test execution time. If we can
start the automated test set, leave for the night, come back in the morning, and
find that the tests have all run, that’s a very nice feeling, and management loves
that kind of thing.

For another thing, notice that the ability to quickly run regression and con-
firmation tests creates a byproduct benefit. Since we can manage the risk associ-
ated with changes to the product better and faster, we can allow changes later in
a project than we otherwise might. Now, that’s a dual-edged sword, for sure,
because it can lead to recklessness, but used carefully, it’s a nice capability to
have for emergencies.

Since test automation is seen as more challenging and more esteemed than
manual testing, many testers and test teams find the chance to work on auto-
mated testing rewarding.

Because of the late and frequent change inherent in certain lifecycle models,
especially in agile and iterative lifecycles, the ability to manage regression risk
without ever-increasing effort can be a bonus when using automation.

Finally, there are certain test types that cannot be covered manually in any
meaningful way where automation is a must. These include performance and
reliability testing. With the right automation in place, we can reduce risk by test-
ing these.

9.2.2 General Test Automation Strategies

In a later section, we will discuss different automation architectures. In this sec-
tion, we want to talk about some general strategies for succeeding with test exe-
cution automation. A person who just knows how to physically operate an
automation test tool is not an automator any more than a person who knows a
word processing program is an administrative assistant. In our careers, we have
met many people who claim to be automators, especially on their resumes when
they are applying for jobs. However, when pressed on how to solve particularly
common automation problems, they haven’t a clue. Let us be clear: The automa-
tion tool is not an automation solution; it is only the starting point.

In Jamie’s career, he has used almost every popular vendor automation
tool—and a great many of the open-source tools as well. He can fairly claim to
have succeeded with almost every automation tool at one time or another but
must also admit to having failed with just about every tool at least once also.

__AST V3.book Seite 466 Freitag, 1. Juli 2011 1:06 13

 9.2 Test Tool Concepts 467

The most common question he is asked when teaching a class or speaking
to a group of people is, Which tool do you recommend? We think most people
are actually questioning, Which tool can we bring in that will guarantee our
automation success? The answer is always the same. There are no “right” tools
for every situation!

Consider asking a race car driver, Which is the right spark plug to use to
win a race? A good answer might be that there are a number of good spark plugs
that can be used, but none of them will guarantee a win. The fact that the car has
spark plugs is certainly essential, but the brand is probably not. And so it is with
automation tools.

Purely on-the-fly, pragmatic automation using any tool can work for a short
time; as problems crop up, the automator can fix them—for a short time. Even-
tually, such an automation program will fall over from its own weight. This fail-
ure is a certainty. The more test cases, the more problems, the more time will be
needed to solve those problems. There are so many problems inherent with
automation, a fully drawn-out, strategic plan forward is the only chance an
organization has to succeed. As an automator who has been doing automation
for over 20 years, Jamie has never— never—seen an automation program suc-
ceed in the long term without a fully thought-out strategy. As someone involved
in testing and test management for almost 30 years, Rex concurs and can add
that explaining this fact to management is often very difficult indeed.

So, here are some of the ingredients needed for a successful test automation
strategy. First and foremost, automate for the long term. Short-term thinking
(i.e., we need to get the current project fully automated by next month) will
always fail to earn long-term value.

Build a maintainable automated test framework. Think of this as the life
support system for the tests. We will discuss how to do this in an upcoming sec-
tion. Remember that the most important test you will ever run in automation is
the next one. That is, no matter what happens to the current test—pass, fail, or
warning—it means little if the framework, without direct human intervention,
cannot get the next test to run. And the next test after that. The framework sup-
ports the unattended execution ability of the suite.

Unless there is an overwhelming reason to do otherwise, only automate
those tests that are automatable; i.e., they can run substantially unattended and
human judgment is not required during test execution to interpret the results.

__AST V3.book Seite 467 Freitag, 1. Juli 2011 1:06 13

468 9 Test Techniques

Having said that, we have found sometimes that there were good business rea-
sons to build manual/automated hybrids where, at certain points in the execu-
tion, a tester intervenes manually to advance the test.

Automate those tests and tasks that would be error prone if done by a per-
son. This includes not only regression testing, which is certainly a high-value
target for automation, but also creating and loading test data.

Only automate those test suites—and even test cases within test suites—
where there’s a business case. That means you have to have some idea of how
many times you’ll repeat the test case between now and the retirement of the
application under test.

Even though most automated tests involve deliberate, careful, significant
effort, be ready to take advantage of easy automation wins where you find them.
Pick the low-hanging fruit. If you find that you can use a freeware scripting lan-
guage to exercise your application in a loop in a way that’s likely to reveal reli-
ability problems, do it. For a good example, see the case study that Rex and a
client wrote about constructing an automated monkey test from freeware com-
ponents in a matter of a few weeks.2

That said, be careful with your test tool portfolio, both freeware and com-
mercial. It’s easy to have that get out of control, especially if everyone downloads
their own favorite freeware test tool. Have a careful process for evaluating and
selecting test tools, and don’t deviate from that process unless there is a good
business reason to do so.

Finally, to enable the reuse and consistency of your automated testing, make
sure to provide guidelines for how to get tools, how to select tests to automate,
how to write maintainable scripts, and other similar tasks. This should entail a
well-thought-out, well-engineered, and well-understood process.

Test tools can and should be made to work together to solve complex test
automation tasks. In many organizations, multiple test and development tools
are used. We could have a static analysis and unit test tool, a test results report-
ing tool, a test data tool, a configuration management tool, an incident manage-
ment tool, and a graphical user interface test execution tool. In such a case, it
would be nice to integrate all the test results into our test management tool and
add traceability from our tests to the requirements or risks they cover. In such

2. See “Quality Goes Bananas” on the RBCS articles page, www.rbcs-us.com.

__AST V3.book Seite 468 Freitag, 1. Juli 2011 1:06 13

http://www.rbcs-us.com

 9.2 Test Tool Concepts 469

situations, try to integrate various test tools and get them to exchange informa-
tion.

Just because you bought a single vendor’s test tool suite don’t necessarily
mean that it will integrate with your other tools. You should consider not buy-
ing ones that don’t.

If you can’t get a fully integrated set of tools, you might have to integrate
them yourselves. The extent of effort you put into doing this should be balanced
against the costs and risks associated with moving the information around
manually.

Lately, there have been many advances in integrated development environ-
ments. We testers can hope that this presages similar integration for test tools in
the future.

Most test automation tools—at least those for execution—are essentially
programming languages with various bells and whistles attached. Typically, we
are going to create our testing framework in these languages and then use data
or keywords in flat files, XML files, or databases to drive the tests. This supports
maintainability. We will discuss this further when we talk about architectures
later in this chapter.

Every tester has run up against the impossibility of testing every possible
combination of inputs. This combinatorial explosion cannot be solved via auto-
mation, but we are likely to be able to run more combinations with automation
than manually.

Some tools also provide the ability to go directly to an application’s API. For
example, some test tools can talk directly to the web server at the HTTP and
HTTPS interfaces rather than pushing test input through the browser. Tests
written to the API level tend to be much more stable than those written to the
GUI level.

Scripting languages and their capabilities vary widely. Some scripting lan-
guages are like general-purpose programming languages. Others are domain
specific, like TTCN-3. Some are not domain specific but have features that have
made them popular in certain domains, like TCL in the telephony and embed-
ded systems worlds. Many modern tools support widely understood program-
ming languages (for example, Java, Ruby, and VBA) rather than the custom,
special-purpose languages of the early tools (for example, TSL, SQA Basic, and
4Test).

__AST V3.book Seite 469 Freitag, 1. Juli 2011 1:06 13

470 9 Test Techniques

Not all tools cost money—at least to buy. Some you download off the Inter-
net and some you build yourself.

In terms of open-source test tools, there are lots of them. As with commer-
cial software, the quality varies considerably. We’ve used some very solid open-
source test tools, and we’ve also run into tools that would have to be improved
to call them garbage.

Even if an open-source tool costs nothing to buy, it will cost time and effort
to learn, use, and maintain. So evaluate open-source tools just as you would
commercial tools—rigorously and against your systems, not by running a
canned demo. Remember, the canned demo will almost always work, and run-
ning them establishes nothing more than basic platform compatibility.

In addition to quality considerations, with open-source tools that have cer-
tain types of licenses, such as the Creative Commons and GNU General Public
License, you might be forced to share enhancements you create. Your company’s
management, and perhaps the legal department, will want to know about that if
it’s going to happen.

If you can’t find an open-source or commercial tool, or if you test on a non-
standard platform, you can always build your own tool. Plenty of people do that.
You might consider it if the core competencies of your organization include tool
building and customized programming. However, it tends to be a very expen-
sive way to go. Also, since one or two people often develop tools as a side activ-
ity, there’s a high risk that when the tool developer leaves, the tool will become
an orphan. Make sure all custom tools are fully documented.

Be aware that when testing safety-critical systems, there can be regulatory
requirements about the certification of the tools used to test them. This could
preclude the use of custom and open-source tools for testing such systems,
unless you are ready to perform the certification yourself.

Finally a few words about the deployment of test tools. Before deploying
any tool, try to consider all of its capabilities. Often while doing a tool search for
a particular capability, we have found that the organization already had a tool
that incorporated that capability, but no one knew. Historically, automation
tools have a very high “shelf-ware index.” Many is the time that we have found
multiple automation tool sets with valid licenses sitting in the back of the lab
closet. Closely related to that is try to understand the possible extensibility of

__AST V3.book Seite 470 Freitag, 1. Juli 2011 1:06 13

 9.2 Test Tool Concepts 471

the tool. In other words, the tool currently does not have the sought-after capa-
bility, but with a little programming, configuration, and/or extension, it could.

Various tools might require different levels of expertise to use. For example,
a person without strong technical skills, including programming, is not likely to
be successful using a performance tool. Likewise, without programming skills,
the possibility that a person can be a successful automator is negligible. A test
management tool should be managed by someone with strong organizational
skills. A requirements management tool will tend to work much better when
managed by a person with an analyst background. Make sure you match the
tool to the person and the person to the tool.

Certain tools create software (automation and performance tools come
immediately to mind). When a tool creates software, the output needs to be
managed the way other software is managed. That includes configuration man-
agement, reviews and inspections, and testing! It always amazes us how often
testers want the programmers to completely manage the software that comes
out of the development team while totally ignoring all good software practices
for the software that comes out of the test team.

And one final note. We mentioned earlier about auditing the capabilities of
the tools you are using. Audit the automation itself. What tests do you already
have and what do they test? As consultants, we have often been called in to audit
an automation department to find out why they do not seem to be adding value
to the test team. We have often found that they have hundreds and hundreds of
scripted tests that are not doing good testing. Some of scripts are poor because
they directly automated manual tests without considering whether the tests
were actually automatable (not every test is). We have found automated (so-
called) tests that had no way of matching expected with actual results. The
assumption was made that if the test did not blow up, it must have passed.

Earning value with automation is rarely easy and never accidental. Before
deploying a tool, it is essential to understand that.

9.2.3 An Integrated Test System Example

Figure 9-1 is an example of an integrated test system using automation built for
an insurance company. The system under test—or, more properly, the system of
systems under test—is shown in the middle.

__AST V3.book Seite 471 Freitag, 1. Juli 2011 1:06 13

472 9 Test Techniques

Figure 9–1 Integrated test system example

On the front end are three main interface types: browsers, legacy UNIX-based
green screen applications, and a newer Windows based consolidated view. The
front-end applications communicate through the insurance company’s network
infrastructure, and through the Internet, to the iSeries server at the back end.
The iSeries, as you might imagine for a well-established regional insurance
company, manages a very large repository of customers, policies, claim history,
accounts payable and receivable, and the like.

On the right side of the figure, you see the main elements of the test auto-
mation system. For each of the three interface types, we need a driver that will
allow us to submit inputs and observe responses. The terminal driver is shown
in a dotted line because there was some question initially about whether that
would be needed. The controller/logger piece uses the drivers to make tests run,
based on a repository of scripts, and it logs results of the tests. The test data and
scripts are created using tools as well, and the test log analysis is performed with
a tool.

Notice that all of these elements on the right side of the figure could be
present in a single, integrated tool. However, this is a test system design figure,
so we leave out the question of implementation details now. It is a good practice
to design what you need first, then find tools that can support it rather than let

i Series

Data

Internet

Agent

Policyholder

Green Screen

Cons. View

Router

Pipe

Data
Probe

System Under Test (not all hard ware or data shown)

Test System (software components = boxes, data flows = grey lines)

Browser
Driver

Term.
Driver

Scripting
Tools

C
ontroller/Logger

S
cripts,

D
ata,Logs

Data
Tools

Analysis
Tools

Win.
Driver

__AST V3.book Seite 472 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 473

the tools dictate how you design your tests. Trust us on this one; we both have
the scars to prove it! If you let the tools drive the testing, you can end up not
testing important things.

This brings us to the left side and bottom of the figure. In many complex
applications, the action on the screens is just a small piece of what goes on.
What really matters is data transformations, data storage, data deletion, and
other data operations. So, to know whether a test passed or failed, we need to
check the data. The data probe allows us to do this.

The pipe is a construct for passing requests to the data probe from the con-
troller, and for the data probe to return the results. For example, if starting a
particular transaction should add 100 records to a table, then the controller uses
one of the applications to start the transaction—through a Windows interface
via the Windows driver, say—and then has the data probe watch for 100 records
being added. See, it could be that the screen messages report success, but only
90 records are added. We need a way to catch those kinds of bugs, and this
design does that for us.

In all likelihood, the tool or tools used to implement the right-hand side of
this figure would be one or two commercial or freeware tools, integrated
together. The data probe and pipe would probably be custom developed.

9.3 Test Tool Categories

Throughout this book, we’ve been looking at taxonomies of various kinds. In
this section, we’ll go through tools, organized by taxonomies. Let’s begin by
looking at various ways we could classify tools.

Learning objectives
(K2) Summarize the test tool categories by objectives, intended
use, strengths, risks, and examples.

(K2) Map the tools of the tool categories to different levels and
types of testing.

__AST V3.book Seite 473 Freitag, 1. Juli 2011 1:06 13

474 9 Test Techniques

In the Foundation syllabus, we grouped tools by the test activity they supported.
We can also classify tools other ways:

■ By the level of testing they support; e.g., unit test tools, integration test
tools, system test tools. This strikes us as quite weak, given the potential for
reuse.

■ By the types of defects we are looking for with them.
■ By the type of test techniques they support; e.g., orthogonal arrays and

classification tree tools are useful when pairwise testing is needed.
■ By the purpose of tool.
■ By the application domain they are used to test, which is most useful for

domain-specific rather than general-purpose test tools.
■ Based on how they are applied.
■ Based on the user who is expected to use the tool.

This last method is how we’ll classify tools in the following sections. In the dis-
cussion about tools and their classifications, keep in mind that we are augment-
ing the tools categories already introduced in the Foundation syllabus, along
with introducing new tools categories. You’ll need to refer to the Foundation
syllabus as well as the Advanced syllabus for general information concerning
the other tools categories not included in this section.

9.3.1 Test Management Tools

Test management tools are used to help manage the artifacts and processes of
testing. Since testing generates information, there’s a lot of information to man-
age. Good test management tools facilitate the storage and dissemination of
information.

Some test management tools have built-in requirements modules, others
allow programmatic/API connection to full requirements management tools.
Since most test management tools also include the ability to act as a central

ISTQB Glossary

test management tool: A tool that provides support to the test management
and control part of a test process. It often has several capabilities, such as
testware management, scheduling of tests, logging of results, progress track-
ing, incident management, and test reporting.

__AST V3.book Seite 474 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 475

repository to store analysis, design, and implementation artifacts and link them
all together, these tools can facilitate full traceability between the test basis and
the artifacts we create to test it.

Some tools allow the test team to organize conditions for testing in different
environments. Together with the storage of test environment data for different
environments and the instructions for building and initializing different envi-
ronments, these tools can help us manage very complex testing environments.

Most test management tools allow the tracking of concurrent test execution,
including when tests are running in different test environments at multiple sites.
Some tools automatically collect results from automated tests and supply a sim-
plified interface for manual testers to record their results.

Some of these tools contain modules for tracking incident/defect records.
Some have built-in defect workflow management; others simply interface to
stand-alone defect tracking tools.

By storing all of the artifacts in one place, these tools facilitate the automatic
generation of various test-related metrics, including these:

■ Number and current status of requirements
■ Time metrics, including the time needed for preparing and executing test

cases, test suites, regression test sets, and other test-process-describing
metrics

■ The number of test cases, test scripts, test environments, and so forth
■ The current state for all test cases, including passed, failed, skipped, blocked

(and the blocking conditions), queued, and in process
■ Trends in various metrics like bug find/fix rates
■ Logging and failure information

Test management tools are used by test managers, test analysts, and technical
test analysts. These tools are useful throughout the project lifecycle.

9.3.2 Test Execution Tools

Used properly, test execution tools should reduce costs, increase coverage, and/
or make tests more repeatable. Because of the large amount of effort and
tedium, test execution tools are often used to automate regression tests.

Most test execution tools are also called capture/replay (or sometimes
record/replay) tools; they work by executing a set of instructions written in a

__AST V3.book Seite 475 Freitag, 1. Juli 2011 1:06 13

476 9 Test Techniques

scripting language, which is just a programming language, customized for the
tool. The tool usually gives precise ability to drive key presses and mouse
actions, along with inspection of the graphical user interface or some other
interface.

The scripts can be recorded using capture (record) facilities; in many of
these tools, you can also program the scripts as you can a real application. Cap-
ture/replay tools can be useful for tracing the path of exploratory or other non-
scripted testing, but the resultant scripts and expected results are very difficult
to maintain. These tools lie at the heart of an effective automation architecture;
we’ll discuss that later.

Recording is usually performed by intercepting and reading the messages
sent to the operating system queue. Every time you press a key or mouse button
or move the mouse, messages are generated by the operating system and sent to
a central queue. From there, they are dispatched to the GUI elements that are to
react to them.

For example, if we move the mouse cursor to a button on the screen and
press the left mouse button, the following chain of events may occur:3

■ A series of mouse movement messages are generated. These start at the
screen coordinates where the mouse cursor was and continue to where you
stopped moving the mouse. These messages are used by the operating
system to successively redraw the cursor across the screen giving the user
feedback on current location.

■ When the left mouse button is pressed, several messages are generated,
showing that the button was depressed at a given location and then released
at a given location.

■ The application currently under the cursor is dispatched those messages,
giving the application focus and making it the current application.

3. Different operating systems and applications may behave differently. This chain of events is
describing MS Windows and a standard Win32 application.

ISTQB Glossary

test execution tool: A type of test tool that is able to execute other software
using an automated test script, e.g., capture/replay.

test execution tool

__AST V3.book Seite 476 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 477

■ The application window under the cursor is forwarded the messages and is
given the focus. That causes the window to redraw if it was not in focus
before. If it was partially obscured by a different window, it is moved to the
top and becomes fully visible.

■ The control group (if any) under the mouse cursor is forwarded the
messages, telling it of the mouse click. Sometimes control groups are fairly
complex; the messages keep getting passed inward, container to container,
until they actually reach the button that the user clicked.

■ At this point, the button accepts the mouse click (assuming it is enabled). It
calls the code functions that are supposed to execute when the button is
depressed and released.

Test record tools watch over the queue and capture the messages that are gener-
ated. Early versions of these tools simply captured the raw information; e.g., a
mouse click occurred at location X =137, Y = 567 on the screen. These would
generate the following line of code in the script:

MouseClick Left 137,567

Later on when playing back this script, this line would simply re-create the set
of messages to move the mouse cursor to that location and generate a left button
click there. If the screen was exactly in the same state and the application being
run was exactly in the same state, this would usually work correctly. However,
any changes to the screen and the applications running on it would likely cause
this action (and hence the test being run) to fail. For example, if the button was
no longer at that same spot (137, 567) on the screen, whatever was currently
there would receive the click.

Subsequent generations of test execution tools were refined to capture some
context around the event. Many of the current tools are designed to understand
what the mouse click means. In the tool scripting language, they might generate
the following set of lines to record the event:

SetActive Application XYZ
SetActive MainWindow
PressButton EnterKey

These lines would be able to re-create the button press no matter where the
window was, no matter what the screen looked like. While these changes

__AST V3.book Seite 477 Freitag, 1. Juli 2011 1:06 13

478 9 Test Techniques

have made the tools more robust, most tools are still a long way from being
foolproof.

One continuing problem with these tools is the identification of GUI
objects on the screen. As human beings, we see a collection of widgets on the
screen, organized to do a particular task; each is a metaphor for the particular
task we might want to do. We see a button, a list box, a window. There are only a
handful of these widgets that we recognize by their shape and context when we
use the operating system. The current window the author is looking at contains
a rich edit box, several toolbars, a menu bar, a status bar, a ruler, vertical and
horizontal scroll bars. These are drawn specifically so users can recognize them.

When people learn how to use, say, MS Windows, they learn to mouse click
radio buttons, check boxes, icons and push buttons; type into and read from text
fields; drag scroll bars; etc. Once we learn to use these screen metaphors, we can
run pretty much any application.

Unfortunately, the capture/replay tool does not see the same screen meta-
phors that human users do. If you programmatically tell the tool to click a but-
ton, it cannot see it; it has to ask the operating system to put a mouse click on
this specific object defined by the following properties.

The properties that are used to define an object may be fixed by the tool or
they may be defined by the user. Some of the properties that may be used to
uniquely identify an object are subject to change. For example, length, width, X-
location (in window), Y-location, Z-location,4 tab order, associated text, etc.
may all change from build to build and make very poor object identifiers when
using a capture/replay-type tool.

A common problem when using these tools is the occurrence of test failures
caused by change. If we set up the tool to use certain properties to uniquely
identify objects with which we interact and those properties change, our tests
using those objects will fail. Good automators will have a variety of techniques
to deal with this (and other issues) when they automate tests. Specifics on deal-
ing with object identification, because each tool is different, are out of scope for
this book.

4. The Z-order is used to determine which windows are on top of other windows.

__AST V3.book Seite 478 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 479

Test execution tools can use a comparator to compare the expected results—
which may have been captured during some previous test run—with the actual
results. Usually these comparators can be instructed to avoid comparing fields
that will vary, like dates and times.

Poor skills in programming and bad design of automation architecture can
cause failure of test automation. There’s also a need for careful management.
And, since the test execution scripts are programs, we need to remember to test
them.

These tools can be used at any level of testing. At the unit test level they are
used by developers, perhaps doing test-first or test-driven development. At
other levels they are usually used by technical test analysts to create tests and
may be used in the run configuration by any tester. Jamie’s credo has always
been that automated tests need to be so easy to run that anyone on the project
should be able to kick them off and read the results.

9.3.3 Debugging, Troubleshooting, Fault Seeding, and Injection Tools

Debugging and troubleshooting tools can help us narrow down the area where a
bug lives. In some cases, as with user interface bugs, the location of the bug is
obvious, but in other cases the bug can be a long way from the symptom.
Debugging tools can include logs, traces, and simulated environments.

Debuggers have the ability to allow a programmer or technical test analyst
to execute programs line by line, watching for unexpected control or data flows.
They can halt the program at any program statement if the operator has a hunch

ISTQB Glossary

debugging tool: A tool used by programmers to reproduce failures, investi-
gate the state of programs, and find the corresponding defect. Debuggers
enable programmers to execute programs step by step, to halt a program at
any program statement, and to set and examine program variables.

fault seeding: The process of intentionally adding known defects to those
already in the component or system for the purpose of monitoring the rate of
detection and removal and estimating the number of remaining defects.

fault seeding tool: A tool for seeding (i.e., intentionally inserting) faults in a
component or system.

__AST V3.book Seite 479 Freitag, 1. Juli 2011 1:06 13

480 9 Test Techniques

about where the bug lives or wants to check some variables at the point. Debug-
gers can set flags on and examine program variables.

As was mentioned in the Foundation syllabus, debugging is related to test-
ing but is not testing. Similarly, debugging tools are related to testing but are,
strictly speaking, not testing tools.

Debugging and troubleshooting tools are used mostly by programmers and
technical test analysts. Technical test analysts can use these tools at any point in
the lifecycle once code exists.

Fault seeding and fault injection are different but related techniques.
Fault seeding uses a compiler-like tool to put bugs into the program. This is

typically done to check the ability of a set of tests to find such bugs. Of course,
the modified version of the program with the bugs is not retained as production
code! This is also sometimes called mutation testing. As you saw earlier, NASA
uses this technique to help in reliability testing.

Fault injection is usually about injecting bad data or events at an interface.
For example, Rex has a tool that allows him to randomly corrupt file contents.
Notice that this is something that Whittaker’s attack technique discusses.

Fault seeding and fault injection are mainly used by programmers and tech-
nical test analysts. Technical test analysts can use these tools at any point in the
lifecycle once code exists.

9.3.4 Static and Dynamic Analysis Tools

Static analysis tools, which automate some parts of the static testing process,
can be useful throughout the lifecycle. They provide warnings about potential

ISTQB Glossary

dynamic analysis tool: A tool that provides runtime information on the state
of the software code. These tools are most commonly used to identify unas-
signed pointers; check pointer arithmetic; monitor the allocation, use and de-
allocation of memory; and flag memory leaks.

static analysis: Analysis of software artifacts—e.g., requirements or code—car-
ried out without execution of these software development artifacts. Static
analysis is usually carried out by means of a supporting tool.

static analyzer: A tool that carries out static analysis.
dynamic analysis tool
static analysis
static analyzer

__AST V3.book Seite 480 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 481

problems with code, requirements, etc. For example, a code analysis tool will
flag dangerous or insecure constructs. Running a spelling and grammar
checker on a requirements specification can reveal a difficulty level that’s too
high. We discussed static testing in chapter 4.

The usual problem we’ve had when using these tools for clients is the num-
ber of false positives. In this case, a false positive is a potential problem that does
not actually cause any damage. The number of false positives on an existing
code base can be huge, as many as one for every 5 or 10 lines of code.

There are various strategies for working around this, like using the tool on
only new and changed modules of code. Fortunately, vendors recognize this
problem and are working to fix it.

Static analysis tools are mainly used by programmers and technical test
analysts. They can use static analysis tools at any point in the lifecycle once the
work product to be analyzed exists.

Let’s look at an example of static analysis and text execution tools in action.

Figure 9–2 Static analysis and unit testing example

Figure 9-2 shows a testing framework RBCS built for a client. This tool provided
automated static analysis and unit, component, and integration testing, using
both commercial and open-source tools.

Perforce

1. To save work,
daily check-outs
and check-ins

2. When unit tests
pass, code labeled
for central test area

3. Labeled code
checked out
every 4 hours

4. Test results
e-mailed to
programmers,
leads, and
managers

Create JUnit
UCI Tests

Daily Development

Run JUnit Unit Tests

Check Out Labeled Code

Ant/CruiseControl

Build Server
Area

Programmer
Workstation Area

Central Test
Server Area

Run JTest (Static)

Build

Deploy

Run JUnit UCI Tests

Create Status Reports

__AST V3.book Seite 481 Freitag, 1. Juli 2011 1:06 13

482 9 Test Techniques

The best way to read this figure is clockwise starting at the bottom left. Let’s
see how this worked.

The individual programmers worked on their own areas, creating unit,
component, and integration tests for their code as they built it. They ran the
unit tests locally using JUnit. At the end of each day, they checked their work
into Perforce, the configuration management system, but that code was labeled
as “not ready for the build” until it was approved.

Once the unit tests passed, the programmer would have his code and unit
tests reviewed by the lead programmer in his group. (Yes, that’s a bit more infor-
mal of a review process than we would have preferred, but it was all we could
convince them to do.) If the review was a success, the code and tests were then
checked into Perforce labeled as “ready for the build.”

Now, the central test server had a script running on it that checked for new
“ready for the build” labeled code every four hours. If it found some, it would
initiate a new test run. That test run consisted of two parts: first, a static test
using the JTest tool from Parasoft; next, a full dynamic test running all the unit,
component, and integration tests in the repository. Once the test run com-
pleted, the results were e-mailed and posted on the intranet.

We think this approach is clever and one just about every development
organization should try to adopt. Notice that the very activity that increases
regression risk—checking in new or changed code—also triggers the actions
that will reduce that regression risk.

Dynamic analysis tools provide runtime information on the state of the exe-
cuting software. They can be used to pinpoint a number of problems that are
hard to find in static analysis and hard to isolate in dynamic testing. These tools
include evaluating pointer use, but perhaps memory leak detection is the most
common example. Memory leaks are particularly likely in programming lan-
guages like C and C++ where programmers manage memory directly—since
they sometimes mismanage it!

These tools are most often used by technical test analysts, but they can be
used by any tester. Since dynamic analysis tools tend to sit in memory quietly
until a failure occurs, it is often useful for testers to run it during some of their
testing at the system test level. We discussed these tools extensively in
chapter 4.

__AST V3.book Seite 482 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 483

9.3.5 Performance Testing Tools

Performance test tools typically consist of two major elements. One is a load
generator. The other is a measurement and analysis component.

The load generator executes a script, which implements an operational
profile. You should remember the concept from chapter 5. Sometimes these
scripts are captured, though our experience is that they more typically are pro-
grammatically created. The script needs to be able to throw at the system under
test whatever kind of data the system needs to accept.

When you run a mix of scripts under most performance testing tools, a
complex mixture of simulated or virtual users can be pounding on the system
simultaneously. In many cases, the tools are not pounding directly on the user
interface, but rather on a communication interface such as HTTP or HTTPS.

While this is happening, the measurement component is gathering metrics.
including these typical metrics:

■ Number of simulated users
■ Number and type of transactions generated by the simulated users
■ Response times to particular transaction requests made by the users

Based on these, various reports can be created, including graphs of load against
response times. Performance testing is a complicated activity with a number of
important factors to consider:

■ First, do you have sufficient hardware and network bandwidth on the load-
generator host required to generate the loads? We have seen load generators
saturate before the system under test did, which defeats the purpose.

■ Second, is the tool you intend to use compatible with the communications
protocol used by the system under test? Can the tool simulate everything
you need to simulate?

ISTQB Glossary

performance testing tool: A tool to support performance testing that usually
has two main facilities: load generation and test transaction measurement.
Load generation can simulate either multiple users or high volumes of input
data. During execution, response time measurements are taken from selected
transactions and these are logged. Performance testing tools normally provide
reports based on test logs and graphs of load against response times.

__AST V3.book Seite 483 Freitag, 1. Juli 2011 1:06 13

484 9 Test Techniques

■ Third, does the tool have sufficient flexibility and capability to allow you to
create and run the different operational profiles?

■ Finally, are the monitoring, analysis, and reporting facilities that you need
available?

While simple load generators for reliability testing are commonly built in-
house, performance test tools are typically purchased or open-source versions
used. The real tricky part—and where most of the work will be should you
decide to build your own performance testing tool—is in the measurement and
analysis piece. When we and our associates have had to build performance test-
ing tools, that was usually the hardest part.

Let us mention something at this point that you should keep in mind. Many
performance-related defects are design problems. We have seen late discovery
of serious performance problems doom a project. So, when performance is a
key quality risk, be sure to use modeling and unit testing to test critical compo-
nents rather than waiting for system tests.

Performance test tools are typically used by technical test analysts. They can
use these tools during any test level as part of test execution for that level, but it
happens most typically during system and acceptance test.

Figure 9–3 Performance testing with integrated tools

WAN

CSA Workstation

CSA Workstation

CM Workstation

ACD

Pub/Su

City IVR

City
IVR

ACD
IVR

CT-Connect
Server

CSA-Server

CM Server

Voice Repository

PBX

Silk Test
drove the

call center
GUI

application

Custom-
built load
generator
drove the
IVR
application

Custom-built testing middleware coordinated the tests end-to-end

Nx T1

__AST V3.book Seite 484 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 485

Let’s look at an example here, this time for performance testing using integrated
tools. We’ve mentioned the wide area network IVR server project earlier in this
book. In Figure 9-3 you see the architecture of that system. We have the wide
area network of IVR servers to the right side, the support content management
and customer service application servers in the center, and the customer service
agent desktops at the left.

If someone pressed 0 while on the IVR, they were supposed to be trans-
ferred via VoIP (voice over IP) through the network to a waiting agent. At the
same time the agent answered the phone, that agent was supposed to see, pop-
ping up on his screen, all the profile information in the system about the user he
was about to talk with. That had to work reliably, and it had to work even if the
server was loaded down.

Therefore, we needed a way to do end-to-end performance testing. We
had a load generator that could create calls on the IVR side. The load genera-
tor was scripted, so we could include 0 in some of those scripts. The load gen-
erator was also able to coordinate, through custom middleware, with QA
Partner (now called SilkTest), which was driving and watching the screens. We
could actually time the transaction, from pressing 0 on the IVR to seeing the
screen pop up on the customer service agent’s desktop. We would run a bunch
of these transactions, capture the transit time, and log that information for
later analysis.

9.3.6 Monitoring Tools

Closely related to performance tools are monitoring tools, which are used to
observe a particular system or subsystem while it is exercised (often using a per-
formance tool). Monitoring tools are designed to give visibility to the internal
workings of a network, database, server, or other subsystem in a complex envi-
ronment. Some of these are intrusive, changing the way a system works, but
many of them are essentially passive without materially affecting the system
being observed.

Consider the complex path of a transaction that occurs in an Internet-/
browser-based environment. A user or virtual user types in a URL. That
request traverses the IP stack and is encoded into packets of information. It is
placed on the LAN. It travels through the router and the router switch, to the
proxy server, through the firewall and on to the Internet. The packets weave

__AST V3.book Seite 485 Freitag, 1. Juli 2011 1:06 13

486 9 Test Techniques

their way through various routers and switches to the destination. At the desti-
nation, the packets go through the firewall and get unpacked by traversing
through the IP stack and to the web server. There, the web server may inter-
act with the database server, the application server, and any variety of other
players. Then, the requested information weaves its way back through a simi-
lar path.

At any point through this path, a system may slow down or stop the
progress of the action. That means we may need any number of different places
to observe the traffic. That is where monitoring tools come in. A network ana-
lyzer (or sniffer) can intercept and log the traffic passing through the network.
It can decode what is in the packet, allowing near real-time information when
there are problems on the network. This allows the sniffer to gather and collect
network statistics.

Other tools can monitor database usage, various server usage, router and
switch usage, and firewall activities and gather measurements just about every
step of the way. While these tools are often used in production to ensure opti-
mum performance, they are particularly useful when performance testing.
When a system is put together, there are often inefficiencies and bottlenecks.
Typically, when performance testing, the tester will arrange to have various
experts (from the network, server, back-end and other areas) to be available,
monitoring the testing. When a slowdown occurs, the experts manning the
monitors try to figure out why. Often the problem is the result of one or more
settings rather than a complete failure. All of these people work together to tune
the system for peak performance as well as look for bugs.

These tools can be used by technical test analysts; they are often used by
domain experts in production.

9.3.7 Web Testing Tools

Web tools are another common type of test tool. A frequent use of these tools is
to scan a website for broken or missing hyperlinks. Some tools will also provide
a graph of the link tree, the size and speed of downloads, the number of hits,
and other metrics. Some tools will do a form of static analysis on the HTML to
check for conformance to standards.

__AST V3.book Seite 486 Freitag, 1. Juli 2011 1:06 13

 9.3 Test Tool Categories 487

There are a wide variety of web testing tools that fall into the category of test
automation and/or performance tools:

■ Selenium: An open-source suite of tools that run in several different
browsers across different operating systems.

■ Latka: An end-to-end functional testing automation tool implemented in
Java. It uses XML syntax to define HTTP/HTTPS requests and a set of
validations to ensure that the requests were answered correctly.

■ Watij: A Java-based open-source tool that automates functional testing of
web applications through a real browser.

■ Slimdog: A simple script-based web testing tool based on HttpUnit.
■ LoadSim: A Microsoft-supplied tool that simulates loads on Microsoft

Exchange servers.
■ Sahi: A JavaScript-based capture/replay tool for browser-based testing.

An important point to remember about many of these web testing tools is that
they perform some testing tasks really well but other testing tasks are either not
supported or difficult to do. This is fairly common with open-source tools. The
designers of the tool are often interested in solving a particular problem and
they design the tool accordingly. While this is certainly not true of every open-
source tool, an organization that decides to use open-source tools should expect
to mix several tools together to create a total solution.

Web tools are used by both test analysts and technical test analysts. They
can use these tools at any point in the lifecycle once the website to be analyzed
exists.

ISTQB Glossary

hyperlink test tool: A tool used to check that no broken hyperlinks are
present on a website.

hyperlink test tool

__AST V3.book Seite 487 Freitag, 1. Juli 2011 1:06 13

488 9 Test Techniques

9.3.8 Simulators and Emulators

Simulators, as those of you who have watched any movies about space flight
know, provide a way to test in an artificial environment. We might want to do
this because some of the code or some other part of the system is unavailable.
We might want to do this because the real system is too expensive to use in test-
ing. We might want to do this because testing in the real system is unsafe. For
example, aircraft, spacecraft, and nuclear control software is usually tested in
simulators before being deployed. You could say that the deployment consti-
tutes the first test in the real environment.

Some simulators can be sophisticated, able to inject faults, produce repro-
ducible pseudo-random data streams, and the like. Our experience with testing
in simulators has been that no matter how good they were, there were always
things we found when we went onto the real hardware. Timing problems and
resource constraints and dependencies in particular are tricky to simulate.

An emulator is a type of simulator in which software mimics hardware.
While working in the early ’90s, Jamie used an emulator for testing the rewrite
of the operating system for a midrange computer; the CPU that was destined to
be the heart of the system had not yet been fabricated. It was slow, but it did
allow them to unit test the code and shake out many of the bugs before the
hardware existed. Interestingly enough, this emulator was called “the piranha
simulator.” It is our experience that, in real life, simulators and emulators are
often mistaken for each other.

Test analysts and technical test analysts, depending on the type of emula-
tion required, use these tools. They can use these tools during any test level, as
part of test execution for that level, but these tools are most typically used dur-
ing early test levels when the item simulated or emulated is unavailable.

ISTQB Glossary

emulator: A device, computer program, or system that accepts the same
inputs and produces the same outputs as a given system. See also simulator.

simulator: A device, computer program, or system used during testing that
behaves or operates like a given system when provided with a set of con-
trolled inputs. See also emulator.

emulator
simulator

__AST V3.book Seite 488 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 489

9.4 Keyword-Driven Test Automation

Many years ago, Jamie attended a workshop on automation that was attended by
many of the most experienced automators in the country. While he was talking
with several of the attendees, they got into a somewhat heated discussion as to
who invented data-driven and keyword-driven automation concepts. They all
claimed that they personally had come up with and developed these techniques.

They finally came to the realization that, indeed, we all had. Independently.
Since then Jamie has discovered that there have been many cases in history
where multiple people, needing a solution to a particular set of problems, came
up with the same type of solutions.

ISTQB Glossary

data-driven testing: A scripting technique that stores test input and expected
results in a table or spreadsheet so a single control script can execute all of the
tests in the table. Data-driven testing is often used to support the application
of test execution tools such as capture/replay tools. See also keyword-driven
testing.

keyword-driven testing: A scripting technique that uses data files to contain
not only test data and expected results, but also keywords related to the appli-
cation being tested. The keywords are interpreted by special supporting
scripts that are called by the control script for the test. See also data-driven
testing.

test oracle: A source to determine expected results to compare with the
actual results of the software under test. An oracle may be the existing system
(for a benchmark), other software, a user manual, or an individual’s specialized
knowledge, but it should not be the code.

Learning objectives

(K3) Create keyword/action word tables using the keyword
selection algorithm to be used by a test execution tool.

(K3) Record tests with capture/replay tools in order to make
regression testing possible with high quality, and many test cases
covered in a short timeframe.

__AST V3.book Seite 489 Freitag, 1. Juli 2011 1:06 13

490 9 Test Techniques

In testing, everyone trying to automate had a common problem. Automa-
tion of testing was a meme complex5 that had spread like wildfire in the early
1990s, and there were a lot of tools being developed for it. Unfortunately, the
basic capture/replay process just did not work. The idea of capture/replay was
really an unfunny joke. Virtually every person who wanted to be a serious
automator, who saw the possibilities in the general idea while failing miserably
in the execution, tried to come up with solutions. Many would-be automators
fell by the wayside, but many of us persevered and eventually came up with
solutions that worked for us. A lot of these solutions looked very similar. Look-
ing back, we guess it would have been strange if we did not come up with the
same solutions. We all had the same problems with the same tools in roughly
the same domain.

In the next few paragraphs, we want to discuss the natural evolution in
automation. We call it natural because there was no sudden breakthrough; there
was just a step-by-step progression that occurred in many places.

The driver of this natural evolution is return on investment (ROI), or the
need to show value. Most of the tools (all vendor tools back then) were very
expensive. A positive return on investment required that we be able to create
large numbers of tests that could be run whenever needed. However, while we
could create large numbers of tests, we could almost never run them all success-
fully.

We needed a solution. The solution, as you will see, was a logical progres-
sion of architectures. Most automators went from capture/replay to the frame-
work architecture to data-driven, and some of us went finally to keyword/action
word architectures. Our terminology is not definitive; like so much of testing,
there is little commonality in naming conventions. Even the ISTQB glossary has
a superficial set of definitions when it comes to automation. Therefore, we will
try to define our concepts with examples and you can feel free to call the con-
cepts whatever you like.

Incidentally, automation is still evolving. Many are the times we have
walked into an organization as consultants and found the test group reinventing
the automation wheel. If your organization wants to use automation and you do

5. Definition of meme: An idea, pattern of behavior, or value that is passed from one person to
another. A meme complex is a group of related memes often present in the same individual.

__AST V3.book Seite 490 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 491

not bring in an experienced automator who has already walked this long path,
you will tend to go through the same evolution, making the same mistakes.
However, since the wheel has already been invented, you might consider hiring
or renting the expertise. If you do bring in an automator, make sure he knows
what he is doing. Too often, we have seen people with resumes claiming exper-
tise at automation when the only thing they know is a single capture/replay tool.

In his book Outliers (Little, Brown and Company, 2008), Malcolm Gladwell
suggests that it takes 10,000 hours of doing something to become an expert. Ten
thousand hours works out to five years of continuous employment; i.e., 40 hours
per week, 50 weeks a year, for five years. So, Rex has a rule of thumb that, to be
considered an expert, an automator should have at least five continuous years
performing automation. Jamie would tend to agree, but he would include the
requirement that it be good automation for at least four of those years (as com-
pared to five years of fumbling around).

So, let’s take a look at the problem. You buy a tool (or bring in an open-
source tool) that does capture/replay. These tools are essentially wrappers
around a programming language (the playback part) and have a mechanism to
capture interface actions (keystrokes and mouse actions) and place them in a
script using that programming language. At a later date, when you want to run
the test again, you submit the script to an execution machine that re-creates the
interface actions as if the human tester were still there.

Note that the script that was created essentially encapsulates everything you
need. It has both the data and the instructions as to what to do with the data all
in one place.

What could go wrong with that?
Capture/replay automation actually is a brilliant idea (other than the huge

logic problems involved). It can be used, occasionally successfully, as a short-
term solution to a short-term problem. If we need quick-and-dirty regression
testing for a single release, it might work. Jamie once recorded a quick script
that could be run multiple times at 3 a.m. to isolate a problem with a remote
process. The script had triggered the failure, so when they came in the next
morning, they had a good record of it due to the script’s running. If you have a
lab full of workstations and want to record a quick-and-dirty load test to exer-
cise a server, you can do that.

__AST V3.book Seite 491 Freitag, 1. Juli 2011 1:06 13

492 9 Test Techniques

But, if you want a stable, long-term testing solution that works every time
you click the go button, well, the capture/replay tool won’t do that. It is our
experience—and that of every automator that we have ever spoken to—that the
capture/replay architecture is completely worthless as a long-term testing solu-
tion.

In figure 9-4 you see a recorded script from one of the all-time popular cap-
ture/replay tools, WinRunner from Mercury-Interactive (currently owned by
HP). We have removed the spaces to save room, but this is pretty much what is
captured when recording. This (partial) script was generated to exercise a med-
ical software package that was used to allow doctors to prescribe drugs and
treatments for patients directly.

Figure 9–4 WinRunner recorded script (partial)

First of all, it is a little difficult to read. This script exemplifies why we have code
guidelines and standards. But since it is meant to execute directly, maybe we
aren’t suppose to be able to read it.

Let’s discuss for a moment how a human being interacts with a computer.
After all, we are really trying to simulate a human being when we automate a
test.

When a human being wants to interact with a GUI (in this case a Windows
application), she sits down, looks at the screen, and interacts with what she sees
on the screen using the keyboard and the mouse. As mentioned earlier, GUI

1. workstationset_window ("FREDAPP", 11);
2. edit_set ("edt_MRnumber", "MRE5418");
3. obj_type ("edt_MRnumber","<kTab>");
4. password_edit_set("edt_Password","kzisnyixmynxfy");
5. edit_set ("Edit_2","VN00417");
6. obj_type ("Edit_2","<kReturn>");
7. set_window ("FREDAPP",7);
8. button_press ("No");
9. set_window ("FREDAPP",5);
10. edit_set ("edt_MRnumber", "BC3456 ");
11. obi_type ("edt_MRnumber","<kTab>");
12. password_edit_set("edt_Password","dzctmzgtdzbs");
13. obi_type ("edt_Password","<kReturn>");
14. set_window ("FREDAPP97 Msg", 5);
15. button_press ("Yes");

__AST V3.book Seite 492 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 493

objects seen on the screen are generally metaphors: We see files to edit, buttons
to press, tree lists to search, menus to select. There is always an active window
(the one that will get input); we make it active by clicking on it. There is an
active object in the window; when it is active we can tell because it usually
changes somehow to let us know. There may be a blinking cursor in it, it may be
highlighted, or its color may change. We deal directly with that active object. If
the object we want to deal with is not active, we click it or tab to it to make it
active. If we don’t see the object, we don’t try to deal with it. If something takes a
little too long to react to our manipulation, we wait for it to be ready. If it takes
way too long, we report it as an anomaly or incident.

Essentially, a manual test case is an abstraction. No matter how complete, it
describes an abstract action that is filtered through the mind and fingertips of
the manual tester. Open a file, save a record, enter a password—all of those are
abstract ideas that need to be translated. The human tester reads the step in the
test procedure and translates the abstract idea to the metaphor on the screen
using the mouse and keyboard.

In this script, you see a logical translation of those steps. The first line is
identifying the window we want to make active, to interact with. The second
line details the control we want to deal with, in this case a specific text box. We
type a string into that (the “edit_set”) and then press the Tab key to move to the
next control. Step-by-step, we deal with a window, a control, an action. The data
is built right into the script.

So where is the problem? The script is a little ugly, but programming lan-
guages often are. We don’t expect them to read as if they were to be awarded a
Pulitzer Prize in literature.

A recorded script is completely, 100 percent literal. It tries to do exactly
what the tester did, and nothing else. That is really the crux of the problem; it is
completely wrong in how it models the human tester. Think about what a cap-
ture/replay tool is actually saying about the tester it tries to model. The tester is
just a monkey who mindlessly does what the manual test case tells them to do.
Click here, type there.

But that is not a valid model. Manual testers—at least those who know what
they are doing—add important elements to that abstract list of steps we call a
test procedure. We can narrow it down to two important characteristics added
by the human tester to any test: context and reasonableness.

__AST V3.book Seite 493 Freitag, 1. Juli 2011 1:06 13

494 9 Test Techniques

Regarding context, the tester can see and understand what is going on with
the workstation. A recorded script cannot add context other than in a really
limited way. Look back at the script in figure 9-4. It has the tester tab from the
ID text field (edt_MR Number) to the password text field (edt_Password). If the
tab order had changed, a human would see that and tab again or pick up the
mouse and move to the right place with a single click. The script expects the
password text field to forever be one tab after the ID text field. Change kills
automation when relying on capture/replay. When a failure occurs, it is often
signaled by something out of context. A human being is constantly scanning the
entire screen to understand the current context. If something incorrect hap-
pens—something out of context—the human sees it, evaluates it, and makes a
decision. Is it an anomaly that we need to document and then continue on? Is it
an unrelated failure that we must stop for? The automation tool has no such
capability.

If the scripter puts in a check for a particular thing and that thing is incor-
rect, the tool will find it. But anything else will not be found. If the script tries to
do something—say type in the password text field—and it does not find the
field, it can report in the log that a control was not found. But that test has just
failed, often for a superficial nit that a human could have dealt with gracefully.

The other characteristic added by a human is reasonableness. It is clear that
there has to be some kind of timing to a script. If the script is told to do some-
thing to a control that is not currently visible, it will wait for a short amount of
time (typically 3 seconds). If the control does not show in that time, boom, the
test just failed! Suppose it is a control on a web page that is slow loading? Fail!
Suppose it is a control that is out of view due to scrolling? Fail (with most tools).
Suppose the developer changed the tag on the control. Fail. A human can sit and
look at the screen. It takes 4 seconds rather than 3 seconds? We’ll wait, and we
might just note in the test log that it took a long time showing up. Not on the
screen? A tester will scroll it. Renamed? A tester will find it.

The truth is that some modern tools solve some of these problems. Others
don’t. There is no capture/replay tool that solves every problem; there are no
tools that can always add context and reasonableness except through program-
ming.

Error recovery is always a problem with capture/replay. Early tools had no
ability to recover from an error; many modern tools have a limited ability on

__AST V3.book Seite 494 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 495

their own. So, assume that we do have a failure in a test. A human discerns there
was an error, gracefully shuts down the application, restarts it, and moves on to
the next test. What does the captured script do in case of a failure? The early
ones mainly just stopped. Most long-time automators wish they had a nickel for
every morning they came in and the suite was stuck on test two and had not
moved all night. Some of the modern tools can, in limited cases, shut down the
system and continue on to the next test. Sometimes... But suppose a dialog box
pops up that was unexpected? Oops! We’ll see you Monday morning.

9.4.1 Capture/Replay Exercise

Referring to the recorded WinRunner script back in figure 9-4:

1. The script has been changed to pseudocode in figure 9-5 so it is more
understandable. Analyze what the tool is doing and identify the likely fail-
ures that could occur when a script like this is run.

2. What changes might mitigate the issues identified in question 1?

Figure 9–5 WinRunner script translated to pseudocode

9.4.2 Capture/Replay Exercise Debrief

The original script is one that Jamie recorded. This debrief was performed by
him. Analyzing the pseudocode, there are a number of global failures possible;

__AST V3.book Seite 495 Freitag, 1. Juli 2011 1:06 13

496 9 Test Techniques

that is, they could happen in any one of the steps. They include the following
items:

■ Timing. At any given time, a GUI object might not be available within the
time limit established by the tool (typically 3 seconds). In line 7, we are
waiting for a pop-up window to appear. The previous step pressed a Return
key inside an edit. That means the default button would be pressed, usually
resulting in a pop-up. Same in lines 9 and 14. In addition, there is an
assumption that all of these objects are always available. My recollection is
that tabbing out of certain controls caused other controls to become
enabled or disabled. That created race conditions when going to the next
control that caused many failures.

■ The naming conventions of the different windows (FREDAPP followed by
an integer) likely means that the GUI mapping was not correctly created.
Windows should be named with a meaningful name. We have no idea what
was used for identification of these windows, which means that any change
is likely to break the script.

■ Same for all controls that are dealt with. Any change in the system under
test is going to hit this script like a bowling ball.

■ Tabbing from control to control is often a bad idea since tab order tends to
change with usability modifications.

■ The user ID and password are coded directly in. This limits the usefulness
of the script over time.

■ Likewise, all data is hard-coded. This application was used in a medical
setting where the data changed rapidly. The values being entered could
literally be changed that afternoon.

■ Lines 7 and 8 represent a window that did not always pop up. It depended
on other settings, both on the server and in the client’s control.
Approximately 40 percent of the time it did not pop up, causing the script to
fail.

■ No error handling; when a problem occurs in this script, the entire suite
dies.

I could actually come up with about a dozen more problems with this script, but
you get the picture.

__AST V3.book Seite 496 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 497

For the second part of the exercise, the answer is pretty simple. Program-
ming! All of the issues enumerated, and many of the others not mentioned, can
be solved the same way. By using the programming language of the tool (in this
case TSL), good software engineering techniques could be used to solve almost
any issue.

Notice, though, that programming raises the cost of the script and the cost
of the automation and adds many extra tasks that did not exist before. There
ain't no such thing as a free lunch!

9.4.3 Evolving from Capture/Replay

The sad but true fact is that change is the cause of most capture/replay failures.
Jamie once had an executive rail at him because the automation was always bro-
ken. Every time they ran the scripts, the tests failed because the developers had
made changes to the system under test. (While we were writing this book, Rex
had a number of programmers and testers make the exact same complaint
about tests created with QuickTest Pro and Test Complete.) Jamie told the exec-
utive that he could fix the problem, easy as pie. When the executive asked how,
Jamie told him to have the development team stop making changes. No
changes, no failures. As you might expect, he did not take Jamie’s advice.

So, the developer changes the order that events are handled. Boom, automa-
tion just failed. A human tester: no problem.

A human being sees a control and identifies it by it associated text, its loca-
tion, or its context. A tool identifies an object by its location, or its associated
tag, or by its index of like fields on the screen (top left to bottom right), or pos-
sibly by an internal identifier. If the way the control is identified changes at all,
the tool likely does not find the control. The control was moved a few pixels? If
location was the way the automator identified the control, boom, automation
just failed. A human has no such problem.

Timing changes. Boom, automation is likely to fail. A human has no such
problem.

System context change? Suppose the recorded test saves a file. The next
time the test is run, unless the file was physically removed, when the file save
occurs we are likely to get an extra dialog box popping up: “Do you want to
overwrite the file?” Boom, the automation just failed. A human would simply
click Yes to clear the message and then move on. The cleverer the programmers

__AST V3.book Seite 497 Freitag, 1. Juli 2011 1:06 13

498 9 Test Techniques

are, putting up reminder messages or asynchronous warning messages, the
more it fouls up the automation. Already created that record in the database?
Sorry, you can’t create it again.

Frankly, good automators using good processes can minimize these kinds
of problems. Working hand-in-hand with the developers can minimize some.
Modern automation tools can minimize some. But even with the best of every-
thing, you still have testing that just barely limps along. The testing is brittle,
just waiting for the next pebble to trip over.

And scalability—the ability to run large numbers of tests without much
added cost—is the ultimate automation killer!

Let’s work through a theoretical situation, one that every automator who
has made the jump from capture/replay to the next step has made.

You have built a thousand test cases using capture/replay. Each one of those
test cases at one time or another has to open a file. Each one of them recorded
the same sequence: pulling down the File menu and clicking the Open File
menu item.

You get Wednesday’s build and kick off the automation. Each test case in
turn fails. You analyze the problem and there you find that, for no particular
reason, the developer has changed the menu item from Open File to Open.
Okay, you grab a cup of coffee and start changing every one of your scripts. Sim-
ple fix, really. Open each one up, find every place it says Open File, remove the
word File. If you are really smart, you might do a universal change using search-
and-replace or a GREP-like tool; watch that, though because that phrase may
show up in a variety of places, some of which did not change. Work all night, get
all 1,000 edited, kick them off, find the 78 you edited incorrectly, fix those, and
by Friday morning all is well with the world. Of course, you did just totally
waste two days...

In Monday’s build, the developer decided that change just wasn’t elegant, so
he changed it back to File Open. You slowly count to 10 in three languages
under your breath to avoid saying something unpleasant.

Scalability is a critical problem for the capture/replay architecture. As soon
as you get a non-trivial number of test scripts, you get a non-trivial amount of
changes that will kill your productivity. The smallest change can—and will—kill
your scripts. You can minimize the changes by getting Development to stop

__AST V3.book Seite 498 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 499

making changes for spurious reasons, but change is going to come and it is
going to kill your scripts, your productivity, and hence your ROI.

9.4.4 The Simple Framework Architecture

Every developer can easily see the solution to this problem. Two generations
ago, when spaghetti code was the norm, programmers came up with the idea of
decomposition: building callable subroutines for when they do a task multiple
times.

The automation tool the tester is using has a programming language; pro-
gramming is the solution to the problem. You can create a function called Open-
File() and pass in the filename you want to open as a parameter. You could even
just put the recorded code into the function if you wanted. In each one of your
1,000 scripts, replace the recorded code with the function call, passing in the
correct file name.

Oops. You get all this done and the developer has (another) change of heart.
You get the new build; every test case fails. Ah, but now you go in and change
the function itself, recompile all of the scripts, and voila! They all run. Elapsed
time: maybe 10 minutes.

Scalability is an important key to successful automation. We need to run
hundreds if not thousands of automated tests to recoup our fixed investment
costs, much less get positive ROI. If you cannot reliably run lots of tests, auto-
mation will never pay off.

Notice now, however, that this is no longer the capture/replay architecture.
It is partially recording, partially programming. And there are a lot more failure
points than just trying to open the file. We could create lots of different func-
tions for other places liable to change. And, come to think of it, we could do
more than just open a file using recorded strokes. As long as we are program-
ming a function, we can make it elegant. Perhaps add error handling with
meaningful error messages. If the file is stored on a drive that is not mapped, we
can add automatic drive mapping inside the function. If the file is large or
remote, we can allow more time for it to open without letting it fail. If it takes
too long to open but does finally open, we can put a warning message in the log
without failing the test. If something unexpected happens, we can take a snap-
shot of the screen at the failure point so we have an image for the incident
record. We can put multiple tasks in a single function, giving us aggregate func-

__AST V3.book Seite 499 Freitag, 1. Juli 2011 1:06 13

500 9 Test Techniques

tionality. Rather than separate keystrokes, we could have a LogIn() function that
brings up a dialog, types in the user ID and password, presses the go button, and
checks the results.

The automator is limited only by her imagination. The more often a func-
tion is going to be used, the more value there is to making it elegant.

This leads to what we call the simple framework architecture. Other people
use other names, and there does not appear to be any standard name yet. The
architecture is defined by decomposing various tasks into callable functions,
and adding a variety of helper functions that can be called (e.g., logging func-
tions, error handling functions, etc.).

We said earlier that we would differentiate between the terms framework
and architecture. That becomes a little cloudier when the architecture is named
simple framework. Sorry about that.

The architecture is the conceptual or guiding idea that is used in building
the framework. Perhaps this metaphor might help. Consider the architecture to
be an automobile. It has four wheels, two or four doors, seats, and an engine.
There are many different versions of automobiles, including Saab, Toyota,
Chevy, Ford, Land Cruiser, etc. Each is seen as an automobile (as compared to,
say, a truck or an airplane).

We build an instance of an architecture, calling it a framework. We might
build it with a specific tool, building special functionality to make up for any
shortcomings that tool might have. We may add special logging for this particu-
lar project, special error handling for that. There are several open-source frame-
works available that fit certain architectures (e.g., data-driven frameworks,
keyword-driven frameworks).

This particular architecture we have named the simple framework. The spe-
cific details of how you implement it are up to you and your organization. Those
decisions should be based on need, skill set, and always—always—with an eye
toward a positive return on the investment.

Functionality that is used a lot gets programmed with functions. The more
failure prone the functionality, the more time we spend carefully programming
in automatic error handling. Some stuff that is rarely done might still be
recorded. A script may be partially recorded, partially scripted. We might add
functionality outside the tool; Jamie likes to add custom-written DLLs to inte-
grate more complex functions into the framework.

__AST V3.book Seite 500 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 501

In the capture/replay architecture, we could allow anyone with any skill set
to record the test scripts. Note that now we need one or more specialists: a pro-
gramming tester that many people just call an automator. Without program-
ming skills, the framework does not get built. Without excellent software
engineering skills, a framework may get built that is just as failure prone and
brittle as the capture/replay architecture was. Because, in the final analysis, we
are investing in a long-term project, building that software application we call a
framework.

There are still some risks that we have now that we must consider. Scalabil-
ity is better than the capture/replay framework, but still not great; for each test
case, we still have a separate script that must be executed. That may mean thou-
sands and thousands of physical artifacts (scripts) that must be managed. We
have seen automation frameworks where the line-of-code count is higher than
that of the system under test.

In addition, test data is still directly encoded in each script. That is a prob-
lem when we want to test with different data.

And we must ask the question, Who is going to write the tests? Too often,
we have seen where an organization refuses to hire testers who are not also pro-
grammers. They insist that every tester must be able to also write automation
code.

Frankly, we think this is a huge mistake. A tester may have some program-
ming skills, or they may not. Are you going to fire every tester in your organiza-
tion who came from support? All the domain experts who don’t know anything
about programming? We look at the skill sets between tester and automator as
disjoint. Not every tester wants to be a programmer, and that may be why they
are testers. Testing is much more about risk than it is about programming. If all
of our testers are consumed with worrying about the automation architecture,
when are they going to be able to think about the risk they are supposed to be
mitigating to the system?

We believe the best organizational design is to have a test subgroup made
up of automation specialists. This would include, as with any development
team, both designers and programmers (or in a small group, it might be the
same person filling both roles). This automation group provides a service to the
testers, negotiating on the specific tests that will get automated. Automation is
done purposely, with an eye toward positive ROI. Each project team may have

__AST V3.book Seite 501 Freitag, 1. Juli 2011 1:06 13

502 9 Test Techniques

its own automation team, but it is generally our experience that a centralized
team, shared between projects, is much more cost effective.

We have solved some of our automation problems with our simple frame-
work architecture, but we are not done yet. We still have some automation risks
that we might want to mitigate.

9.4.5 Data-Driven Architecture

The number of scripts that we have to deal with is problematic. As we men-
tioned earlier, we are going to need a lot of testing to help recover our fixed
investment. More test cases, more scripts. But there is more overhead (i.e., vari-
able costs) the more scripts we have. And the really annoying thing is that so
many of our test cases tend to do the same things, just using different data.

This is the situation that tends to drive automators from the simple frame-
work architecture to the data-driven architecture.

Consider the following scenario. You are testing a critical GUI screen with
25 separate fields. There are a lot of different scenarios that you want to test. You
also need to test the error handling to make sure you are not entering bad data
into the database. Manual testing this is likely to be ugly, mind-numbing, brain-
deadening testing of the worst sort. Enter all the values. Press OK. Make sure it
is accepted. Go back. Enter all the data. Press OK. Go back. Repeat until you
want to find a bridge to jump off. This is the exact reason automation was
invented, right? But you could easily have 100 different scripts, one for each dif-
ferent (but similar) test case. That is a lot of maintenance.

To automate this in our framework architecture, we create a script that first
gets us to the right position to start entering data. Then we sequentially fill each
field with a value. After all are filled, we press the OK button (or whatever
action causes the system to evaluate the inputs). If it is a negative test, we expect
a specific error message. If it is a positive test, we expect to get...somewhere,
defined by the system we are testing. Each script looks substantially the same
except for the data.

This is where a new architecture evolved. Most people call it data-driven
testing, and Jamie invented it. To be fair, so did just about every single automator
who has had to deal with this kind of scenario. In Jamie’s case, he realized that he
could parameterize the data and put it into a spreadsheet, one column per data
input. Later he used a database; it does not really matter where you put the data

__AST V3.book Seite 502 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 503

as long as you can access it programmatically. Some automators prefer flat file
formats like comma-separated variable (CSV). One column per data input, and
then we might add one or more extra columns for the expected result or error
message. Each row of data represents a single test. We simply create a single
script and build into it a mechanism to go get the appropriate row of data. Now,
that single script (built almost identically to all of our framework scripts except
for the parameterization) represents any number of actual tests. It has one dozen,
two dozen, a hundred rows of data, it doesn’t matter. It is still only one script.

Want a new test? Add a new row of data to the data store. Assuming that
you built the framework correctly, it will pick up the number of tests dynami-
cally, so there are no other changes needed. Next time the automation runs, the
new test is automatically picked up and run.

Remember that earlier we said that scalability is an important key to suc-
cess. Now to thoroughly test a single screen, we can conceptually have one script
and one data store. Compare that to the possibility of 100 or more scripts just to
test that GUI screen.

So now we have a data-driven architecture. Notice that nothing precludes
us from having a framework script, or 100, that is not data driven. We might
even have a mostly recorded script or two for things that don’t need to be tested
repetitively. It takes an automator to build in the ability to pick up data from the
data store, to parameterize the functions. We might also add some more error
handling, better logging, etc.

Jamie has a basic rule of thumb when dealing with automation. Have the
automators hide all of the complexity inside the automation so that testers do
not have to worry about it. We want the testers to be concerned about risk,
about test analysis and design, about finding failures and mitigating risk. We do
not want them worrying about how the automation works. Need a completely
new scenario? The tester needs to give the automator enough information that
he can script it—a good solid manual test procedure is optimal. If it is some-
thing that he needs to test a lot, say so. After that, want a new test, same
scenario? Add a row of data to the data store and voila.

At this point, the number of tests is no longer proportional to the number of
scripts. And, as Martha Stewart used to say, “That is good.” Scalability becomes
nonlinear where one script fixed may fix dozens or hundreds of tests.

But we are not yet done. We still have scripts.

__AST V3.book Seite 503 Freitag, 1. Juli 2011 1:06 13

504 9 Test Techniques

9.4.6 Keyword-Driven Architecture

Let’s think about a perfect testing world for a second. A tester, sitting on a pillow
at home (we said perfect, right?) comes up with the perfect test scenario. She
waves her magic wand and, presto-chango, the test comes into being. It knows
how to run itself. It knows how to report on itself. It can run in conjunction with
any other set of tests or it can run alone. It has no technology associated with it,
no script to break. If the system changes, it automatically morphs to “do the
right thing.”

Okay, the magic wand may be a little bit difficult to achieve. But the rest of it
might just be doable—kind of.

We are going to talk about what is now known as keyword (or sometimes
action word) testing. The official definition of this is a meta-language that
allows a tester to directly automate without knowing anything about program-
ming. But, if the meta thing bothers you, don’t worry about it. We’ll sneak up on
it.

Let’s forget about automation for a second. Instead, let’s just look at some-
thing we all have seen. Table 9-1 contains a partial manual test procedure; not a
full blown IEEE 829 test procedure specification, but a nice minimalist test pro-
cedure.

Table 9–1 A minimal manual test procedure

Now, let’s think what we are really seeing in this table. A test procedure step can
often be described in three columns. The first column has an abstract task that
we want to perform in the system under test. It’s abstract in that it does not tell
you how to do it; it is really a placeholder for the knowledge and skill of the
manual tester. The tester knows (we hope) how to start the system, how to log
in, how to create a record, how to edit a record. That’s why we pay testers rather
than training monkeys, right?

Task Data to use Expected Result
Start system under test C:\...\SUT.exe Starts up correctly

Login User ID/Password Logs in correctly

Create a new record Pointer to spreadsheet row of data Record creation notification

Edit a record Record key: a pointer to
spreadsheet row of data

Expect change notification

__AST V3.book Seite 504 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 505

The second column is not abstract; it is very tangible. This is the exact data
that we will be using. ISTQB says that this data is the test case, along with the
expected result in column three. But, note that column three is also kind of
abstract. Starts up correctly, log in correctly, record created correctly, change
notification. Again we are expecting the tester to know what the right thing is
and how to determine it.

Remember the discussion we had earlier about context and reasonable-
ness? A manual test procedure—at least columns one and three—is just an
abstract shell to which a manual tester pours in context and reasonableness.
Certainly column two is not abstract; that is the concrete data of the test case.
With good testers, we usually do not have to go into excruciating detail for
columns one and three; they know the context and what is reasonable for their
domain.

Almost every manual test procedure we have ever written kind of looks like
this or at least could be written like this. Now imagine that you already have a
framework with functions for common items like starting up the system being
tested, logging in, creating a new record, etc. Each framework function has been
programmed to contain both context and reasonableness. A script is merely a
stylized way to string those executable functions together. So we should ask,
“Do we really need a script?”

As you can guess, the answer is no. The script is there for the benefit of
the tool, not the tester. If we had a way to make it easy for a tester (with no
programming experience needed) to list the tasks he wanted to do in the order
he wanted, and to pick up the data he wanted to use for those tasks, we could
figure out a way to scan through them and execute them without a formal
script.

This is what a keyword language is. A meta-language (in this case, meta
means high level) that has, as a grammar, the tasks that a tester wants to exe-
cute. It does not have the normal structures (loops, conditionals, etc.) that a
normal, procedural programming language has. It is actually a lot like Struc-
tured Query Language (SQL), a descriptive language rather than a procedural
language.

Here you see some framework functions that could exist from the simple
framework architecture automation already existing (or they could be built
completely from the ground up if we are just starting):

__AST V3.book Seite 505 Freitag, 1. Juli 2011 1:06 13

506 9 Test Techniques

■ StartApp(str Appname)
■ Login(str UserID, str Pwd)
■ CreateNewRec(ptr DataRow)
■ EditRec(int RecNum, ptr DataRow)
■ CloseApp(str Appname)

The actual keywords here are <StartApp>, <Login>, <CreateNewRec>,
<EditRec>, and <CloseApp>. Notice that the keywords are selected to have
some kind of domain-inspired meaning to the testers who will be using them.
In the parentheses, you see the data parameters that must be passed in. It still
looks like a programming language, right. Well, we need a little more to make
this user friendly.

The reason this entire keyword mechanism exists is to make it easy for non-
programming testers to directly build executable test cases. The easier we make
the meta-language to use, the lower we can drive our variables costs, like train-
ing and support.

Therefore, perhaps the most important part to make this architecture work
is that we need an intelligent front end that can lead a tester through the process
of building the test. It should have drop-down lists that are intelligently loaded
with keywords so the user does not need to remember the grammar. Such a
front end can be built in Excel (on the low end) or just about any rapid applica-
tion development (RAD) language that the automator is comfortable with
(Jamie tends to use Delphi) on the high end. It is our belief that the better we
build this, the more we can expect to gain from using it long term.

Consider one way such a front end might work. We start creating a new test
with a completely blank desktop. Logically, there are only a few things a tester
could do; the most logical step would be to start the system under test. So, the
first column of the front end would have a drop-down list which would include
the keyword <StartApp>. If the user clicks <StartApp>, the front end knows
that it takes one argument and therefore prompts the tester to enter that in the
second column. The drop-down list in the second column would include all of
the applications for which there are keywords available. The list is loaded
dynamically as soon as the first column is selected (i.e., <StartApp> is chosen).
The existing StartApp() function in the simple framework already knows how to
check to make sure the application started correctly, so column three is not
strictly needed here.

__AST V3.book Seite 506 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 507

Moving on to the next keyword, there are only a small number of logical
steps that a tester might take next, so the drop-down list in the first column
would automatically load keywords representing those steps. In other words,
the next keyword drop-down list is populated with only those keywords which
logically could be called based on where the previous keyword left us (assuming
that the execution actually succeeded). The keyword <Login> would be one of
the possible tasks, so the tester selects that. <Login> takes two parameters, so
the front end prompts for the user ID and password to use.

Each step of the way, the tester is guided and helped by the front end. We
do not assume that the tester knows the keywords, nor do we assume that
they will remember the argument number or types. We do assume that the
tester knows the domain being tested, however. The keywords that are loaded
in the column one drop-down list at any given time should be a subset of all
the keywords, where the starting point is the ending point of the previous
keyword.

This scheme assumes that a keyword always executes successfully to the end
so that it leaves the application being tested in the expected state. Of course, any
tester can tell you that isn’t likely to always be the case. Errors might occur or
the GUI could be changed. This is where the framework comes in. If there is any
failure during the execution of the keyword, or if the keyword execution does
not drive the system to the expected state, the framework must document the
occurrence in the log, clean up the environment (including backing out and
perhaps shutting down the application being tested), and move the automation
suite to the next test to be run.

This recovery is transparent to the tester. When correctly built, the keyword
architecture allows the testers using it to make the assumption that every test
will pass, thus simplifying the testing from the viewpoint of the tester.

We might not have figured out the hypothetical magic wand mentioned
earlier yet, but the more intelligence automators can add to the framework, the
closer we get to it.

If we assume that we can build an intelligent front end to help guide the
user, then what we need are keywords. Each keyword must be able to execute a
task, as we discussed for our manual test procedure. The testers arrange the key-
words in the order of execution, exactly the way they did for the manual test
procedure. Instead of having a manual tester supply the context and reasonable-

__AST V3.book Seite 507 Freitag, 1. Juli 2011 1:06 13

508 9 Test Techniques

ness during execution, however, the automator supplies it by programming a
framework function to do the task. The automator builds into the keyword
function the data pickup, error handling, synchronization, expected result han-
dling, and anything else that a manual tester would have handled.

The automator also must build a virtual machine script. This will handle all
of the logging tasks, exception handling, failed test handling, and execution of
the keywords. Essentially, this virtual machine is the framework. When started,
this script likely sets up the environment, initializes the log, picks up the first
test to be run, picks the first keyword, executes it, picks up the next keyword,
etc.

There also should be a business process by which a tester can request a new
keyword to perform a certain task. Suppose we were automating MS Word test-
ing. A tester might ask for a keyword that allows her to create a table in a docu-
ment, with row and column count as parameters. Once the tester asks for it, the
automator would make the keyword available so that the tester could immedi-
ately start using it in her test cases. Then the automator would need to create the
functionality behind the keyword to make it executable before the tests are to be
run.

All of this can be as complex as needed by the organization. Note that we
are discussing building a front end, a virtual execution environment, exception
handler, and all of the other bells and whistles: All of this work means the
automator must be a good developer. This is a real software system that we are
talking about, and it likely will take a small team of automators/programmers to
build it.

But consider the implications of this system. We have effectively built a
truly scalable system. Suppose you have five automators building keyword
systems for several different projects in an organization. There are some seri-
ous costs there. But notice that any number of projects with any number of
testers can be supported. Ten or twenty or a hundred testers could all use the
keyword system. There is no limit to the number of testers, nor is there a
limit to the number of tests. One thousand or 100,000 test cases; we still only
need the same number of automators. Compare that to when we were using
scripts and there was a finite number of scripts that a single automator could
support.

__AST V3.book Seite 508 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 509

Reviewing where we are now:

■ Domain experts (i.e., testers) describe the keywords needed and build the
test cases using them.

■ Automation experts write the automation code to back the keywords and a
mechanism for putting them in order easily (the front end).

■ An unlimited number of testers can be supported by relatively few
automators.

■ Test creation is essentially point and click from the front end.

Incidentally, most of these that Jamie has built, he has included the execution
module in the front end. By allowing anyone to graphically choose what and
when to run, we simplify that aspect also. Some of these also had log browsers
built in also.

There is a huge benefit to the keyword architecture that we have not yet
addressed. Throughout this entire section on automation, we have stressed what
a problem change is. Anytime we are dealing with scripts and the underlying
system under test changes, the scripts stop working and they must be repaired.
That means the more tests we have, the more effort it takes to fix them. The
simple framework architecture and data-driven architectures helped some, but
there was still this issue with the scripts.

Manual test procedures, on the other hand, are rarely brittle—at least if we
are careful to write them toward the logical end of the detail spectrum rather
than as rigid concrete tests with screens, inputs, and outputs all hard-coded into
the procedure. As long as we do the same tasks, most change does not break
them. The manual test procedures—at least when logical rather than concrete—
are essentially abstract. Of course, the amount of detail in the test procedure is
going to be governed by more than how changeable they need to be. Medical,
mission-critical, and similar software testing is likely to require extremely
detailed procedures.

Consider a common task like opening a file in Microsoft Word. We did it
one way in Word for DOS, another way for Word for Windows 3.1. Each differ-
ent version of Word changed the way we opened a file. The differences are
mostly subtle; insurmountable to capture/replay, but easy to manual testers.
Any automated function would have to change each time. But a manual test

__AST V3.book Seite 509 Freitag, 1. Juli 2011 1:06 13

510 9 Test Techniques

procedure that said, “Open a file in Word” would not need to change; the details
are abstracted out.

A keyword test is much like a manual test procedure. It contains abstract
functionality, like <OpenFile>. Well-designed keyword tests are very resistant
to change. The interface can change a lot, but the abstract ideas change very
slowly.

With keyword-based testing, our main assets, the keyword tests themselves,
are resistant to change. The (perhaps) thousands of test cases do not need to
change when the interface changes because they are abstract. The code backing
each keyword will certainly be likely to change over time. And the automators
will need to make those changes. But the main assets, the tests themselves, will
not change. The number of keywords tends to be relatively stable, so the main-
tenance will be relatively minimal (especially when compared to the amount of
testing that is supported).

When you look at the advantages, if an organization is going to start an
automation project, keywords are often the way to go. Not every domain is suit-
able for this kind of automation, but many are.

One disadvantage of capture/replay automation has always been how late
in a cycle it can be done. To record a script, the system has to be well into sys-
tem test so a recording can be successfully made. The earlier you record, the
more likely change will invalidate it. The simple framework architecture miti-
gates that a little, but by the time the simple framework functions can be com-
pleted, plus all of the scripts created, it is again late in the cycle. Data-driven
testing still uses scripts, so we still have the same problem, although to a lesser
degree.

But keywords are abstract. As long as we have a good idea what the work-
flow is going to be for our system, we can have the keywords defined before the
system code is written. Our testers could be developing their keyword test cases
before the system is delivered, exactly the way they could when they were creat-
ing manual test cases and procedures. Certainly the functionality of the key-
words will not be there yet. However, the automators could conceivably have the
functionality close to ready on first delivery of the code based on early releases
from development. Then, once the code is delivered, some minor tweaks and
the automation might be running—early in system test when it could really
make a difference.

__AST V3.book Seite 510 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 511

Historically, automation has mostly been useful for regression testing dur-
ing system test (or later). Now, with keyword testing, it is possible to push auto-
mation further up in the schedule. Conceivably, a suite of automated tests could
be applied to functionality the first time it comes into test if the automators
were supplied with early code releases to write their functions.

Data-driven techniques can be used to extend the amount of testing also.
Rather than inputting specific data into column two, we could input pointers to
data stores where multiple data sets are stored.

There are a number of options available for keyword-driven tools. There are
several open-source frameworks available as well as several commercial tools.
Some of these sit on existing automation capture/replay tools, so you can adapt
to keywords without losing your investment in frameworks that you have
already written. Over his career, Jamie has created a number of these, starting
back in the mid-1990s. While they take a lot of time and effort, he has generally
found it to be well worth the investment.

If your organization has the skill set, you might also want to build your own
framework. The front end could then be customized for higher productivity
and to fit your own needs.

Keywords are generally useful at the system and acceptance test levels.

9.4.7 Keyword Exercise

Refer to the pseudocode recorded script in figure 9-6. This is the same code you
saw in figure 9-5.

Devise a keyword grammar that could be used to test this portion of the
application. Note that you will need to use your imagination a bit to figure out
what the recorded script is doing. The important thing is to look for the under-
lying business logic while reading the actions.

__AST V3.book Seite 511 Freitag, 1. Juli 2011 1:06 13

512 9 Test Techniques

Figure 9–6 WinRunner script translated to pseudocode

9.4.8 Keyword Exercise Debrief

The first six lines of this script could be seen as a single action. Note that the fol-
lowing would be a description of a human being (assume a doctor) interacting
with the application using the keyboard and mouse:

■ The doctor must have earlier started the application, causing a password
dialog screen to pop up. So the first thing is to mouse click on that screen,
causing it to become active (line 1).

■ Since line 2 consists of us typing into an edit box (edt_MRnumber), we have
to assume it was the default control. So we need to type in the value
(MRE5418).

■ In line 3, we tab from the first edit box to the password edit box.
■ We type in the password in line 4 (kzisnyixmynxfy).
■ Notice that in line 5 we are setting the value in another edit box. How did

we get there? It may have been a mouse click; it may have been
automatically handled by a Return key press that was handled directly by
the control. It really does not matter. The important part is it tells us that we
have a third value that needs to be entered. In line 5, we type into Edit_2
(which is actually the domain edit field) the domain value (VN00417).

__AST V3.book Seite 512 Freitag, 1. Juli 2011 1:06 13

 9.4 Keyword-Driven Test Automation 513

The sum result of the preceding statements is a single logical action. Since key-
word names should be self-documenting, we are going to call this one:

<LoginDomain>

It will take three arguments:

UserID, Password, and DomainName

This would be where the intelligent front end would need to come in to help the
tester. There would have been a <StartApp> keyword that would have initialized
the system, leaving it at the screen needed for <LoginDomain> to be called.
After startup, the Task to do drop-down list would contain <LoginDomain>.
When selected, it would automatically pop up three edits so the user would see
that three arguments must be passed in when using the keyword. After filling
them in, the user would go on to enter the next keyword.

Lines 7 and 8 would be performed by the doctor as follows: After the doctor
logs in to the domain, some kind of dialog pops up with a question. Since the
script shows the user selected No when it popped up, we can reasonably assume
that there are two separate paths we could take (Yes or No).

So the keyword we need is going to take a single Boolean argument. In this
case, the question that was asked was, “Do you want to prescribe a treatment?”
A logical keyword should show that a decision is being made. Therefore, we will
call it:

<DoTreatment> or perhaps <DoTreatment?>

This keyword will take a single Boolean argument which the front end would
likely show as a checkbox.

The next step would appear to be redundant, but it was part of the security
on the multilevel system. Lines 9–13 are the same actions as 1–6 on a different
window. This is another layer of security allowing the doctor to get into the sec-
tion of the system that allows her to prescribe drugs. Notice that we cannot use
the same keyword (LoginDomain) because it is a different window that we are
logging in to. So we need another keyword:

<LoginSection>

This will take three arguments, UserID, Password, and a Boolean value. Note
that in this case we are handling the box that pops up after the login by passing

__AST V3.book Seite 513 Freitag, 1. Juli 2011 1:06 13

514 9 Test Techniques

in whether the doctor will click Yes or No. In this case, the message is a nag
(informational) message that we want to ignore—hence the Yes.

Our keyword script (so far) would look like this:

Finally, notice that we could conceivably pass four arguments to <LoginDo-
main>, with the fourth being whether to answer Yes or No to the screen that
pops up after logging in to the domain. That would have eliminated the <DoT-
reatment> keyword. We think this is strictly a matter of taste. We need to bal-
ance the amount of things that a single keyword does by the number of
keywords we have and the complexity of trying to understand each task.

9.5 Performance Testing

This section is going to deal with performance tools.
Before performance tools were readily available, we used to simulate perfor-

mance testing using a technique we called sneaker-net testing. Early Saturday or
Sunday morning, a group of people would come into the office to do some test-
ing. The idea was to try to test a server when few (or no) people were on it.

Each person would get set up on a workstation and prepare to connect to
the server. Someone would give a countdown, and at go!, everyone would press
the connection key. The idea was to try to load the server down with as many
processes as we could to see what it would do. Sometimes we could cause it to
crash; usually we couldn’t. Occasionally, if we could get it to crash once, we
could not crash it a second time.

This nonscientific attempt at testing was pretty weak. We could not get
meaningful measurements; it was essentially binary: failed | didn’t fail. If we did

Keyword Arg1 Arg2 Arg3
1 LoginDomain “MRE5418” “kzisnyixmynxfy” “VN00417”

2 DoTreatment No

3 LoginSection “BC3456” “dzctmzgtdzbs” Yes

Learning objectives

(K3) Design a performance test using performance test tools
including planning and measurements on system characteristics

__AST V3.book Seite 514 Freitag, 1. Juli 2011 1:06 13

 9.5 Performance Testing 515

get a failure, it was rarely repeatable, so we often did not understand what it told
us.

Luckily we don’t have to do this anymore; in today’s world, real perfor-
mance test tools are prevalent and relatively cheap compared to even 10 years
ago. There are now open-source and leased tools as well some incredible vendor
tools available.

We talked about the testing aspects of performance testing back in chapter
5. In this chapter, we want to discuss the tool aspect. For the purpose of this dis-
cussion, let’s assume that we have done all of the modeling/profiling of our sys-
tem, evaluated the test and production environments, and are getting ready to
get down to actually doing the testing.

Often, the test system is appreciably smaller than the production system. Be
aware that you may need to extrapolate all of your findings before they are actu-
ally meaningful. Extrapolation has been termed “black magic” by many testers.
If the system model you are working from is flawed, extrapolating it to a full-
size system will push the results that much further off. On top of that, there
could easily be bottlenecks in the system that will only show up when the sys-
tem is running at higher levels than we might be able to test in a lab. We can
check for that on the system we test but have no way of knowing which prob-
lems will show up in production where the hardware is likely different, or at
least set up differently.

At this point we need to define the data we are going to use, generate the
load, and measure the dynamic aspects that we planned on. It is pretty clear that
performance testing with poor or insufficient data is not going to be terribly
useful. Coming up with the right data is a non-trivial task.

We could use production data, but there are a couple of caveats that we need
to consider. There are laws that prevent us from using certain data. For example,
in the United States, testing with any data that is covered by HIPAA (Health
Insurance Portability and Accountability Act) is problematic. Different coun-
tries have different privacy laws that might apply; testers must ensure that what
they are using for data is not going to get them charged with a crime.

Generally, production data is much bigger than the available space in the
test environment. That raises many questions about how the production data
(assuming we can use it) can be extracted without losing important links or
valuable connections between individual data pieces. If we lose the context that

__AST V3.book Seite 515 Freitag, 1. Juli 2011 1:06 13

516 9 Test Techniques

surrounds the data, it becomes questionable for testing (since that context
might be needed by the system being tested).

Luckily there are a variety of tools that can be used to generate the data you
need for testing. Depending on the capabilities needed, possibilities range from
building your own data using an automation tool to using really pricey vendor
tools. Jamie’s suggestion, based on getting lost several times in his career by
underestimating the effort it would take to generate enough useful data, is to
plan for lots of time, effort, and resources on the creation of your data.

There are three distinct types of data that will be required.
There is the input data that your virtual users will need to send to the

server. This includes the following data:

■ User credentials (user IDs and passwords): Reusing credentials during the
test may invalidate some of the findings (due to cache and other issues). In
general, you should have a separate user ID for each virtual user tested.

■ Search criteria: Part of exercising the server will undoubtedly include
searching for stuff. These searches should be realistic for obvious reasons.
Searches could be by name, address, region, invoices, product codes, etc.
Don’t forget wild card searches if they are allowed. You should be familiar
with all of the different kind of searches your system can do and model and
create data for them.

■ Documents: If your system deals with attached documents (including
uploading and downloading), then those must be supplied also. Different
files should be tested; once again, if the server is going to do a particular
thing in production, it probably should be modeled in test.

Then we have the target data. That would include all of the data in the back end
that the server is going to process. This is generally where you get into huge data
sets. Too small, and some of the testing will not be meaningful (timing for
searches and sorts, for example). You will likely need to be able to extrapolate all
of your findings (good luck with that) if this data set is appreciably smaller than
production.

Jamie’s experience in performance testing is that the test data is usually
smaller than production. Rex has seen many times where the amount of data is
similar to production. Clearly, either case is possible. If you have lots of data,
great. If not; well, we do the best we can with what we have.

__AST V3.book Seite 516 Freitag, 1. Juli 2011 1:06 13

 9.5 Performance Testing 517

Note that the back-end data will need to support the input data that we dis-
cussed earlier.

You will most certainly need to have a process to roll the data back after a
test is completed. Remember that we often will run a number of performance
tests so that we can average out the results. If we are not testing with the data-
base in the same condition each time, then the results may not be meaningful.
Don’t forget to budget in the time it takes to reset the data.

Finally, we have to consider the runtime data. Simply getting an acknowl-
edgment from the server that it has finished is probably not sufficient. To tell
whether the server is working correctly, you should validate the return values.
That means you need to know beforehand what the returned data is supposed
to be. You could conceivably compare the return data manually; don’t forget to
bring your lunch! Clearly this is a spot for comparator tools, which of course
requires you to know what is expected.

One good way to get reference data is to run your performance transactions
before the actual performance test begins. You are going to check the trans-
actions before using them in a test, aren’t you? Make sure the data is correct,
save it, and then you can use a comparator tool during the actual run.

Since we know what kinds of transactions we are going to be testing—we
identified them in the modeling step—we now need to script them. For each
transaction, we need to identify the metrics we want to collect if we did not do
that while modeling the system. Then the scripting part begins.

Some performance tools have a record module that captures the middle-
ware messages that connect the client to the server and places them in a script
while the tester runs the transaction scenario by hand from the client. This is
what Jamie has most often seen. More complex and time consuming would be
to program the transaction directly. This may be needed if the system is not
available early enough to do recording.

Once we have a script, we need to parameterize it. When it was recorded,
the actual data used was placed in the script. That data needs to be pulled out
and a small amount of programming must be done so that in each place the
script used a constant value, it now picks the data up from the data store.

Once the script has been written, it must be tested. Try running it by itself;
try running multiple instances of it to make sure the data parameterization was
done correctly.

__AST V3.book Seite 517 Freitag, 1. Juli 2011 1:06 13

518 9 Test Techniques

By the time we get to this point, we are almost ready. We still need to set up
our measuring tools. Most servers and operating systems have a variety of built-
in tools for measuring different aspects of the server performance.

There are two types of metrics we need to think about. As a reminder from
chapter 6, the first metrics are response time and throughput measures, which
compute how long it takes for the system to respond to stimuli under different
levels of load and how many transactions can be processed in a given unit of
time. The second set of metrics deals with resource utilization; how many
resources are needed to deliver the response and throughput we need.

Response time generally consists of the amount of time it takes to receive a
response after submitting a request. This is often measured by the server (or
workstation) that is submitting the requests to the server and is usually per-
formed by the tool submitting the requests. Any other time before the request is
submitted and after the response is received is called “think time.” Throughput
measures are also generally measured by the performance tool by calculating
how many requests were submitted where responses were received within a
given measure of time.

For the resource usage measurements, most are done on the servers. If we
are dealing with a Windows server, then monitoring is relatively simple.
Perfmon is a Microsoft tool that comes with the operating system; it allows
hundreds of different measurements to be captured.

If you are dealing with Linux or UNIX, there are a bunch of different tools
that you might use:

■ Pmap: Process memory usage
■ Mpstat: Multiprocessor usage
■ Free: Memory usage
■ Top: Dynamic real-time view of process activity on server
■ Vmstat: System activity, hardware and system info
■ SAR: Collect and report system activity
■ Iostat: Average CPU load and disk activity

For mainframe testing, there are a variety of built-in or add-on tools that can be
used.

__AST V3.book Seite 518 Freitag, 1. Juli 2011 1:06 13

 9.5 Performance Testing 519

Explaining how each of these tools works is, unfortunately, out of scope for
this book. However, each one can be found and extensive knowledge discerned
by performing a web search.

When dealing with these measurements, remember: we are still testing.
That means that expected results are important to compare against the actual
values returned.

So now we are all set. We can start our performance test, right? Well, maybe
not quite yet. We need to try everything together; we have to smoke test our
performance test. It is our experience that all of the different facets almost never
work correctly together on the first try. When we start ramping up a non-trivial
load, we often start triggering some failures.

This is a great time to have the technical support people at hand. The net-
work expert, database guru, and server specialist should all be handy. When—as
inevitably happens—the system stubs its toe and falls over, they can do immedi-
ate trouble-shooting to find out why. Often it is just a setting on the server or a
tweak to the database that is needed and you are back to the smoke test. Some-
times, of course, especially early in the process, you find a killer failure that
requires extensive work. You need to be prepared because that does happen
fairly often.

Once you get it to all run seamlessly, you might want to capture some base-
lines. What kind of response times are we getting with low load—and what did
we expect to get? These will come in handy later when ramping up the test for
real.

There are some extra things to think about when setting up a performance
test.

In real life, people do not enter transaction after transaction without delay.
They take some time to think about what they are seeing. This kind of informa-
tion should have been discussed when we were modeling the system, as well as
how many virtual users we wanted to test.

Depending on the kind of testing we are doing, we can ramp up the virtual
user count in several different ways:

■ We can use the big bang, where we just dump everyone onto the system at
once (a spike test scenario).

__AST V3.book Seite 519 Freitag, 1. Juli 2011 1:06 13

520 9 Test Techniques

■ We may ramp up and down slowly, throwing all of the different transactions
into the mix.

■ We may delay some users while using other ones.

The way we ramp up is often decided based on the kind of testing we are doing.
Likewise, the duration of the test will also depend on the type of test. We

may run it for a fixed amount of time, based on our objectives. Some tests we
might want to run until we are out of test data. Other tests we might decide to
run until the system fails.

After we shut down the performance test, we still have some work to do. We
must go grab all of the measurements that were captured. One good practice is
to capture all of the information from the run so we can analyze it later. Inevita-
bly, we forget something on our initial sweep; if we don’t save it off, it will be lost
forever.

After all this, draw a deep breath, step back, and compare what you found
with what you expected. Did you learn what you wanted to? Or in other words,
did the results show that the requirements are fulfilled? This is not a silly ques-
tion. Jamie read an article in Wired magazine that discussed how many
researchers run an experiment and then don’t believe the results they got
because it did not fit in with their preconceived mind-set. As testers, we are pro-
fessional pessimists. We need to learn to identify a passing test—and a failing
test.

If the test passed, then you are done. Write the report and go get a tall refreshing
beverage; you deserve it. If there are details that weren't captured...well, welcome to the
club. Tomorrow is another day.

9.5.1 Performance Testing Exercise

Given the efficiency requirements in the HELLOCARM system requirements
document, determine the actual points of measurement and a brief description
of how you will measure the following:

1. 040-010-050
2. 040-010-060
3. 040-020-010

The results will be discussed in the next section.

__AST V3.book Seite 520 Freitag, 1. Juli 2011 1:06 13

 9.5 Performance Testing 521

9.5.2 Performance Testing Exercise Debrief

040-010-050

Credit-worthiness of a customer shall be determined within 10 seconds
of request. 98% or higher of all Credit Bureau Mainframe requests shall
be completed within 2.5 seconds of the request arriving at the Credit
Bureau.

In this case, we are testing time behavior. Note that this requirement is badly
formed in that there are two completely different requirements in one. That
being said, we should be able to use the same test to measure both.

The first, 2.5 seconds to complete the Credit Bureau request:

Ideally, this measurement would be taken right at the Credit Bureau Mainframe,
but that is probably not possible given the location of it. Instead, we would have
to instrument the Scoring Mainframe and measure the timing of a transaction
request to the Credit Bureau Mainframe against the return of that same transac-
tion. That would not be exact because it does not include transport time, but
since we are talking about a rather large time (2.5 seconds), it would likely be
close enough.

The second, 10 seconds for the determination from the Telephone Banker side:

This measurement could be taken from the client side. Start the timer at the
point the Telephone Banker presses the Enter button and stop it at the point the
screen informs the banker that it has completed. Note that in this case, we
would infer that the client workstation must be part of the loop, but since it is
single threaded (i.e., only doing this one task), we would expect actual client
time to be negligible. So, our actual measurement could conceivably be taken
from the time the virtual user (VU) sends the transaction to the time we get a
return on the wire. That would allow the performance tool to measure the time.

Clearly, this test would need to be run with different levels of load to make
sure there is no degradation at rated load; 2,000 applications per hour in an
early release (040-010-110) and later at 4,000 applications per hour (040-010-
120). In addition, it would need to be run a fairly long time to get an acceptable
data universe to calculate the percentage of transactions that met the require-
ments.

__AST V3.book Seite 521 Freitag, 1. Juli 2011 1:06 13

522 9 Test Techniques

040-010-060

Archiving the application and all associated information shall not impact
the Telephone Banker's workstation for more than .01 seconds.

Again, we are measuring time behavior.
Because the physical archiving of the record is only a part of this test, this

measurement would be made by an automation tool running concurrently with
the performance tool. Our assumption is that the way the requirement is
worded, we want the Telephone Banker ready to take another call within the
specified time period. That means the workstation must reset its windows, clear
the data, etc. while the archiving is occurring.

We would have a variety of scenarios that run from cancellation by the cus-
tomer to declined applications to accepted. We would include all three types of
loans, both high and low value. These would be run at random by the automa-
tion tool while the performance tool loaded down the server with a variety of
loans.

The start of the time measurement will depend on the interface of HELLO-
CARMS. After a job has completed, the system might be designed to reset itself
or the user might be required to signal readiness to start a new job. If the system
resets itself, we would start an electronic timer at the first sign of that occurring
and stop it when the system gives an indication that it is ready. If the user must
initiate the reset by hand, that will be the trigger to start the timer.

040-020-010

Load Database Server to no more than 20% CPU and 25% resource
utilization average rate with peak utilization never more than 80% when
handling 4,000 applications per hour.

This requirement is poorly formed. During review, we would hope that we
would be able to get clarification on exactly what resources are being discussed
when specifying percentages. For the purpose of this exercise, we are going to
make the following assumptions:

■ 25% resource utilization will be limited to testing for memory and disk
usage.

■ Peak utilization applies to CPU alone.

__AST V3.book Seite 522 Freitag, 1. Juli 2011 1:06 13

 9.6 Sample Exam Questions 523

This test will be looking at resource utilization, so we would monitor a large
number of metrics directly on the server side for all servers:

■ Processor utilization on all servers supplying the horsepower
■ Available memory
■ Available disk space
■ Memory pages per second
■ Processor queue length
■ Context switches per second
■ Queue length and time of physical disk accesses
■ Network packets received errors
■ Network packets outbound errors

The test would be run for an indeterminate time, ramping up slowly and then
running at the rated rate (4,000 applications per hour) with occasional forays
just above the required rate.

After the performance test runs, we would graph out the metrics that had
been captured from the Database Server. Had the server CPU reached 80% at
any time, we would have to consider the test failed. Averaging out the entire
time the test had been running, we would look for memory, disk, and CPU
usage on the Database Server to make sure they averaged less than the rated
value.

Note that this test points out a shortcoming of performance testing. In pro-
duction, the Database Server could easily be servicing other processes beyond
HELLOCARMS. These additional duties could easily cause the resources to
have higher utilization than allowed under these requirements.

In performance testing, it is always difficult making sure we are comparing
apples to apples and oranges to oranges. We fear that without more information,
we might just be measuring an entire fruit salad in this test.

9.6 Sample Exam Questions

1. Your organization has hired a new CIO due to several poor releases in the
past year. The CIO came from a highly successful software house and wants
to make immediate changes to the processes currently being used at your
company. The first process change to come down is a hard-and-fast rule

__AST V3.book Seite 523 Freitag, 1. Juli 2011 1:06 13

524 9 Test Techniques

that all code must be run through a static analysis tool and all errors and
warnings corrected before system test is complete. As the lead technical test
analyst for the current project, which of the following options do you think
best describes the explanation you should give to the CIO about why this
new rule is a bad idea?

A. Your staff has no training on these tools.

B. There is no budget for buying or training on these tools.

C. Changing existing, working code based on warnings from static
analysis tools is not wise.

D. Given the current work load, the testers do not have time to per-
form static testing.

2. You flagship system has been experiencing some catastrophic failures in
production. These do not occur often; sometimes a month can go between
failures. Unfortunately, to this point the test staff and support staff have not
been able to re-create the failures. Investigating the issue, you have not
found any proof that specific configurations have caused these problems;
failures have occurred in almost all of the configurations. Which of the fol-
lowing types of testing do you believe would have the most likely chance of
being able to solve this problem?

A. Soak-type performance testing

B. Keyword-driven automated testing

C. Static analysis

D. Dynamic analysis

3. Which of the following points of information about your organization
would tend to make keyword-driven automation a desirable automation
method rather than a straight data-driven methodology?

A. Almost all of the testers on your test team have backgrounds in pro-
gramming.

B. The systems you are testing have radical interface changes at least
three times a year.

__AST V3.book Seite 524 Freitag, 1. Juli 2011 1:06 13

 9.6 Sample Exam Questions 525

C. Most of your testers came from the user or business community.

D. Your organization has a limited budget for purchasing tools.

4. You are in the analysis and design phase of your performance testing
project. You have evaluated the production and test environments. You have
created the data to be used and built and parameterized the scripts. You
have set up all of the monitoring applications and notified the appropriate
support personnel so they are ready to troubleshoot problems. Which of the
following tasks, had it not been done, would surely invalidate all of your
testing?

A. Ensured that the test environment is identical to the production
environment

B. Modeled the system to learn how it’s actually used

C. Purchased or rented enough virtual user licenses to match peak
usage

D. Brought in experienced performance testers to train all of the par-
ticipants

5. You are senior technical test analyst for a test organization that is rapidly
falling behind the curve; each release, you are less able to perform all of the
testing tasks needed by your project. You have very little budget for tools or
people, and the timeframe for the project is about to be shortened. The
testers in the group tend to have very little in the way of technical skills.
Currently, 100 percent of your testing is manual, with about 15 percent of
that being regression testing. Which of the following decisions might help
you catch up to the curve?

A. Allow the testers to use open-source tools to pick low-hanging fruit

B. Put a full automation project into place and try to automate all test-
ing

C. Find an inexpensive requirements/test management tool to roll out

D. Build your own automation tool so it does not cost anything

__AST V3.book Seite 525 Freitag, 1. Juli 2011 1:06 13

526 9 Test Techniques

__AST V3.book Seite 526 Freitag, 1. Juli 2011 1:06 13

527

10 People Skills and Team Composition

“Decimation: punishment in the Roman army. Of every ten soldiers,
one was executed.… After a very serious offense (e.g., mutiny or having
panicked), the commander of a legion would take the decision, and an
officer would go to the subunit that was to be punished. By lot, he chose
one in ten men for capital punishment. The surviving nine men were
ordered to club the man to death.”

Motivational management techniques of the Roman army,
explained by Jona Lendering’s article in Livius: Articles on

Ancient History (www.livius.org).

The 10th chapter of the Advanced syllabus is concerned with people skills and
test team composition. The chapter starts with the skills of the individual tester,
then moves to internal and external test team dynamics. It concludes with dis-
cussions of motivating testers and test teams and with communicating testing
results. Chapter 10 of the Advanced syllabus has six sections.

1. Introduction
2. Individual Skills
3. Test Team Dynamics
4. Fitting Testing within an Organization
5. Motivation
6. Communication

Most of these sections are primarily the domain of test managers. However, let’s
look at each section, particularly the section on communication, and how it
relates to technical test analysis.

__AST V3.book Seite 527 Freitag, 1. Juli 2011 1:06 13

http://www.livius.org

528 10 People Skills and Team Composition

10.1 Introduction

This chapter is focused primarily on test management topics related to manag-
ing a test team. Thus, it is mainly the purview of Advanced Test Manager exam
candidates. Since this book is for technical test analysts, most of our coverage in
this chapter is for simple recall.

However, it is important for all testers to be mindful of their relationships
while doing test work. How effectively you communicate with your peers will
influence your success as a tester. Of course, you should also be sure to improve
your hard skills over time so that you become a better tester.

10.2 Individual Skills

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 10 of the Advanced
syllabus for general recall and familiarity only.

10.3 Test Team Dynamics

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the

Learning objectives

Recall of content only

Learning objectives

Recall of content only

Learning objectives

Recall of content only

__AST V3.book Seite 528 Freitag, 1. Juli 2011 1:06 13

 10.4 Fitting Testing within an Organization 529

course of studying for the exam, read this section in chapter 10 of the Advanced
syllabus for general recall and familiarity only.

10.4 Fitting Testing within an Organization

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 10 of the Advanced
syllabus for general recall and familiarity only.
I

10.5 Motivation

The concepts in this section apply primarily for test managers. There are no
learning objectives defined for technical test analysts in this section. In the
course of studying for the exam, read this section in chapter 10 of the Advanced
syllabus for general recall and familiarity only.

Learning objectives

Recall of content only

Learning objectives

Recall of content only

ISTQB Glossary

independence of testing: Separation of responsibilities, which encourages
the accomplishment of objective testing.

independence of testing

__AST V3.book Seite 529 Freitag, 1. Juli 2011 1:06 13

530 10 People Skills and Team Composition

10.6 Communication

There are three levels of communication for most test teams:

■ First, we communicate, mostly internally but also with others, about the
documentation of test products. This includes discussions of test strategies,
test plans, test cases, test summary reports, and defect reports.

■ Second, we communicate feedback on reviewed documents, typically on a
peer level both inside and outside the test group. This includes discussions
about requirements, functional specifications, use cases, and unit test docu-
mentation.

■ Third, we communicate as part of information gathering and dissemina-
tion. This can include not just peer level communications, but communica-
tions to managers, users, and other project stakeholders. It can be sensitive,
as when test results are not encouraging for project success.

It’s important to remember that both internal and external communications
affect the professionalism of technical test analysts.

Effective communication assists you in achieving your objectives as a tech-
nical test analyst, while ineffective communication will hinder you. It’s impor-
tant to be professional, objective, and effective. You want each communication
you have, both inside and outside the test team, to build and maintain respect
for the test team. When communicating about test results, giving feedback on
issues with documents, or delivering any other potentially touchy news, make
sure to use diplomacy.

It’s easy to get caught up in emotions at work, especially during test execu-
tion when things are often stressful. Remember to focus on achieving test
objectives. Remember also that you want to see the quality of products and
processes improved. Don’t engage in communication that is contrary to those
goals.

Learning objectives

(K2) Describe by example professional, objective, and effective
communication in a project from the tester perspective,
considering risks and opportunities.

__AST V3.book Seite 530 Freitag, 1. Juli 2011 1:06 13

 10.6 Communication 531

It’s also easy to communicate as if you were communicating with yourself
or someone like you. In other words, we testers often speak in a sort of short-
hand about very fine-grained details of our work and findings, and with a cer-
tain degree of skepticism. When talking to fellow testers, this is fine. However,
you have to remember to tailor communication for the target audience. When
talking to users, project team members, management, external test groups, and
customers, you need to think carefully about how you are communicating,
what you are communicating, and whether your communications support your
goals.

As test managers, we have seen a single thoughtless e-mail, bug report, or
hallway conversation do a great deal of damage to a test team’s reputation and
credibility. So even with all the other work you have to do, remember to think
about your communications.1

Figure 10-1 shows an example of test communication. This is an excerpt of
an e-mail to a vendor about the results of acceptance testing of the RBCS web-
site. The first paragraph is to communicate that this is a carefully thought-out
analysis, not just one of the dozens of “fired-off ” e-mails someone is likely to
get. The message is, “Pay attention to this e-mail, please, because I did.” This
paragraph also refers the reader to further details in the attached document.

The second paragraph—including the bulleted list and closing sentence—
summarizes what needs to be done to complete the acceptance testing and
move into deployment. The third paragraph clarifies the meaning of the defer-
ral of certain bugs. Rex wanted to make sure RBCS was not waiving any legal
rights, so RBCS had to insist on these problems being fixed later. The final para-
graph is a subtle hint that RBCS staff members were disappointed to be still
finding problems.

1. You can find an excellent discussion of people issues in testing in Judy McKay’s Managing the
Test People (Rocky Nook, 2007)

__AST V3.book Seite 531 Freitag, 1. Juli 2011 1:06 13

532 10 People Skills and Team Composition

Figure 10–1 Acceptance test status e-mail

Now, this type of e-mail is appropriate for a customer to send to a vendor,
explaining test results. Would you send it to your development colleagues?
Probably not. The important point here is that every word and every sentence of
that e-mail had a communication objective.

10.7 Sample Exam Questions

To end each chapter, you can try one or more sample exam questions to rein-
force your knowledge and understanding of the material and to prepare for the
ISTQB Advanced Level Technical Test Analyst exam.

1. Assume you are a technical test analyst working on a banking project to
upgrade an existing automated teller machine system to allow customers to
obtain cash advances from supported credit cards. You are unable to obtain
information about the minimum and maximum throughput of the connec-
tions between the automated teller machine and the payment processing
networks, which is not included in the design specification. Which of the
following is an example of a good way to communicate that problem in an
e-mail?

I have spent a couple of hours reviewing the current status of the site and the
acceptance test. Please see attaches [documents] with deferred bug reports and [test

The following issues are must-fix to move forward with Deployment:

Consistency of meeages and UI (for examples, see bug 85, 91, 92, 95, 97)

 Identification and resolution of internal dead links (see bug 103)

While some of these issues might strike the casual reader as picayune, please understand

have agreed to defer a number of bugs from pass 1 that either failed verification testing or
which related advertised product features [the vendor] retroactively and unilaterally

of the disposition of those bugs for all time.

Finally, please note that there were eighteen (18) new bug reports filed during the
second pass.

__AST V3.book Seite 532 Freitag, 1. Juli 2011 1:06 13

 10.7 Sample Exam Questions 533

A “Until I receive a complete specification of throughput between
ATMs and the network, no progress on test design can occur.”

B “When will it be possible for us to know the minimum and
maximum throughput of the ATM/network connections? Test
design is impeded by a lack of clarity here.”

C “Here we go again. The design specification is incomplete and
ambiguous.”

D Do not communicate the problem; just log the delaying effect of
the information problem and be ready to explain the delays to
management when they ask.

__AST V3.book Seite 533 Freitag, 1. Juli 2011 1:06 13

534 10 People Skills and Team Composition

__AST V3.book Seite 534 Freitag, 1. Juli 2011 1:06 13

535

11 Preparing for the Exam

“Because I am hard, you will not like me. But the more that you hate me,
the more you will learn.”

Senior Drill Instructor to U.S. Marine boot camp attendees,
in Stanley Kubrick’s Vietnam film, Full Metal Jacket.

The 11th chapter of this book is concerned with topics that you need to know to
prepare for the ISTQB Advanced Level Technical Test Analyst exam. The chap-
ter starts with a discussion of the ISTQB Advanced Level Technical Test Analyst
learning objectives, which are the basis of the exams.

Chapter 11 of this book has two sections.

1. Learning objectives
2. ISTQB Advanced exams

If you are not interested in taking the ISTQB Advanced Level Technical Test
Analyst exam, this chapter might not be pertinent for you.

11.1 Learning Objectives

Each of the Advanced syllabus exams is based on learning objectives. A learning
objective states what you should be able to do prior to taking an Advanced
exam. Each Advanced exam has its own set of learning objectives. We listed the
learning objectives for the Advanced Technical Test Analyst exam at the begin-
ning of each section in each chapter.

The learning objectives are at four levels of increasing difficulty: remember-
ing, understanding, application, and analysis. Exam questions will be structured
so that you must have achieved these learning objectives to determine the

__AST V3.book Seite 535 Freitag, 1. Juli 2011 1:06 13

536 11 Preparing for the Exam

correct answers for the questions. The exam will cover the more basic levels of
remembrance and understanding implicitly as part of the more sophisticated
levels of application and analysis. For example, to answer a question about how
to create a test plan, you will have to remember and understand the IEEE 829
test plan template. So, unlike the Foundation exam, where simple remembrance
and understanding often suffice to determine the correct answer, on an
Advanced exam, you will have to apply or analyze the facts that you remember
and understand in order to determine the correct answer.

Let’s take a closer look at the four levels of learning objectives you will
encounter on the Advanced exam. The tags K1, K2, K3, and K4 are used to
indicate these four levels, so remember those tags as you review the Advanced
syllabus.

11.1.1 Level 1: Remember (K1)

At this lowest level of learning, the exam will expect that you can recognize,
remember, and recall a term or concept. Watch for keywords such as remember,
recall, recognize, and know. Again, this level of learning is likely to be implicit
within a higher-level question.

For example, you should be able to recognize the definition of failure as follows:

■ Nondelivery of service to an end user or any other stakeholder
■ Actual deviation of the component or system from its expected delivery,

service, or result.

This means that you should be able to remember the ISTQB glossary definitions
of terms used in the ISTQB Advanced syllabus and also standards like ISO 9126
and IEEE 829 that are referenced in the Advanced syllabus. Expect this level of
learning to be required for questions focused on higher levels of learning like
K3 and K4.

11.1.2 Level 2: Understand (K2)

At this second level of learning, the exam will expect that you can select the
reasons or explanations for statements related to the topic and can summarize,
differentiate, classify, and give examples. This learning objective applies to facts,
so you should be able to compare the meanings of terms. You should also be
able to understand testing concepts. In addition, you should be able to under-

__AST V3.book Seite 536 Freitag, 1. Juli 2011 1:06 13

 11.1 Learning Objectives 537

stand a test procedure, such as explaining the sequence of tasks. Watch for key-
words such as summarize, classify, compare, map, contrast, exemplify, interpret,
translate, represent, infer, conclude, and categorize.

For example, you should be able to explain the reason tests should be designed
as early as possible:

■ To find defects when they are cheaper to remove
■ To find the most important defects first

You should also be able to explain the similarities and differences between inte-
gration and system testing:

■ Similarities: Testing more than one component, and testing non-functional
aspects.

■ Differences: Integration testing concentrates on interfaces and interactions,
while system testing concentrates on whole-system aspects, such as end-to-
end processing.

This means that you should be able to understand the ISTQB glossary terms
used in the ISTQB Advanced syllabus and the proper use of standards like ISO
9126 and IEEE 829 that are referenced in the Advanced syllabus. Expect this
level of learning to be required for questions focused on higher levels of learn-
ing like K3 and K4.

11.1.3 Level 3: Apply (K3)

At this third level of learning, the exam will expect that you can select the cor-
rect application of a concept or technique and apply it to a given context. This
level is normally applicable to procedural knowledge. At K3, you don’t need to
expect to evaluate a software application or create a testing model for a given
software application. If the syllabus gives a model, the coverage requirements
for that model, and the procedural steps to create test cases from a model in the
Advanced syllabus, then you are dealing with a K3 learning objective. Watch for
keywords such as implement, execute, use, follow a procedure, and apply a proce-
dure.

__AST V3.book Seite 537 Freitag, 1. Juli 2011 1:06 13

538 11 Preparing for the Exam

For example, you should be able to do the following:

■ Identify boundary values for valid and invalid equivalence partitions.
■ Use the generic procedure for test case creation to select the test cases from

a given state transition diagram (and a set of test cases) in order to cover all
transitions.

This means that you should be able to apply the techniques described in the
ISTQB Advanced syllabus to specific exam questions. Expect this level of learn-
ing to include lower levels of learning like K1 and K2.

11.1.4 Level 4: Analyze (K4)

At this fourth level of learning, the exam will expect that you can separate infor-
mation related to a procedure or technique into its constituent parts for better
understanding and can distinguish between facts and inferences. A typical
exam question at this level will require you to analyze a document, software, or
project situation and propose appropriate actions to solve a problem or com-
plete a task. Watch for keywords such as analyze, differentiate, select, structure,
focus, attribute, deconstruct, evaluate, judge, monitor, coordinate, create, synthe-
size, generate, hypothesize, plan, design, construct, and produce.

For example, you should be able to do the following:

■ Analyze product risks and propose preventive and corrective mitigation
activities.

■ Describe which portions of an incident report are factual and which are
inferred from results.

This means that you should be able to analyze the techniques and concepts
described in the ISTQB Advanced syllabus to answer specific exam questions.
Expect this level of learning to include lower levels of learning like K1, K2, and
perhaps even K3.

11.1.5 Where Did These Levels of Learning Objectives Come From?

If you are curious about how this taxonomy and these levels of learning objec-
tives came to be in the Foundation and Advanced syllabi, then you’ll want to
refer to Bloom’s taxonomy of learning objectives, defined in the 1950s. It’s fairly
standard educational fare, though you probably haven’t encountered it unless
you’ve been involved in teaching training courses.

__AST V3.book Seite 538 Freitag, 1. Juli 2011 1:06 13

 11.2 ISTQB Advanced Exams 539

As a practical matter, we recommend thinking about the levels this way:

■ K1 requires the ability to remember basic facts, techniques, and standards,
though you might not understand what they mean.

■ K2 requires the ability to understand the facts, techniques, and standards
and how they interrelate, though you might not be able to apply them to
your projects.

■ K3 requires the ability to apply facts, techniques, and standards to your
projects, though you might not be able to adapt them or select the most
appropriate ones for your project.

■ K4 requires the ability to analyze facts, techniques, and standards as they
might apply to your projects and adapt them or select the most appropriate
ones for your projects.

As you can see, there is an upward progression of ability that adheres to each
increasing level of learning. Much of the focus at the Advanced level is on appli-
cation and analysis.

11.2 ISTQB Advanced Exams

Like the Foundation exam, the Advanced exams are multiple-choice exams.
Multiple-choice questions consist of three main parts. The first part is the stem,
which is the body of the question. The stem may include a figure or table as well
as text. The second part is the distracters, which are choices that are wrong. If
you don’t have a full understanding of the learning objectives that the question
covers, you might find the distracters reasonable choices. The third part is the
answer or answers, which are choices that are correct.

If you sailed through the Foundation exam, you might think that you’ll
manage to do the same with the Advanced exams. That’s unlikely. Unlike the
Foundation exam, the Advanced exams are heavily focused on questions
derived from K3 and K4 level learning objectives. In other words, the ability to
apply and to analyze ideas dominates the exams. K1 and K2 level learning
objectives, which make up the bulk of the Foundation exam, are only covered
implicitly within the higher-level questions.

__AST V3.book Seite 539 Freitag, 1. Juli 2011 1:06 13

540 11 Preparing for the Exam

For example, the Foundation exam might typically include a question like this:

Which of the following is a major section of an IEEE 829 compliant test plan?

A. Test items
B. Probe effect
C. Purpose
D. Expected results

The answer is A, while B, C, and D are distracters. All that is required here is to
recall the major sections of the IEEE 829 templates. Only A is found in the test
plan, while C and D are in the test procedure specification and the test case
specification, respectively. B is an ISTQB glossary term. As you can see, it’s all
simple recall.

Recall is useful, especially when first learning a subject. However, the ability
to recall facts does not make you an expert, any more than our ability to recall
song lyrics from the 1970s qualifies us to work as singers for the band AC/DC.

On the Advanced exam, you might find a question like this:

Consider the following excerpt from the Test Items section of a test plan.
During System Test execution, the configuration management team shall

deliver test releases to the test team every Monday morning by 9:00 a.m. Each
test release shall include a test item transmittal report. The test item transmittal
report will describe the results of the automated build and smoke test associated
with the release. Upon receipt of the test release, if the smoke test was success-
ful, the test manager will install it in the test lab. Testing will commence on
Monday morning once the new weekly release is installed.

Should the test team not receive a test release, or if the smoke test results are
negative, or if the release will not install, or should the release arrive without a
transmittal report, the test manager shall immediately contact the configuration
management team manager. If the problem is not resolved within one hour, the
test manager shall notify the project manager and continue testing against the
previous week’s release, if possible. If the test release fails installation, addition-
ally the test analyst who attempted the installation shall file an incident report.

Assume that you are working as the test manager on this project. Suppose
that you have received two working, installable, testable releases so far. On
Monday of the third week, you do not receive the test release.

__AST V3.book Seite 540 Freitag, 1. Juli 2011 1:06 13

 11.2 ISTQB Advanced Exams 541

Which of the following courses of action is consistent with the test plan?

A. Filing an incident report describing the time and date at which you first
noticed the missing test release

B. Creating a test procedure specification that describes how to install a
test release

C. Sending an SMS text to the configuration management team manager
D. Send an e-mail to the project manager and the configuration manage-

ment team manager

The answer is C. A, B, and D are distracters. A is wrong because it is not that the
release didn’t install, it’s that it didn’t even arrive. B is wrong because, while such
a test procedure might be useful for installation testing, it has nothing to do
with the escalation process described in the test plan. C is consistent with the
test plan. D is not consistent with the test plan because the spirit of the one-hour
delay described in the test plan excerpt is that the configuration management
team manager should have a chance to resolve the problem before the project
manager is engaged. In addition, when time is of the essence, e-mail is not a
good escalation technique.

As you can see, this kind of question requires analysis of a situation. Yes, it
helps to know what the IEEE 829 templates such as the test plan, incident
report, test item transmittal report, and test procedure specification contain. In
fact, you’ll probably get lost in the terminology if you don’t know the standard.
However, simply knowing the IEEE 829 standard will not allow you to get the
right answer on this question except by chance.

11.2.1 Scenario-Based Questions

Further complicating this situation is the fact that many exam questions will
actually consider a scenario. In scenario-based questions, the exam will describe
a set of circumstances. It will then present you with a sequence of two, three, or
even more questions.

For example, the questions about the scenario of the test plan excerpt and
the missing test release might continue with another pair of questions:

Assume that on Monday afternoon you finally receive a test release. When
your lead test analyst attempts to install it, the database configuration
scripts included in the installation terminate in midstream. An error mes-

__AST V3.book Seite 541 Freitag, 1. Juli 2011 1:06 13

542 11 Preparing for the Exam

sage is presented on the database server in Cyrillic script, though the cho-
sen language is U.S. English. At that point, the database tables are corrupted
and any attempt to use the application under test results in various database
connection error messages (which are at least presented in U.S. English).

Consider the following possible actions:

I. Notifying the configuration management team manager
II. Notifying the project manager
III. Filing an incident report
IV. Attempting to repeat the installation
V. Suspending testing
VI. Continuing testing

Which of the following sequence of actions is in the correct order, is the
most reasonable, and is most consistent with the intent of the test plan?

A. I, II, V
B. V, I, IV, III, I
C. VI, II, I, III, IV
D. II, I, V

The answer is B, while A, C, and D are distracters. A is wrong because there is
no incident report filed, which is required by the test plan when the installation
fails. C is wrong because meaningful testing cannot continue against the cor-
rupted database, because the project manager is notified before the configura-
tion management team manager, and because the incident report is filed before
an attempt to reproduce the failure has occurred. D is wrong because the project
manager is notified before the configuration management team manager and
because no incident report is filed.

As you can see, with a scenario-based question it’s very important that you
study the scenario carefully before trying to answer the questions that relate to
it. If you misunderstand the scenario—perhaps due to a rushed reading of it—
you can anticipate missing most if not all of the questions related to it.

Let us go back to this question of learning objectives for a moment. We said
that the exam covers K1 and K2 learning objectives—those requiring recall and
understanding, respectively—as part of a higher-level K3 or K4 questions.
There’s an added complication with K1 learning objectives: They are not explic-

__AST V3.book Seite 542 Freitag, 1. Juli 2011 1:06 13

 11.2 ISTQB Advanced Exams 543

itly defined. The entire syllabus, including glossary terms used and standards
referenced, is implicitly covered by K1 learning objectives. Here is an excerpt
from the Advanced syllabus:

“This syllabus’ content, terms and the major elements (purposes) of all
standards listed shall at least be remembered (K1), even if not explicitly
mentioned in the learning objectives.”
So, you’ll want to read the Advanced syllabus carefully, a number of times,

as you are studying for the Advanced exam.
Not only should you read the Advanced syllabus, but you’ll need to go back

and refresh yourself on the Foundation syllabus. Again, as excerpt from the
Advanced syllabus:

“All Advanced Certificate examinations must be based on this syllabus and
on the Foundation Level syllabus. Answers to examination questions may
require the use of material based on more than one section of this and the
Foundation syllabus. All sections of this and the Foundation syllabus are
examinable.”

Notice that the second sentence in the preceding paragraph means that a ques-
tion can conceivably cross-reference two or three sections of the Advanced syl-
labus or cross-reference a section of the Advanced syllabus with the Foundation
syllabus. So, it would be smart to take a sample Foundation exam and reread the
Foundation syllabus as part of studying for the Advanced exam.

11.2.2 On the Evolution of the Exams

The structure of the Advanced exams continues to evolve. Further, note the fol-
lowing somewhat insidious paragraph tucked away in the Advanced syllabus:

“The format of the examination is defined by the Advanced Exam Guide-
lines of the ISTQB. Individual Member Boards may adopt other examina-
tion schemes if desired.”

We have written this chapter based on the ISTQB Advanced Exam Guidelines.
We assume that most ISTQB national boards and exam boards will choose to
follow those. However, based on this paragraph in the Advanced syllabus,
exams that differ from the ISTQB Exam Guidelines and thus what is described

__AST V3.book Seite 543 Freitag, 1. Juli 2011 1:06 13

544 11 Preparing for the Exam

in this chapter can be created by some boards. You’ll want to check with the
national board or exam board providing your exam to be sure.

Okay, having read this, you might be panicking. Don’t! Remember, the
exam is meant to test your achievement of the learning objectives in the
Advanced syllabus. This book contains solid features to help you do that:

■ Did you work through all the exercises in the book? If so, you have a
solid grasp on the most difficult learning objectives, the K3 and K4
objectives. If not, go back and do so now.

■ Did you work through all the sample exam questions in the book? If so,
you have tried a sample exam question for most of the learning
objectives in the syllabus. If not, go back and do so now.

■ Did you read the ISTQB glossary term definitions where they occurred
in the chapters? If so, you are familiar with these terms. If not, return to
the ISTQB glossary now and review those terms.

■ Did you read every chapter of this book and the entire ISTQB
Advanced syllabus? If so, you know the material in the ISTQB
Advanced syllabus. If not, review the ISTQB Advanced syllabus and
reread those sections of this book that correspond to the parts of the
syllabus you find most confusing.

We can’t guarantee that you will pass the exam. However, if you have taken
advantage of the learning opportunities created by this book, by the ISTQB
glossary, and by the ISTQB Advanced syllabus, you will be in good shape for the
exam.

Good luck to you when you take the exam, and the best of success when
you apply the ideas in the Advanced syllabus to your next testing project.

__AST V3.book Seite 544 Freitag, 1. Juli 2011 1:06 13

545

Appendix A

Bibliography

Advanced Syllabus Referenced Standards

British Computer Society. BS 7925-2 (1998), Software Component Testing.

Institute of Electrical and Electronics Engineers. IEEE Standard 829 (1998/
2007), IEEE Standard for Software Test Documentation.

Institute of Electrical and Electronics Engineers. IEEE Standard 1028 (1997),
IEEE Standard for Software Reviews.

Institute of Electrical and Electronics Engineers. IEEE Standard 1044 (1993),
IEEE Standard Classification for Software Anomalies.

International Standards Organization. ISO/IEC 9126-1:2001, Software Engi-
neering – Software Product Quality.

International Standards Organization. ISO/IEC 9126-2:2003, Software Engi-
neering – Product Quality Part 2: External Metrics.

International Standards Organization. ISO/IEC 9126- 3:2003, Software Engi-
neering – Product Quality Part 3: Internal Metrics.

International Software Testing Qualifications Board. ISTQB Glossary (2007),
ISTQB Glossary of Terms Used in Software Testing, Version 2.0.

US Federal Aviation Administration. DO-178B/ED-12B, Software Consider-
ations in Airborne Systems and Equipment Certification.

Advanced Syllabus Referenced Books

Bath, Graham, and Judy McKay. The Software Test Engineer’s Handbook. Rocky
Nook, 2008.

__AST V3.book Seite 545 Freitag, 1. Juli 2011 1:06 13

546 Appendix A

Beizer, Boris. Software Testing Techniques. ITP, 1990.

Beizer, Boris. Black-Box Testing. Wiley, 1995.

Black, Rex. Managing the Testing Process (Second Edition). Wiley, 2002.

Black, Rex. Critical Testing Processes. Addison-Wesley, 2003.

Black, Rex. Pragmatic Software Testing. Wiley, 2007.

Black, Rex. Advanced Software Testing, Vol. 1. Rocky Nook, 2009.

Buwalda, Hans. Integrated Test Design and Automation. Addison-Wesley, 2001.

Burnstein, Ilene. Practical Software Testing. Springer, 2003.

Copeland, Lee. A Practitioner’s Guide to Software Test Design. Artech House,
2003.

Craig, Rick, and Stefan Jaskiel. Systematic Software Testing. Artech House, 2002.

Dustin, Elfriede. Effective Software Testing. Addison Wesley, 2003.

Gerrard, Paul, and Neil Thompson. Risk-Based e-Business Testing. Artech
House, 2002.

Gilb, Tom, and Dorothy Graham. Software Inspection. Addison-Wesley, 1993.

Graham, Dorothy, Erik van Veenendaal, Isabel Evans, and Rex Black. Founda-
tions of Software Testing. Thomson Learning, 2007.

Grochmann, M. “Test Case Design Using Classification Trees.” Conference Pro-
ceedings of STAR, 1994.

Jorgensen, Paul. Software Testing: A Craftsman’s Approach (Second Edition).
CRC Press, 2002.

Kaner, Cem, James Bach, and Bret Pettichord. Lessons Learned in Software Test-
ing. Wiley, 2002.

Koomen, Tim, and Martin Pol. Test Process Improvement. Addison-Wesley,
1999.

Marick, Brian. The Craft of Software Testing. Prentice Hall, 1995.

Molyneaux, Ian. The Art of Application Performance Testing. O’Reilly, 2009.

Myers, Glenford. The Art of Software Testing. Wiley, 1979.

__AST V3.book Seite 546 Freitag, 1. Juli 2011 1:06 13

 Bibliography 547

Pol, Martin, Ruud Teunissen, and Erik van Veenendaal. Software Testing: A
Guide to the T-map Approach. Addison-Wesley, 2002.

Splaine, Steven, and Stefan Jaskiel. The Web-Testing Handbook. STQE Publish-
ing, 2001.

Stamatis, D. H. Failure Mode and Effect Analysis. ASQ Press, 1995.

van Veenendaal, Erik, ed. The Testing Practitioner. UTN Publishing, 2002.

Whittaker, James. How to Break Software. Addison-Wesley, 2003.

Whittaker, James, and Herbert Thompson. How to Break Software Security.
Addison-Wesley, 2004.

Wiegers, Karl. Software Requirements (Second Edition). Microsoft Press, 2003.1

Other Referenced Books

Beizer, Boris. Software System Testing and Quality Assurance. Van Nostrand
Reinhold, 1984.

Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Addison-
Wesley Professional, 2000.

Koomen, Tim, et al. TMap Next. UTN Publishers, 2006.

McKay, Judy. Managing the Test People. Rocky Nook, 2007.

Nielsen, Jakob. Usability Engineering. Academic Press, 1993.

Tufte, Edward. The Graphical Display of Quantitative Information, 2e. Graphics
Press, 2001.

Tufte, Edward. Visual Explanations. Graphics Press, 1997.

Tufte, Edward. Envisioning Information. Graphics Press, 1990.

White, Gregory, et al. Security + Certification. Osborne, 2003.

Other References

Badlaney, Janvi, Ghatol, Rohit , and Jadhwani, Romit. “An Introduction to Data-
flow Testing.” Dept. of Computer Science, North Carolina State University.

1. In an omission, this book is not included in the Advanced syllabus bibliography but it is refer-
enced in the Advanced syllabus text. Therefore, we have included it here.

__AST V3.book Seite 547 Freitag, 1. Juli 2011 1:06 13

548 Appendix A

Holmes, Jeff. “Identifying Code-Inspection Improvements Using Statistical
Black Belt Techniques.” Software Quality Professional, December 2003,
Volume 6, Number 1.

Black, Rex, and Greg Kubaczkowski. “Mission Made Possible.” Software Testing
and Quality Engineering, July/August 2002, Volume 4, Issue 4.

“Structural Coverage Metrics.” IPL (available at IPL.com).

dictionary.com, for standard English words.

__AST V3.book Seite 548 Freitag, 1. Juli 2011 1:06 13

549

HELLOCARMS
The Next Generation of Home Equity
Lending

System Requirements Document

This document contains proprietary and confidential material of RBCS, Inc. Any
unauthorized reproduction, use, or disclosure of this material, or any part thereof,
is strictly prohibited. This document is solely for the use of RBCS employees,
authorized RBCS course attendees, and readers of this book.

Appendix B

__AST V3.book Seite 549 Freitag, 1. Juli 2011 1:06 13

550 Appendix B

__AST V3.book Seite 550 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 551

I Table of Contents

I Table of Contents . 551

II Versioning . 553

III Glossary . 555

000 Introduction. 557

001 Informal Use Case. 558

003 Scope. 559

004 System Business Benefits . 561

010 Functional System Requirements . 562

020 Reliability System Requirements. 566

030 Usability System Requirements. 567

040 Efficiency System Requirements. 568

050 Maintainability System Requirements . 570

060 Portability System Requirements . 571

A Acknowledgement . 573

__AST V3.book Seite 551 Freitag, 1. Juli 2011 1:06 13

552 Appendix B

__AST V3.book Seite 552 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 553

II Versioning

Ver. Date Author Description Approval By/On

0.1 Nov 1, 2007 Rex Black First Draft

0.2 Dec 15, 2007 Rex Black Second Draft

0.5 Jan 1, 2008 Rex Black Third Draft

0.6 Feb 10, 2010 Jamie Mitchell Fourth Draft

0.7 July 20, 2010 Jamie Mitchell Release for ATTA

__AST V3.book Seite 553 Freitag, 1. Juli 2011 1:06 13

554 Appendix B

__AST V3.book Seite 554 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 555

III Glossary 1

Term1 Definition

Home Equity The difference between a home’s fair market value and the unpaid
balance of the mortgage and any other debt secured by the home. A
homeowner can increase their home equity by reducing the unpaid
balance of the mortgage and any other debt secured by the home. Home
equity can also increase if the property appreciates in value. A
homeowner can borrow against home equity using home equity loans,
home equity lines of credit, and reverse mortgages (see definitions
below).

Secured Loan Any loan for which the borrower uses an asset as collateral. The loan is
secured by the collateral in that the borrower can make a legal claim on
the collateral if the borrower fails to repay the loan.

Home Equity Loan A lump sum of money disbursed at the initiation of the loan and lent to
the homeowner at interest. A home equity loan is a secured loan,
secured by the equity in the borrower’s home.

Home Equity Line
of Credit

A variable amount of money with a prearranged maximum amount
available for withdrawal by the homeowner on an as-needed basis and
lent to the homeowner at interest. A home equity line of credit allows the
homeowner to take out, as needed, a secured loan, secured by the
equity in the borrower’s home.

Mortgage A legal agreement by which a sum of money is lent for the purpose of
buying property and against which property the loan is secured.

Reverse Mortgage A mortgage in which a homeowner borrows money in the form of regular
payments which are charged against the equity of the home, typically
with the goal of using the equity in the home as a form of retirement
fund. A reverse mortgage results in the homeowner taking out a
regularly increasing secured loan, secured by the equity in the
borrower’s home.

1. These definitions are adapted from www.dictionary.com.

__AST V3.book Seite 555 Freitag, 1. Juli 2011 1:06 13

http://www.dictionary.com

556 Appendix B

__AST V3.book Seite 556 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 557

000 Introduction

The Home Equity Loan, Line-of-Credit, and Reverse Mortgage System (HEL-
LOCARMS), as to be deployed in the first release, allows Globobank Telephone
Bankers in the Globobank Fairbanks call center to accept applications for home
equity products (loans, lines of credit, and reverse mortgages) from customers.
The second release will allow applications over the Internet, including from
Globobank business partners as well as customers themselves.

At a high level, the system is configured as shown in Figure A-1. The HEL-
LOCARMS application itself is a group of Java programs and assorted interfac-
ing glue that run on the Web server. The Database server provides storage as the
application is processed, while the Application server offloads gateway activities
to the clients from the Web server.

Figure A-1 HELLOCARMS system (first release)

__AST V3.book Seite 557 Freitag, 1. Juli 2011 1:06 13

558 Appendix B

001 Informal Use Case

The following informal use case applies for typical transactions in the HELLO-
CARMS System:

1. A Globobank Telephone Banker in a Globobank Call Center receives a
phone call from a Customer.

2. The Telephone Banker interviews the Customer, entering information into
the HELLOCARMS System through a Web browser interface on their
Desktop. If the Customer is requesting a large loan or borrowing against a
high-value property, the Telephone Banker escalates the application to a
Senior Telephone Banker who decides whether to proceed with the applica-
tion.

3. Once the Telephone Banker has gathered the information from the Cus-
tomer, the HELLOCARMS System determines the credit-worthiness of the
Customer using the Scoring Mainframe.

4. Based on all of the Customer information, the HELLOCARMS System dis-
plays various Home Equity Products (if any) that the Telephone Banker can
offer to the customer.

5. If the Customer chooses one of these Products, the Telephone Banker will
conditionally confirm the Product.

6. The interview ends. The Telephone Banker directs the HELLOCARMS Sys-
tem to transmit the loan information to the Loan Document Printing Sys-
tem (LoDoPS) in the Los Angeles Datacenter for origination.

7. The HELLOCARMS System receives an update from the LoDoPS when the
following events occur:
a. LoDoPS sends documents to customer.
b. Globobank Loan Servicing Center receives signed documents from

customer.
c. Globobank Loan Servicing Center sends check or other materials as

appropriate to the Customer’s product selection.

Once the Globobank Loan Servicing Center has sent the funds or other
materials to the Customer, HELLOCARMS processing on the application is
complete, and the system will not track subsequent loan-related activities for
this Customer.

__AST V3.book Seite 558 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 559

Once HELLOCARMS processing on an application is complete, HELLO-
CARMS shall archive the application and all information associated with it.
This applies whether the application was declined by the bank, cancelled by the
customer, or ultimately converted into an active loan/line of credit/reverse
mortgage.

__AST V3.book Seite 559 Freitag, 1. Juli 2011 1:06 13

560 Appendix B

003 Scope

The scope of the HELLOCARMS project includes the following:

■ Selecting a COTS solution from a field of five vendors.
■ Working with the selected application vendor to modify the solution to

meet Globobank’s requirements.
■ Providing a browser-based front end for loan processing access from the

Internet, existing Globobank call centers, outsourced (non-Globobank) call
centers, retail banking centers, and brokers. However, the HELLOCARMS
first release will provide access from only a Globobank call center
(specifically Fairbanks).

■ Developing an interface to Globobank’s existing Scoring Mainframe for
scoring a customer based on their loan application and HELLOCARMS
features.

■ Developing an interface to use Globobank’s existing underwriting and
origination system, Loan Document Printing System (LoDoPS), for
document preparation. This interface allows the HELLOCARMS System,
after assisting the customer with product selection and providing
preliminary approval to the customer, to forward the preapproved
application (for a loan, line of credit, or reverse mortgage) to the LoDoPS
and to subsequently track the application’s movement through to the
servicing system.

■ Receiving customer-related data from the Globobank Rainmaker Borrower
Qualification Winnow (GloboRainBQW) system to generate outbound
offers to potential (but not current) Globobank customers via phone, e-mail,
and paper mail.

__AST V3.book Seite 560 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 561

004 System Business Benefits

The business benefits associated with the HELLOCARMS are as follows:

■ Automating a currently manual process, and allowing loan inquiries and
applications from the Internet and via call center personnel (from the
current call centers and potentially from outsourced call centers, retail
banking centers, and loan brokers).

■ Decreasing the time to process the front-end portion of a loan from
approximately 30 minutes to 5 minutes. This will allow Globobank’s
Consumer Products Division to dramatically increase the volumes of loans
processed to meet its business plan.

■ Reducing the level of skill required for the Telephone Banker to process a
loan application, since the HELLOCARMS will select the product, decide
whether the applicant is qualified, suggest alternative loan products, and
provide a script for the Telephone Banker to follow.

■ Providing online application status and loan tracking through the
origination and document preparation process. This will allow the
Telephone Banker to rapidly and accurately respond to customer inquiries
during the processing of their application.

■ Providing the capability to process all products in a single environment.
■ Providing a consistent way to make decisions about whether to offer loan

products to customers, and if so what loan products to offer customers,
reducing processing and sales errors.

■ Allowing Internet-based customers (in subsequent releases) to access
Globobank products, select the preferred product, and receive a tentative
loan approval within seconds.

The goal of the HELLOCARMS System’s business sponsors is to provide these
benefits for approximately 85% of the customer inquiries, with 15% or fewer
inquiries escalate to a Senior Telephone Banker for specialized processing.

__AST V3.book Seite 561 Freitag, 1. Juli 2011 1:06 13

562 Appendix B

010 Functional System Requirements

The capability of the system to provide functions which meet stated and implied
needs when the software is used under specified conditions.

ID Description Priority2

010-010 Suitability

010-010-010 Allow Telephone Bankers to take applications for home equity
loans, lines of credit, and reverse mortgages.

1

010-010-020 Provide screens and scripts to support Call Center personnel in
completing loan applications.

1

010-010-030 If the customer does not provide a “How Did You Hear About Us”
identifier code, collect the lead information during application
processing via a drop-down menu with well-defined lead source
categories.

2

010-010-040 Provide data validation, including the use of appropriate user
interface (field) controls as well as back-end data validation. Field
validation details are described in a separate document.

1

010-010-050 Display existing debts to enable retirement of selected debts for
debt consolidation. Pass selected debts to be retired to LoDoPS
as stipulations.

1

010-010-060 Allow Telephone Bankers and other Globobank telemarketers
and partners to access incomplete or interrupted applications.

2

010-010-070 Ask each applicant whether there is an existing relationship with
Globobank; e.g., any checking or savings accounts. Send
existing Globobank customer relationship information to the
Globobank Loan Applications Data Store (GLADS).

2

010-010-080 Maintain application status from initiation through to rejection,
decline, or acceptance (and, if accepted, to delivery of funds).

2

010-010-090 Allow user to abort an application. Provide an abort function on all
screens.

3

010-010-100 Allow user to indicate on a separate screen which, if any, are
existing debts that the customer will retire using the funds for
which the customer is applying. Allow user the option to exclude
specific debts and to include specific debts. For debts to be
retired, send a stipulation to LoDoPS that specifies which debts
the customer must pay with loan proceeds.

3

010-010-110 Exclude a debt’s monthly payment from the debt ratio if the
customer requests the debt to be paid off.

3

2. Priorities are:
1 Very high
2 High
3 Medium
4 Low

__AST V3.book Seite 562 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 563

010-010-120 Provide a means of requesting an existing application by
customer identification number if a customer does not have their
loan identifier.

4

010-010-130 Direct the Telephone Banker to transfer the call to a Senior
Telephone Banker if an application has a loan amount greater
than $500,000; such loans require additional management
approval.

1

010-010-140 Direct the Telephone Banker to transfer the call to a Senior
Telephone Banker if an application concerns a property with
value greater than $1,000,000; such applications require
additional management approval.

2

010-010-150 Provide inbound and outbound telemarketing support for all
States, Provinces, and Countries in which Globobank operates.

2

010-010-160 Support brokers and other business partners by providing limited
partner-specific screens, logos, interfaces, and branding.

2

010-010-170 Support the submission of applications via the Internet, which
includes the capability of untrained users to properly enter
applications.

3

010-010-180 Provide features and screens that support the operations of
Globobank’s retail branches.

4

010-010-190 Support the marketing, sales, and processing of home equity
applications.

1

010-010-200 Support the marketing, sales, and processing of home equity line
of credit applications.

2

010-010-210 Support the marketing, sales, and processing of home equity
reverse mortgage applications.

3

010-010-220 Support the marketing, sales, and processing of applications for
combinations of financial products (e.g., home equity and credit
cards).

4

010-010-230 Support the marketing, sales, and processing of applications for
original mortgages.

5

010-010-240 Support the marketing, sales, and processing of preapproved
applications.

4

010-010-250 Support flexible pricing schemes, including introductory pricing,
short term pricing, and others.

5

010-020 Accuracy

010-020-010 Determine the various loans, lines of credit, and/or reverse
mortgages for which a customer qualifies, and present these
options for the customer to evaluate, with calculated costs and
terms. Make qualification decisions in accordance with
Globobank credit policies.

1

010-020-020 Determine customer qualifications according to property risk,
credit score, loan-to-property-value ratio, and debt-to-income
ratio, based on information received from the Scoring Mainframe.

1

__AST V3.book Seite 563 Freitag, 1. Juli 2011 1:06 13

564 Appendix B

010-020-030 During the application process, estimate the monthly payments
based on the application information provided by the customer,
and include the estimated payment as a debt in the debt-to-
income calculation for credit scoring.

2

010-020-040 Add a loan fee based on property type:
• 1.5% for rental properties (duplex, apartment, and vacation)
• 2.5% for commercial properties
• 3.5% for condominiums or cooperatives
• 4.5% for undeveloped property
Do not add a loan fee for the other supported property type,
residential single family dwelling.

3

010-020-050 Capture all government retirement fund income(s) (e.g., Social
Security in United States) as net amounts, but convert those
incomes to gross income(s) in the interface to LoDoPS. [Note:
This is because most government retirement income is not
subject to taxes, but gross income is used in debt-to-income
calculations.]

1

010-020-060 Capture the length of time (rounded to the nearest month) that
the customer has received additional income (other than salary,
bonuses, and retirement), if any.

3

010-030 Interoperability

010-030-010 If the customer provides a “How Did You Hear About Us”
identifier code during the application process, retrieve customer
information from GloboRainBQW.

2

010-030-020 Accept joint applications (e.g., partners, spouses, relatives, etc.)
and score all applicants using the Scoring Mainframe.

1

010-030-030 Direct Scoring Mainframe to remove duplicate credit information
from joint applicant credit reports.

2

010-030-040 Allow user to indicate on a separate screen which, if any, are
existing debts that the customer will retire using the funds for
which the customer is applying. Allow user the option to exclude
specific debts and to include specific debts. For debts to be
retired, send a stipulation to LoDoPS that specifies which debts
the customer must pay with loan proceeds.

1

010-030-060 If the Scoring Mainframe does not show a foreclosure or
bankruptcy discharge date and the customer indicates that the
foreclosure or bankruptcy is discharged, continue processing the
application, and direct the Telephone Banker to ask the applicant
to provide proof of discharge in paperwork sent to LoDoPS.

3

010-030-070 Allow user to indicate on a separate screen which, if any, are
existing debts that the customer will retire using the funds for
which the customer is applying. Allow user the option to exclude
specific debts and to include specific debts. For debts to be
retired, send a stipulation to LoDoPS that specifies which debts
the customer must pay with loan proceeds.

3

__AST V3.book Seite 564 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 565

010-030-080 Capture all government retirement fund income(s) (e.g., Social
Security in United States) as net amounts, but convert those
incomes to gross income(s) in the interface to LoDoPS. [Note:
This is because most government retirement income is not
subject to taxes, but gross income is used in debt-to-income
calculations.]

1

010-030-090 Pass application information to the Scoring Mainframe. 1

010-030-100 Receive scoring and decision information back from the Scoring
Mainframe.

1

010-030-110 If the Scoring Mainframe is down, queue application information
requests.

2

010-030-120 Initiate the origination process by sending the approved loan to
LoDoPS.

2

010-030-130 Pass all declined applications to LoDoPS. 2

010-030-140 Receive LoDoPS feedback on the status of applications. 2

010-030-145 Receive changes to loan information made in LoDoPS (e.g., loan
amount, rate, etc.).

2

010-030-150 Support computer-telephony integration to provide customized
marketing and sales support for inbound telemarketing
campaigns and branded business partners.

4

010-040 Security

010-040-010 Support agreed-upon security requirements (encryption, firewalls,
etc.).

2

010-040-020 Track “Created By” and “Last Changed By” audit trail information
for each application.

1

010-040-030 Allow outsourced telemarketers to see the credit tier but disallow
them from seeing the actual credit score of applicants.

2

010-040-040 Support the submission of applications via the Internet, providing
security against unintentional and intentional security attacks.

2

010-040-050 Allow Internet users to browse potential loans without requiring
such users to divulge personal information such as name,
government identifying numbers, etc. until the latest feasible point
in the application process.

4

010-040-060 Support fraud detection for processing of all financial
applications.

1

010-050 Compliance (functionality standards/laws/regs)

[To be determined in a subsequent revision]

__AST V3.book Seite 565 Freitag, 1. Juli 2011 1:06 13

566 Appendix B

020 Reliability System Requirements

The capability of the system to maintain a specified level of performance when
used under specified conditions.

ID Description Priority

020-010 Maturity

020-010-010 During the SDLC, cyclomatic complexity measurements will be
evaluated for all modules to ensure that failures due to complexity
are reduced.

1

020-010-020 The system shall average fewer than five (5) failures per month in
production.

2

020-010-030 The system shall average fewer than one (1) failure per month in
production.

4

020-020 Fault-tolerance

020-020-010 The HELLOCARMS System will contain functionality to help
prevent incorrect data to be inputted to the system. When an
application is ready to be submitted, it will be evaluated statically
to make sure it meets minimum correctness standards before
being officially submitted to the system.

2

020-030 Recoverability

020-030-010 In case of a disconnection of the Telephone Banker’s workstation
from HELLOCARMS while dealing with a customer, the system
shall restore the work to the same state when reconnected.

1

020-040 Compliance (reliability standards/laws/regs)

[To be determined in a subsequent revision]

__AST V3.book Seite 566 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 567

030 Usability System Requirements

The capability of the system to be understood, learned, used, and attractive to
the user and the call center agents when used under specified conditions.

ID Description Priority

030-010 Understandability

030-010-010 Support the submission of applications via the Internet, including
the capability for untrained users to properly enter applications.

2

030-010-020 All screens, instructions, help, and error messages shall be
understandable at an eighth grade level.

2

030-010-020 All functionality shall be evident to the casual user without having
to search for it in compliance with ISO 9126.

3

030-020 Learnability

030-020-010 All pages shall be self-contained with all control information built
into the page such that the user does not have to leave the screen
to get help.

2

030-020-020 HELLOCARMS will include a self-contained training wizard for all
users. This wizard will lead a new user through all of the screens
using canned data. The training will be sufficient for an average
user to become proficient in the use of HELLOCARMS within 8
hours of training.

3

030-030 Operability

030-030-010 Input fields, where possible, will immediately check for valid input
upon exiting the control. If an input cannot be validated singularly,
it will be validated before leaving the screen.

2

030-030-020 All screens will comply with US Federal GSA Section 508 for
accessibility.

2

030-030-030 Provide for complete customization of the user interface and all
user-supplied documents for business partners, including private
branding of the sales and marketing information and all closing
documents.

3

030-030-040 All common scenarios shall have a common flow through the
interface. In non-exceptional flows, control shall pass through each
screen in the same direction reading normally occurs (i.e., left to
right, up to down for English.)

3

030-040 Attractiveness

030-040-010 The interface shall be attractive to the user, taking into account
colors and graphical design of each screen.

3

030-050 Compliance (usability standards)

030-050-010 Comply with local handicap-access laws in the US and countries
outside the US where the system is used.

4

__AST V3.book Seite 567 Freitag, 1. Juli 2011 1:06 13

568 Appendix B

040 Efficiency System Requirements

The capability of the system to provide appropriate performance relative to the
amount of resources used under stated conditions. Assumptions are made that
occasionally, performance will be worse than specified; 98% compliance over a
24-hour period will be deemed to be in compliance.

ID Description Priority

040-010 Time behavior

040-010-010 Provide the user with screen-to-screen response time of 1 second
or less. This requirement should be measured from the time the
screen request enters the application system until the screen
response departs the application server; i.e., do not include
network transmission delays.

2

040-010-020 Provide an approval or decline for applications within 5 minutes of
application submittal.

2

040-010-030 Originate the loan, including the disbursal of funds, within 1 hour. 3

040-010-040 Time overhead on Scoring Mainframe shall average less than .1
seconds. This includes any processing needed to transfer a
request to and from the Credit Bureau Mainframe(s), but does not
include Credit Bureau Mainframe processing time.

4

040-010-050 Credit-worthiness of a customer shall be determined within 10
seconds of request. 98% or higher of all Credit Bureau Mainframe
requests shall be completed within 2.5 seconds of the request
arriving at the Credit Bureau.

2

040-010-060 Archiving the application and all associated information shall not
impact the Telephone Banker’s workstation for more than .01
seconds.

2

040-010-070 Escalation to a Senior Telephone Banker shall require no more
than 1-second delay.

3

040-010-080 Once a Senior Banker has made a determination, the information
shall be transmitted to the Telephone Banker within two (2)
seconds.

3

040-010-090 Once a Customer chooses a product from the list of tentative
options they were offered, the Telephone Banker shall input the
choice and get conditional confirmation of acceptance within 60
seconds.

2

040-010-100 If abort function is triggered by the Telephone Banker, the system
shall clear and reload the workstation within 2 seconds in
preparation for the next call.

4

040-010-110 Handle up to 2,000 applications per hour. 2

040-010-120 Handle up to 4,000 applications per hour. 3

__AST V3.book Seite 568 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 569

040-010-130 Support a peak of 4,000 simultaneous (concurrent) application
submissions.

4

040-010-140 Support a total volume of 1.2 million approved applications for the
initial year of operation.

2

040-010-150 Support a total volume of 7.2 million applications during the initial
year of operation.

2

040-010-160 Support a total volume of 2.4 million conditionally approved
applications for the initial year of operation.

2

[More to be determined in a subsequent revision]

040-020 Resource utilization

040-020-010 Load Database Server to no more than 20% CPU and 25%
Resource utilization average rate with peak utilization never more
than 80% when handling 4,000 applications per hour.

3

040-020-020 Load Web Server to no more than 30% CPU and 30% Resource
utilization average rate with peak utilization never more than 80%
when handling 4,000 applications per hour.

3

040-020-030 Load App Server to no more than 30% CPU and 30% Resource
utilization average rate with peak utilization never more than 80%
when handling 4,000 simultaneous (concurrent) application
submissions.

4

040-030 Compliance (performance standards)

[To be determined in a subsequent revision]

__AST V3.book Seite 569 Freitag, 1. Juli 2011 1:06 13

570 Appendix B

050 Maintainability System Requirements

The capability of the system to be modified. Modifications may include correc-
tions, improvement, or adaptations of the software changes in environments
and in requirements and functional specifications.

ID Description Priority

050-010 Analyzability

050-010-010 Standards and guidelines will be developed and used for all code
and other generated materials used in this project to enhance
maintainability.

1

050-010-020 Diagnostics shall be built into the HELLOCARMS System to
automatically try to determine the proximate cause of internally
generated failures.

2

050-010-030 HELLOCARMS will generate and save log information when errors
are generated. These logs shall be versioned to ensure that
subsequent errors do not erase potentially useful data. Logs shall
contain the diagnostic information generated in requirement 050-
010-020.

2

050-020 Changeability

050-020-010 Modification complexity (see ISO 9126-2) for all changes to
HELLOCARMS shall be measured and tracked throughout the
SMLC.

050-030 Compliance (performance standards)

[To be determined in a subsequent revision]

__AST V3.book Seite 570 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 571

060 Portability System Requirements

The capability of the system to be transferred from one environment to another.

ID Description Priority

060-010 Adaptability

060-010-010 HELLOCARMS shall be configured to work on Internet Explorer
browsers in the current version and at least one level backwards.

1

060-010-020 HELLOCARMS shall be configured to work with Internet Explorer
and Firefox in the current version and at least one level backwards.

2

060-010-030 HELLOCARMS shall be configured to work with all popular
browsers that represent 5 percent or more of the currently deployed
browsers in any countries where Globobank does business.

3

060-020 Installability

060-020-010 An installation package will be developed to allow brokers and other
business partners to easily install the custom screens, logos,
interfaces and branding changes as defined in requirement
010-010-160.

2

060-030 Co-existence

060-030-010 Should not interact in any non-specified way with any other
applications in the Globobank call centers or data centers.

1

[More to be determined in a subsequent revision]

060-040 Replaceability

Not applicable

060-050 Compliance

[To be determined in a subsequent revision]

__AST V3.book Seite 571 Freitag, 1. Juli 2011 1:06 13

572 Appendix B

__AST V3.book Seite 572 Freitag, 1. Juli 2011 1:06 13

 HELLOCARMS The Next Generation of Home Equity Lending 573

A Acknowledgement

This document is based on an actual project. RBCS would like to thank its
client, who wishes to remain unnamed, for permission to adapt and publish
anonymous portions of various project documents.

__AST V3.book Seite 573 Freitag, 1. Juli 2011 1:06 13

574 Appendix B

__AST V3.book Seite 574 Freitag, 1. Juli 2011 1:06 13

Appendix C 575

Appendix C –
Answers to Sample Questions

Chapter 1
1 C and D
2 C

Chapter 2
1 B and C
2 A
3 B
4 D

Chapter 3
1 B
2 C
3 C

Chapter 4
1 A
2 C
3 C
4 B
5 A
6 D
7 B
8 C
9 A
10 D

11 B
12 D
13 C
14 B
15 A
16 D
17 A
18 D
19 A
20 A

Chapter 5
1 C
2 B
3 D
4 D
5 B
6 B
7 A

Chapter 6
1 B
2 D
3 A
4 C

__AST V3.book Seite 575 Freitag, 1. Juli 2011 1:06 13

576 Appendix C

Chapter 7
1 D
2 A
3 A
4 C
5 B

Chapter 9
1 C
2 D
3 C
4 B
5 A

Chapter 10
1 B

 Index 577

Numerics
0-switch columns 167
0-switch coverage 167
1-switch coverage 169

A
acceptance review 410
acceptance test variations 4
accessibility testing 331
accuracy 326
accuracy testing 326
adaptability 387
Advanced exams 539
Advanced Level Technical Test Analyst 50
Advanced Level Test Analyst 50
agile lifecycle 3
all c-uses (ACU) strategy 287
all c-uses testing 288
all defs (AD) strategy 288
all du path strategy (ADUP) 286
all p-uses (APU) strategy 287
all p-uses testing 288
all-definitions (AD) strategy 287
all-uses (AU) 286
amateur testers 47
anomaly 45, 440
API misuse detection 308
architecture 461
arrays 120, 122

multidimensional 123
assessing impact 83
assessing likelihood 82
assessment results

example 87
ATA 103
atomic actions 276

define last 278
define-define 277
define-kill 276
define-use 276

first define 276
first kill 277
first use 277
kill last 278
kill-define 277
kill-kill 277
use-define 277
use-kill 277
use-use 277

atomic conditions 198
ATTA 103
audit 403, 408

automation 471
author-bias problem 90
automated test framework 467
automated testing

consistency 468
reuse 468

automated tests 461
automating test execution 461
automation

business case 461
evolution 490

automation benefits 462
availability 350

B
background testing 359
basic security attacks 257
Basili, Victor 13
basis paths 220
basis test set 220
Bath, Graham 357
BCD representation 127
behavior-based techniques 262
Beizer, Boris 133, 184, 194, 227, 237
Beizer’s guidelines 195
Beizer’s methodology 133
binary representation 127
binary-coded decimal (BCD) 126

Index

__AST V3.book Seite 577 Freitag, 1. Juli 2011 1:06 13

578 Index

black box 49
black-box techniques 49
black-box testing 105, 178, 179
blended test strategies 41
BMI and age boundary values 150
Boolean operators 189
boundaries for integers 124
boundary testing for accuracy 328
boundary value 119

exercise 134
boundary value analysis 119

examples 120
underlying model 119

boundary value analysis on equivalence
classes 120

boundary values
number of 133

branch coverage 188
branch testing 188
breadth-first approach 86
breakdown of defects 57
breaking encryption 343
BS 7925/2 process 51
BS 7925/2 standard 49
buffer overflow 341
bug hypothesis 106
bug taxonomy 241
business case 414
business value of testing 74

C
C programming language 127
call-graph based integration testing 290, 292
Capability Maturity Model (CMM) 458
Capability Maturity Model Integration

(CMMI) 458
capture/replay

evolution 497
exercise 495

capture/replay architecture 501
capture/replay failures 497
capture/replay framework 501
capture/replay tools 475
career as a tester 15
cause-effect graphing 49
change management 3
checklist testing 243

bug hypothesis 244
data items 245
declarations 244

Chow’s switch coverage 155
Clausewitz 46
CMM 458
CMMI 458
code of ethics 15
code parsing tools 268

Splint 268
code review

exercise 423
coexistence testing 392
cohesion 381
Common Attack Pattern Enumeration and

Classification (CAPEC) 345
Common Vulnerabilities and Exposures

(CVE) 345
communicating incidents 450
communication 530

levels 530
completeness 54
completeness of coverage 160
complexity analysis 265, 268
complexity view 267
component integration testing 9
component testing 9
condition coverage 197

bug hypothesis 198
condition determination testing 200
condition testing 197
conditional call 294
configuration control board 451
configuration item 451
configuration management 3, 451
control-flow analysis 265
control-flow graph (example) 182
control-flow graphs 179, 180

decision point 182
junction point 181
process block 181

control-flow testing 179
condition coverage 180
condition determination 180
decision (or branch) coverage 180
decision/condition coverage 180
exercise 209
instruction and code coverage 179
Linear Code Sequence and Jump

(LCSAJ) 180
loop coverage 180
MC/DC 180
multiple condition/decision coverage

180

__AST V3.book Seite 578 Freitag, 1. Juli 2011 1:06 13

 Index 579

multiple-condition coverage 180
statement coverage 179

correctness 327
coupling 381
coverage criterion 108
coverage metrics 288
Critical Testing Processes (CTP) 458
criticality 51
criticality level 52
CTP 458
customer product integration testing 4
cyclomatic complexity 221, 223, 266

example 222
exercise 225

cyclomatic complexity testing 220

D
data defects 239

initial value 239
structure 239
type 239

data parameterization 517
data scoping rules 274
data transfer interception 342
data-driven architecture 502
data-driven testing 489
data-flow

exercise 284
data-flow analysis 273, 275
data-flow errors 273
data-flow strategies 285
data-flow testing 273
dd-path 215
dd-path testing 216
DEADBEEF 304
debugging tool 479
decision constructs 190
decision coverage 188, 190

example 191
decision coverage vs. statement coverage 189
decision table 140, 142

collapsing columns 143
test cases 140

decision table testing 140
decision tables

and boundary values 146
and equivalence partitions 146
combining with other techniques 145
exercise 147, 148
nonexclusive rules 147

decision testing 188
decision/condition coverage 200
default value integer 127
defect 437
defect breakdown 56
defect fields 445
defect lifecycle 437
defect taxonomy 237, 238

example 237
defect-based techniques 236, 237

applying 261
defects 436
defects per thousand lines of source code

(KLOC) 352
defect-taxonomy-based techniques 236
Delphi 127
denial of service 341
depth-first approach 86
design review 410
design specification template 32
detect defects 436
detection methods 88
Deutsch checklist review

exercise 429
Deutsch, L. Peter 417
Deutsch’s design review checklist 417
distributed testing 74
DO-178B standard 51, 90
documenting test conditions 25
domain specific languages 469
dynamic analysis 302
dynamic analysis tools 303, 480, 482
dynamic tests 102

black-box 102
defect-based 103
dynamic analysis 103
experience-based 103
white-box 103

E
e-commerce application (example) 159
effective attacks (example) 256
effectiveness 332
effects analysis 97
efficiency 332, 355, 374

exercise 372
resource utilization 356
time behavior 356

efficiency bugs (examples) 368
efficiency failures 356

__AST V3.book Seite 579 Freitag, 1. Juli 2011 1:06 13

580 Index

efficiency measurements 366
metrics 367

efficiency testing 355
multiple flavors 357

emulator 488
enclosed region calculation 222
endurance or soak testing 359
entry criteria 37
enumerations 121
epsilon 132
equivalence partition 108
equivalence partitioning 107, 108

exercise 115
invalid equivalence classes 107
valid equivalence classes 107
visualizing 109

equivalence partitioning errors 110
composing test cases 111
error handler 114
example 114

error 437
error guessing 242, 243
ethical standards 14
ethics 14
evaluation 333
evaluation of exit criteria 53
exam 535

evolution 543
scenario-based questions 541

Example 278
exclusive conditional call 294
exercise

capture/replay 495
code review 423
control-flow testing 209
cyclomatic complexity 225
data-flow 284
Deutsch checklist review 429
evaluating exit criteria and reporting 60
exploratory testing 249
hexadecimal converter 195
incident management 451
keyword 511
maintainability and portability 393
McCabe design predicate 301
performance testing 520
security, reliability, and efficiency 372
software attack 259
specification-, defect-, and experience-

based 260

structure-based testing 228
usability test 335

exit criteria 23
experience-based techniques 41, 237

applying 261
error guessing 243

exploratory testing 245
bug hypothesis 246
exercise 249
test charters 247
usability heuristics 245

exploratory testing process 246
exponent 128

F
factorial 182
failure 45, 437
failure mode 97
Failure Mode and Effect Analysis (FMEA)

81, 87
Failure Mode, Effect and Criticality Analysis

(FMECA) 81
failure rate

confirmation test 57
failures 44
false negative 40
false positive 40
false-fail result 40
false-pass result 40
family of defects 106
fault model 253

bug hypothesis 253
fault seeding 479
fault seeding tool 479
fault tolerance 349
feature interaction testing 4
fixed-point decimal 128
floating point numbers 128

boundaries 130
testing 130

formal review 405
phases 410

formative evaluation 332
framework 461

test automation system 461
framework architecture 499
functional boundaries 124

integers 125
functional decomposition 289
functional defects 238

__AST V3.book Seite 580 Freitag, 1. Juli 2011 1:06 13

 Index 581

function 238
specification 238
test 238

functional testing 325

G
goal question metric technique 13
gray-box test 242
GUI 492

H
HALT testing 352
hardware reliability graph 350
hardware-software integration testing 4
HELLOCARMS 549–573
heuristic evaluation 333
hex converter (example) 296
high cohesion 383
high-level test case 27
Highly Accelerated Life Tests (HALT) 352
housekeeping categories 240
hyperlink test tool 487

I
identifying test conditions 25
IEEE 1028 standard

software reviews 401
IEEE 1044 classification process 439
IEEE 1044 defect lifecycle 438
IEEE 1044 incident management lifecycle

438
IEEE 1044 standard

incident lifecycles 435
IEEE 1044.1 incident management system

445
IEEE 754-2008 float representation 129
IEEE 829 standard 48
IEEE 829 standard for test documentation

49, 59
IEEE 829 test case specification 32
IEEE 829 test design specification 31
IEEE 829 test plan template 22
IEEE 829 test procedure specification 48
impact of a problem 76
incident 44, 45, 437
incident logging 437
incident management 435

exercise 451
metrics 449

incident report 437, 453

incremental lifecycle model 3
incremental testing 289
independence of testing 529
individual skills 528
informal review 405
injection tools 479
insourced testing 74
inspection 333, 403
inspection leader (or moderator) 405
installability 390
integers

number of bits 125
signed 125
unsigned 125

integrated test system (example) 471
integration testing 4

big bang 289
call-graph based 290
incremental strategy 289
McCabe design predicate approach 292

interoperability 330
interoperability testing 330
introducing reviews 412
invalid 107
invalid equivalence classes 107
irrational number 130
ISO 9126 349, 355
ISO 9126 categories 338
ISO 9126 quality model 338
ISO 9126 quality standard 33, 34
ISO 9126 standard 323, 338
ISTQB Advanced exams 539
ISTQB fundamental test process 20
iterative call 295
iterative conditional cal 296

J
Jones, Capers 411
Jorgensen, Paul 289

K
keyword-based testing 510
keyword-driven architecture 504
keyword-driven test automation 489
keyword-driven testing 489
keywords 510

exercise 511

__AST V3.book Seite 581 Freitag, 1. Juli 2011 1:06 13

582 Index

L
LCSAJ 215
LCSAJ (example) 217
LCSAJ testing 215
learning objectives 535

levels 536, 538
level of risk 76
level test plan 71
levels of complexity 266
likelihood of a problem 76
Linear Code Sequence and Jump (LCSAJ)

testing 215
load testing 358
logging test results 45
logging-type dynamic analysis tools 304
logic bombs 343
logical test cases 159, 164
loop coverage 191, 192
low coupling 383
low-level test case 27

M
maintainability 375

analyzability 379
changeability 381
exercise 393
stability 384
subcharacteristics 379
testability 385

maintainability defects 376
maintainability problems

project issues 377
maintainability testing 375
management review 403, 408
mantissa 128
manual test case 493
manual test procedure 504
Marick, Brian 419
Marick’s code review checklist 419
masking MC/DC 204
master test plan 71
maturity 349
MC/DC coverage 202
McCabe design predicate

exercise 301
McCabe design predicate approach 292
McCabe, Thomas 220, 265
McKay, Judy 357
mean time between failures (MTBF) 351
mean time to repair (MTTR) 351

measure 11
measurement 11
measurement scale 11
measurements 11, 53
medium bang testing 292
memory leak 303
memory leak detection 305
metaphors 493
metric 11
metrics 11, 35, 53
metrics (NASA) 354
metrics for coverage 13
modified condition/decision coverage (MC/

DC) 201
monitoring tools 485
motivation 529
multiple condition coverage 205
multiple condition testing 205
Myers, Glenford 242

N
N-1 switch coverage 155

example 166
NASA 353
NASA Software Assurance Standard

(NASA-STD-8739.8) 353
negative testing 349
neighborhood integration 291

example 291
non-functional boundaries 123
non-functional test objectives 23
non-functional testing 24, 325
N-switch testing 166

O
objective vs. goal 13
Open Web Application Security Project

(OWASP) 346
OpenLaszlo code review checklist 422
open-source test tools 470
operational acceptance testing 348
operational profiles 348, 349
operational readiness review 410
oracle problem 30
outsourced testing 74

P
pairwise graph 291

example 290
path testing 214

__AST V3.book Seite 582 Freitag, 1. Juli 2011 1:06 13

 Index 583

peer review 403, 407
penetration testing 258
people skills 527
performance test tools 484

example 485
performance testing 356, 357, 360, 459, 514

analyze 365
back-end data 517
execute 365
exercise 520
input data 516
model 364
modeling the system 361
performance acceptance criteria 363
project success criteria 363
runtime data 517
start 519
target data 516
test environment 362, 364
testing scripts 364
tools 518
variability of scenarios 364
web application 362

performance testing tool 483
performance tools 514
piracy 340
pointer-induced failures 308
portability 386

exercise 393
portability testing 386
PowerPoint 256
Pragmatic Risk Analysis and Management

81, 82
predictive reliability techniques 354
preparing for the exam 535
preventive test strategies 86
preventive testing 85
priority 443
process block 181
process defects 239

arithmetic 239
control or sequence 239
initialization 239
static logic 239

product risks 75, 76, 80
programming guidelines 270
programming languages 469
programming standards 270
project risk by-products 95
project risks 76, 80

Q
qualification review 410
quality attributes for technical testing

337
quality risk analysis document 88
quality risk management 11
quality risks 75
questionnaires 334

R
radix 128
reactive test strategies 42
real-world boundaries 132
reasonableness 494
recoverability 348, 350
recoverability testing 348
regulatory requirements 470
reliability 348, 349, 373

exercise 372
reliability growth model 348
reliability testing 348, 359
replaceability 388
reporting of metrics and measure 13
reporting of results 53
requirements defect by-products 95
requirements review 409
requirements specifications 106
requirements-based testing 107

exercise 175
residual risk 86
resource utilization testing 359
response-time test 358
review 333, 401
review principles 404
review types 406

informal review 407
inspections 407
technical reviews 407
walk-throughs 407

reviewer 401
reviews 399

checklists 414
introducing 412
success factors 413

risk 76
risk analysis 79, 82, 84

consensus 84
risk assessment 82
risk category 76
risk control 84

__AST V3.book Seite 583 Freitag, 1. Juli 2011 1:06 13

584 Index

risk identification 79, 80
example 87

risk level 78
risk management 79
risk mitigation 79, 84
risk type 76
risk-aware testing standards 90
risk-based testing 75, 76

exercise 92, 96
level of risk 77
lifecycle 89
risk items 77

risk-based testing strategy 22, 26, 77
root cause 437
root cause analysis 437
rounding errors 131

S
safety analysis techniques 10
safety integrity level (SIL) 91
safety-critical system 9, 10, 11

characteristics and risks 10
sample exam questions 16, 67, 98, 309, 396,

432, 454, 523, 532
scalability testing 358
scheduling and test planning 73
scripting languages 469
Scrum 3
SDLC 24
security 338, 372

exercise 372
security issues 339
security risks 338
security testing 258, 338
sequential lifecycle model 3
session-based test management 41, 97
set-use pair

example 278
set-use pair notation 275

atomic actions 276
severity 443
significand 128
simulator 488
simulators 488
single points of failure 10
single test procedure 44
SMLC 376
sociability 392
software attacks 252

exercise 259

software characteristics 323
software development lifecycle (SDLC) 24
software lifecycle 2, 6
software maintenance lifecycle (SMLC) 376
software reliability 349
software reliability graph 351
Software Usability Measurement Inventory

(SUMI) 334
specification, defect, and experience-based

exercise 260
specification-based technique 105
specification-based tests 104

model 105
overview 104

spike testing 359
SQL injection 340
standards 457
state diagram 154
state table 162
state transition 154
state transition diagram 154, 155, 164

example 156
state transition tables 162
state transition testing 154
state/transition coverage 158
state-based testing 155

combining with other techniques 169
coverage criterion 155
event 158
exercise 170
state 158
switches 156

statement coverage 184
example 185

statement testing 184
statement-level coverage 184
static analysis 264, 480

integration testing 288
static analysis tool 268, 270, 480

Checkstyle 271
static analyzer 480
static testing 34

example 35
reviews 400

static tests
reviews 102
static analysis 102

stress testing 358
structural testing 227
structural-based testing 177

__AST V3.book Seite 584 Freitag, 1. Juli 2011 1:06 13

 Index 585

structure-based design technique (white-box
test design technique) 177

structure-based techniques 262
structure-based testing

exercise 228
substates 161
suitability 329
suitability testing 329
SUMI 334
summative evaluation 333
superstates 161
surveys 334
switch coverage 166
syntax testing 49
system defects 238

hardware devices 239
internal interface 238
operating system 239
resource management 239
software architecture 239

system integration testing 9
system of systems 4
system test exit 58
system test exit review 60

case study 59
system testing 9
systems 9
systems of systems 7

characteristics and risks 7
component integration 8
fundamental test process 9
information transfer 8
integrating 8
levels of integration 8
system integration 8
version management 8

T
taxonomy 240
taxonomy for tests 323
taxonomy of test techniques 101
technical review 403
technical security 338
technical test analyst

scope 102
techniques for usability testing 333
test analysis 6, 21
test analysis and design

metrics/measurements 35
standards 31

test automation 38, 459
benefits 462, 465
costs 462
risks 462, 463, 464
scalability 499
strategies 466

test basics 1–16
test basis 104, 105
test basis documents 29, 30
test case 22, 48
test case sequencing guidelines 97
test case values 109
test charter 247
test closure 6, 60
test closure activities 67
test condition 22

level of detail 25
structure 25

test control 6, 21, 47, 78
test data 39
test design 21

 27
test design process 28
test design specification 27
test design techniques 102
test environment 38, 39
test environment readiness 39
test estimation 72, 73
test execution 6, 24, 36, 37, 42, 53

entry criteria 42
test execution schedule 36
test execution tools 475, 476
test implementation 28, 36, 53
test level 71
test log 41, 46
test logging 41
test management 69, 70, 98

documentation 70
evaluation of exit criteria 53
reporting of results 53

test management tool 474
Test Maturity Model (TMM) 458
Test Maturity Model Integration (TMMi)

458
test monitoring 74
test objectives 22
test oracle 29, 105, 106, 489

real world 30
test plan 21, 71
test plan documentation templates 71

__AST V3.book Seite 585 Freitag, 1. Juli 2011 1:06 13

586 Index

test planning 21
test point analysis (TPA) 72
test policy 71
test procedure 37, 48, 493
test procedure readiness 37
test procedure specification 37
test process 6
test process control 73
test process improvement 457
Test Process Improvement (TPI) 458
test process models 20
test progress monitoring 73
test record tools 477
test schedule 72
test script 37, 49
test strategy 26, 71
test suite summary 54
test summary report 59, 60
test support tools 41
test team composition 527
test team dynamics 528
test techniques 101, 459

taxonomy 101
test tool categories 473
test tool concepts 460
test tool portfolio 468
test tools 459

deployment 470
testing

goals 12
organization 529
software lifecycle 2

testing measurement 12
testing metrics 12

definition 12
reporting 12, 13
tracking 12, 13

testware 41
three-value approach 134
time-critical systems 356
timely information 344
tip-over testing 359
TMM 458
TMMi 458
TPI 458
transactional situation 140

trigger a transition 158
troubleshooting tools 479
TTCN-3 469
Tufte, Edward 13
two’s complements 125
two-pairs-of-eyes rule 414
typical test levels 4

U
unconditional call 293, 295
uncoupled condition 203
unique cause MC/DC 203
unit testing 184
usability 331
usability checklist (example) 334
usability testing 331

exercise 335
inspection 333
questionnaires 334
techniques 333
validation 333

user acceptance testing 9

V
valid equivalence classes 107
validation 333
viruses 343
V-model 5, 6
vulnerabilities 344

W
walk-through 403
WAMMI 334
web testing tools 486
Website Analysis and MeasureMent

Inventory (WAMMI) 334
white 49
white-box techniques 49
white-box testing 179
Whittaker, James 253
Whittaker’s technique 257
whole number representations 126
Wideband Delphi 72
wild pointer 303
wild pointer detection 307
worms 343

__AST V3.book Seite 586 Freitag, 1. Juli 2011 1:06 13

	Cover Page
	About the Authors
	Title Page
	Copyright
	Rex Black's Acknowledgements
	Jamie Mitchell's Acknowledgements
	Contents
	Introduction
	1. Test Basics
	1.1 Introduction
	1.2 Testing in the Software Lifecycle
	1.3 Specific Systems
	1.4 Metrics and Measurement
	1.5 Ethics
	1.6 Sample Exam Questions

	2. Testing Processes
	2.1 Introduction
	2.2 Test Process Models
	2.3 Test Planning and Control
	2.4 Test Analysis and Design
	2.4.1 Non-functional Test Objectives
	2.4.2 Identifying and Documenting Test Conditions
	2.4.3 Test Oracles
	2.4.4 Standards
	2.4.5 Static Tests
	2.4.6 Metrics

	2.5 Test Implementation and Execution
	2.5.1 Test Procedure Readiness
	2.5.2 Test Environment Readiness
	2.5.3 Blended Test Strategies
	2.5.4 Starting Test Execution
	2.5.5 Running a Single Test Procedure
	2.5.6 Logging Test Results
	2.5.7 Use of Amateur Testers
	2.5.8 Standards
	2.5.9 Metrics

	2.6 Evaluating Exit Criteria and Reporting
	2.6.1 Test Suite Summary
	2.6.2 Defect Breakdown
	2.6.3 Confirmation Test Failure Rate
	2.6.4 System Test Exit Review
	2.6.5 Standards
	2.6.6 Evaluating Exit Criteria and Reporting Exercise
	2.6.7 System Test Exit Review
	2.6.8 Evaluating Exit Criteria and Reporting Exercise Debrief

	2.7 Test Closure Activities
	2.8 Sample Exam Questions

	3. Test Management
	3.1 Introduction
	3.2 Test Management Documentation
	3.3 Test Plan Documentation Templates
	3.4 Test Estimation
	3.5 Scheduling and Test Planning
	3.6 Test Progress Monitoring and Control
	3.7 Business Value of Testing
	3.8 Distributed, Outsourced, and Insourced Testing
	3.9 Risk-Based Testing
	3.9.1 Risk Management
	3.9.2 Risk Identification
	3.9.3 Risk Analysis or Risk Assessment
	3.9.4 Risk Mitigation or Risk Control
	3.9.5 An Example of Risk Identification and Assessment Results
	3.9.6 Risk-Based Testing throughout the Lifecycle
	3.9.7 Risk-Aware Testing Standards
	3.9.8 Risk-Based Testing Exercise 1
	3.9.9 Risk-Based Testing Exercise Debrief 1
	3.9.10 Project Risk By-Products
	3.9.11 Requirements Defect By-Products
	3.9.12 Risk-Based Testing Exercise 2
	3.9.13 Risk-Based Testing Exercise Debrief 2
	3.9.14 Test Case Sequencing Guidelines

	3.10 Failure Mode and Effects Analysis
	3.11 Test Management Issues
	3.12 Sample Exam Questions

	4. Test Techniques
	4.1 Introduction
	4.2 Specification-Based
	4.2.1 Equivalence Partitioning
	4.2.1.1 Avoiding Equivalence Partitioning Errors
	4.2.1.2 Composing Test Cases with Equivalence Partitioning
	4.2.1.3 Equivalence Partitioning Exercise
	4.2.1.4 Equivalence Partitioning Exercise Debrief

	4.2.2 Boundary Value Analysis
	4.2.2.1 Examples of Equivalence Partitioning and Boundary Values
	4.2.2.2 Non-functional Boundaries
	4.2.2.3 A Closer Look at Functional Boundaries
	4.2.2.4 Integers
	4.2.2.5 Floating Point Numbers
	4.2.2.6 Testing Floating Point Numbers
	4.2.2.7 How Many Boundaries?
	4.2.2.8 Boundary Value Exercise
	4.2.2.9 Boundary Value Exercise Debrief

	4.2.3 Decision Tables
	4.2.3.1 Collapsing Columns in the Table
	4.2.3.2 Combining Decision Table Testing with Other Techniques
	4.2.3.3 Nonexclusive Rules in Decision Tables
	4.2.3.4 Decision Table Exercise
	4.2.3.5 Decision Table Exercise Debrief

	4.2.4 State-Based Testing and State Transition Diagrams
	4.2.4.1 Superstates and Substates
	4.2.4.2 State Transition Tables
	4.2.4.3 Switch Coverage
	4.2.4.4 State Testing with Other Techniques
	4.2.4.5 State Testing Exercise
	4.2.4.6 State Testing Exercise Debrief

	4.2.5 Requirements-Based Testing Exercise
	4.2.6 Requirements-Based Testing Exercise Debrief

	4.3 Structure-Based
	4.3.1 Control-Flow Testing
	4.3.1.1 Building Control-Flow Graphs
	4.3.1.2 Statement Coverage
	4.3.1.3 Decision Coverage
	4.3.1.4 Loop Coverage
	4.3.1.5 Hexadecimal Converter Exercise
	4.3.1.6 Hexadecimal Converter Exercise Debrief
	4.3.1.7 Condition Coverage
	4.3.1.8 Decision/Condition Coverage
	4.3.1.9 Modified Condition/Decision Coverage (MC/DC)
	4.3.1.10 Multiple Condition Coverage
	4.3.1.11 Control-Flow Exercise
	4.3.1.12 Control-Flow Exercise Debrief

	4.3.2 Path Testing
	4.3.2.1 LCSAJ
	4.3.2.2 Basis Path/Cyclomatic Complexity Testing
	4.3.2.3 Cyclomatic Complexity Exercise
	4.3.2.4 Cyclomatic Complexity Exercise Debrief

	4.3.3 A Final Word on Structural Testing
	4.3.4 Structure-Based Testing Exercise
	4.3.5 Structure-Based Testing Exercise Debrief

	4.4 Defect- and Experience-Based
	4.4.1 Defect Taxonomies
	4.4.2 Error Guessing
	4.4.3 Checklist Testing
	4.4.4 Exploratory Testing
	4.4.4.1 Test Charters
	4.4.4.2 Exploratory Testing Exercise
	4.4.4.3 Exploratory Testing Exercise Debrief

	4.4.5 Software Attacks
	4.4.5.1 An Example of Effective Attacks
	4.4.5.2 Other Attacks
	4.4.5.3 Software Attack Exercise
	4.4.5.4 Software Attack Exercise Debrief

	4.4.6 Specification-, Defect-, and Experience-Based Exercise
	4.4.7 Specification-, Defect-, and Experience-Based Exercise Debrief
	4.4.8 Common Themes

	4.5 Static Analysis
	4.5.1 Complexity Analysis
	4.5.2 Code Parsing Tools
	4.5.3 Standards and Guidelines
	4.5.4 Data-Flow Analysis
	4.5.5 Set-Use Pairs
	4.5.6 Set-Use Pair Example
	4.5.7 Data-Flow Exercise
	4.5.8 Data-Flow Exercise Debrief
	4.5.9 Data-Flow Strategies
	4.5.10 Static Analysis for Integration Testing
	4.5.11 Call-Graph Based Integration Testing
	4.5.12 McCabe Design Predicate Approach to Integration Testing
	4.5.13 Hex Converter Example
	4.5.14 McCabe Design Predicate Exercise
	4.5.15 McCabe Design Predicate Exercise Debrief

	4.6 Dynamic Analysis
	4.6.1 Memory Leak Detection
	4.6.2 Wild Pointer Detection
	4.6.3 API Misuse Detection

	4.7 Sample Exam Questions

	5. Tests of Software Characteristics
	5.1 Introduction
	5.2 Quality Attributes for Domain Testing
	5.2.1 Accuracy
	5.2.2 Suitability
	5.2.3 Interoperability
	5.2.4 Usability
	5.2.5 Usability Test Exercise
	5.2.6 Usability Test Exercise Debrief

	5.3 Quality Attributes for Technical Testing
	5.3.1 Technical Security
	5.3.2 Security Issues
	5.3.3 Timely Information
	5.3.4 Reliability
	5.3.5 Efficiency
	5.3.6 Multiple Flavors of Efficiency Testing
	5.3.7 Modeling the System
	5.3.8 Efficiency Measurements
	5.3.9 Examples of Efficiency Bugs
	5.3.10 Exercise: Security, Reliability, and Efficiency
	5.3.11 Exercise: Security, Reliability, and Efficiency Debrief
	5.3.12 Maintainability
	5.3.13 Subcharacteristics of Maintainability
	5.3.14 Portability
	5.3.15 Maintainability and Portability Exercise
	5.3.16 Maintainability and Portability Exercise Debrief

	5.4 Sample Exam Questions

	6. Reviews
	6.1 Introduction
	6.2 The Principles of Reviews
	6.3 Types of Reviews
	6.4 Introducing Reviews
	6.5 Success Factors for Reviews
	6.5.1 Deutsch's Design Review Checklist
	6.5.2 Marick's Code Review Checklist
	6.5.3 The OpenLaszlo Code Review Checklist

	6.6 Code Review Exercise
	6.7 Code Review Exercise Debrief
	6.8 Deutsch Checklist Review Exercise
	6.9 Deutsch Checklist Review Exercise Debrief
	6.10 Sample Exam Questions

	7. Incident Management
	7.1 Introduction
	7.2 When Can a Defect Be Detected?
	7.3 Defect Lifecycle
	7.4 Defect Fields
	7.5 Metrics and Incident Management
	7.6 Communicating Incidents
	7.7 Incident Management Exercise
	7.8 Incident Management Exercise Debrief
	7.9 Sample Exam Questions

	8. Standards and Test Process Improvement
	9. Test Techniques
	9.1 Introduction
	9.2 Test Tool Concepts
	9.2.1 The Business Case for Automation
	9.2.2 General Test Automation Strategies
	9.2.3 An Integrated Test System Example

	9.3 Test Tool Categories
	9.3.1 Test Management Tools
	9.3.2 Test Execution Tools
	9.3.3 Debugging, Troubleshooting, Fault Seeding, and Injection Tools
	9.3.4 Static and Dynamic Analysis Tools
	9.3.5 Performance Testing Tools
	9.3.6 Monitoring Tools
	9.3.7 Web Testing Tools
	9.3.8 Simulators and Emulators

	9.4 Keyword-Driven Test Automation
	9.4.1 Capture/Replay Exercise
	9.4.2 Capture/Replay Exercise Debrief
	9.4.3 Evolving from Capture/Replay
	9.4.4 The Simple Framework Architecture
	9.4.5 Data-Driven Architecture
	9.4.6 Keyword-Driven Architecture
	9.4.7 Keyword Exercise
	9.4.8 Keyword Exercise Debrief

	9.5 Performance Testing
	9.5.1 Performance Testing Exercise
	9.5.2 Performance Testing Exercise Debrief

	9.6 Sample Exam Questions

	10. People Skills and Team Composition
	10.1 Introduction
	10.2 Individual Skills
	10.3 Test Team Dynamics
	10.4 Fitting Testing within an Organization
	10.5 Motivation
	10.6 Communication
	10.7 Sample Exam Questions

	11. Preparing for the Exam
	11.1 Learning Objectives
	11.1.1 Level 1: Remember (K1)
	11.1.2 Level 2: Understand (K2)
	11.1.3 Level 3: Apply (K3)
	11.1.4 Level 4: Analyze (K4)
	11.1.5 Where Did These Levels of Learning Objectives Come From?

	11.2 ISTQB Advanced Exams
	11.2.1 Scenario-Based Questions
	11.2.2 On the Evolution of the Exams

	Appendix A. Bibliography
	11.2.3 Advanced Syllabus Referenced Standards
	11.2.4 Advanced Syllabus Referenced Books
	11.2.5 Other Referenced Books
	11.2.6 Other References

	Appendix B. HELLOCARMS The Next Generation of Home Equity Lending
	System Requirements Document
	I: Table of Contents
	II: Versioning
	III: Glossary
	000 Introduction
	001 Informal Use Case
	003 Scope
	004 System Business Benefits
	010 Functional System Requirements
	020 Reliability System Requirements
	030 Usability System Requirements
	040 Efficiency System Requirements
	050 Maintainability System Requirements
	060 Portability System Requirements
	A: Acknowledgement

	Appendix C. Answers to Sample Questions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

