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PREFACE

The UNIX system was first described in a 1974 paper in the Communications of
the ACM [Thompson 741 by Ken Thompson and Dennis Ritchie. Since that time,
it bas become increasingly widespread and popular throughout the computer
industry where more and more vendors are offering support for it on their
machines. It is especially popular in universities where it is frequently used for
operating systems research and case studies.

Many books and papers have described parts of the system, among them, two
special issues of the Bell System Technical Journal in 1978 EBST.I 781 and 1984
EBLTJ 841. Many books describe the user level interface, particularly how to use
electronic mail, how to prepare documents, or how to use the command interpreter
called the shell; some books such as The UNIX Programming Environment
I Kernighan 841 and Advanced UNIX Programming naochkind 851 describe the
programming interface. This book describes the internal algorithms and structures
that form the basis of the operating system (called the kernel) and their
relationship to the programmer interface. It is thus applicable to several
environments. First, it can be used as a textbook for an operating systems course
at either the advanced undergraduate or first-year graduate level. It is most
beneficial to reference the system source code when using the book, but the book
can be read independently, too. Second, system programmers can use the book as a
reference to gain better understanding of how the kernel works and to compare
algorithms used in the UNIX system to algorithms used in other operating systems.

xi
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Finally, programmers on UNIX systems can gain a deeper understanding of how
their programs interact with the system and thereby code more-efficient,
sophisticated programs.

The material and organization for the book grew out of a course that I prepared
and taught at AT&T Bell Laboratories during 1983 and 1984. While the course
centered on reading the source code for the system, I found that understanding the
code was easier once the concepts of the algorithms had been mastered. I have
attempted to keep the descriptions of algorithms in this book as simple as possible,
reflecting in a small way the simplicity and elegance of the system it describes.
Thus, the book is not a line-by-line rendition of the system written in English; it is
a description of the general flow of the various algorithms, and most important, a
description of how they interact with each other. Algorithms are presented in a C-
like pseudo-code to aid the reader in understanding the natural language
description, and their names correspond to the procedure names in the kernel.
Figures depict the relationship between various data structures as the system
manipulates them. In later chapters, small C programs illustrate many system
concepts as they manifest themselves to users. In the interests of space and clarity,
these examples do not usually check for error conditions, something that should
always be done when writing programs. I have run them on System V; except for
programs that exercise features specific to System V, they should run on other
versions of the system, too.

Many exercises originally prepared for the course have been included at the end
of each chapter, and they are a key part of the book. Some exercises ares

traightforward, designed to illustrate concepts brought out in the text. Others are
more difficult, designed to help the reader understand the system at a deeper level.
Finally, some are exploratory in nature, designed for i nv

estigation as a researchproblem. Difficult exercises are marked with asterisks.
The system description is based on UNIX System V Release 2 supported by

AT&T, with some new features from Release 3. This is the system with 
whicham most familiar, but I have tried to portray interesting co

ntributions of othervariations to the operating system, particularly those of Berkeley Software
Distribution (BSD). I have avoided issues that assume particular hardwarech

aracteristics, trying to cover the kernel-hardware interface in general terms and
ignoring particular machine idi

osyncrasies. Where mac
hine-specific issues areimportant to understand im

plementation of the kernel, however, I delve into the
relevant detail. At the very least, examination of these topics will highlight the
parts of the operating system that are the most machine dependent.

The reader must have p
rogramming experience with a high-level language and,

preferably, with an assembly language as a prerequisite for understanding thisbook. It is r
ecommended that the reader have experience working with the UNIX

system and that the reader knows the C language iKernighan 781. However, Ihave a
ttempted to write this book in such a way that the reader should still be able

to absorb the material without such background. The appendix contains a
simplified description of the system calls, sufficient to understand the presentation
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in the book, but not a complete reference manual.
The book is organized as follows. Chapter 1 is the introduction, giving a brief,

general description of system features as perceived by the user and describing the
system structure. Chapter 2 describes the general outline of the kernel architecture
and presents some basic concepts. The remainder of the book follows the outline
presented by the system architecture, describing the various components in a
building block fashion. k can be divided into three parts: the file system, process
control, and advanced topics. The file system is presented first, because its concepts
are easier than those for process control. Thus, Chapter 3 describes the system
buffer cache mechanism that is the foundation of the file system. Chapter 4
describes the data structures and algorithms used internally by the file system.
These algorithms use the algorithrns explained in Chapter 3 and take care of the
internal bookkeeping needed for managing user files. Chapter 5 describes the
system calls that provide the user interface to the file system; they use the
algorithms in Chapter 4 to access user files.

Chapter 6 turns to the control of processes. It defines the context of a process
and investigates the internal kernel primitives that manipulate the process context.
In particular, it considers the system call interface, interrupt handling, and the
context switch. Chapter 7 presents the system calls that control the process
context. Chapter 8 deals with process scheduling, and Chapter 9 covers memory
management, including swapping and paging systems.

Chapter 10 outlines general driver interfaces, with specific discussion of disk
drivers and terminal drivers. Although devices are logically part of the file system,
their discussion is deferred until here because of issues in process control that arise
in terminal drivers. This chapter also acts as a bridge to the more advanced topics
presented in the rest of the book. Chapter 11 covers interprocess communication
and networking, including System V messages, shared memory and semaphores,
and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX
systems, and Chapter 13 investigates loosely coupled distributed systems.

The material in the first nine chapters could be covered in a one-semester course
on operating systems, and the material in the rernaining chapters could be covered
in advanced seminars with various projects being done in parallel.

A few caveats must be made at this time. No attempt has been made to
describe system performance in absolute terms, nor is there any attempt to suggest
configuration parameters for a system installation. Such data is likely to vary
according to machine type, hardware configuration, system version and
implementation, and application mix. Similarly, 1 have made a conscious effort to
avoid predicting future development of UNIX operating system features.
Discussion of advanced topics does not imply a commitment by AT&T to provide
particuiar features, nor should it even imply that particular areas are under
investigation.

It is my pleasure to acknowledge the assistance of many friends and colleagues
who encouraged me while 1 wrote this book and provided constructive criticism of
the manuscript. My deepest appreciation goes to Ian Johnstone, who suggested
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that I write this book, gave me early encouragement, and reviewed the earliest
draft of the first chapters. Ian taught me many tricks of the trade, and I will
always be indebted to him. Doris Ryan also had a hand in encouraging me from
the very beginning, and I will always appreciate her kindness and thoughtfulness.
Dennis Ritchie freely answered numerous questions on the historical and technical
background of the system. Many people gave freely of their time and energy to
review drafts of the manuscript, and this book owes a lot to their detailed
comments. They are Debby Bach, Doug Bayer, Lenny Brandwein, Steve Buroff,
Tom Butler, Ron Gomes, Mesut Gunduc, Laura Israel, Dean Jagels, Keith
Kelleman, Brian Kernighan, Bob Martin, Bob Mitze, Dave Nowitz, Michael
Poppers, Marilyn Safran, Curt Schimmel, Zvi Spitz, Tom Vaden, Bill Weber,
Larry Wehr, and Bob Zarrow. Mary Fruhstuck provided help in preparing the
manuscript for typesetting. I would like to thank my management for their
continued support throughout this project and my colleagues, for providing such a
stimulating atmosphere and wonderful work environment at AT&T Bell
Laboratories. John Wait and the staff at Prentice-Hall provided much valuable
assitance and advice to get the book into its final form. Last, but not least, my
wife, Debby, gave me lots of emotional support, without which I could never have
succeeded.



1

GENERAL OVERVIEW

OF THE SYSTEM

The UNIX system bas become quite popular since its inception in 1969, running on
machines of varying processing power from microprocessors to mainframes and
providing a common execution environment across them. The system is divided
into two parts. The first part consists of programs and services that have made the
UNIX system environment so popular; it is the part readily apparent to users,
including such programs as the shell, mail, text processing packages, and source
code control systems. The second part consists of the operating system that
supports these programs and services. This book gives a detailed description of the
operating system. It concentrates on a description of UNIX System V produced by
AT&T but considers interesting features provided by other verslons too. It
examines the major data structures and algorithms used in the operating system
that ultimately provide users with the standard user interface.

This chapter provides an introduction to the UNIX system. It reviews its
history and outlines the overall system structure. The next chapter gives a more
detailed introduction to the operating system.

1.1 HISTORY

In 1965, Bell Telephone Laboratories joined an effort with the General Electric
Company and Project MAC of the Massachusetts Institute of Technology to
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develop a new operating system called Multics fOrganick 721. The goals of th
Multics system were to provide simultaneous computer access to a large communit;
of users, to supply ample computation power and data storage, and to allow users ti
share their data easily, if desired. Many people who later took part in the earl:
development of the UNIX system participated in the Multics work at Be!
Laboratories. Although a primitive version of the MuItics system was running on 

E

GE 645 computer by 1969, it did not provide the general service computing foi
which it was intended, nor was it clear when its development goals would be met
Consequently, Bell Laboratories ended its participation in the project.

With the end of their work on the Multics project, members of the Computing
Science Research Center at Bell Laboratories were left without a "convenient
interactive computing service" [Ritchie 84al. In an attempt to improve their
programming environment, Ken Thompson, Dennis Ritchie, and others sketched a
paper design of a file system that later evolved into an early version of the UNIX
file system. Thompson wrote programs that simulated the behavior of the proposed
file system and of programs in a demand-paging environment, and he even encoded
a simple kernel for the GE 645 computer. At the same time, he wrote a game
program, "Space Travel," in Fortran for a GECOS system (the Honeywell 635),
but the program was unsatisfactory because it was difficult to control the "space
ship" and the program was expensive to run. Thompson later found a little-used
PDP-7 computer that provided good graphic display and cheap executing power.
Programming "Space Travel" for the PDP-7 enabled Thompson to learn about the
machine, but its environment for program development required cross-assembly of
the program on the GECOS machine and carrying paper tape for input to the
PDP-7. To create a better development environment, Thompson and Ritchie
implemented their system design on the PDP-7, including an early version of the
UNIX file system, the process subsystem, and a small set of utility programs.
Eventually, the new system no longer needed the GECOS system as a development
environment but could support itself. The new system was given the name UNIX,
a pun on the name Multics coined by another member of the Computing Science
Research Center, Brian Kernighan.

Although this early version of the UNIX system held much promise, it could
not realize its potential until it was used in a real project. Thus, while providing a
text processing system for the patent department at Bell L

aboratories, the UNIXsystem was moved to a PDP-11 in 1971. The system was characterized by its smallsize: 16K bytes for the system, 8K bytes for user programs, a disk of 512K bytes,
and a limit of 64K bytes per file. After its early success, Thompson set out to
implement a Fortran compiler for the new system, but instead came up with the
language B, influenced by BCPL [Richards 691. B was an interpretive 

languagewith the p
erformance drawbacks implied by such languages, so Ritchie developed it

into one he called C, allowing g
eneration of machine code, declaration of data

types, and definition of data structures. In 1973, the operating system was
rewritten in C, an unheard of step at the time, but one that was to have tremendous
impact on its acceptance among outside users. The number of installations at Bell
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Laboratories grew to about 25, and a UNIX Systems Group was formed to provide

internal support.
At this time, AT&T could not market computer products because of a 1956

Consent Decree it had signed with the Federal government, but it provided the
UNIX system to universities who requested it for educational purposes. AT&T
neither advertised, marketed, nor supported the system, in adherence to the terms
of the Consent Decree. Nevertheless, the system's popularity steadily inereased. In
1974, Thompson and Ritchie published a paper describing the UNIX system in the
Communications of the ACM [Thompson 741, giving further impetus to its
acceptance. By 1977, the number of UNIX system sites had grown to about 500,
of which 125 were in universities. UNIX systems became popular in the operating
telephone companies, providing a good environment for program development,
network transaction operations services, and real-time services (via MERT
[Lycklama 78a]). Licenses of UNIX systems were provided to commercial
institutions as well as universities. In 1977, Interactive Systems Corporation
became the first Value Added Reseller (VAR)

1 of a UNIX system, enhancing it

for use in office automation environments. 1977 also marked the year that the
UNIX system was first "ported" to a non-PDP machine (that is, made to run on
another machine with few or no changes), the Interdata 8/32.

With the growing popularity of microprocessors, other companies ported the
UNIX system to new machines, but its simplicity and clarity tempted many
developers to enhance it in their own way, resulting in several variants of the basic
system. In the period from 1977 to 1982, Bel1 Laboratories combined several
AT&T variants into a single system, known commercially as UNIX System III.
Bell Laboratories later added several features to UNIX System III, calling the new
product UNIX System V, 2 and AT&T announced official support for System V in
January 1983. However, people at the University of California at Berkeley had
developed a variant to the UNIX system, the most recent version of which is called
4.3 BSD for VAX machines, providing some new, interesting features. This book
will concentrate on the description of UNIX System V and wilt occasionally talk
about features provided in the BSD system.

By the beginning of 1984, there were about 100,000 UNIX system installations
in the world, running on machines with a wide range of computing power from
microprocessors to mainframes and on machines across different manufacturers'
product lines. No other operating system can make that claim. Several reasons
have been suggested for the popularity and success of the UNIX system.

1. Value Added Resellers add specific applications to a computer system to satisfy a particuiar market.
They market the applications rather than the operating system upon which they run.

2. What happened to System IV? An internal version of the system evolved into System V.
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• The system is written in a high-level language, making it easy to read,
understand, change, and move to other machines. Ritchie estimates that the
first system in C was 20 to 40 percent larger and slower because it was not
written in assembly language, but the advantages of using a higher-level
language far outweigh the disadvantages (see page 1965 of [Ritchie 78W).

• It has a simple user interface that has the power to provide the services that
users want.

• It provides primitives that permit complex programs to be built from simpler
programs.

• It uses a hierarchical file system that allows easy maintenance and efficient
implementation.

• It uses a consistent format for files, the byte stream, making application
programs easier to write.

• It provides a simple, consistent interface to peripheral devices.
• It is a multi-user, multiprocess system; each user can execute several processes

simultaneously.
• It hides the machine architecture from the user, making it easier to write

programs that run on different hardware implementations.

The philosophy of simplicity and consistency underscores the UNIX system and
accounts for many of the reasons cited above.

Although the operating system and many of the command programs are written
in C, UNIX systems support other languages, including Fortran, Basic, Pascal,
Ada, Cobol, Lisp, and Prolog. The UNIX system can support any language that
has a compiler or interpreter and a system interface that maps user requests for
operating system services to the standard set of requests used on UNIX systems.

1.2 SYSTEM STRUCTURE

Figure 1.1 depicts the high-level architecture of the UNIX system. The hardware
at the center of the diagram provides the operating system with basic services that
will be described in Section 1.5. The operating system interacts directly 3 with the
hardware, providing common services to programs and insulating them from
hardware id

iosyncrasies. Viewing the system as a set of layers, the operatingsystem is commonly called the system kernel, or just the kernel, emphasizing its

3. In some i m

plementations of the UNIX system, the operating system interacts with a native operating
system that, in turn, interacts with the underlying hardware and provides necessary services to the
system. Such configurations allow installations to run other operating systems and their applications
in parallel to the UNIX system. The classic example of such a configuration is the MERT system[Lycklama 78a1. More recent c

onfigurations include imp
lementations for IBM System/370computers [Felton 841 and for UNIVAC 1100 Series computers [Bodenstab 841.
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Figure 1.1. Architecture of UNIX Systems

isolation from user programs. Because programs are independent of the underlying
hardware, it is easy to move them between UNIX systems running on different
hardware if the programs do not make assumptions about the underlying hardware.
For instance, programs that assume the size of a machine word are more difficult to
move to other machines than programs that do not make this assumption.

Programs such as the shell and editors (ed and vi) shown in the outer layers
interact with the kernel by invoking a well defined set of system calls. The system
calls instruct the kernel to do various operations for the calling program and
exchange data between the kernel and the program. Several programs shown in the
figure are in standard system configurations and are known as commands, but
private user programs may also exist in this layer as indicated by the program
whose name is a.out, the standard name for executable files produced by the C
compiler. Other application programs can build on top of lower-level programs,
hence the existence of the outermost layer in the figure. For example, the standard
C compiler, cc, is in the outermost layer of the figure: it invokes a C preprocessor,
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two-pass compiler, assembler, and loader (link-editor), all separate lower-I
programs. Although the figure depicts a two-level hierarchy of applica
programs, users can extend the hierarchy to whatever levels are appropri
Indeed, the style of programming favored by the UNIX system encourages
combination of existing programs to accomplish a task.

Many application subsystems and programs that provide a high-level view of
system such as the shell, editors, SCCS (Source Code Control System),
document preparation packages, have gradually become synonymous with the na
"UNIX system." However, they all use lower-level services ultimately provided
the kernel, and they avail themselves of these services via the set of system ca
There are about 64 system calls in System V, of which fewer than 32 are w
frequently. They have simple options that make them easy to use but provide 

tuser with a lot of power. The set of system calls and the internal algorithms
implement them form the body of the kernel, and the study of the UNIX operati
system presented in this book reduces to a detailed study and analysis of the syste
calls and their interaction with one another. In short, the kernel provides t
services upon which all application programs in the UNIX system rely, and
defines those services. This book will frequently use the terms "UNIX system
"kernel," or "system," but the intent is to refer to the kernel of the UNI
operating system and should be clear in context.

1.3 USER PERSPECTIVE

This section briefiy reviews high-level features of the UNIX system such as the fili
system, the processing e

nvironment, and building block primitives (for examplepipes). 
Later chapters will explore kernel support of these features in detail.

1.3.1 The File System

The UNIX file system is ch
aracterized by

• a hi
erarchical structure,

• consistent treatment of file data,
• the ability to create and delete files,
• dynamic growth of files,
• the protection of file data,
•

the treatment of peripheral devices (such as terminals and tape units) as files.

The file system is organized as a tree with a single root node called 
root (written"1"); every non-leaf node of the file system strueture is a 

direct ory of files, and filesat the leaf nodes of the tree are either d
irectories, regular files, or special devicefiles. The name of a file is given by a path name that describes how to 'mate thefile in the file system h

ierarchy. A path name is a sequence of co
mponent names

s
eparated by slash ch

aracters; a co
mponent is a sequence of characters that
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Figure 1.2. Sample File System Tree

designates a file name that is uniquely contained in the previous (directory)
component. A full path name starts with a slash character and specifies a file that
can be found by starting at the file system root and traversing the file tree,
following the branches that lead to successive component names of the path name.
Thus, the path names "ietcipasswd", "Thin/who", and "/usrisrc/cmd/who.c"
designate files in the tree shown in Figure 1.2, but "Thinipasswd" and
"/usr/srcidate.c" do not. A path name does not have to start from root but can be
designated relative to the current directory of an executing process, by omitting the
initial slash in the path name. Thus, starting from directory "fdev", the path name
"tty01" designates the file whose full path name is "idev/tty01".

Programs in the UNIX system have no knowledge of the internal format in
which the kernel stores file data, treating the data as an unformatted stream of
bytes, Programs may interpret the byte stream as they wish, but the interpretation
has no bearing on how the operating system stores the data. Thus, the syntax of
accessing the data in a file is defined by the system and is identical for all
programs, but the semantics of the data are imposed by the program. For example,
the text formatting program troff expects to find "new-line" characters at the end
of each line of text, and the system accounting program acctcom expects to find
fixed length records. Both programs use the same system services to access the
data in the file as a byte stream, and internally, they parse the stream into a
suitable format. If either program discovers that the format is incorrect, it is
responsible for taking the appropriate action.

Directories are like regular files in this respect; the system treats the data in a
directory as a byte stream, but the data contains the names of the files in the
directory in a predictable format so that the operating system and programs such as
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is (list the names and attributes of files) can discover the files in a directory.
Permission to access a file is controlled by access perrnissions associated wil

the file. Access permissions can be set independently to control read, write, an
execute permission for three classes of users: the file owner, a file group, an
everyone else. Users may create files if directory access permissions allow it. Th
newly created files are leaf nodes of the file system directory structure.

To the user, the UNIX system treats devices as if they were files. Device:
designated by special device files, occupy node positions in the file system director
structure. Programs access devices with the same syntax they use when accessin
regular files; the semantics of reading and writing devices are to a large degree th
same as reading and writing regular files. Devices are protected in the same wa:
that regular files are protected: by proper setting of their (file) access permissions
Because device names look like the names of regular files and because the saml
operations work for devices and regular files, most programs do not have to knov
internally the types of files they manipulate.

For example, consider the C program in Figure 1.3, which makes a new COpy 01
an existing file. Suppose the name of the executable version of the program
copy. A user at a terminal invokes the program by typing

copy oldfile newfile

where oldfik is the name of the existing file and newfile is the name of the new file.The system invokes main, supplying argc as the number of parameters in the listargv, and initializing each member of the array argv to point to a user-suppliedparameter. In the example above, argc is 3, argv[0] points to the character stringcopy (the program name is conventionally the Oth parameter), argv[11 points to thecharacter string oldfile, and argv[2.1 points to the character string newfile. The
program then checks that it bas been invoked with the proper number of
parameters. If so, it invokes the open system call "read-only" for the file oldfile,and if the system call succeeds, invokes the creat system call to create newfile. The
permission modes on the newly created file will be 0666 (octal), allowing all users
access to the file for reading and writing. All system calls return —1 on failure; if
the open or creat calls fail, the program prints a message and calls the exit system
eau with return status 1, terminating its execution and indicating that something
went wrong.

The open and creat system calls return an integer called a file descriptor, which
the program uses for subsequent references to the files. The program then calls the
subroutine copy, which goes into a loop, invoking the read system eau' to read a
buffer's worth of characters from the existing file, and invoking the write systemcall to write the data to the new file. The read system eau returns the number of
bytes read, returning 0 when it reaches the end of file. The program finishes the
loop when it encounters the end of file, or when there is some error on the 

readsystem call (it does not check for write errors). Then it returns from copy andexits 
with return status 0, indicating that the program completed successfully.



#include <fcntl.h>
char buffert20481;
int version — 1; I* Chapter 2 explains this */

main(argc, argv)
int argc;
char *argvt);

int fdold, fdnew;

if (arge 3)

printf("need 2 arguments for copy program\n');
exit(1);

fdold open(argv111, O_RDONLY); /* open source file read only *1
if (fdold —1)

printf("cannot open file %s\n", argvIlD;
exit(1);

fdnew creat(argv[2], 0666);
if (fdnew —I)

/* create target file rw for all */

printf("cannot create file %An", argv(21);
exit(1);

copy(fdold, fdnew);
exit (0);

copy(old, new)
int old, new;

int count;

while ((count readold, buffer, sizeof(buffer))) > 0)
write(new, buffer, count);

1.3 USER PERSPECTIVE 9

Figure 1.3. Program to Copy a File

The program copies any files supplied to it as arguments, provided it has
permission to open the existing file and permission to create the new file. The file
can be a file of printable characters, such as the source code for the program, or it
can contain unprintable characters, even the program itself. Thus, the two
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invocations

copy copy.c newcopy.c
copy copy newcopy

both work. The old file can also be a directory. For instance,

copy dircontents

copies the contents of the current directory, denoted by the name ".", to a regular
file, "dircontents", the data in the new file is identical, byte for byte, to the contents
of the directory, but the file is a regular file. (The system call mknod creates a
new directory.) Finally, either file can be a device special file. For example,

copy /devitty terminalread

reads the characters typed at the terminal (the special file Idevitty is the user's

terminal) and copies them to the file terminalread, terminating only when the user

types the character control-d. Similarly,

copy /devitty idevitty

reads characters typed at the terminal and copies them back.

1.3.2 Processing Environment

A program is an executable file, and a process is an instance of the program in
execution. Many processes can execute simultaneously on UNIX systems (this
feature is sometimes called multiprogramming or multitasking) with no logical limit
to their number, and many instances of a program (such as copy) can exist
simultaneously in the system. Various system calls allow processes to create new
processes, terminate processes, synchronize stages of process execution, and control
reaction to various events. Subject to their use of system calls, processes execute
independently of each other.

For example, a process executing the program in Figure 1.4 executes the lork
system call to create a new process. The new process, called the child process, gets
a 0 return value from fork and invokes execl to execute the program copy (the
program in Figure 1.3). The execl call overlays the address space of the child
process with the file "copy", assumed to be in the current directory, and runs the
program with the user-supplied parameters. If the execl call succeeds, it never
returns because the process executes in a new address space, as will be seen in
Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a
non-0 return from the eau, calls wat:, suspending its execution until copy finishes,
prints the message "copy done," and exits (every program exits at the end of its
main function, as arranged by standard C program libraries that are linked during
the compilation process). For example, if the name of the executable program is
run, and a user invokes the program by
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main(argc, argv)
int argc;
char *argvii;

/* assume 2 args: source file and target file *I
if (fork() 0)

execl("copy m, "copy", argv[1], argv[21, 0);
wait((int *) 0);
printf("copy dorte\n");

Figure 1.4. Program that Creates a New Process to Copy Files

run oldfile newfile

the process copies "oldfile" to "newfile" and prints out the message. Although this
program adds little to the "copy" program, it exhibits four major system calls used
for process control: fork, exec, wait, and, discreetly, exit.

Generally, the system calls allow users to write programs that do sophisticated
operations, and as a result, the kernel of the UNIX system does not contain many
functions that are part of the "kernel" in other systems. Such functions, including
compilers and editors, are user-level programs in the UNIX system. The prime
example of such a program is the shell, the command interpreter program that
users typically execute after logging into the system. The shell interprets the first
word of a command line as a command name: for many commands, the shell forks
and the child process execs the command associated with the name, treating the
remaining words on the command line as parameters to the command.

The shell allows three types of commands. First, a command can be an
executable file that contains object code produced by compilation of source code (a
C program for example). Second, a command can be an executable file that
contains a sequence of shell command lines. Finally, a command can be an internal
shell command (instead of an executable file). The internal commands make the
shell a programming language in addition to a command interpreter and include
commands for looping (for-in-do-done and while-do-done), commands for
conditional execution (if-then-else-fl), a "case" statement command, a command to
change the current directory of a process (cd), and several others. The shell syntax
allows for pattern matching and parameter processing. Users execute commands
without having to know their types.

The shell searches for commands in a given sequence of directories, changeable
by user request per invocation of the shell. The shell usually executes a command
synchronously, waiting for the command to terminate before reading the next
command line. However, it also allows asynchronous execution, where it reads the
next command line and executes it without waiting for the prior command to
terminate. Commands executed asynchronously are said to execute in the
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background. For example, typing the command

who

causes the system to execute the program stored in the file Ibinkho,4 which prints a

list of people who are currently logged in to the system. White who executes, the

shell waits for it to finish and then prompts the user for another command. By

typing

who &

the system executes the program who in the background, and the shell is ready to

accept another command immediately.
Every process executing in the UNIX system has an execution environment that

includes a current directory. The current directory of a process is the start
directory used for all path names that do not begin with the slash character. The
user may execute the shell command cd, change directory, to move around the file
system tree and change the current directory. The command line

cd iusr/srciuts

changes the shell's current directory to the directory "iusr/srciuts". The command
line

cd .1..

changes the shell's current directory to the directory that is two nodes "closer" to
the root node: the component ".." refers to the parent directory of the current

directory.
Because the shell is a user program and not part of the kernel, it is easy to

modify it and tailor it to a particular environment. For instance, users can use the
C shell to provide a history mechanism and avoid retyping recently used commands,
instead of the Bourne shell (named after its inventor, Steve Bourne), provided as
part of the standard System V release. Or some users may be granted use only of
a restricted shell, providing a scaled down version of the regular shell. The system
can execute the various shells simultaneously. Users have the capability to execute
many processes simultaneously, and processes can create other processes
dynamically and synchronize their execution, if desired. These features provide
users with a powerful execution environment. Although much of the power of the
shell derives from its capabilities as a programming language and from its
capabilities for pattern matching of arguments, this section concentrates on the
process environment provided by the system via the shell. Other important shell

4. The directory "ibin" contains many useful commands and is usually included in the sequence of
directories the shell searches.
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features are beyond the scope of this book (see [Bourne 781 for a detailed
description of the shell).

1.3.3 Building Block Primitives

As described earlier, the philosophy of the UNIX system is to provide operating
system primitives that enable users to write small, modular programs that can be
used as building blocks to build more complex programs. One such primitive
visible to shell users is the capability to redirect I/O. Processes conventionally have
access to three files: they read from their standard input file, write to their
standard output file, and write error messages to their standard error file.
Processes executing at a terminal typically use the terminal for these three files, but
each may be "redirected" independently. For instance, the command line

Is

lists all files in the current directory on the standard output, but the command line

Is > output

redirects the standard output to the file called "output" in the current directory,
using the creat system call mentioned above. Similarly, the command line

mail mjb < letter

opens the file "letter" for its standard intput and mails its contents to the user
named "mjb." Processes can redirect input and output simultaneously, as in

nroff —mm < docl > docl.out 2> errors

where the text formatter nroff reads the input file (loci, redirects its standard
output to the file docLout, and redirects error messages to the file errors (the
notation "2>" means to redirect the output for file descriptor 2, conventionally the
standard error). The programs Is, mail, and nroff do not know what file their
standard input, standard output, or standard error will be; the shell recognizes the
symbols "<", ">", and "2>" and sets up the standard input, standard output,
and standard error appropriately before executing the processes.

The second building block primitive is the pipe, a mechanism that allows a
stream of data to be passed between reader and writer processes. Processes can
redirect their standard output to a pipe to be read by other processes that have
redirected their standard input to come from the pipe. The data that the first
processes write into the pipe is the input for the second processes. The second
processes could also redirect their output, and so on, depending on programming
need. Again, the processes need not know what type of file their standard output is;
they work regardless of whether their standard output is a regular file, a pipe, or a
device. When using the smaller programs as building blocks for a larger, more
complex program, the programmer uses the pipe primitive and redirection of I/0 to
integrate the piece parts. Indeed, the system tacitly encourages such programming
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style so that new programs can work with existing programs.
For example, the program grep searches a set of files (parameters to grep) for g

given pattern:

grep main a.c b.c c.c

searches the three files a.c, b.c, and e.c for lines containing the string "main" anc
prints the lines that it finds onto standard output. Sample output may be:

a.c: main(argc, argv)
c.c: 1* here is the main loop in the program */
c.c: main()

The program wc with the option —I counts the number of lines in the standard
input file. The command line

grep main a.c b.c c.c 1 wc —I

counts the number of lines in the files that contain the string "main"; the output
from grep is "piped" directly into the wc command. For the previous sample
output from grep, the output from the piped command is

3

The use of pipes frequently makes it unnecessary to create temporary files.

1.4 OPERATING SYSTEM SERVICES

Figure 1.1 depicts the kernel layer immediately below the layer of user application
programs. The kernel performs various primitive operations on behalf of user
processes to support the user interface described above. Among the services
provided by the kernel are

• Controlling the execution of processes by allowing their creation, termination or
suspension, and communication

• Scheduling processes fairly for execution on the CPU. Processes share the CPU
in a time-shared marmer: the CPU 5 executes a process, the kernel suspends it
when its time quantum elapses, and the kernel schedules another process to
execute. The kernel later reschedules the suspended process.

• Allocating main memory for an executing process. The kernel allows processes
to share portions of their address space under certain conditions, but protects
the private address space of a process from outside tampering. If the system
runs low on free memory, the kernel frees memory by writing a process

5. Chapter 12 will consider multiprocessor systems; until then, assurne a single processor model.
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temporarily to secondary memory, called a swap device, lithe kernel writes
entire processes to a swap device, the implementation of the UNIX system is
called a swapping system; if it writes pages of memory to a swap device, it is
called a paging system.

• Allocating secondary memory for efficient storage and retrieval of user data.
This service constitutes the file system. The kernel allocates secondary storage
for user files, reclaims unused storage, structures the file system in a well
understood manner, and protects user files from illegal access.

• Allowing processes controlled access to peripheral devices such as terminals,
tape drives, disk drives, and network devices.

The kernel provides its services transparently. For example, it recognizes that a
given file is a regular file or a device, but hides the distinction from user processes.
Similarly, it formats data in a file for internal storage, but hides the internal format
from user processes, returning an unformatted byte stream. Finally, it offers
necessary services so that user-level processes can support the services they must
provide, while omitting services that can be implemented at the user level. For
example, the kernel supports the services that the shell needs to act as a command
interpreter: It allows the shell to read terminal input, to spawn processes
dynamically, to synchronize process execution, to create pipes, and to redirect I/O.
Users can construct private versions of the shell to tailor their environments to their
specifications without affecting other users. These programs use the same kernel
services as the standard shell.

1.5 ASSUMPTIONS ABOUT HARDWARE

The execution of user processes on UNIX systems is divided into two levels: user
and kernel. When a process executes a system call, the execution mode of the
process changes from user mode to kernel mode: the operating system executes
and attempts to service the user request, returning an error code if it fails. Even if
the user makes no explicit requests for operating system services, the operating
system still does bookkeeping operations that relate to the user process, handling
interrupts, scheduling processes, managing memory, and so on. Many machine
architectures (and their operating systems) support more levels than the two
outlined here, but the two modes, user and kernel, are sufficient for UNIX systems.

The differences between the two modes are

• Processes in user mode can access their own instructions and data but not kernel
instructions and data (or those of other processes). Processes in kernel mode,
however, can access kernel and user addresses. For example, the virtual address
space of a process may be divided between addresses that are accessible only in
kernel mode and addresses that are accessible in either mode.

• Some machine instructions are privileged and result in an error when executed
in user mode. For example, a machine may contain an instruction that
manipulates the processor status register; processes executing in user mode



16 GENERAL OVERVIEW OF THE SYSTEM

Processes

A BCD

Kernel Mode

User Mode

Figure 1,5. Multiple Processes and Modes of Execution

should not have this capability.

Put simply, the hardware views the world in terms of kernel mode and user moch
and does not distinguish among the many users executing programs in those modes
The operating system keeps internal records to distinguish the many processe
executing on the system. Figure 1.5 shows the distinction: the kernel distinguishe

between processes A, B, C, and D on the horizontal axis, and the hardwari
distinguishes the mode of execution on the vertical axis.

Although the system executes in one of two modes, the kernel runs on behalf o
a user process. The kernel is not a separate set of processes that run in parallel ti
user processes, but it is part of each user process. The ensuing text will frequentl;
refer to "the kernel" allocating resources or "the kernel" doing various operation5
but what is meant is that a process executing in kernel mode allocates the resource
or does the various operations. For example, the shell reads user terminal input vi;
a system Cali: The kernel, executing on behalf of the shell process, controls th
operation of the terminal and returns the typed characters to the shell. The shel
then executes in user mode, interprets the character stream typed by the user,
does the specified set of actions, which may require invocation of other system calls

1.5.1 Interrupts and Exceptions

The UNIX system allows devices such as I/O peripherals or the system doek t,
interrupt the CPU asynchronously. On receipt of the interrupt, the kernel saves it
current context (a frozen image of what the process was doing), determines th
cause of the interrupt, and services the interrupt. After the kernel services th
interrupt, it restores its interrupted context and proceeds as if nothing hal
happened. The hardware usually prioritizes devices according to the order tha
interrupts should be handled: When the kernel services an interrupt, it blocks ou
lower priority interrupts but services higher priority interrupts.

An exception condition refers to unexpected events caused by a process, such a
addressing illegal memory, executing privileged instructions, dividing by zero, ani

so on. They are distinct from interrupts, which are caused by events that ar
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external to a process. Exceptions happen "in the middle" of the execution of an
instruction, and the system attempts to restart the instruction after handling the
exception; interrupts are considered to happen between the execution of two
instructions, and the system continues with the next instruction after servicing the
interrupt. The UNIX system uses one mechanism to handle interrupts and
exception conditions.

1.5.2 Processor Execution Levels

The kernel must sometimes prevent the occurrence of interrupts during critica'
activity, which could result in corrupt data if interrupts were allowed. For instance,
the kernel may not want to receive a disk interrupt while manipulating linked lists,
because handling the interrupt could corrupt the pointers, as will be seen in the
next chapter. Computers typically have a set of privileged instructions that set the
processor execution level in the processor status word. Setting the processor
execution level to certain values masks off interrupts from that level and lower
levels, allowing only higher-level interrupts. Figure 1.6 shows a sample set of
execution levels. If the kernel masks out disk interrupts, all interrupts except for
clock interrupts and machine error interrupts are prevented. 1f it masks out
software interrupts, all other interrupts may occur.                                   

Figure 1.6. Typical Interrupt Levels

1.5.3 Memory Management

The kernel permanently resides in main memory as does the currently executing
process (or parts of it, at kast). When compiling a program, the compiler
generates a set of addresses in the program that represent addresses of variables
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and data structures or the addresses of instructions such as functions. The compi
generates the addresses for a virtual machine as if no other program will exec'
simultaneously on the physical machine.

When the program is to run on the machine, the kernel allocates space in mi
memory for it, but the virtual addresses generated by the compiler need not
identical to the physical addresses that they occupy in the machine. The ken
coordinates with the machine hardware to set up a virtual to physical addr,
translation that maps the compiler-generated addresses to the physical machi
addresses. The mapping depends on the capabilities of the machine hardware, a
the parts of UNIX systems that deal with them are therefore machine depende
For example, some machines have special hardware to support demand pagii
Chapters 6 and 9 will discuss issues of memory management and how they relate
hardware in more detail.

1.6 SUMMARY

This chapter has described the overall structure of the UNIX system, t
relationship between processes running in user mode versus kernel mode, and t
assumptions the kernel makes about the hardware. Processes execute in user ma
or kernel mode, where they avail themselves of system services using a well-defin
set of system calls. The system design encourages programmers to write sm,
programs that do only a few operations but do them well, and then to combine t
programs using pipes and I/O redirection to do more sophisticated processing.

The system calls allow processes to do operations that are otherwise forbidden
them. In addition to servicing system calls, the kernel does general bookkeeping f
the user community, controlling process scheduling, managing the storage al
protection of processes in main memory, fielding interrupts, managing files al
devices, and taking care of system error conditions. The UNIX system kern
purposely omits many functions that are part of other operating systems, providir
a small set of system calls that allow processes to do necessary functions at us
level. The next chapter gives a more detailed introduction to the kernel, describir
its architecture and some basic concepts used in its implementation.



INTRODUCTION

TO THE KERNEL

The last chapter gave a high-level perspective of the UNIX system environment.
This chapter focuses on the kernel, providing an overview of its architecture and
outlining basic concepts and structures essential for understanding the rest of the
book.

2.1 ARCHITECTURE OF THE UNIX OPERATING SYSTEM

It has been noted (see page 239 of [Christian 83]) that the UNIX system supports
the illusions that the file system has "places" and that processes have "lite." The
two entities, files and processes, are the two central concepts in the UNIX system
model. Figure 2.1 gives a block diagram of the kernel, showing various modules
and their relationships to each other. In particular, it shows the file subsystem on
the left and the process control subsystem on the right, the two major components
of the kernel. The diagram serves as a useful logical view of the kernel, although
in practice the kernel deviates from the model because some modules interact with
the internal operations of others.

Figure 2.1 shows three levels: user, kernel, and hardware. The system call and
library interface represent the border between user programs and the kernel
depicted in Figure 1.1. System calls look like ordinary function calls in C
programs, and libraries map these function calls to the primitives needed to enter

19
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Figure 2.1. Block Diagram of the System Kernel

the operating system, as covered in more detail in Chapter 6. Assembly language
programs may invoke system calls directly without a system call library, however.
Programs frequently use other libraries such as the standard I/O library to provide
a more sophisticated use of the system calls. The libraries are linked with the
programs at compile time and are thus part of the user program for purposes of
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this discussion. An example later on will illustrate these points.
The figure partitions the set of system calls into those that interact with the file

subsystem and those that interact with the process control subsystem. The file
subsystem manages files, allocating file space, administering free space, controlling
access to files, and retrieving data for users. Processes interact with the file
subsystem via a specific set of system calls, such as open (to open a file for reading

or writing), close, read, write, stat (query the attributes of a file), chown (change
the record of who owns the file), and chmod (change the access permissions of a
file). These and others will be examined in Chapter 5.

The file subsystem accesses file data using a buffering mechanism that regulates
data flow between the kernel and secondary storage devices. The buffering
mechanism interacts with block I/O device drivers to initiate data transfer to and
from the kernel. Device drivers are the kernel modules that control the operatior
of peripheral devices. Block I/O devices are random access storage devices
alternatively, their device drivers make them appear to be random access storage
devices to the rest of the system. For example, a tape driver may allow the kerne.
to treat a tape unit as a random access storage device. The file subsystem alsc
interacts directly with "raw" I/O device drivers without the intervention of
buffering mechanism. Raw devices, sometimes called character devices, include al
devices that are not block devices.

The process control subsystem is responsible for process synchronization
interprocess communication, memory management, and process scheduling. The
file subsystem and the process control subsystem interact when loading a file int(
memory for execution, as will be seen in Chapter 7: the process subsystem rea&
executable files into memory before executing them.

Some of the system calls for controlling processes are fork (create a nevl

process), exec (overlay the image of a program onto the running process), exii
(finish executing a process), wait (synchronize process execution with the exit of a
previously forked process), brk (control the size of memory allocated to a process),
and signal (control process response to extraordinary events). Chapter 7 will
examine these system calls and others.

The memory management module controls the allocation of memory. If at any
time the system does not have enough physical memory for all processes, the kernel
moves them between main memory and secondary memory so that all processes get
a fair chance to execute. Chapter 9 will describe two policies for managing
memory: swapping and demand paging. The swapper process is sometimes called
the scheduler, because it "schedules" the allocation of memory for processes and
influences the operation of the CPU scheduler. However, this text will refer to it as
the swapper to avoid confusion with the CPU scheduler.

The scheduler module allocates the CPU to processes. It schedules them to run
in turn until they voluntarily relinquish the CPU while awaiting a resource or until
the kernel preempts them when their recent run time exceeds a time quantum. The
scheduler then chooses the highest priority eligible process to run; the original
process will run again when it is the highest priority eligible process available.
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There are several forms of interprocess communication, ranging from asynchronous
signaling of events to synchronous transmission of messages between processes.

Finally, the hardware control is responsible for handling interrupts and for
communicating with the machine. Devices such as disks or terminals may interrupt
the CPU while a process is executing. If so, the kernel may resume execution of
the interrupted process after servicing the interrupt: Interrupts are not serviced by
special processes but by special functions in the kernel, called in the context of the
currently running process.

2.2 INTRODUCTION TO SYSTEM CONCEPTS

This section gives an overview of some major kernel data structures and describes
the function of modules shown in Figure 2.1 in more detail.

2.2.1 An Overview of the File Subsystem

The internal representation of a file is given by an m ode, which contains a
description of the disk layout of the file data and other information such as the file
owner, access permissions, and access times. The term mode is a contraction of the
term index node and is commonly used in literature on the UNIX system. Every
file has one mode, but it may have several names, all of which map into the mode.
Each name is called a link. When a process refers to a file by name, the kernel
parses the file name one component at a time, checks that the process has
permission to search the directories in the path, and eventually retrieves the mode
for the file. For example, if a process calls

open("ifs2/mjb/rje/sourcefile", 1);

the kernel retrieves the Mode for "ifs2/mjb/rje/sourcefile". When a process
creates a new file, the kernel assigns it an unused mode. Inodes are stored in the
file system, as will be seen shortly, but the kernel reads them into an in-core' mode
table when manipulating files.

The kernel contains two other data structures, the file table and the user file
descriptor tabk. The file table is a global kernel structure, but the user file
descriptor table is allocated per process. When a process opens or creats a file, the
kernel allocates an entry from each table, corresponding to the file's mode. Entries
in the three structures user file descriptor table, file table, and mode table —
maintain the state of the file and the user's access to it. The file table keeps track
of the byte offset in the file where the user's next read or write will start, and the

1. The term core refers to primary memory of a machine, not to hardware technology,
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User
File Descriptor File m ode

Table Table Table

Figure 2.2. File Descriptors, File Table, and blode Table

access rights allowed to the opening process. The user file descriptor table
identifies all open files for a process. Figure 2.2 shows the tables and their
relationship to each other. The kernel returns a file descriptor for the open and
creat system calls, which is an index Mto the user file descriptor table. When
executing read and write system calls, the kernel uses the file descriptor to access
the user file descriptor table, follows pointers to the file table and mode table
entries, and, from the Mode, finds the data in the file. Chapters 4 and 5 describe
these data structures in great detail For now, suffice it to say that use of three
tables allows various degrees of sharing access to a file.

The UNIX system keeps regular files and directories on block devices such as
tapes or disks. Because of the difference in access time between the two, few, if
any, UNIX system installations use tapes for their file systems. In coming years,
diskless work stations will be common, where files are located on a remote system
and accessed via a network (see Chapter 13). For simplicity, however, the ensuing
text assumes the use of disks. An installation may have several physical disk units,
each containing one or more file systems. Partitioning a disk into several file
systems makes it easier for administrators to manage the data stored there. The
kernel deals on a logical level with file systems rather than with disks, treating each
one as a logica! device identified by a logical 'device number. The conversion
between logical device (file system) addresses and physical device (disk) addresses
is done by the disk driver. This book will use the term device to mean a logical
device unless explicitly stated otherwise.

A file system consists of a sequence of logical blocks, ea.ch containing 512, 1024,
2048, or any convenient multiple of 512 bytes, depending on the system
implementation. The size of a logical block is homogeneous within a file system but
may vary between different file systems in a system configuration. Using large
logical blocks increases the effective data transfer rate between disk and memory,
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because the kernel can transfer more data per disk operation and therefore make
fewer time-consuming operations. For example, reading 1K bytes from a disk in
one read operation is faster than reading 512 bytes twice. However, if a logical
block is too large, effective storage capacity may drop, as will be shown in Chapter
5. For simplicity, this book will use the term "block" to mean a logical block, and
it will assume that a logical block contains 1K bytes of data unless explicitly stated
otherwise.

m ode list data blocks
boot super
block block

Figure 23. File System Layout

A file system has the following structure (Figure 2.3).

• The boot block occupies the beginning of a file system, typically the first sector,
and may contain the bootstrap code that is read into the machine to boot, or
initialize, the operating system. Although only one boot block is needed to boot
the system, every file system has a (possibly empty) boot block.

• The super block describes the state of a file system — how large it is, how
many files it can store, where to find free space on the file system, and other
information.

• The Mode list is a list of modes that follows the super block in the file system.
Administrators specify the size of the mode list when configuring a file system.
The kernel references Modes by index into the mode list. One Mode is the root
Mode of the file system: it is the mode by which the directory structure of the
file system is accessible after execution of the mount system call (Section 5.14).

• The data blocks start at the end of the mode list and contain file data and
administrative data. An allocated data block can belong to one and only one
file in the file system.

2.2.2 Processes

This section examines the process subsystem more closely. It describes the
structure of a process and some process data structures used for memory
management. Then it gives a preliminary view of the process state diagram and
considers various issues involved in some state transitions.

A process is the execution of a program and consists of a pattern of bytes that
the CPU interprets as machine instructions (called "text"), data, and stack. Many
processes appear to execute simultaneously as the kernel schedules them for
execution, and several processes may be instances of one program. A process
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executes by following a striet sequence of instructions that is self-contained and
does not jump to that of another process; it reads and writes its data and stack
sections, but it cannot read or write the data and stack of other processes.
Processes communicate with other processes and with the rest of the world via
system calls.

In practicatterms, a proc•ss en a UNIX system is the entity that is created by
the fork system call. Every process except process 0 is created when another
process executes the fork system call. The process that invoked the fork system
call is the parent process, and the newly created process is the child process. Every
process has one parent process, but a process can have many child processes. The
kernel identifies each process by its process number, called the process ID (PID).
Process 0 is a special process that is created "by hand" when the system boots;
after forking a child process (process 1), process 0 becomes the swapper process.
Process 1, known as init, is the ancestor of every other process in the system and
enjoys a special relationship with them, as explained in Chapter 7.

A user compiles the source code of a program to create an executable file, which
consists of several parts:

• a set of "headers" that describe the attributes of the file,
• the program text,
• a machine language representation of data that bas initial values when the

program starts execution, and an indication of how much space the kernel
should allocate for uninitialized data, called bss2 (the kernel initializes it to 0 at
run time),

• other sections, such as symbol table information.

For the program in Figure 1.3, the text of the executable file is the generated code
for the functions main and copy, the initialized data is the variable version (put
into the program just so that it should have some initialized data), and the
uninitialized data is the array buffer. System V versions of the C compiler create a
separate text section by default but support an option that allows inclusion of
program instructions in the data section, used in older versions of the system.

The kernel loads an executable file into memory during an exec system call, and
the loaded process consists of at kast three parts, called regions: text, data, and
the stack. The text and data regions correspond to the text and data-bss sections of
the executable file, but the stack region is automatically created and its size is
dynamically adjusted by the kernel at run time. The stack consists of logical stack
frames that are pushed when calling a function and popped when returning; a
special register called the stack pointer indicates the current stack depth. A stack

2. The name bss comes from an assembly pseudo-operator on the IBM 7090 machine, which stood for
"block started by symbol."
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frame contains the parameters to a function, its local variables, and the data
necessary to recover the previous stack frame, including the value of the program
counter and stack pointer at the time of the function call. The program code
contains instruction sequences that manage stack growth, and the kernel allocates
space for the stack, as needed. In the program in Figure 1.3, parameters argc and
argv and variables fdold and fdnew in the function main appear on the stack when
main is called (once in every program, by convention), and parameters old and new
and the variable count in the function copy appear on the stack whenever copy is
called.

Because a process in the UNIX system can execute in two modes, kernel or
user, it uses a separate stack for each mode. The user stack contains the
arguments, local variables, and other data for functions executing in user mode.
The left side of Figure 2.4 shows the user stack for a process when it makes the
write system call in the copy program. The process startup procedure (included in
a library) had called the function »win with two parameters, pushing frame 1 onto
the user stack; frame 1 contains space for the two !mal variables of main. Main
then called copy with two parameters, old and new, and pushed frame 2 onto the
user stack; frame 2 contains space for the local variable count. Finally, the process
invoked the system call write by invoking the library function write. Each system
call has an entry point in a system call library; the system call library is encoded in
assembly language and contains special trap instructions, which, when executed,
cause an "interrupt" that results in a hardware switch to kernel mode. A process
calls the library entry point for a particular system call just as it calls any function,
creating a stack frame for the library function. When the process executes the
special instruction, it switches mode to the kernel, executes kernel code, and uses
the kernel stack.

The kernel stack contains the stack frames for functions executing in kernel
mode. The function and data entries on the kernel stack refer to functions and
data in the kernel, not the user program, but its construction is the same as that of
the user stack. The kernel stack of a process is null when the process executes in
user mode. The right side of Figure 2.4 depicts the kernel stack representation for
a process executing the write system eau in the copy program. The names of the
algorithms are described during the detailed discussion of the write system eall in
later ehapters.

Every process has an entry in the kernel process tabk, and each process is
allocated a u area 3 that contains private data manipulated only by the kernel. The
process table contains (or points to) a per process region table, whose entries point
to entries in a region table. A region is a contiguous area of a process's address

The u in u area stands (or "user." Another name for the u area is u block; this book will alwaysrefer to it as the u area.



parms to main
argc
argv

2.2 INTRODUCTION TO SYSTEM CONCEPTS 27

Local not
Vars shown

- Addr of Frame 2

Ret 'Iddr after write call

new
parms to write buffer

count Frame 3
call write0

Frame 2
call copy()

Frame 3

Frame 2
call func20

Local
countVars

Addr of Frame I

Ret addr after copy call

oldparms to copy new

Local
Vars

Addr of Frame I

Ret addr after func2 call

parms to kernel func2

Local fdold Local
Vars fdnew Vars

Addr of Frame 0 Addr of Frame 0

Ret addr after main call Ret addr after fund call

Direction of
stack growth

A

User Stack Kernel Stack

Frame I,
call main0

Frame 0
Start

Frame I
call funelo

Frame 0
System Call Interface

parms to kernel fund

Figure 2.4. User and Kernel Stack for Copy Program





2.2 INTRODUCT1ON TO SYSTEM CONCEPTS 29

• a pointer to the process table slot of the currently executing process,
• parameters of the current system call, return values and error codes,
• file descriptors for all open files,
• internal I/O parameters,
• current directory and current root (see Chapter 5),
• process and file size limits.

The kernel can directly access fields of the u area of the executing process but not
of the u area of other processes. Internally, the kernel references the structure
variable u to access the u area of the currently running process, and when another
process executes, the kernel rearranges its virtual address space so that the
structure u refers to the u area of the new process. The implementation gives the
kernel an easy way to identify the current process by following the pointer from the
u area to its process table entry.

2.2.2.1 Context of a process

The context of a process is its state, as defined by its text, the values of its global
user variables and data structures, the values of machine registers it uses, the
values stored in its process table slot and u area, and the contents of its user and
kernel stacks. The text of the operating system and its global data structure,s are
shared by all processes but do not constitute part of the context of a process.

When executing a process, the system is said to be executing in the context of
the process. When the kernel decides that it should execute another process, it does
a context switch, so that the system executes in the context of the other process.
The kernel allows a context switch only under specific conditions, as will be seen.
When doing a context switch, the kernel saves enough information so that it can
later switch back to the first process and resume its execution. Similarly, when
moving from user to kernel mode, the kernel saves enough information so that it
can later return to user mode and continue execution from where it left off.
Moving between user and kernel mode is a change in mode, not a context switch.
Recalling Figure 1.5, the kernel does a context switch when it changes context from
process A to process B; it changes execution mode from user to kernel or from
kernel to user, stilt executing in the context of one process, such as process A.

The kernel services interrupts in the context of the interrupted process even
though it may not have caused the interrupt. The interrupted process may have
been executing in user mode or in kernel mode. The kernel saves enough
information so that it can later resume execution of the interrupted process and
services the interrupt in kernel mode. The kernel does not spawn or schedule a
special process to handle interrupts.
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2.2.12 Proceas states

The lifetime of a process can be divided into a set of states, each with certain
characteristics that describe the process. Chapter 6 will describe all process states,
but it is essential to understand the following states now:

1. The process is currently executing in user mode.
2. The process is currently executing in kernel mode.
3. The process is not executing, but it is ready to run as soon

chooses it. Many processes may be in this state, and
algorithm determines which one will execute next.

4. The process is sleeping. A process puts itself to sleep when
continue executing, such as when it is waiting for I/O to com

Because a processor can execute only one process at a time, at most one process
may be in states 1 and 2. The two states correspond to the two modes of execution,
user and kernel.

2.2.2.3 State traasitions

The process states described above give a statie view of a process, but processes
move continuously between the states according to well-defined rules. A statetransition diagram is a directed graph whose nodes represent the states a process
can enter and whose edges represent the events that cause a process to move from
one state to another. State transitions are legal between two states if there exists
an edge from the first state to the second. Several transitions may emanate from a
state, but a process will follow one and only one transition depending on the system
event that occurs. Figure 2.6 shows the state transition diagram for the process
states defined above.

Several processes can execute simultaneously in a time-shared marmer, as stated
earlier, and they may all run simultaneously in kernel mode. 1f they were allowed
to run in kernel mode without constraint, they could corrupt global kernel data
structures. By prohibiting arbitrary context switches and controlling the occurrence
of interrupts, the kernel protects its consistency.

The kernel allows a context switch only when a process moves from the state
"kernel running" to the state "asleep in memory." Processes running in kernel
mode cannot be preempted by other processes; therefore the kernel is sometimes
said to be non-preemptive, although the system does preempt processes that are in
user mode. The kernel maintains consistency of its data structures because it is
non-preemptive, thereby solving the mutual exclusion problem — making sure that
critica' sections of code are executed by at most one process at a time.

For instance, consider the sample code in Figure 2.7 to put a data structure,
whose address is in the pointer bpl , onto a doubly linked list after the structure
whose address is in bp. 1f the system allowed a context switch while the kernel
executed the code fragment, the following situation could occur. Suppose the
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Figure 2.6. Process States and Transitions

kernel executes the code until the comment and then does a context switch. The
doubly linked list is in an inconsistent state: the structure bpi is half on and half
off the linked list. If a process were to follow the forward pointers, it would find
bpi on the linked list, but if it were to follow the back pointers, it would not find
bpi (Figure 2.8). If other processes were to manipulate the pointers on the linked
list before the original process ran again, the structure of the doubly linked list
could be permanently destroyed. The UNIX system prevents such situations by
disallowing context switches when a process executes in kernel mode. If a process
goes to sleep, thereby permitting a context switch, kernel algorithms are encoded to
make sure that system data structures are in a safe, consistent state.

A related problem that can cause inconsistency in kernel data is the handling of
interrupts, which can change kernel state information. For example, if the kernel
was executing the code in Figure 2.7 and received an interrupt when it reached the
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struct queue t

*bp, *bp1;
bp1 — >forp bp— > forp;
bp1 — >backp len bp;
bp— > forp bp 1 ;
i* consider possible context switch here */
bp 1 — > forp— > ba ckp bp 1 ; 

Figure 2.7. Sample Code Creating Doubly Linked List

bpl

bp

Placing bpl on doubly linked list

bp 20. 
bpl

Figure 2.8. Incorrect Linked List because of Context Switch

comment, the interrupt handler could corrupt the links if it manipulates the
pointers, as illustrated earlier, To solve this problem, the system could prevent all
interrupts while executing in kernel mode, but that would delay servicing of the
interrupt, possibly hurting system throughput. Instead, the kernel raises the
processor execution level to prevent interrupts when entering criticai regions of
code. A section of code is critica' if execution of arbitrary interrupt handlers could
result in consistency problems. For example, if a disk interrupt handler
manipulates the buffer queues in the figure, the section of code where the kernel
manipulates the buffer queues is a critical region of code with respect to the disk
interrupt handler. Critica' regions are small and infrequent so that system
throughput is largely unaffected by their existence. Other operating systems solve
this problem by preventing all interrupts when executing in system states or by
using elaborate locking schemes to ensure consistency. Chapter 12 will return to
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this issue for multiprocessor systems, where the solution outlined here is insufficient.
To review, the kernel protects its consistency by allowing a context switch only

when a process puts itself to sleep and by preventing one process from changing the
state of another process. It also raises the processor execution level around critical
regions of code to prevent interrupts that could otherwise cause inconsistencies.
The process scheduler periodically preempts processes executing in user mode so
that processes cannot monopolize use of the CPU.

2.2.2.4 Sleep and wakeup

A process executing in kernel mode has great autonomy in deciding what it is going
to do in reaction to system events. Processes can communicate with each other and
"suggest" various alternatives, but they make the final decision by themselves. As
will be seen, there is a set of rules that processes obey when confronted with various
circumstances, but each process ultimately follows these rules under its own
initiative. For instance, when a process must temporarily suspend its execution
("go to sleep"), it does so of its own free will. Consequently, an interrupt handler
cannot go to sleep, because if it could, the interrupted process would be put to sleep
by default.

Processes go to sleep because they are awaiting the occurrence of some event,
such as waiting for I/O completion from a peripheral device, waiting for a process
to exit, waiting for system resources to become available, and so on. Processes are
said to sleep on an event, meaning that they are in the sleep state until the event
occurs, at which time they wake up and enter the state "ready to run." Many
processes can simultaneously sleep on an event; when an event occurs, all processes
sleeping on the event wake up because the event condition is no longer true. When
a process wakes up, it follows the state transition from the "sleep" state to the
"ready-to-run" state, where it is eligible for later scheduling; it does not execute
immediately. Sleeping processes do not consume CPU resources: The kernel does
not constantly check to see that a process is still sleeping but waits for the event to
occur and awakens the process then.

For example, a process executing in kernel mode must sometimes lock a data
structure in case it goes to sleep at a later stage; processes attempting to
manipulate the locked structure must check the lock and sleep if another process
owns the lock. The kernel implements such locks in the following manner:

while (condition is true)
sleep (event: the condition becomes false);

set condition true;

It unlocks the lock and awakens all processes asleep on the lock in the following
manner:
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set condition false;
wakeup (event: the condition is false);

Figure 2.9 depicts a scenario where three processes, A, B, and C, contend for a
locked buffer. The sleep condition is that the buffer is locked. The processes
execute one at a time, find the buffer locked, and sleep on the event that the buffer
becomes unlocked. Eventually, the buffer is unlocked, and all processes wake up
and enter the state "ready to run." The kernel eventually chooses one process, say
B, to execute. Process 13 executes the "while" loop, finds that the buffer is
unlocked, sets the buffer lock, and proceeds. If process B later goes to sleep again
before unlocking the buffer (waiting for completion of an I/O operation, for
example), the kernel can schedule other processes to run. If it chooses process A,
process A executes the "while" loop, finds that the buffer is locked, and goes to
sleep again; process C may do the same thing. Eventually, process 13 awakens and
unlocks the buffer, allowing either process A or C to gain access to the buffer.
Thus, the "while-sleep" loop insures that at most one process can gain access to a
resource.

Chapter 6 will present the algorithms for sleep and wakeup in greater detail. In
the meantime, they should be considered "atomic": A process enters the sleep state
instantaneously and stays there until it wakes up. After it goes to sleep, the kernel
schedules another process to run and switches context to it.

2.3 KERNEL DATA STRUCTURES

Most kernel data structures occupy fixed-size tables rather than dynamically
allocated space. The advantage of this approach is that the kernel code is simple,
but it limits the number of entries for a data structure to the number that was
originally configured when generating the system: If, during operation of the
system, the kernel should run out of entries for a data structure, it cannot allocate
space for new entries dynamically but must report an error to the requesting user.
If, on the other hand, the kernel is configured so that it it is unlikely to run out of
table space, the extra table space may be wasted because it cannot be used for
other purposes. Nevertheless, the simplieity of the kernel algorithms has generally
been considered more important than the need to squeeze out every last byte of
main memory. Algorithms typically use simple loops to find free table entries, a
method that is easier to understand and sometimes more efficient than more
complicated allocation schemes.

2.4 SYSTEM ADMINISTRATION

Administrative processes are loosely classified as those processes that do various
functions for the general welfare of the user community. Such functions include
disk formatting, creation of new file systems, repair of damaged file systems, kernel
debugging, and others. Co

nceptually, there is no difference between administrative
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processes and user processes: They use the same set of system calls available to the
genera' community. They are distinguished from genera" user processes only in the
rights and privileges they are allowed. For example, file permission modes may
allow administrative processes to manipulate files otherwise off-limits to genera'
users. Internally, the kernel distinguishes a special user called the superuser,
endowing it with special privileges, as will be seen. A user may become a superuser
by going through a login-password sequence or by executing special programs.
Other uses of superuser privileges will be studied in later chapters. In short, the
kernel does not recognize a separate class of administrative processes.

23 SUMMARY AND PREVIEW

This chapter has described the architecture of the kernel; its two major components
are the file subsystem and the process subsystem. The file subsystem controls the
storage and retrieval of data in user files. Files are organized into file systems,
which are treated as logica' devices; a physical device such as a disk can contain
several logica' devices (file systems). Each file system has a super block that
describes the structure and contents of the file system, and each file in a file system
is described by an mode that gives the attributes of the file. System calls that
manipulate files do so via inodes.

Processes exist in various states and move between them according to well-
defined transition rules. In particular, processes executing in kernel mode can
suspend their execution and enter the sleep state, but no process can put another
process to sleep. The kernel is non-preemptive, meaning that a process executing in
kernel mode will continue to execute until it enters the sleep state or until it returns
to execute in user mode. The kernel maintains the consistency of its data
structures by enforcing the policy of non-preemption and by blocking interrupts
when executing critica' regions of code.

The remainder of this text describes the subsystems shown in Figure 2.1 and
their interactions in detail, starting with the file subsystem and continuing with the
process subsystem. The next chapter covers the buffer cache and describes buffer
allocation algorithms, used in the algorithms presented in Chapters 4, 5, and 7.
Chapter 4 examines internal algorithms of the file system, including the
manipulation of inodes, the structure of files, and the conversion of path names to
inodes. Chapter 5 explains the system calls that use the algorithms in Chapter 4 to
access the file system, such as open, close, read, and write. Chapter 6 deals with
the basic ideas of the context of a process and its address space, and Chapter 7
covers system calls that deal with process management and use the algorithms in
Chapter 6. Chapter 8 •examines process scheduling, and Chapter 9 discusses
memory management algorithms. Chapter 10 covers device drivers, postponed to
this point so that the relationship between the terminal driver and process
management can be explained. Chapter 11 presents several forms of interprocess
communication. Finally, the last two chapters cover advanced topics, including
multiprocessor systems and distributed systems.
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2.6 EXEROSES

1. Consider the following sequence of commands:

grep main a.c b.e c.c > grepout &
wc —1 < grepout &
rm grepout &

The ampersand ("&") at the end of each command line informs the shell to run the
command in the background, and it can execute each command line in parallel. Why
is this not equivalent to the following command line?

grep main a.c b.c e.c wc —1

2. Consider the sample kernel code in Figure 2.7. Suppose a context switch happens
when the code reaches the comment, and suppose another process removes a buffer
from the linked list by executing the following code:

remove (qp)
struct queue *qp;

qp—> forp— > backp qp— > backp;
qp—>backp—>forp qp—> forp;
qp— > forp qp— >backp NULL;

1

Consider three cases:
— The proeess removes the structure bpl from the linked list.
— The process removes the structure that currently follows bpl on the linked list.
— The process removes the structure that originally followed bpi before bp was half

placed on the linked list.
What is the status of the linked list after the original process completes executing the
code after the ~ment?

3. What should happen if the kernel attempts to awaken all processes sleeping on an
event, but no processes are asleep on the event at the time of the wakeup?



THE BUFFER

CACHE

As mentioned in the previous chapter, the kernel maintains files on mass storage
devices such as disks, and it allows processes to store new information or to recall
previously stored information. When a process wants to access data from a file, the
kernel brings the data into main memory where the process can examine it, alter it,
and request that the data be saved in the file system again. For example, recall the
copy program in Figure 1.3: The kernel reads the data from the first file into
memory, and then writes the data into the second file. Just as it must bring file
data into memory, the kernel must also bring auxiliary data into memory to
manipulate it. For instance, the super block of a file system describes the free
space available on the file system, among other things. The kernel reads the super
block into memory to access its data and writes it back to the file system when it
wishes to save its data. Similarly, the mode describes the layout of a file. The
kernel reads an mode into memory when it wants to access data in a file and writes
the mode back to the file system when it wants to update the file layout. it
manipulates this auxiliary data without the explicit knowledge or request of running
processes.

The kernel could read and write directly to and from the disk for all file system
accesses, but system response time and throughput would be poor because of the
slow disk transfer rate. The kernel therefore attempts to minimize the frequency of
disk access by keeping a pool of internal data buffers, called the buffer cache,1

38
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which contains the data in recently used disk blocks.
Figure 2.1 showed the position of the buffer cache module in the kernel

architecture between the file subsystem and (block) device drivers. When reading
data from the disk, the kernel attempts to read from the buffer cache. 1f the data
is already in the cache, the kernel does not have to read from the disk. 1f the data
is not in the cache, the kernel reads the data from the disk and caches it, using an
algorithm that tries to save as much good data in the cache as possible. Similarly,
data being written to disk is cached so that it will be there if the kernel later tries
to read it. The kernel also attempts to minimize the frequency of disk write
operations by determining whether the data must really be stored on disk or
whether it is transient data that will soon be overwritten. Higher-level kernel
algorithms instruct the buffer cache module to pre-cache data or to delay-write
data to maximize the caching effect. This chapter describes the algorithms the
kernel uses to manipulate buffers in the buffer Cache.

3.1 BUFFER HEADERS

During system initialization, the kernel allocates space for a number of buffers,
configurable according to memory size and system performance constraints. A
buffer consists of two parts: a memory array that contains data from the disk and
a buffer header that identifies the buffer. Because there is a one to one mapping of
buffer headers to data arrays, the ensuing text will frequently refer to both parts as
a "buffer," and the context should make clear which part is being discussed.

The data in a buffer corresponds to the data in a logical disk block on a file
system, and the kernel identifies the buffer contents by examining identifier fields in
the buffer header. The buffer is the in-memory copy of the disk block; the contents
of the disk block map into the buffer, but the mapping is temporary until the kernel
decides to map another disk block into the buffer. A disk block can never map into
more than one buffer at a time. 1f two buffers were to contain data for one disk
block, the kernel would not know which buffer contained the current data and could
write incorrect data back to disk. For example, suppose a disk block maps into two
buffers, A and B. 1f the kernel writes data first into buffer A and then into buffer
B, the disk block should contain the contents of buffer B if all write operations
completely fill the buffer. However, if the kernel reverses the order when it copies
the buffers to disk, the disk block will contain incorrect data.

The buffer header (Figure 3.1) contains a device number field and a block
number field that specify the file system and block number of the data on disk and
uniquely identify the buffer. The device number is the logica] file system number

I. The buffer cache is a software structure that should not be confused with hardware caches that speed
memory references.
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device num

block num

ptr to data area
).

ptr to previous buf
on hash queue status

ptr to next buf
on hash queue

ptr to previous buf
on free list ptr to next buf

on free list

Figure 3.1. Buffer Header

(see Section 2.2.1), not a physical device (disk) unit number. The buffer header
also contains a pointer to a data array for the buffer, whose size must be at least as
big as the size of a disk block, and a status field that summarizes the current status
of the buffer. The status of a buffer is a combination of the following conditions:
• The buffer is currently locked (the terms "locked" and "busy" will be used

interchangeably, as will "free" and "unlocked"),
• The buffer contains valid data,
• The kernel must write the buffer contents to disk before reassigning the buffer;

this condition is known as "delayed-write,"
• The kernel is currently reading or writing the contents of the buffer to disk,
• A process is currently waiting for the buffer to become free.

The buffer header also contains two sets of pointers, used by the buffer allocation
algorithms to maintain the overall structure of the buffer pool, as explained in the
next section.

3.2 STRUCTURE OF THE BUFFER POOL

The kernel caches data in the buffer pool according to a 
least recently used

algorithm: after it allocates a buffer to a disk block, it cannot use the buffer for
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forward ptrs

before

after

forward ptrs

Figure 3.2. Free List of Buffers

another block until all other buffers have been used more recently. The kernel
maintains a free list of buffers that preserves the least recently used order. The
free list is a doubly linked circular list of buffers with a dummy buffer header that
marks its beginning and end (Figure 3.2). Every buffer is put on the free list when
the system is booted. The kernel takes a buffer from the head of the free list when
it wants any free buffer, but it can take a buffer from the middle of the free list if
it identifies a particular block in the buffer pool. In both cases, it removes the
buffer from the free list. When the kernel returns a buffer to the buffer pool, it
usually attaches the buffer to the tail of the free list, occasionally to the head of the
free list (for error cases), but never to the middle. As the kernel removes buffers
from the free list, a buffer with valid data moves closer and closer to head of the
free list (Figure 3.2). Hence, the buffers that are closer to the head of the free list
have not been used as recently as those that are further from the head of the free
list.

When the kernel accesses a disk block, it searches for a buffer with the
appropriate device-block number combination. Rather than search the entire buffer
pool, it organizes the buffers into separate queues, hashed as a function of the
device and block number. The kernel links the buffers on a hash queue into a
circular, doubly linked list, similar to the structure of the free list. The number of
buffers on a hash queue varies during the lifetime of the system, as will be seen.
The kernel must use a hashing function that distributes the buffers uniformly across
the set of hash queues, yet the hash function must be simple so that performance
does not suffer. System administrators configure the number of hash queues when
generating the operating system.
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Figure 3.3. Buffers on the Hash Queues

Figure 3.3 shows buffers on their hash queues: the headers of the hash queues
are on the left side of the figure, and the squares on each row are buffers on a hash
queue. Thus, squares marked 28, 4, and 64 represent buffers on the hash queue for
"blkno 0 mod 4" (block number 0 modulo 4). The dotted lines between the buffers
represent the forward and back pointers for the hash queue; for simplicity, later
figures in this chapter will not show these pointers, but their existence is implicit.
Similarly, the figure identifies blocks only by their block number, and it uses a hash
function dependent only on a block number; however, i

mplementations use thedevice number, too.

Each buffer always exists on a hash queue, but there is no significance to its
position on the queue. As stated above, no two buffers may simultaneously contain
the contents of the same disk block; therefore, every disk block in the buffer pool
exists on one and only one hash queue and only once on that queue. However, a
buffer may be on the free list as well if its status is free. Because a buffer may be
simultaneously on a hash queue and on the free list, the kernel has two ways to findit:

 It searches the hash queue if it is looking for a particular buffer, and it 
removesa buffer from the free list if it is looking for any free buffer. The next section will

show how the kernel finds particular disk blocks in the buffer cache, and how it
manipulates buffers on the hash queues and on the free list. To s

ummarize, abuffer is always on a hash queue, but it may or may not be on the 
free list.

3,3 SC
ENARIOS FOR RETRIEVAL OF A BUFFER

As seen in Figure 2.1, high-level kernel algorithms in the file subsystem invoke the
algorithms for managing the buffer cache, The high-level algorithms determine the
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logical device number and block number that they wish to access when they
attempt to retrieve a block. For example, if a process wants to read data from a
file, the kernel determines which file systern contains the file and which block in the
file system contains the data, as will be seen in Chapter 4. When about to read
data from a partieular disk block, the kernel checks whether the block is in the
buffer pool and, if it is not there, assigns it a free buffer. When about to write data
to a particular disk block, the kernel checks whether the block is in the buffer pool,
and if not, assigns a free buffer for that block. The algorithms for reading and
writing disk blocks use the algorithm getblk (Figure 3.4) to allocate buffers from
the pool.

This section describes five typical scenarios the kernel may follow in getblk to
allocate a buffer for a disk block.

1. The kernel finds the block on its hash queue, and its buffer is free.
2. The kernel cannot find the block on the hash queue, so it allocates a buffer

from the free list.
3. The kernel cannot find the block on the hash queue and, in attempting to

allocate a buffer from the free list (as in scenario 2), finds a buffer on the
free list that has been marked "delayed write." The kernel must write the
"delayed write" buffer to disk and allocate another buffer.

4. The kernel cannot find the block on the hash queue, and the free list of
buffers is empty.

5. The kernel finds the block on the hash queue, but its buffer is currently busy.

Let us now discuss each scenario in greater detail.
When searching for a block in the buffer pool by its device-block number

combination, the kernel finds the hash queue that should contain the block. It
searches the hash queue, following the linked list of buffers until (in the first
scenario) it finds the buffer whose device and block number match those for which
it is searching. The kernel checks that the buffer is free and, if so, marks the
buffer "busy" so that other processes 2 cannot access it. The kernel then removes
the buffer from the free list, because a buffer cannot be bath busy and on the free
list. 1f other processes attempt to access the block while the buffer is busy, they
sleep until the buffer is released, as will be seen. Figure 3.5 depicts the first
scenario, where the kernel searches for block 4 on the hash queue marked "blkno 0
mod 4." Finding the buffer, the kernel removes it from the free list, leaving blocks
5 and 28 adjacent on the free list.

2. Recall from the last chapter that all kernel operations are done in the context of a process that is
executing in kernel mode. Thus, the term "other processes" means that they are also executing in
kernel mode. This term will be used when describing the interaction of several processes executing in
kernel mode; if there is no interprocess interaction, the term "kernel" wijl be used.
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(a) Search for Block 4 on First Hash Queue

hash queue headers

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

blkno 3 mod 4
99

Efreelist header

(b) Remove Block 4 from Free List

Figure 3.5. Scenario 1 in Finding a Buffer: Buffer on Hash Queue
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algorithm brelse
input: locked buffer
output: none

wakeup all procs: event, waiting for any buffer to become free;
wakeup all procs: event, waiting for this buffer to become free;
raise processor execution level to block interrupts;
if (buffer contents valid and buffer not old)

enqueue buffer at end of free list
else

enqueue buffer at beginning of free list
lower processor execution level to allow interrupts;
unlock (buffer);

Figure 3.6. Algorithm for Releasing a Buffer

Before continuing to the other scenarios, let us consider what happens to a
buffer after it is allocated. The kernel may read data from the disk to the buffel
and manipulate it or write data to the buffer and possibly to the disk. The kernel
leaves the buffer marked busy; no other process can access it and change ás
contents while it is busy, thus preserving the integrity of the data in the buffer.
When the kernel finishes using the buffer, it releases the buffer according to
algorithm brelse (Figure 3.6). It wakes up processes that had fallen asleep because
the buffer was busy and processes that had fallen asleep because no buffers
remained on the free list. In both cases, release of a buffer means that the buffer is
available for use by the sleeping processes, although the first process that gets the
buffer locks it and prevents the other processes from getting it (recall Section
2.2.2.4), The kernel places the buffer at the end of the free list, unless an
error oceurred or unless it specifically marked the buffer "old," as will be seen later
in this chapter; in the latter cases, it places the buffer at the beginning of the free
list. The buffer is now free for another process to claim it.

Just as the kernel invokes algorithm brelse when a process has no more need for
a buffer, it also invokes the algorithm when handling a disk interrupt to release
buffers used for asynchronous I/O to and from the disk, as will be seen in Section
3.4, The kernel raises the processor execution level to prevent disk interrupts white
manipulating the free list, thereby preventing corruption of the buffer pointers that
could result from a nested call to brelse. Similar bad effects could happen if an
interrupt handler invoked brelse while a process was executing getblk, so the kernel
raises the processor execution level at strategie places in getblk, too. The exercises
explore these cases in greater detail.

In the second scenario in algorithm getblk, the kernel searches the hash queue
that should contain the block but fails to find it there, Since the block cannot be
on another hash queue because it cannot "hash" elsewhere, it is not in the buffer
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(a) Search for Block 18 - Not in Cache

hash queue headers

blkno 0 mod 4

blkno 1 mod 4

blkno 2 mod 4

• • -• • • •

18

blkno 3 mod 4

freelist header

(b) Remove First Block from Free List, Assign to 18

Figure 3.7. Second Scenario for Buffer Allocation
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cache. So the kernel removes the first buffer from the free list instead; that buffer
had been allocated to another disk block and is also on a hash queue. 1f the buffer
has not been marked for a delayed write (as will be described later), the kernel
marks the buffer busy, removes it from the hash queue where it currently resides,
reassigns the buffer header's device and block number to that of the disk block for
which the process is searching, and places the buffer on the correct hash queue.
The kernel uses the buffer but has no record that the buffer formerly contained
data for another disk block. A process searching for the old disk block will not find
it in the pool and will have to allocate a new buffer for it from the free list, exactly
as outlined here. When the kernel finishes with the buffer, it releases it as
described above. In Figure 3.7, for example, the kernel searches for block 18 but
does not find it on the hash queue marked "blkno 2 mod 4." It therefore removes
the first buffer from the free list (block 3), assigns it to block 18, and places it on
the appropriate hash queue.

In the third scenario in algorithm getblk, the kernel also has to allocate a buffer
from the free list. However, it discovers that the buffer it removes from the free
list has been marked for "delayed write," so it must write the contents of the buffer
to disk before using the buffer. The kernel starts an asynchronous write to disk and
tries to allocate another buffer from the free list. When the asynchronous write
completes, the kornel releases the buffer and places it at the head of the free list.
The buffer had started at the end of the free list and had traveled to the head of
the free list. If, after the asynchronous write, the kernel were to place the buffer at
the end of the free list, the buffer would get a free trip through the free list,
working against the least recently used algorithm. For example, in Figure 3.8, the
kernel cannot find block 18, but when it attempts to allocate the first two buffers
(one at a time) on the free list, it finds them marked for delayed write. The kernel
removes them from the free list, starts write operations to disk for the blocks, and
allocates the third buffer on the free list, block 4. It reassigns the buffer's device
and block number fields appropriately and places the buffer, now marked block 18,
on its new hash queue.

In the fourth scenario (Figure 3.9), the kernel, acting for process A, cannot find
the disk block on its hash queue, so it attempts to allocate a new buffer from the
free list, as in the second scenario. However, no buffers are available on the free
list, so process A goes to sleep until another process executes algorithm brelse,
freeing a buffer. When the kernel schedules process A, it must search the hash
queue again for the block. It cannot allocate a buffer immediately from the free
list, because it is possible that several processes were waiting for a free buffer and
that one of them allocated a newly freed buffer for the target block sought by
process A. Thus, searching for the block again insures that only one buffer
contains the disk block. Figure 3.10 depicts the contention between two processes
for a free buffer.

The final scenario (Figure 3.11) is complicated, because it involves complex
relationships between several processes. Suppose the kernel, acting for process A,
searches for a disk block and allocates a buffer but goes to sleep before freeing the
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(a) Search for Block 18, Delayed Write Blocks on Free List
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freelist header

Search for Block 18, Empty Free List

Figure 3.9. Fourth Scenario for Allocating Buffer

buffer. For example, if process A attempts to read a disk block and ailocates a
buffer as in scenario 2, then it will sleep white it waits for the I/O transmission
from disk to complete. While process A sleeps, suppose the kernel schedules a
second process, B, which tries to access the disk block whose buffer was just locked
by process A. Process B (going through scenario 5) will find the locked block on
the hash queue. Since it is illegal to use a locked buffer and it is illegal to allocate
a second buffer for a disk block, process B marks the buffer "in demand" and then
sleeps and waits for process A to release the buffer.

Process A will eventually release the buffer and notice that the buffer is in
demand. It awakens all processes sleeping on the event "the buffer becomes free,"
including process B. When the kernel again schedules process B, process B must
verify that the buffer is free. Another process, C, may have been waiting for the
same buffer, and the kernel may have scheduled C to run before process B; process
C may have gone to sleep leaving the buffer locked. Hence, process B must check
that the block is indeed free.

Process B must also verify that the buffer contains the disk block that it
originally requested, because process C may have allocated the buffer to another
block, as in scenario 2. When process B executes, it may find that it had been
waiting for the wrong buffer, so it must search for the block again: If it were to
allocate a buffer automatically from the free list, it wou]d miss the possibility that
another process just allocated a buffer for the block.
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Figure 3.10. Race for Free Buffer

In the end, process B will find its block, possibly allocating a new buffer from
the free list as in the second scenario. In Figure 3.11, for example, a process
searching for block 99 finds it on its hash queue, but the block is marked busy.
The process sleeps until the block becomes free and then restarts the algorithm
from the beginning. Figure 3.12 depicts the contention for a locked buffer.

The algorithm for buffer allocation must be safe; processes must not sleep
forever, and they must eventually get a buffer. The kernel guarantees that all
processes waiting for buffers will wake up, because it allocates buffers during the
execution of system calls and frees them before returning. 5 Processes in user mode
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Search for Block 99, Block Busy

Figure 3.11. Fifth Scenario for Buffer Allocation

do not control the allocation of kernel buffers directly, so they cannot purposely
"hog" buffers. The kernel loses control over a buffer only when it waits for the
completion of I/O between the buffer and the disk. It is conceivable that a disk
drive is corrupt so that it cannot interrupt the CPU, preventing the kernel from
ever releasing the buffer. The disk driver must monitor the hardware for such
cases and return an error to the kernel for a bad disk job. In short, the kernel can
guarantee that processes sleeping for a buffer will wake up eventually.

It is also possible to imagine cases where a process is starved out of accessing a
buffer. In the fourth scenario, for example, if several processes sleep while waiting
for a buffer to become free, the kernel does not guarantee that they get a buffer in
the order that they requested one. A process could sleep and wake up when a
buffer becomes free, only to go to sleep again because another process got control of
the buffer first. Theoretically, this could go on forever, but practically, it is not a
problem because of the many buffers that are typically configured in the system.

3. The mount system call is an exception, because it allocates a buffer until a later umount call. This
exception is not critica', because the total number of buffers far exceeds the number of active
mounted file systems.
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Process A Process B Process C

Figure 3.12. Race for a Locked Buffer

3.4 READING AND WRMNG DISK BLOCKS

Now that the buffer allocation algorithm has been covered, the procedures for
reading and writing disk blocks should be easy to understand. To read a disk block
(Figure 3.13), a process uses algorithm getblk to search for it in the buffer cache.
If it is in the cache, the kernel can return it immediately without physically reading
the block from the disk. If it is not in the cache, the kernel calls the disk driver to
"schedule" a read request and goes to sleep awaiting the event that the I/O
completes. The disk driver notifies the disk controller hardware that it wants to
read data, and the disk controller later transmits the data to the buffer. Finally,
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algorithm bread /* block read
input: file system block number
output: buffer containing data

get buffer for block (algorithm getblk);
if (buffer data valid)

return buffer;
initiate disk read;
sleep(event disk read complete);
return (buffer);

Figure 3.13. Algorithm for Reading a Disk Block

the disk controller interrupts the processor when the I/0 is complete, and the disk
interrupt handler awakens the sleeping process; the contents of the disk block are
now in the buffer. The modules that requested the particular block now have the
data; when they no longer need the buffer they release it so that omber processes can
access it.

Chapter 5 shows how higher-level kernel modules (such as the file subsystem)
may anticipate the need for a second disk block when a process reads a file
sequentially. The modules request the second I/0 asynchronously in the hope that
the data will be in memory when needed, improving performance. To do this, the
kernel executes the block read-ahead algorithm breada (Figure 3.14): The kernel
checks if the first block is in the cache and, if it is not there, invokes the disk driver
to read that block. 1f the second block is not in the buffer cache, the kernel
instructs the disk driver to read it asynchronously. Then the process goes to sleep
awaiting the event that the 1/0 is complete on the first block. When it awakens, it
returns the buffer for the first block, and does not care when the I/O for the second
block completes. When the 1/0 for the second block does complete, the disk
controller interrupts the system; the interrupt handler recognizes that the 1/0 was
asynchronous and releases the buffer (algorithm brelse). 1f it would not release the
buffer, the buffer would remain locked and, therefore, inaccessible to all processes.
It is impossible to unlock the buffer beforehand, because I/0 to the buffer was
active, and hence the buffer contents were not valid. Later, if the process wants to
read the second block, it should find it in the buffer cache, the 1/0 having
completed in the rneantime. If, at the beginning of breada, the first block was in
the buffer cache, the kernel immediately checks if the second block is in the cache
and proceeds as just described.

The algorithm for writing the contents of a buffer to a disk block is similar
(Figure 3.15). The kernel informs the disk driver that it has a buffer whose
contents should be output, and the disk driver schedules the block for I/0. 1f the
write is synchronous, the calling process goes to sleep awaiting 1/0 completion and
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algorithm breada /* block read and read ahead */
input: (1) file system block number for immediate read

(2) file system block number for asynchronous read
output: buffer containing data for immediate read

if (first block not in cache)

get buffer for first block (algorithm getblk);
if (buffer data not valid)

initiate disk read;

if (second block not in cache)

get buffer for second block (algorithm getblk);
if (buffer data valid)

release buffer (algorithm brelse);
else

initiate disk read;

if (first block was originally in cache)

read first block (algorithm bread);
return buffer;

sleep(event first buffer contains valid data);
return buffer;

Figure 3.14. Algorithm for Block Read Ahead

releases the buffer when it awakens. If the write is asynchronous, the kernel starts
the disk write but does not wait for the write to complete. The kernel will release
the buffer when the I/O completes.

There are occasions, described in the next two chapters, when the kernel does
not write data immediately to disk. If it does a "delayed write," it marks the
buffer accordingly, releases the buffer using algorithm brelse, and continues without
scheduling I/O. The kernel writes the block to disk before another process can
reallocate the buffer to another block, as described in scenario 3 of getbik. In the
meantime, the kernel hopes that a process accesses the block before the buffer must
be written to disk; if that process subsequently changes the contents of the buffer,
the kernel saves an extra disk operation.

A delayed write is different from an asynchronous write. When doing an
asynchronous write, the kernel starts the disk operation immediately but does not
wait for its completion. For a "delayed write," the kernel puts off the physical
write to disk as long as possible; then, recalling the third scenario in algorithm
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algorithm bwrite /* block write */
input: buffer
output: none

initiate disk write;
if (I/0 synchronous)

sleep(event 1/0 complete);
release buffer (algorithm brelse);

1
else if (buffer marked for delayed write)

mark buffer to put at head of free list;
1

Figure 3.15. Algorithm for Writing a Disk Block

getblk, it marks the buffer "old" and writes the block to disk asynchronously. The
disk controller later interrupts the system and releases the buffer, using algorithm
brelse; the buffer ends up on the head of the free list, because it was "old."
Because of the two asynchronous I/O operations — block read ahead and delayed
write — the kernel can invoke brelse from an interrupt handler. Hence, it must
prevent interrupts in any procedure that manipulates the buffer free list, because
breise places buffers cm the free list.

3.5 ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE

Use of the buffer cache has several advantages and, unfortunately, some
disadvantages.

• The use of buffers allows uniform disk access, because the kernel does not need
to know the reason for the I/O. Instead, it copies data to and from buffers,
regardless of whether the data is part of a file, an mode, or a super block. The
buffering of disk I/O makes the code more modular, since the parts of the
kernel that do the I/O with the disk have one interface for all purposes. In
short, system design is simpler.

• The system places no data alignment restrictions on user processes doing I/O,
because the kernel aligns data internally. Hardware implementations frequently
require a particular alignment of data for disk I/O, such as aligning the data on
a two-byte botmdary or on a four-byte boundary in memory. Without a buffer
mechanism, programmers would have to make sure that their data buffers were
correctly aligned. Many programmer errors would result, and programs would
not be portable to UNIX systems running on machines with stricter address
alignment propertjes. By copying data from user buffers to system buffers (and
vice versa), the kernel eliminates the need for special alignment of user buffers,
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making user programs simpler and more portable.
• Use of the buffer cache can reduce the amount of disk traffic, thereby increasing

overall system throughput and decreasing response time. Processes reading
from the file system may find data blocks in the cache and avoid the need for
disk I/O. The kernel frequently uses "delayed write" to avoid unnecessary disk
writes, leaving the block in the buffer cache and hoping for a cache hit on the
block. Obviously, the chances of a cache hit are greater for systems with many
buffers. However, the number of buffers a system can profitably configure is
constrained by the amount of memory that should be kept available for
executing processes: if too much memory is used for buffers, the system may
slow down because of excessive process swapping or paging.

• The buffer algorithms help insure file system integrity, because they maintain a
common, single image of disk blocks contained in the eache. 1f two processes
simultaneously attempt to manipulate one disk block, the buffer algorithms
(geiblk for example) serialize their access, preventing data corruption.

• Reduction of disk traffic is important for good throughput and response time,
but the cache strategy also introduces several disadvantages. Since the kernel
does not immediately write data to the disk for a delayed write, the system is
vulnerable to crashes that leave disk data in an incorrect state, Although recent
system implementations have reduce,d the damage caused by catastrophic
events, the basic problem remains: A user issuing a write system call is never
sure when the data finally makes its way to disk.4

• Use of the buffer cache requires an extra data copy when reading and writing to
and from user processes. A process writing data copies the data into the kernel,
and the kernel copies the data to disk; a process reading data has the data read
from disk into the kernel and from the kernel to the user process. When
transmitting large amounts of data, the extra copy slows down performance, but
when transmitting small amounts of data, it improves performance because the
kernel buffers the data (using algorithms getblk and delayed write) until it is
economical to transmit to or from the disk.

3.6 SUMMARY

This chapter has presented the structure of the buffer cache and the various
methods by which the kernel locates blocks in the eache. The buffer algorithms
combine several simple ideas to provide a sophisticated caching mechgnism. The
kernel uses the least-recently-used replacement algorithm to keep blocks in the

4. The standard I/O package available to C language programs includes an fliush call. This function
call flushes data from buffers in the user address space (part of the package) into the kerne'.
However, the user still does not know when the kernel writes the data to the disk.
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buffer cache, assuming that blocks that were recently accessed are likely to be
accessed again soon. The order that the buffers appear on the free list specifies the
order in which they were last used. Other buffer replacement algorithms, such as
first-in-first-out or least-frequently-used, are either more complicated to implement
or result in lower cache hit ratios. The hash function and hash queues enable the
kernel to find particular blocks quickly, and use of doubly linked lists makes it easy
to remove buffers from the lists.

The kernel identifies the block it needs by supplying a logical device number
and block number. The algorithm getblk searches the buffer cache for a block and,
if the buffer is present and free, locks the buffer and returns it. If the buffer is
locked, the requesting process sleeps until it becomes free. The locking mechanism
ensures that only one process at a time manipulates a buffer. If the block is not in
the cache, the kernel reassigns a free buffer to the block, locks it and returns it.
The algorithm bread allocates a buffer for a block and reads the data into the
buffer, if necessary. The algorithm bwrite copies data into a previously allocated
buffer. If, in execution of certain higher-level algorithms, the kernel determines
that it is not necessary to copy the data immediately to disk, it marks the buffer
"delayed write" to avoid unnecessary I/O. Unfortunately, the "delayed write"
scheme means that a process is never sure when the data is physically on disk. If
the kernel writes data synchronously to disk, it invokes the disk driver to write the
block to the file system and waits for an I/O completion interrupt.

The kernel uses the buffer cache in many ways. It transmits data between
application programs and the file system via the buffer cache, and it transmits
auxiliary system data such as modes between higher-level kernel algorithms and the
file system. It also uses the buffer cache when reading programs into memory for
execution. The following chapters will describe many algorithms that use the
procedures described in this chapter. Other algorithms that cache modes and pages
of memory also use techniques similar to those described for the buffer cache.

3.7 EXERCISES

I. Consider the hash function in Figure 3.3. The best hash function is one that
distributes the blocks uniformly over the set of hash queues. What would be an
optimal hashing function? Should a hash function use the logical device number in its
calculations?

2. In the algorithm getblk, if the kernel removes a buffer from the free list, it must raise
the processor priority level to block out interrupts before checking the free list. Why?

• 3. In algorithm geiblk, the kernel must raise the processor priority level to block out
interrupts before checking if a block is busy. (This is not shown in the text.) Why?

4. In algorithm brelse, the kernel enqueues the buffer at the head of the free list if the
buffer contents are invalid. If the contents are invalid, should the buffer appear on a
hash queue?

5. Suppose the kernel does a delayed write of a block. What happens when another
process takes that block from its hash queue? From the free list?
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* 6. If several processes contend for a buffer, the kernel guarantees that none of them sleep
forever, but it does not guarantee that a process will not be starved out from use of a

buffer. Redesign getblk so that a process is guaranteed eventual use of a buffer.

7. Reclesign the algorithms for getbik and brave such that the kernel does not follow a

least-recently-used scheme but a first-in-first-out scheme. Repeat this problem using a

least-frequently-used scheme.
8. Describe a scenario where the buffer data is already valid in algorithm bread.

* 9. Describe the various scenarios that can happen in algorithm breada. What happens

on the next invocation of bread or breada when the current read-ahead block will be

read? In algorithm breada, if the first or second block are not in the cache, the later
test to see if the buffer data is valid implies that the block could be in the buffer pool.
How is this possible?

1 r). Describe an algorithm that asks for and receives any free buffer from the buffer pool.
Compare this algorithm to getblk.

11. Various system mits such as umount and sync (Chapter 5) require the kernel to fiush
to disk all buffers that are "delayed write" for a particular file system. Describe an
algorithm that implements a buffer fiush. What happens to the order of buffers on the
free list as a result of the fiush operation? How can the kernel be sure that no other
process sneaks in and writes a buffer with delayed write to the file system white the
fiushing process sleeps waitirig for an I/O completion?

12. Define system response time as the average time it takes to complete a system call.
Define system throughput as the number of processes the system can execute in a
given time period. Describe how the buffer cache can help response time. Does it
necessarily help system throughput?

n

e

e



INTERNAL
REPRESENTATION OF FILES

As observed in Chapter 2, every file on a UNIX system has a unique mode. The
Mode contains the information necessary for a process to access a file, such as file
ownership, access rights, file size, and location of the file's data in the file system.
Processes access files by a well defined set of system calls and specify a file by a
character string that is the path name. Each path name uniquely specifies a file,
and the kernel converts the path name to the file's mode.

This chapter describes the internal structure of files in the UNIX system, and
the next chapter describes the system call interface to files. Section 4.1 examines
the mode and how the kernel manipulates it, and Section 4.2 examines the internal
structure of regular files and how the kernel reads and writes their data. Section
4.3 investigates the structure of directories, the files that allow the kernel to
organize the file system as a hierarchy of files, and Section 4.4 presents the
algorithm for converting user file names to modes. Section 4.5 gives the structure
of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment
of disk modes and disk blocks to files. Finally, Section 4.8 talks about other file
types in the system, namely, pipes and device files.

The algorithms described in this chapter occupy the layer above the buffer
cache algorithms explained in the last chapter (Figure 4.1). The algorithm iget
returns a previously identified mode, possibly reading it from disk via the buffer
cache, and the algorithm 'Put releases the Mode. The algorithm bmap sets kernel
parameters for accessing a file. The algorithm namei converts a user-level path

60
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Lower Level File System Algorithms

name'

alloc free ialloc ifree

iget iput bmap

buffer allocation algorithms

getblk brelse bread breada bwrite

Figtare 4.1. File System Algorithms

name to an mode, using the algorithms iget, iput, and bmap. Algorithms alloc and

free allocate and free disk blocks for files, and algorithms Wim and ifree assign

and free inodes for files.

4.1 1NODES

4.1.1 Definition

'nodes exist in a statie form on disk, and the kernel reads them into an in-core
m ode to manipulate them. Disk inodes consist of the following fields:

• File owner identifier. Ownership is divided between an individual owner and a
"group" owner and defines the set of users who have access rights to a file. The
superuser bas access rights to all files in the system.

• File type. Files may be of type regular, directory, character or block special, or
FIFO (pipes).

• File access permissions. The system protects files according to three classes:
the owner and the group owner of the file, and other users; each class bas access
rights to read, write and execute the file, which can be set individually. Because
directories cannot be executed, execution perrnission for a directory gives the
right to search the directory for a file name.

• File access times, giving the time the file was last modified, when it was last
accessed, and when the mode was last modified.
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• Number of links to the file, representing the number of names the file has in the
directory hierarchy. Chapter 5 explains file links in detail.

• Table of contents for the disk addresses of data in a file. Although users treat
the data in a file as a logical stream of bytes, the kernel saves the data in
discontiguous disk blocks. The Mode identifies the disk blocks that contain the
file's data.

• File size. Data in a file is addressable by the number of bytes from the
beginning of the file, starting from byte offset 0, and the file size is 1 greater
than the highest byte offset of data in the file. For example, if a user creates a
file and writes only 1 byte of data at byte offset 1000 in the file, the size of the
file is 1001 bytes.

The Mode does not specify the path name(s) that access the file.

owner mjb

group os

type regular file

perms rwxr-xr-x

accessed Oct 23 1984 1:45 P.M.

modified Oct 22 1984 10:30 A.M.

m ode Oct 23 1984 1:30 P.M.

size 6030 bytes

disk addresses

Figure 4.2. Sample Disk Mode

Figure 4.2 shows the disk Mode of a sample file. This mode is that of a
regular file owned by "mjb," which contains 6030 bytes. The system permits
"mjb" to read, write, or execute the file; members of the group "os" and all other
users can only read or execute the file, not write it. The last time anyone read the
file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone
wrote the file was on October 22, 1984, at 10:30 in the morning. The mode was
last changed on October 23,. 1984, at 1:30 in the afternoon, although the data in
the file was not written at that time. The kernel encodes the above information in
the Mode. Note the distinction between writing the contents of an mode to disk
and writing the contents of a file to disk. The contents of a file change only when
writing it. The contents of an mode change when changing the contents of a file or
when changing its owner, permission, or link settings. Changing the contents of a
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file automatically implies a change to the mode, but changing the Mode does not
imply that the contents of the file change.

The in-core copy of the mode c.ontains the following fields in addition to the
fields of the disk Mode:

• The status of the in-core Mode, indicating whether
— the Mode is locked,

a process is waiting for the Mode to become unlocked,
— the in-core representation of the Mode differs from the disk copy as a result

of a change to the data in the mode,
— the in-core representation of the file differs from the disk copy as a result of

a change to the file data,
— the file is a mount point (Section 5.15).

• The logica! device number of the file system that contains the file.
• The mode number. Since inodes are stored in a linear array on disk (recall

Section 2.2.1), the kernel identifies the number of a disk mode by its position in
the array. The disk mode does not need this field.

• Pointers to other in-core inodes. The kernel links inodes on hash queues and on
a free list in the same way that it links buffers on buffer hash queues and on the
buffer free list. A hash queue is identified according to the inode's logica!
device number and mode number. The kernel can contain at most one in-core
copy of a disk mode, but inodes can be simultaneously on a hash queue and on
the free list.

• A reference count, indicating the number of instances of the file that are active
(such as when opened).

Many fields in the in-core mode are analogous to fields in the buffer header, and
the management of inodes is similar to the management of buffers. The Mode lock,
when set, prevents other processe.s from accessing the mode; other processes set a
flag in the mode when attempting to access it to indicate that they should be
awakened when the lock is released. The kernel sets other flags to indicate
discrepancies between the disk Mode and the in-core copy. When the kernel needs
to record changes to the file or to the Mode, it writes the in-core copy of the Mode
to disk after examining these flags.

The most striking difference between an in-core Mode and a buffer header is the
in-core reference count, which counts the number of active instances of the file. An
Mode is active when a process allocates it, such as when opening a file. An Mode is
on the free list only if its reference count is 0, meaning that the kernel can
reallocate the in-core Mode to another disk mode. The free list of inodes thus
serves as a cache of inactive inodes: lf a process attempts to access a file whose
Mode is not currently in the in-core Mode pool, the kernel reallocates an in-core
m ode from the free list for its use. On the other hand, a buffer bas no reference
count; it is on the free list if and only if it is unlocked.
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algorithm iget
input: file system Mode number
output: locked Mode

while (not done)

if (Mode in Mode cache)

if (m ode locked)

sleep (event Mode becomes unlocked);
continue; /* loop back to while */

/* special processing for mount points (Chapter 5) *I
if (Mode on mode free list)

remove from free list;
increment mode reference count;
return (mode);

1* Mode not in Mode cache *I
if (no Modes on free list)

return (error) ;
remove new Mode from free list;
reset Mode number and file system;
remove Mode from old hash queue, place on new one;
read Mode from disk (algorithm bread);
initialize Mode (e.g. reference count to 1);
return (Mode);

Figure 4.3. Algorithm for Allocation of In-Core modes

4.1.2 Accessing modes

The kernel identifies particular modes by their file system and mode number and
allocates in-core modes at the request of higher-level algorithms. The algorithm
iget allocates an in-core copy of an mode (Figure 4.3); it is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kernel maps the
device number and mode number into a hash queue and searches the queue for the
m ode. If it cannot find the inode, it allocates one from the free list and locks it.
The kernel then prepares to read the disk copy of the newly accessed mode into the
in-core copy. It already knows the mode number and logical device and computes
the logical disk block that contains the mode according to how many disk Modes fit
into a disk block. The computation follows the formula
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block num ((Mode number — 1) / number of inodes per block) +
start block of Mode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the mode list and that there are 8 inodes
per block, then mode number 8 is in disk block 2, and mode number 9 is in disk
block 3. 1f there are 16 inodes in a disk block, then mode numbers 8 and 9 are in
disk block 2, and Mode number 17 is the first mode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the Mode in the block:

((Mode number 1) modulo (number of inodes per block)) * size of disk Mode

For example, if each disk mode occupies 64 bytes and there are 8 inodes per disk
block, then Mode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core mode from the free list, places it on the correct hash queue,
and sets its in-core reference count to 1. It copies the file type, owner fields,
permission settings, link count, file size, and the table of contents from the disk
m ode to the in-core mode, and returns a locked mode.

The kernel manipulates the Mode lock and reference count independently. The
lock is set during execution of a system call to prevent other processes from
accessing the Mode white it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system cal]: an Mode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the Mode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process doses a file.
The reference count thus remains set across multiple system calls. The lock is free
between system calls to allow processes to share simultaneous access to a file; the
reference count remains set between system calls to prevent the kernel from
reallocating an active in-core Mode. Thus, the kerneb can lock and unlock an
allocated mode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an Mode from the
free list but finds the free list empty, it reports an error. This is different from the
philosophy the kernel follows for disk buffers, where a process sleeps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
execution of open and close system calls, and consequently the kernel cannot
guarantee when an mode will become available. Therefore, a process that goes to
sleep waiting for a free Mode to become available may never wake up. Rather than
leave such a process "hanging," the kernel kils the system eau. However,
processes do not have such control over buffers: Because a process cannot keep a
buffer locked across system calls, the kernel can guarante,e that a buffer will
become free soon, and a process therefore sleeps until one is available.
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The preceding paragraphs cover the case where the kernel allocated an Mode
that was not in the Mode cache. If the mode is in the cache, the process (A) would
find it on its hash queue and check if the Mode was currently locked by another
process (W. If the mode is locked, process A sleeps, setting a flag in the in-core
m ode to indicate that it is waiting for the Mode to become free. When process B
later unlocks the Mode, it awakens all processes (including process A) waiting for
the mode to become free. When process A is finally able to use the Mode, it locks
the mode so that other processes cannot allocate it. If the reference count was
previously 0, the mode also appears on the free list, so the kernel removes it from
there: the Mode is no longer free. The kernel increments the mode reference count
and returns a locked Mode.

To summarize, the iget algorithm is used toward the beginning of system calls
when a process first accesses a file. The algorithm returns a locked mode structure
with reference count 1 greater than it had previously been. The in-core mode
contains up-to-date information on the state of the file. The kernel unlocks the
m ode before returning from the system call so that other system calls can access
the mode if they wish. Chapter 5 treats these cases in greater detail.

algorithm iput /* release (put) access to in —core mode *1
input: pointer to in—core mode
output: none

lock mode if not already locked;
decrement mode reference count;
if (reference count 0)

if (m ode link count

free disk blocks for file (algorithm free, section 4.7);
set file type to 0;
free mode (algorithm ifree, section 4.6);

if (file accessed or mode changed or file changed)
update disk mode;

put mode on free list;

release mode lock;

Figure 4.4. Releasing an mode
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4.1.3 Releasing Inodes

When the kernel releases an mode (algorithm iput, Figure 4.4), it decrements its

in-core reference count. If the count drops to 0, the kernel writes the mode to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the blode on the free list of inodes,
effectively caching the mode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and free the mode if the number of

links to the file is 0.

4.2 STRUCTURE OF A REGULAR FILE

As mentioned above, the mode contains the table of contents to locate a file's data
on disk. Since each block on a disk is addressable by number, the table of contents
consists of a set of disk block numbers. If the data in a file were stored in a
contiguous section of the disk (that is, the file occupied a linear sequence of disk
blocks), then storing the start block address and the file size in the mode would
suffice to accas all the data in the file. However, such an allocation strategy would
not allow for simple expansion and contraction of files in the file system without
running the risk of fragmenting free storage area on the disk. Furthermore, the
kernel would have to allocate and reserve contiguous space in the file system before
allowing operations that would increase the file size.

    

40 50 60 70
Block Addresses

Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space

For example, suppose a user creates three files, A, B and C, each consisting of
10 disk blocks of storage, and suppose the system allocated storage for the three
files contiguously. If the user then wishes to add 5 blocks of data to the middle file,
B, the kernel would have to copy file B to a place in the file system that had room
for 15 blocks of storage. Aside from the expense of such an operation, the disk
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blocks previously occupied by file B's data would be unusable except for files
smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of
storage space by periodically running garbage collection procedures to compact
available storage, but that would place an added drain on processing power.

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a file to be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data belonging to
the file, but simple calculations show that a linear list of file blocks in the Mode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10K bytes would require an index of 10 block numbers, but a file containing 100K
bytes would require an index of 100 block numbers. Either the size of the mode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the Mode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the Mode table of contents, but the principles are
independent of the number of entries. The blocks marked "direct" in the figure
contain the numbers of disk blocks that contain real data. The block marked
"single indirect" refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the appropriate direct block entry, and then read the direct block to find the data.
The block marked "double indirect" contains a list of indirect block numbers, and
the block marked "triple indirect" contains a list of double indirect block numbers.

In principle, the method could be extended to support "quadruple indirect
blocks," "quintuple indirect blocks," and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold up to 256 block numbers. The maximum number of bytes that could be
held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the mode.
Given that the file size field in the mode is 32 bits, the size of a file is effectively
limited to 4 gigabytes (232).

Processes access data in a file by byte offset. They work in terms of byte counts
and view a file as a stream of bytes starting at byte address 0 and going up to the
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logical block 0 and continues to a logical block number
corresponding to the file size. The kernel accesses the mode and converts the
logical file block into the appropriate disk block. Figure 4.8 gives the algorithm
&nap for converting a file byte offset into a physical disk block.

Consider the block layout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. If a process wants to access byte offset 9000, the kernel
calculates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte
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Figure 4.7, Byte Capacity of a File K Bytes Per Block

algorithm bmap 1* block map of logical file byte offset to file system block *I
input: (1) mode

(2) byte offset
output: (1) block number in file system

(2) byte offset into block
(3) bytes of I/0 in block
(4) read ahead block number

calculate logical block number in file from byte offset;
calculate start byte in block for 1/0; /* output 2 si
calculate number of bytes to copy to user; /* output 3 */
check if read—ahead applicable, mark mode; /* output 4 *1
determine level of indirection;
while (not at necessary level of indirection)

calculate index into mode or indirect block from
logica' block number in file;

get disk block number from mode or indirect block;
release buffer from previous disk read, if any (algorithm brelse);
if (no more levels of indirection)

return (block number);
read indirect disk block (algorithm bread);
adjust logica] block number in fik according to level of indirection;

Figure 4.8. Conversion of Byte Offset to Block Number in File System

9000 in the file. If a process wants to access byte offset 350,000 in the file, it must
access a double indirect block, number 9156 in the figure. Since an indirect block
has room for 256 block numbers, the first byte accessed via the double indirect
block is byte number 272,384 (256K + 10K); byte number 350,000 in a file is
therefore byte number 77,616 of the double indirect block. Since each single
indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single
indirect block of the double indirect block — block number 331. Since each direct
block in a single indirect block contains 1K bytes, byte number 77,616 of a single
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Figure 4.9. Block Layout of a Sample File and its bode

indirect block is in the 75th direct block in the single indirect block block
number 3333. Finally, byte number 350,000 in the file is at byte number 816 in
block 3333.

Examining Figure 4.9 more closely, several block entries in the mode are 0,
meaning that the logical block entries contain no data. This happens if no process
ever wrote data into the file at any byte offsets corresponding to those blocks and
hence the block numbers remain at their initial value, 0. No disk space is wasted
for such blocks. Processes can cause such a block layout in a file by using the Iseek
and write system calls, as described in the next chapter. The next chapter also
describes how the kernel takes care of read system calls that access such blocks.

The conversion of a large byte offset, particularly one that is referenced via the
triple indirect block, is an arduous procedure that could require the kernel to access
three disk blocks in addition to the mode and data block. Even if the kernel finds
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the blocks in the buffer cache, the operation is still expensive, because the kernel
must make multiple requests of the buffer cache and may have to sleep awaiting
locked buffers. How effective is the algorithm in practice? That depends on how
the system is used and whether the user community and job mix are such that the
kernel accesses large files or small files more frequently. It bas been observed
Nullender 841, however, that most files on UNIX systems contain less than 10K
bytes, and many contain less than 1K bytesl l Since 10K bytes of a file are stored in
direct blocks, most file data can be accessed with one disk access. So in spite of the
fact that accessing large files is an expensive operation, accessing common-sized
files is fast.

Two extensions to the blode structure just described attempt to take advantage
of file size Characteristics. A major principle in the 4.2 BSD file system
implementation (McKusick 841 is that the more data the kernel can access on the
disk in a single operation, the faster file access becomes. That argues for having
larger logica! disk blocks, and the Berkeley implementation allows logica! disk
blocks of 4K or 8K bytes. But having larger block sizes on disk increases block
fragmentation, leaving large portions of disk space unused. For instance, if the
logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block
and half of a second block. The other half of the second block (4K bytes) is
wasted; no other file can use the space for data storage. If the sizes of files are
such that the number of bytes in the last block of a file is uniformly distributed,
then the average wasted space is half a block per file; the amount of wasted disk
space can be as high as 45% for a file system with logical blocks of size 4K bytes
[ McKusick 841. The Berkeley implementation remedies the situation by allocating
a block fragment to contain the last data in a file. One disk block can contain
fragments belonging to several files. An exercise in Chapter 5 explores some details
of the implementation.

The second extension to the classic mode structure described here is to store file
data in the mode (see [Mullender 841). By expanding the mode to occupy an
entire disk block, a small portion of the block can be used for the mode structures
and the remainder of the block can store the entire file, in many cases, or the end
of a file otherwise. The main advantage is that only one disk access is necessary to
get the mode and its data if the file fits in the mode block.

1. For a sample of 19,978 files, Mullender and Tannenbaurn say that approximately 85% of the files
were smaller than 8K bytes and that 48% were smaller than IK bytes. Although these percentages
will vary from one installation to the next, they are representative of rnany UNIX systems.
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4.3 DIRECTORIES

Recall from Chapter 1 that directories are the files that give the file system its
hierarchical structure; they play an important role in conversion of a file name to
an mode number. A directory is a file whose data is a sequence of entries, each
consisting of an mode number and the name of a file contained in the directory. A
path name is a null terminated character string divided into separate components
by the slash ("/") character. Each component except the last must be the name of
a directory, but the last component may be a non-directory file. UNIX System V
restricts component names to a maximum of 14 characters; with a 2 byte entry for
the mode number, the size of a directory entry is 16 bytes.

Byte Offset m ode Number File Names
in Directory (2 bytes)

0
16
32
48

83
2

1798
1276

..
init
fsck

64 85 clri
80 1268 motd
96 1799 mount

112 88 mknod
128 2114 passwd
144 1717 umount
160 1851 checklist
176 92 fsdblb
192 84 config
208 1432 getty
224 0 crash
240 95 mkfs
256 188 inittab

Figure 4.10. Directory Layout for /etc

Figure 4.10 depicts the layout of the directory "etc". Every directory contains
the file names dot and dot-dot ("." and "..") whose mode numbers are those of the
directory and its parent directory, respectively. The m ode number of "." in `Vete
is located at offset 0 in the file, and its value is 83. The mode number of ".." is
located at offset 16, and its value is 2, Directory entries may be empty, indicated
by an mode number of 0. For instance, the entry at address 224 in "/etc" is
empty, although it once contained an entry for a file named "crash". The program
mkfs initializes a file system so that "." and ".." of the root directory have the root
m ode number of the file system.



74 1NTERNAL REPRFSENTATION OF FILES

The kernel stores data for a directory just as it stores data for an ordinary file,
using the Mode structure and levels of direct and indirect blocks. Processes may
read directories in the same way they read regular files, but the kernel reserves
exclusive right to write a directory, thus insuring its correct structure. The access
permissions of a directory have the following meaning: read permission on a
directory allows a process to read a directory; write permission allows a process to
create new directory entries or remove old ones (via the creat, mknod, link, and
unlink system calls), thereby altering the contents of the directory; execute
permission allows a process to search the directory for a file name (it is meaningless
to execute a directory). Exercise 4.6 explores the difference between reading and
searching a directory.

4,4 CON VERSION OF A PATH NAME TO AN INODE

The initial access to a file is by its path name, as in the open, chdir (change
directory), or link system calls. Because the kernel works internally with inodes
rather than with path names, it converts the path names to inodes to access files.
The algorithm namei parses the path name one component at a time, converting
each component into an mode based on its name and the directory being searched,
and eventually returns the Mode of the input path name (Figure 4.11).

Recall from Chapter 2 that every process is associated witli (resides in) a
current directory; the u area contains a pointer to the current directory mode. The
current directory of the first process in the system, process 0, is the root directory.
The current directory of every other process starts out as the current directory of its
parent process at the time it was created (see Section 5.10). Processes change their
current directory by executing the chdir (change directory) system call. All path
name searches start from the current directory of the process unless the path name
starts with the slash character, signifying that the search should start from the root
directory. In either case, the kernel can easily find the mode where the path name
search starts: The current directory is stored in the process u area, and the system
root mode is stored in a global variable.2

Namei uses intermediate inodes as it parses a path name; call them working
inodes. The mode where the search starts is the first working mode. During each
iteration of the namei loop, the kernel makes sure that the working Mode is indeed
that of a directory. Otherwise, the system would violate the assertion that non-
directory files can only be leaf nodes of the file system tree. The process must also
have permission to search the directory (read permission is insufficient). The user
1D of the process must match the owner or group 1D of the file, and execute

2. A process can execute the chroot system cal! to change its notion of the file system root. The
changed root is stored in the u area.
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algorithm namei /* convert path name to mode */
input: path name
output: locked Mode

if (path name starts from root)
working Mode — root mode (algorithm iget);

else
working mode current directory mode (algorithm iget):

while (there is more path name)

read next path name component from input;
verify that working Mode is of directory, access permissions OK;
if (working mode is of root and component is "..")

continue; /* loop back to while */
read directory (working mode) by repeated use of algorithms

bmap, bread and brelse;
if (component matches an entry in directory (working mode))

get Mode number for matched component;
release working Mode (algorithm iput);
working Mode mode of matched component (algorithm iget);

else /* component not in directory */
return (no mode);

return (working Mode);

Figure 4.11. Algorithm for Conversion of a Path Name to an mode

permission must be granted, or the file must allow search to all users. Otherwise
the search fails.

The kernel does a linear search of the directory file associated with the working
m ode, trying to match the path name component to a directory entry name.
Starting at byte offset 0, it converts the byte offset in the directory to the
appropriate disk block according to algorithm bmap and reads the block using
algorithm bread. It searches the block for the path name component, treating the
contents of the block as a sequence of directory entries. If it finds a match, it
records the mode number of the matched directory entry, releases the block
(algorithm brelse) and the old working mode (algorithm tput), and allocates the
Mode of the matched component (algorithm iget). The new Mode becomes the
working Mode. If the kernel does not match the path name with any names in the
block, it releases the block, adjusts the byte offset by the number of bytes in a
block, converts the new offset to a disk block number (algorithm bmap), and reads
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the next block. The kernel repeats the procedure until it matches the path name
component with a directory entry name, or until it reaches the end of the directory.

For example, suppose a process wants to open the file "ietcipasswd". When the
kernel starts parsing the file name, it encounters "I" and gets the system root
m ode. Making root its current working Mode, the kernel gathers in the string
"etc". After checking that the current mode is that of a directory ("1") and that
the process has the necessary permissions to search it, the kernel searches root for a
file whose name is "etc": It accesses the data in the root directory block by block
and searches each block one entry at a time until it locates an entry for "etc". On
finding the entry, the kernel releases the Mode for root (algorithm Out) and
allocates the Mode for "etc" (algorithm iget) according to the mode number of the
entry just found. After ascertaining that "etc" is a directory and that it has the
requisite search permissions, the kernel searches "etc" block by block for a
directory structure entry for the file "passwd". Referring to Figure 4.10, it would
find the entry for "passwd" as the ninth entry of the directory. On finding it, the
kernel releases the mode for "etc", allocates the mode for "passwd", and — since
the path name is exhausted — returns that Mode.

It is natural to question the efficiency of a linear search of a directory for a path
name component. Ritchie points out (see page 1968 of [Ritchie 78b1) that a linear
search is efficient because it is bounded by the size of the directory. Furthermore,
early UNIX system implementations did not run on machines with large memory
space, so there was heavy emphasis on simple algorithms such as linear search
schemes. More complicated search schemes could require a different, more
complex, directory structure, and would probably run more slowly on small
directories than the linear search scheme.

43 SUPER BLOCK

So far, this chapter has described the structure of a file, assuming that the mode
was previously bound to a file and that the disk blocks containing the data were
already assigned. The next sections cover how the kernel assigns inodes and disk
blocks. To understand those algorithms, let us examine the structure of the super
block.

The super block consists of the following fields:

• the size of the file system,
• the number of free blocks in the file system,
• a list of free blocks available on the file system,
• the index of the next free block in the free block list,
• the size of the mode list,
• the number of free inodes in the file system,
• a list of free inodes in the file system,
• the index of the next free Mode in the free mode list,
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• lock fields for the free block and free mode lists,
• a flag indicating that the super block has been modified,

The remainder of this chapter will explain the use of the arrays, indices and locks.
The kernel periodically writes the super block to disk if it had been modified so that
it is consistent with the data in the file system.

4.6 INODE ASSIGNMENT TO A NEW FILE

The kernel uses algorithm iget to allocate a known mode, one whose (file system
and) mode number was previously determined. In algorithm namei for instance,
the kernel determines the mode number by matching a path name component to 

aname in a directory. Another algorithm, ialloc, assigns a disk mode to a newlycreated file.

The file system contains a linear list of modes, as mentioned in Chapter 2. An
Mode is free if its type field is zero. When a process needs a new mode, the kernel
could theoretically search the Mode list for a free mode. However, such a search
would be expensive, requiring at least one read operation (possibly from disk) for
every mode. To improve performance, the file system super block contains an array
to cache the numbers of free Modes in the file system.

Figure 4.12 shows the algorithm Woe for assigning new Modes. For reasons
cited later, the kernel first verifies that no other processes have locked access to the
super block free mode list. If the list of Mode numbers in the super block is not
empty, the kernel assigns the next Mode number, allocates a free in-core Mode for
the newly assigned disk Mode using algorithm iget (reading the mode from disk if
necessary), copies the disk Mode to the in-core copy, initializes the fields in the
Mode, and returns the locked mode. It updates the disk Mode to indicate that the

m
ode is now in use: A non-zero file type field indicates that the disk Mode is

assigned. In the simplest case, the kernel has a good mode, but race conditions
exist that necessitate more checking, as will be explained shortly. Loosely 

defined,a race condition arises when several processes alter common data structures 
suchthat the resulting c

omputations depend on the order in which the processes
executed, even though all processes obeyed the locking protocol. For example, it isi
mplied here that a process could get a used Mode. A race condition is related to

the mutual exclusion problem defined in Chapter 2, except that locking schemes
solve the mutual exclusion problem there but may not, by themselves, solve all race
conditions.

If the super block list of free Modes is empty, the kernel searches the disk and
places as many free Mode numbers as possible into the super block. The kernel
reads the mode list on disk, block by block, and fills the super block list of Mode
numbers to capacity, re

membering the high
est-numbered mode that it finds. Callthat Mode the "re

membered" Mode; it is the last one saved in the super block. The
next time the kernel searches the disk for free Modes, it uses the r

emembered Mode
as its starting point, thereby assuring that it wastes no time reading disk blocks



while (not done)

if (super block locked)

sleep (event super block becomes free);

1
continue; /* while loop */

if (m ode list in super block is empty)

lock super block;
get rernembered Mode for free Mode search;
search disk for free inodes until super block full,

or no more free inodes (algorithrns bread and brelse);
unlock super block;
wake up (event super block becomes free);
if (no free inodes found en disk)

return (no Mode);
set remembered mode for next free Mode search;

1

/* there are inodes in super block mode list *I
get Mode number from super block Mode list;
get Mode (algorithm iget);
if (Mode not free after all) /* !!! */

write Mode to disk;
release mode (algorithm iput);
continue; /* while loop */

1
/* mode is free */
initialize Mode;
write mode to disk;
decrement file system free mode count;
return (mnode);
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Figure 4.12. Algorithm for Assigning New Inodes
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where no free modes should exist. After gathering a fresh set of free mode
numbers, it starts the mode assignment algorithm from the beginning. Whenever
the kernel assigns a disk mode, it decrements the free mode count recorded in the
super block.

Super Block Free In 1st

free modes 83

_

48  empty .e

Super Block Free mode List

.e free modes ›.. 83 • • • • empty 

(a) Assigning Free mode from Middle of List

Super Block Free mode List

    

.. —

535
..x......

, —
free modes 476 475 471

48 49 50

index t
(b) Assigning Free mode - Super Block List Empty

Figure 4.13. Two Arrays of Free bode Numbers
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Consider the two pairs of arrays of free mode numbers in Figure 4.13. If the
list of free inodes in the super block looks like the first array in Figure 4.13(a)
when the kernel assigns an mode, it decrements the index for the next valid mode
number to 18 and takes mode number 48. 1f the list of free inodes in the super
block looks like the first array in Figure 4.13(b), it will notice that the array is
empty and search the disk for free inodes, starting from mode number 470, the
remembered mode. When the kernel fills the super block free list to capacity, it
remembers the last blode as the start point for the next search of the disk. The
kernel assigns an mode it just took from the disk (number 471 in the figure) and
continues whatever it was doing.

algorithm ifree 1* mode free */
input: file system mode number
output: none

increment file system free mode count;
if (super block locked)

return;
if anode list fulp

if (Mode number less than remembered mode for search)
set remembered mode for search input mode number;

else
store mode number in mode list;

return;

Figure 4.14. Algorithm for Freeing mode

The algorithm for freeing an mode is much simpler. After incrementing the
total number of available inodes in the file system, the kernel checks the lock on the
super block. If locked, it avoids race conditions by returning immediately: The
m ode number is not put into the super block, but it can be found on disk and is
available for reassignment. 1f the list is not locked, the kernel checks if it /las room
for more mode numbers and, if it does, places the mode number in the list and
returns. 1f the list is full, the kernel may not save the newly freed mode there: It
compares the number of the freed mode with that of the remembered mode. If the
freed mode number is less than the remembered mode number, it "remembers" the
newly freed mode number, discarding the old remembered mode number from the
super block. The mode is not lost, because the kernel can find it by searching the
m ode list on disk. The kernel maintains the super block list such that the last mode
it dispenses from the list is the remembered mode. Ideally, there should never be
free inodes whose mode number is less than the remembered mode number, but

WIM
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Figure 4.15. Placing Free bode Numbers into the Super Block

exceptions are possible.
Consider two examples of freeing modes. If the super block list of free Modes

has room for more free mode numbers as in Figure 4.13(a), the kernel places the
Mode number on the list, increments the index to the next free mode, and proceeds.
But if the list of free Modes is full as in Figure 4.15, the kernel compares the Mode
number it has freed to the remembered Mode number that will start the next disk
search. Starting with the free Mode list in Figure 4.15(a), if the kernel frees mode
499, it makes 499 the remembered Mode and evicts number 535 from the free list.
If the kernel then frees Mode number 601, it does not change the contents of the
free list. When it later uses up the Modes in the super block free list, it will search
the disk for free Modes starting from mode number 499, and find Modes 535 and
601 again.
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Assigns mode I
from super block ••

•

Sleeps while
reading mode (a)

Tries to assign mode
from super block

Super block empty (b)

Search for free
inodes on disk,

puts blode I
in super block (c)

m ode 1 in core
Does usual activity

Completes search,
assigns another mode (d)

W Time

Assigns mode
from super block

I is in use!

Assign another mode (e)

Figure 4.16. Race Condition in Assigning Inodes

The preceding paragraph described the simple cases of the algorithms. Now
consider the case where the kernel assigns a new mode and then allocates an in-core
copy for the mode. The algorithm implies that the kernel could find that the mode
had already been assigned. Although rare, the following scenario shows such a case
(refer to Figures 4.16 and 4.17). Consider three processes, A, 13, and C, and
suppose that the kernel, acting on behalf of process A, 3 assigns mode I but goes to
sleep before it copies the disk mode into the in-core copy. Algorithms iget (invoked

3. As in the last chapter, the term "process" here wili mean "the kernel, acting on behalf of a process."
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Time

(a)

(b)                                                                  

Figure 4.17. Race Condition in Assigning modes (continued)

by ialloc) and bread (invoked by iget) give process A ample opportunity to go to
sleep. While process A is asleep, suppose process B attempts to assign a new mode
but discovers that the super block list of free modes is empty. Process B searches
the disk for free modes, and suppose it starts its search for free modes at an mode
number lower than that of the mode that A is assigning. It is possible for process
B to find mode I free on the disk since process A is still asleep, and the kernel does
not know that the mode is about to be assigned. Process B, not realizing the
danger, completes its search of the disk, fills up the super block with (supposedly)
free modes, assigns an mode, and departs from the scene. However, mode I is in
the super block free list of mode numbers. When process A wakes up, it completes
the assignment of mode I. Now suppose process C later requests an mode and
happens to pick mode I from the super block free list. When it gets the in-core
copy of the mode, it will find its file type set, implying that the mode was already
assigned. The kernel checks for this condition and, finding that the mode has been
assigned, tries to assign a new one. Writing the updated mode to disk immediately
after its assignment in iallac makes the chance of the race smaller, because the file
type field will mark the mode in use.



84 INTERNAL REPRESENTATION OF FILES

Locking the super block list of inodes white reading in a new set from disk
prevents other race conditions. 1f the super block list were not locked, a process
could find it empty and try to populate it from disk, occasionally sleeping while
waiting for I/O completion. Suppose a second process also tried to assign a new
blode and found the list empty. It, too, would try to populate the list from disk.
At best, the two processes are duplicating their efforts and wasting CPU power. At
worst, race conditions of the type described in the previous paragraph would be
more frequent. Similarly, if a process freeing an mode did not check that the list is
locked, it could overwrite Mode numbers already in the free list while another
process was populating it from disk. Again, the race conditions described above
would be more frequent. Although the kernel handles them satisfactorily, system
performance would suffer. Use of the lock on the super block free list prevents
such race conditions.

4.7 ALLOCATION OF DISK BLOCKS

When a process writes data to a file, the kernel must allocate disk blocks from the
file system for direct data blocks and, sometimes, for indirect blocks. The file
system super block contains an array that is used to cache the numbers of free disk
blocks in the file system. The utility program mkf's (make file system) organizes
the data blocks of a file system in a linked list, such that each link of the list is a
disk block that contains an array of free disk block numbers, and one array entry is
the number of the next block of the linked list. Figure 4.18 shows an example of
the linked list, where the first block is the super block free list and later blocks on
the linked list contain more free block numbers.

When the kernel wants to allocate a block from a file system (algorithm alloc,
Figure 4.19), it allocates the next available block in the super block list. Once
allocated, the block cannot be reallocated until it becomes free. If the allocated
block is the last available block in the super block cache, the kernel treats it as a
pointer to a block that contains a list of free blocks. It reads the block, populates
the super block array with the new list of block numbers, and then proceeds to use
the original block number. It allocates a buffer for the block and clears the buffer's
data (zeros it). The disk block bas now been assigned, and the kernel bas a buffer
to work with. 1f the file system contains no free blocks, the calling process receives
an error.

1f a process writes a lot of data to a file, it repeatedly asks the system for blocks
to store the data, but the kernel assigns only one block at a time. The program
rnIcfs tries to organize the original linked list of free block numbers so that block
numbers dispensed to a file are near each other. This helps performance, because it
reduces disk seek time and latency when a process reads a file sequentially. Figure
4.18 depicts block numbers in a regular pattern, presumably based on the disk
rotation speed. Unfortunately, the order of block numbers on the free block linked
lists breaks down with heavy use as processes write files and remove them, because
block numbers enter and leave the free list at random. The kernel makes no
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V

Figure 4.18. Linked List of Free Disk Block Numbers

attempt to sort block numbers on the free list.
The algorithm free for freeing a block is the reverse of the one for allocating a

block. If the super block list is not full, the block number of the newly freed block
is placed on the super block list. If, however, the super block list is full, the newly
freed block becomes a link block; the kernel writes the super block list into the
block and writes the block to disk. It then places the block number of the newly
freed block in the super block list: That block number is the only member of the
list.

Figure 4.20 shows a sequence of alloc and free operations, starting with one
entry on the super block free list. The kernel frees block 949 and places the block
number on the free list. It then allocates a block and removes block number 949
from the free list. Finally, it allocates a block and removes block number 109 from
the free list. Because the super block free list is now empty, the kernel replenishes
the list by copying in the contents of block 109, the next link on the linked list.
Figure 4.20(d) shows the full super block list and the next link block, block 211.

The algorithms for assigning and freeing modes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free resources,
block numbers, and mode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free modes. There are three reasons for
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algorithm alloc 1* file system block allocation */
input: file system number
output; buffer for new block

while (super block locked)
sleep (event super block not locked);

remove block from super block free list;
if (removed last block from free list)

lock super block;
read block just taken from free list (algorithm bread);
copy block numbers in block into super block;
release block buffer (algorithm brelse);
unlock super block;
wake up processes (event super block not locked);

1
get buffer for block removecl from super block list (algorithm getblk);
zero buffer contents;
decrement total count of free blocks;
mark super block modified;
return buffer;

Figure 4.19. Algorithm for Allocating Disk Block

the different treatment.

1. The kernel can determine whether an mode is free by inspection: 1f the file
type field is clear, the mode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is free
just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened to have that bit pattern.
Hence, the kernel requires an external method to identify free blocks, and
traditional implementations have used a linked list.

2. Disk blocks lend themselves to the use of linked lists: A disk block easily
holds large lists of free block numbers. But inodes have no convenient place
for bulk storage of large lists of free mode numbers.

3. Users tend to consume disk block resources more quickly than they consume
inodes, so the apparent lag in performance when searching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.
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super block list
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q-10)9

(a) Original configuration

super block list 

109 949

40)9 
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(b) After freeing block number 949

super block list

109

21 208 205 202 2            

                 

(c) After assigning block number (949)

super block list 

211 208 205 202 F ....................................  112                

(d) After assigning block number (109)
replenish super block free list

Figure 4.20. Requesting and Freeing Disk Blocks
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4.8 OTHER FILE TYPES

The UNIX system supports two other file types: pipes and special files. A pip,
sometimes called a fifb (for "first-in-first-out"), differs from a regular file in that its
data is transient: Once data is read from a pipe, it cannot be read again. Also, the
data is read in the order that it was written to the pipe, and the system allows no
deviation from that order. The kernel stores data in a pipe the same way it stores
data in an ordinary file, except that it uses only the direct blocks, not the indirect
blocks. The next chapter will examine the implementation of pipes.

The last file types in the UNIX system are special files, including block device
special files and character device special files. Both types specify devices, and
therefore the file inodes do not reference any data. Instead, the mode contains two
numbers known as the major and minor device numbers. The major number
indicates a device type suil as terminal or disk, and the minor number indicates
the unit number of the device. Chapter 10 examines special devices in detail.

4.9 SUMMARY

The mode is the data structure that describes the attributes of a file, including the
layout of ijs data on disk. There are two versions of the mode: the disk copy that
stores the mode information when the file is not in use and the in-core copy that
records information about active files. Algorithms ialloc and ifree control
assignment of a disk mode to a file during the creat, mknod, pipe, and unlink
system calls (next chapter), and the algorithms iget and iput control the allocation
of in-core inodes when a process accesses a file. Algorithm bmap locates the disk
blocks of a file, according to a previously supplied byte offset in the file. Directories
are files that correlate file name components to mode numbers. Algorithm namei
converts file names manipulated by processes to inodes, used internally by the
kernel. Finally, the kernel controls assignment of new disk blocks to a file using
algorithms alloc and free.

The data structures discussed in this chapter consist of linked lists, hash queues,
and linear arrays, and the algorithms that manipulate the data structures are
therefore simple. Complications arise due to race conditions caused by the
interaction of the algorithms, and the text has indicated some of these timing
problems. Nevertheless, the algorithms are not elaborate and illustrate the
simplicity of the system design.

The structures and algorithms explained here are internal to the kernel and are
not visible to the user. Referring to the overall system architecture (Figure 2.1),
the algorithms described in this chapter occupy the lower half of the file subsystem.
The next chapter examines the system calls that provide the user interface to the
file system, and it describes the upper half of the file subsystem that invokes the
internal algorithms described here.
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4.10 EXERCISES

I. The C language convention counts array indices from 0. Why do mode numbers start
from 1 and not 0?

2. If a process sleeps in algorithm iget when it finds the mode locked in the cache, why
must it start the loop again from the beginning after waking up?

3. Describe an algorithm that takes an in-core mode as input and updates the
corresponding disk mode.

4. The algorithms iget and iput do not require the processor execution level to be raised
to block out interrupts. What does this imply?

5. How efficiently can the loop for indirect blocks in bmap be encoded?

mkdir junk
for i in 1 2 3 4 5
do
echo hello > junk/Si
done
Is —Id junk
Is —I junk
chmod —r junk
Is —Id junk
Is junk
Is —I junk
cd junk
pwd
Is —I
ecbo *
cd
chmod 4-r junk
chmod —x junk
Is junk
Is —I junk
cd junk
chmod +x junk

Figure 4.21. Difference between Read and Search Permission on Directories

6. Execute the shell command script in Figure 4.21. It creates a directory "junk" and
creates five files in the directory. After doing some control Is commands, the chmod
command turns off read permission for the directory. What happens when the various
Is commands are executed now? What happens after changing directory into "junk"?
After restoring read permission but removing execute (search) permission from "junk",
repeat the experiment. What happens? What is happening in the kernel to cause this
behavior?

7. Given the current structure of a directory entry on a System V system, what is the
maximum number of files a file system can contain?
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8. UNIX System V allows a maximum of 14 characters for a path name component.
Namei truncates extra characters in a component. How should the file system and
respective algorithms be redesigned to allow arbitrary length component names?

9. Suppose a user has a private version of the UNIX system but changes it so that a path
name component can consist of 30 characters; the private version of the operating
system stores the directory entries the same way that the standard operating system
does, except that the directory entries are 32 bytes long instead of 16. If the user
mounts the private file system on a standard system, what would happen in algorithm
name! when a process accesses a file on the private file system?

* 10. Consider the algorithm name! for converting a path name into an mode. As the search
progresses, the kernel checks that the current working mode is that of a directory. Is
it possible for another process to remove (unlink) the directory? How can the kernel
prevent this? The next chapter will come back to this problem.

* 11. Design a directory structure that improves the efficiency of searching for path names
by avoiding the linear search. Consider two techniques: hashing and n-ary trees.

* 12. Design a scheme that reduces the number of directory souches for file names by
caching frequently used names.

* 13. Ideally, a file system should never contain a free mode whose mode number is less than
the "remembered" mode used by ialloe. How is it possible for this assertion to be
fake?

14. The super block is a disk block and contains other information besides the free block
list, as described in this chapter. Therefore, the super block free list cannot contain as
many free block numbers as can be potentially stored in a disk block on the linked list
of free disk blocks. What is the optima! number of free block numbers that should be
stom] in a block on the linked list?

* 15. Discuss a system implementation that keeps track of free disk blocks with a bit map
instead of a linked list of blocks. What are the advantages and disadvantages of this
scheme?

Ir

1



SYSTEM CALLS
FOR THE FILE SYSTEM

The last chapter described the internal data structures for the file system and the
algorithms that manipulate them. This chapter deals with system calls for the file
system, using the concepts explored in the previous chapter. It starts with system
calls for accessing existing files, such as open, read, write, lseek, and close, then
presents system calls to create new files, namely, creat and mknod, and then
examines the system calls that manipulate the Mode or that maneuver through the
file system: chdir, chroot, chown, chrrtod, slat, and fstat. It investigates more
advanced system calls: pipe and dup are important for the implementation of pipes
in the shell; mount and umount extend the file system tree visible to users; link and
unlink change the structure of the file system hierarchy. Then, it presents the
notion of file system abstractions, allowing the support of various file systems as
long as they conform to standard interfaces. The last section in the chapter covers
file system maintenance. The chapter introduces three kernel data structures: the
file table, with one entry allocated for every opened file in the system, the user file
descriptor table, with one entry allocated for every file descriptor known to a
process, and the mount table, containing information for every active file system.

Figure 5.1 shows the relationship between the system calls and the algorithms
described previously. It classifies the system calls into several categories, although
some system calls appear in more than one category:
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Figure 5.1. File System Calls and Relation to Other Algorithms

• System calls that return file descriptors for use in other system calls;
• System calls that use the namei algorithm to parse a path name;
• System calls that assign and free inodes, using algorithms ialloc and ifree;
• System calls that set or change the attributes of a file;
• System calls that do I/O to and from a process, using algorithms alloc, free,

and the buffer allocation algorithms;
• System calls that change the structure of the file system;
• System calls that allow a process to change its view of the file system tree.

5.1 OPEN

The open system call is the first step a process must take to access the data in a
file. The syntax for the open system call is

fd open(pathname, flags, modes);

where pathname is a file name, flags indicate the type of open (such as for reading
or writing), and modes give the file permissions if the file is being created. The
open system cal] returns an integer' called the user file descriptor. Other file
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operations, such as reading, writing, seeking, duplicating the file descriptor, setting
file I/O parameters, determining file status, and closing the file, use the file
descriptor that the open system call returns.

The kernel searches the file system for the file name parameter using algorithm
nantei (see Figure 5.2). It checks permissions for opening the file after it finds the
in-core mode and allocates an entry in the file table for the open file. The file table
entry contains a pointer to the mode of the open file and a field that indicates the
byte offset in the file where the kernel expects the next read or write to begin. The
kernel initializes the offset to 0 during the open call, meaning that the initial read
or write starts at the beginning of a file by default. Alternatively, a process can
open a file in write-append mode, in which case the kernel initializes the offset to
the size of the file. The kernel allocates an entry in a private table in the process u
area, called the user file descriptor table, and notes the index of this entry. The
index is the file descriptor that is returned to the user. The entry in the user file
table points to the entry in the global file table.

algorithm open
inputs: file name

type of open
file permissions (for creation type of open)

output: file descriptor

convert file name to mode (algorithm namei);
if (file does not exist or not permitted access)

return (error);
allocate file table entry for mode, initialize count, offset;
allocate user file descriptor entry, set pointer to file table entry;
if (type of open specifies truncate file)

free all file blocks (algorithm free);
unlock (inode); /* locked above in namei */
return (user file descriptor);

Figure 5.2. Algorithm for Opening a File

Suppose a process executes the following code, opening the file "fetc/passwd"
twice, once read-only and once write-only, and the file "local" once, for reading and
writing.2

1. All system calls return the value — 1 if they fail. The return value will not be explicitly
mentioned when discussing the syntax of the system calls.

2. The definition of the open system call specifies three parameters (the third is used for the create
mode of open), but programmers usually use only the first two. The C compiler does not chock that
the number of parameters is correct. System implementations typically pass the first two parameters
and a third "garbage" parameter (whatever happens to be on the stack) to the kernel. The kernel
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Figure 5.3. Data Structures after Open

fd 1 open("/etcipasswd", O_RDONLY);
fd2 open ("local", 0 RDWR);
fd3 open(Vetc/passwd", O_WRONLY);

Figure 5.3 shows the relationship between the mode table, file table, and user file
descriptor data structures. Each open returns a file descriptor to the process, and
the corresponding entry in the user file descriptor table points to a unique entry in

does not check the third parameter unless the second parameter indicates that it must, aliowing
programmers to encode only two parameters.
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the kernel file table even though one file ("/etc/passwd") is opened twice. The file
table entries of all instances of an open file point to one entry in the in-core Mode
table. The process can read or write the file "/etc/passwd" but only through file
descriptors 3 and 5 in the figure. The kernel notes the capability to read or write
the file in the file table entry allocated during the open call. Suppose a second
process executes the following code.

fdl open (letc/passwd", O_RDONLY);
fd2 open ("private", O_RDONLY);

Figure 5.4 shows the relationship between the appropriate data structures while
both processes (and no others) have the files open. Again, each open call results in
allocation of a unique entry in the user file descriptor table and in the kernel file
table, but the kernel contains at most one entry per file in the in-core mode table.

The user file descriptor table entry could conceivably contain the file offset for
the position of the next 1/0 operation and point directly to the in-core mode entry
for the file, eliminating the need for a separate kernel file table. The examples
above show a one-to-one relationship between user file descriptor entries and kernel
file table entries. Thompson notes, however, that he implemented the file table as a
separate structure to allow sharing of the offset pointer between several user file
descriptors (see page 1943 of [Thompson 78]). The dup and fork system calls,
explained in Sections 5.13 and 7.1, manipulate the data structures to allow such
sharing.

The first three user file descriptors (0, 1, and 2) are called the standard input,
standard output, and standard error file descriptors. Processes on UNIX systems
conventionally use the standard input descriptor to read input data, the standard
output descriptor to write output data, and the standard error descriptor to write
error data (messages). Nothing in the operating system assumes that these file
descriptors are special. A group of users could adopt the convention that file
descriptors 4, 6, and 11 are special file descriptors, but counting from 0 (in C) is
much more natural. Adoption of the convention by all user programs makes it easy
for them to communicate via pipes, as will be seen in Chapter 7. Normally, the
control terminal (see Chapter 10) serves as standard input, standard output and
standard error.

5.2 READ

The syntax of the read system eau is

number read(fd, buffer, count)

where fd is the file descriptor returned by open, buffer is the address of a data
structure in the user process that will contain the read data on successful
completion of the call, count is the number of bytes the user wants to read, and
number is the number of bytes actually read. Figure 5.5 depicts the algorithm read
for reading a regular file. The kernel gets the file table entry that corresponds to
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algorithm read
input: user file descriptor

address of buffer in user process
number of bytes to read

output: count of bytes copied into user space

get file table entry from user file descriptor;
check file accessibility;
set parameters in u area for user address, byte count, I/O to user;
get mode from file table;
lock mode;
set byte offset in u area from file table offset;
while (count not satisfied)

convert file offset to disk block (algorithm bmap);
calculate offset into block, number of bytes to read;
if (number of bytes to read is 0)

/* trying to read end of file */
break; /* out of loop */

read block (algorithm breada if with read ahead, algorithm
bread otherwise);

copy data from system buffer to user address;
update u area fields for file byte offset, read count,

address to write into user space;
release buffer; /* locked in bread 'V

unlock mode;
update file table offset for next read;
return (total number of bytes read);

IL
Figure 5.5. Algorithm for Reading a File

the user file descriptor, following the pointer in Figure 5.3. It now sets several I/O
parameters in the u area (Figure 5.6), eliminating the need to pass them as
function parameters. Specifically, it sets the I/O mode to indicate that a read is
being done, a flag to indicate that the I/O will go to user address space, a count
field to indicate the number of bytes to read, the target address of the user data
buffer, and finally, an offset field (from the file table) to indicate the byte offset
into the file where the I/O should begin. After the kernel sets the I/O parameters
in the u area, it follows the pointer from the file table entry to the Mode, locking
the mode before it reads the file.

The algorithm now goes into a loop until the read is satisfied. The kernel
converts the file byte offset into a block number, using algorithm bmap, and it
notes the byte offset in the block where the I/O should begin and how many bytes
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mode indicates read or write
count count of bytes to read or write
offset byte offset in file
address target address to copy data, in user or kernel memory
flag indicates if address is in user or kernel memory

Figure 5.6. I/O Parameters Saved in U Area

in the block it should read. After reading the block into a buffer, possibly using
block read ahead (algorithms bread and breada) as will be described, it copies the
data from the block to the target address in the user process. It updates the I/0
parameters in the u area according to the number of bytes it read, incrementing the
file byte offset and the address in the user process where the next data should be
delivered, and decrementing the count of bytes it needs to read to satisfy the user
read request. 1f the user request is not satisfied, the kernel repeats the entire cycle,
converting the file byte offset to a block number, reading the block from disk to a
system buffer, copying data from the buffer to the user process, releasing the buffer,
and updating I/O parameters in the u area. The cycle completes either when the
kernel completely satisfies the user request, when the file contains no more data, or
if the kernel encounters an error in reading the data from disk or in copying the
data to user space. The kernel updates the offset in the file table according to the
number of bytes it actually read; consequently, successive reads of a file deliver the
file data in sequence. The keek system call (Section 5.6) adjusts the value of the
file table offset and changes the order in which a process reads or writes a file.

#include <fcritl.h>
main()

int fd;
char bigbuf[1024];

fd open(letc/passwd", O_RDONLY);
read(fd, Iiibuf, 20);
read(fd, bigbuf, 1024);
read (fd, lilbuf, 20);

Figure 5.7. Sample Program for Reading a File

Consider the program in Figure 5.7. The open returns a file descriptor that the
user assigns to the variable fd and uses in the subsequent read calls. In the read
system call, the kernel verifies that the file descriptor parameter is legal, and that
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the process had previously opened the file for reading. It stores the values lilbuf,

20, and 0 in the u area, corresponding to the address of the user buffer, the byte
count, and the starting byte offset in the file. It calculates that byte offset 0 is in
the 0th block of the file and retrieves the entry for the 0th block in the mode.
Assuming such a block exists, the kernel reads the entire block of 1024 bytes into a
buffer but copies only 20 bytes to the user address Iiibuf. It increments the u area
byte offset to 20 and decrements the count of data to read to 0. Since the read has
been satisfied, the kernel resets the file table offset to 20, so that subsequent reads
on the file descriptor will begin at byte 20 in the file, and the system call returns
the number of bytes actually read, 20.

For the second read call, the kernel again verifies that the descriptor is legal
and that the process had opened the file for reading, because it has no way of

knowing that the user read request is for the same file that was determined to be

legal during the last read, It stores in the u area the user address bigbuf, the
number of bytes the process wants to read, 1024, and the starting offset in the file,
20, taken from the file table, It converts the file byte offset to the correct disk
block, as above, and reads the block. If the time between read calls is small,
chances are good that the block will be in the buffer cache. But the kernel cannot
satisfy the read request entirely from the buffer, because only 1004 out of the 1024
bytes for this request are in the buffer. So it copies the last 1004 bytes from the
buffer into the user data structure bigbuf and updates the parameters in the u area
to indicate that the next iteration of the read loop starts at byte 1024 in the file,
that the data should be copied to byte position 1004 in bigbuf, and that the number
of bytes to to satisfy the read request is 20.

The kernel now cycles to the beginning of the loop in the read algorithm. It
converts byte offset 1024 to logical block offset 1, looks up the second direct block
number in the mode, and finds the correct disk block to read. It reads the block
from the buffer cache, reading the block from disk if it is not in the cache. Finally,
it copies 20 bytes from the buffer to the correct address in the user process. Before
leaving the system call, the kernel sets the offset field in the file table entry to 1044,
the byte offset that should be accessed next. For the last read call in the example,
the kernel proceeds as in the first read call, except that it starts reading at byte
1044 in the file, finding that value in the offset field in the file table entry for the
descriptor.

The example shows how advantageous it is for I/O requests to start on file
system block boundaries and to be multiples of the block size. Doing so allows the
kernel to avoid an extra iteration in the read algorithm loop, with the consequent
expense of accessing the Mode to find the correct block number for the data and
competing with other processes for access to the buffer pool. The standard I/O
library was written to hide knowledge of the kernel buffer size from users; its use
avoids the performance penalties inherent in processes that nibble at the file system
inefficiently (see exercise 5.4).

As the kernel goes through the read loop, it determines whether a file is subject
to read-ahead: if a process reads two blocks sequentially, the kernel assumes that
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all subsequent reads will be sequential until proven otherwise. During each
iteration through the loop, the kernel saves the next logical block number in the in-
core mode and, during the next iteration, compares the current logical block
number to the value previously saved. If they are equal, the kernel calculates the
physical block number for read-ahead and saves its value in the u area for use in
the breada algorithm. Of course, if a process does not read to the end of a block,
the kernel does not invoke read-ahead for the next block.

Recall from Figure 4.9 that it is possible for some block numbers in an mode or
in indirect blocks to have the value 0, even though later blocks have nonzero value.
1f a process attempts to read data from such a block, the kernel satisfies the request
by allocating an arbitrary buffer in the read loop, clearing its contents to 0, and
copying it to the user address. This case is different from the case where a process
encounters the end of a file, meaning that no data was ever written to any location
beyond the current point. When encountering end of file, the kernel returns no
data to the process (see exercise 5.1).

When a process invokes the read system call, the kernel locks the mode for the
duration of the call. Afterwards, it could go to sleep reading a buffer associated
with data or with indirect blocks of the mode. If another process were allowed to
change the file while the first process was sleeping, read could return inconsistent
data. For example, a process may read several blocks of a file; if it slept while
reading the first block and a second process were to write the other blocks, the
returned data would contain a mixture of old and new data. Hence, the mode is
left locked for the duration of the read eau, affording the process a consistent view
of the file as it existed at the start of the call.

The kernel can preempt a reading process between system calls in user mode
and schedule other processes to run. Since the mode is unlocked at the end of a
system call, nothing prevents other processes from accessing the file and changing
its contents. k would be unfair for the system to keep an mode locked from the
time a process opened the file until it closed the file, because one process could
keep a file open and thus prevent other processes from ever accessing it. 1f the file
was "ietcfpasswd", used by the login process to check a user's password, then one
malicious (or, perhaps, just errant) user could prevent all other users from logging
in. To avoid such problems, the kernel unlocks the mode at the end of each system
call that uses it. If another process changes the file between the two read system
calls by the first process, the first process may read unexpected data, but the kernel
data structures are consistent.

For example, suppose the kernel executes the two processes in Figure 5.8
concurrently. Assuming both processes complete their open calls before either one
starts its read or write calls, the kernel could execute the read and write calls in
any of six sequences: readl, read2, writel, write2, or readl, write], read2, write2,
or readl, writel, write2, read2, and so on. The data that process A reads depends
on the order that the system executes the system calls of the two processes; the
system does not guarantee that the data in the file remains the same after opening
the file. Use of the file and record locking feature (Section 5.4) allows a process to



#inctude <fenti.h>
1* process A */
main()

int fd;
char but1512);
Id open(Vetc/casswd", ORDONLY);
read(fd, buf, sizeof(buf)); /* readl */
read(fd, buf, sizeof(buf)); I* read2 */

/* process B */
main()
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Figure 5.8. A Reader and a Writer Process

guarantee file consistency while it has a file open.
Finally, the program in Figure 5.9 shows how a process can open a file more

than once and read it via different file descriptors. The kernel manipulates the file
table offsets associated with the two file descriptors independently, and hence, the
arrays bufl and buf2 should be identical when the process completes, assuming no
other process writes "ietcipasswd" in the meantime.

5.3 WRITE

The syntax for the write system call is

number write(fd, buffer, count);

where the meaning of the variables fd, buffer, count, and number are the same as
they are for the read system call. The algorithm for writing a regular file is similar
to that for reading a regular file. However, if the file does not contain a block that
corresponds to the byte offset to be written, the kernel allocates a new block using
algorithm alloc and assigns the block number to the correct position in the mode's
table of contents. If the byte offset is that of an indirect block, the kernel may
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#include <fenti.h>
main()

int fdl, fd2;
char bufii512], buf2[512];

fdl open("ietc/passwd", O_RDONLY);
fd2 open( tietc/passwd", 03DONLY);
read ad 1 , bufl, sizeof (buf I ));
read(fd2, buf2, sizeof(buf2));

Figure 5.9. Reading a File via Two File Descriptors

have to allocate several blocks for use as indirect blocks and data blocks. The
m ode is locked for the duration of the write, because the kernel may change the
m ode when allocating new blocks; allowing other processes access to the file could
corrupt the mode if several processes allocate blocks simultaneously for the same
byte offsets. When the write is complete, the kernel updates the file size entry in
the mode if the file has grown larger.

For example, suppose a process writes byte number 10,240 to a file, the
highest-numbered byte yet written to the file. When accessing the byte in the file
using algorithm bmap, the kernel will find not only that the file does not contain a
block for that byte but also that it does not contain the necessary indirect block. It
assigns a disk block for the indirect block and writes the block number in the in-
core mode. Then it assigns a disk block for the data block and writes its block
number into the first position in the newly assigned indirect block.

The kernel goes through an internal loop, as in the read algorithm, writing one
block to disk during each iteration. During each iteration, it determines whether it
will write the entire block or only part of it. If it writes only part of a block, it
must first read the block from disk so as not to overwrite the parts that will remain
the same, but if it writes the whole block, it need not read the block, since it will
overwrite its previous contents anyway. The write proceeds block by block, but the
kernel uses a delayed write (Section 3.4) to write the data to disk, caching it in
case another process should read or write it soon and avoiding extra disk operations.
Delayed write is probably most effective for pipes, because another process is
reading the pipe and removing its data (Section 5.12). But even for regular files,
delayed write is effective if the file is created temporarily and will be read soon.
For example, many programs, such as editors and mail, create temporary files in
the directory "Amp" and quickly remove them. Use of delayed write can reduce
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the number of disk writes for temporary files.

5.4 FILE AND RECORD LOCKING

The original UNIX system developed by Thompson and Ritchie did not have an
internal mechanism by which a process could insure exclusive access to a file. A
locking mechanism was considered unnecessary because, as Ritchie notes, "we are
not faced with large, single-file databases maintained by independent processes"
(see [Ritchie 811). To make the UNIX system more attractive to commercial users
with database applications, System V now contains file and record locking
mechanisms. File locking is the capability to prevent other processes from reading
or writing any part of an entire file, and record locking is the capability to prevent
other processes from reading or writing particular records (parts of a file between
particular byte °nets). Exercise 5.9 explores the implementation of file and record
locking.

5.5 ADJUSTING THE POSITION OF FILE I/O LSEEK

The ordinary use of read and write system calls provides sequential access to a file,
but processes can use the keek system call to position the I/O and allow random
access to a file. The syntax for the system call is

position Iseek(fd, offset, reference);

where fd is the file descriptor identifying the file, offset is a byte offset, and
reference indicates whether offset should be considered from the beginning of the
file, from the current position of the read/write offset, or from the end of the file.
The return value, position, is the byte offset where the next read or write will start.
In the program in Figure 5.10, for example, a process opens a file, reads a byte,
then invokes lseek to advance the file table offset value by 1023 (with reference 1),
and loops. Thus, the program reads every 1024th byte of the file. If the value of
reference is 0, the kernel seeks from the beginning of the file, and if its value is 2,
the kernel seeks beyond the end of the file. The lseek system call has nothing to do
with the seek operation that positions a disk arm over a particular disk sector. To
implement Iseek, the kernel simply adjusts the offset value in the file table;
subsequent read or write system calls use the file table offset as their starting byte
offset.

5.6 CLOSE

A process doses an open file when it no longer wants to access it. The syntax for
the close system call is
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#include <fentl.h>
main(argc, argv)

int argc;
char *argv[];

int fd, skval;
char c;

if (argc
exit();

fd open(argv(11, O_RDONLY);
if (fd —I)

exit();
while ((slcval read(fd, &c, 1)) 1)

printf('char %c\n", c);
skval Iseek(fd, 1023L, 1);
printf( lnew seek val Tod\n", skval);

Figure 5.10. Program with Lseek System Call

close (fd) ;

where fd is the file descriptor for the open file. The kernel does the close operation
by manipulating the file descriptor and the corresponding file table and mode table
entries. If the reference count of the file table entry is greater than 1 because of
dup or fork calls, then other user file descriptors reference the file table entry, as
will be seen; the kernel decrements the count and the close completes. If the file
table reference count is 1, the kernel frees the entry and releases the in-core mode
originally allocated in the open system call (algorithm iput). If other processes still
reference the mode, the kernel decrements the inode reference count but leaves it
allocated; otherwise, the mode is free for reallocation because its reference count is
0. When the close system call completes, the user file descriptor table entry is
empty. Attempts by the process to use that file descriptor result in an error until
the file descriptor is reassigned as a result of another system call. When a process
exits, the kernel examines its active user file descriptors and internally closes each
one. Hence, no process can keep a file open after it terminates.

For example, Figure 5.11 shows the relevant table entries of Figure 5.4, after
the second process closes its files. The entries for file descriptors 3 and 4 in the
user file descriptor table are empty. The count fields of the file table entries are
now 0, and the entries are empty. The mode reference count for the files
"fetcipasswd" and "private" are also decremented. The mode entry for "private"
is on the free list because its reference count is 0, but its entry is not empty. If



user  file descriptors
0

file table m ode table

2

count

(ietc/passwd
count

0
1
2
3
4
5       

count
0

count

count

count
0 (private)

count (l0cal)
1

•

count

5.6 CLOSE 105

Figure 5.11. Tables after Closing a File

another process accesses the file "private" while the Mode is stil on the free list,
the kernel will reclaim the mode, as explained in Section 4.1.2.

5.7 FILE CREATION

The open system call gives a process access to an existing file, but the crew system
call creates a new file in the system. The syntax for the erwt system call is

fd ,•• creat(pathname, modes);
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where the variables pathname, modes, and fd mean the same as they do in the
open system call. If no such file previously existed, the kernel creates a new file
with the specified name and permission modes; if the file already existed, the kernel
truncates the file (releases all existing data blocks and sets the file size to 0) subject
to suitable file access permissions. 3

 Figure 5.12 shows the algorithm for file
creation.

algorithm creat
input: file name

permission settings
output: file descriptor

get Mode for file name (algorithm namei);
if (file already exists)

if (not permitted access)

release Mode (algorithm iput);
return (error);

else /* file does not exist yet */

assign free mode from file system (algorithm ialloc);
create new directory entry in parent directory: include

new file name and newly assigned mode number;

allocate file table entry for mode, initialize count;
if (file did exist at time of create)

free all file blocks (algorithm free);
unlock (Mode);
return(user file descriptor);

Figure 5.12. Algorithm for Creating a File

The kernel parses the path name using algorithm name!, following the
algorithm literally while parsing directory names. However, when it arrives at the
last component of the path name, namely, the file name that it will create, namei

3. The open system call specifies two flags, O_CREAT (create) and QTRUNC (truncate): If a processspecifies the 0 CREAT flag on an open and the file does not exist, the kernel will create the file. If
the file already exists, it will not be truncated unless the O_TRUNC flag is also set.
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notes the byte offset of the first empty directory slot in the directory and saves the
offset in the u area. If the kernel does not find the path name component in the
directory, it will eventually write the name into the empty slot just found. 1f the
directory has no empty slots, the kernel remembers the offset of the end of the
directory and creates a new slot there. It also remembers the mode of the directory
being searched in its u area and keeps the inode locked; the directory will become
the parent directory of the new file. The kernel does not write the new file name
into the directory yet, so that it has less to undo in event of later errors. It checks
that the directory allows the process write permission: Because a process will write
the directory as a result of the creat call, write permission for a directory means
that processes are allowed to create files in the directory.

Assuming no file by the given name previously existed, the kernel assigns an
m ode for the new file, using algorithm ialloc (Section 4.6). It then writes the new
file name component and the mode number of the newly allocated Mode in the
parent directory, at the byte offset saved in the u area. Afterwards, it releases the
m ode of the parent directory, having held it from the time it searched the directory
for the file name. The parent directory now contains the name of the new file and
its m ode number. The kernel writes the newly allocated mode to disk (algorithm
bwrite) before it writes the directory with the new name to disk. 1f the system
crashes between the write operations for the mode and the directory, there will be
an allocated Mode that is not referenced by any path name in the system but the
system will function normally. If, on the other hand, the directory were written
before the newly allocated Mode and the system crashed in the middle, the file
system would contain a path name that referred to a bad mode. (See Section
5.16.1 for more detail.)

1f the given file already existed before the creat, the kernel finds its inode while
searching for the file name. The old file must allow write permission for a process
to create a "new" file by the same name, because the kernel changes the file
contents during the crew cal': It truncates the file, freeing all its data blocks using
algorithm free, so that the file looks like a newly created file. However, the owner
and permission modes of the file are the same as they were for the original file:
The kernel does not reassign ownership to the owner of the process, and it ignores
the permission modes specified by the process. Finally, the kernel does not check
that the parent directory of the existing file allows write permission, because it will
not change the directory contents.

The creat system call proceeds accor -ding to the same algorithm as the open
system eau. The kernel allocates an entry in the file table for the created file so
that the process can write the file, allocates an entry in the user file descriptor
table, and eventually returns the index to the latter entry as the user file descriptor.

5.8 CREATION OF SPECIAL FILES

The system call mknod creates special files in the system, including named pipes,
device files, and directories. It is similar to creat in that the kernel allocates an
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Mode for the file. The syntax of the mknod system call is

mknod(pathname, type and permissions, dev)

where pathname is the name of the node to be created, type and permissions give
the node type (directory, for example) and access permissions for the new file to be
created, and dev specifies the major and minor device numbers for block and
character special files (Chapter ID). Figure 5.13 depicts the algorithm mknod for
making a new node.

algorithm make new node
inputs: node (file name)

file type
permissions
major, minor device number (for block, character special files)

output: none

if (new node not named pipe and user not super user)
return (error);

get mode of parent of new node (algorithm namei);
if (new node already exists)

release parent Mode (algorithm iput);
return (error);

assign free Mode from file system for new node (algorithm ialloc);
create new directory entry in parent directory: include new node

name and newly assigned mode number;
release parent directory mode (algorithm iput);
if (new node is block or character special file)

write major, minor numbers into mode structure;
release new node Mode (algorithm iput);

Figure 5.13. Algorithm for Making New Node

The kernel searches the file system for the file name it is about to create. If the
file does not yet exist, the kernel assigns a new mode on the disk and writes the new
file name and mode number into the parent directory. It sets the file type field in
the mode to indicate that the file type is a pipe, directory or special file. Finally, if
the file is a character special or block special device file, it writes the major and
minor device numbers into the mode. If the mknod call is creating a directory
node, the node will exist after the system call completes but its contents will be in
the wrong format (there are no directory entries for "." and ".."). Exercise 5.33
considers the other steps needed to put a directory into the correct format.
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algorithrn change directory
input: new directory name
output: none

get Mode for new directory name (algorithm namei);
if anode not that of directory or process not permitted access to file)

release Mode (algorithm iput);
return (error);

unlock Mode;
release "old" current directory mode (algorithm iput);
place new Mode into current directory slot in u area;

Figure 5.14. Algorithm for Changing Current Directory

5.9 CHANGE DIRECTORY AND CHANGE ROOT

When the system is first booted, process 0 makes the file system root its current
directory during initialization. It executes the algorithm iget on the root Mode,
saves ft in the u area as its current directory, and releases the Mode lock. When a
new process is created via the fork system call, the new prét, cess inherits the current
directory of the old process in its u area, and the kernél increments the Mode
reference count accordingly.

The algorithm chdir (Figure 5.14) changes the current directory of a process.
The syntax for the chdir system call is

chdir (pathname);

where pathname is the directory that becomes the new current directory of the
process. The kernel parses the name of the target directory using algorithm namei
and checks that the target file is a directory and that the process owner has access
permission to the directory. It releases the lock to the new Mode but keeps the
m ode allocated and its reference count incremented, releases the Mode of the old
current directory (algorithm Out) stored in the u area, and stores the new Mode in
the u area. After a process changes its current directory, algorithm namei uses the
m ode for the start directory to search for all path names that do not begin from
root. After execution of the chdir system call, the inode reference count of the new
directory is at least one, and the Mode reference count of the previous current
directory may be 0. In this respect, chdir is similar to the open system eau,
because both system calls access a file and leave its Mode allocated. The Mode
allocated during the chdir system call is released only when the process executes
another chdir can or when it exits.
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A process usually uses the global file system root for all path names starting
with "/". The kernel contains a global variable that points to the mode of the
global root, allocated by (get when the system is booted. Processes can change their
notion of the file system root via the chroot system call This is useful if a user
wants to simulate the usual file system hierarchy and run processes there. Its
syntax is

chroot (pathname) ;

where pathname is the directory that the kernel subsequently treats as the process's
root directory. When executing the chroot system call, the kernel follows the same
algorithm as for changing the current directory. It stores the new root mode in the
process u area, unlocking the Mode on completion of the system call. However,
since the default root for the kernel is stored in a global variable, it does not release
the mode of the old root automatically, but only if it or an ancestor process had
executed the chroot system call. The new mode is now the logical root of the file
system for the process (and all its children), meaning that all path name searches
in algorithm namei that start from root ("/") start from this Mode, and that all
attempts to use ".." over the root will leave the working directory of the process in
the new root. A process bestows new child processes with its changed root, just as
it bestows them with its current directory.

5.10 CHANGE OWNER AND CHANGE MODE

Changing the owner or mode (access permissions) of a file are operations on the
Mode, not on the file per se. The syntax of the calls is

chown(pathname, owner, group)
ch mod (path name, mode)

To change the owner of a file, the kernel converts the file name to an mode using
algorithm namei. The process owner must be superuser or match that of the file
owner (a process cannot give away something that does not belong to it). The
kernel then assigns the new owner and group to the file, clears the set user and set
group flags (see Section 7.5), and releases the mode via algorithm (put. After the
change of ownership, the old owner loses "owner" access rights to the file. To
change the mode of a file, the kernel follows a similar procedure, changing the
mode flags in the mode instead of the owner numbers.

5.11 STAT AND FSTAT

The system calls stat and fstat allow processes to query the status of files, returning
information such as the file type, file owner, access permissions, file size, number of
links, m ode number, and file access times. The syntax for the system calls is
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stat(pathname, statbuffer);
fstat (fd, statbuffer);

where pathname is a file name, fd is a file descriptor returned by a previous open
call, and statbuffer is the address of a data structure in the user process that will
contain the status information of the file on completion of the call. The system
calls simply write the fields of the mode into statbuffer. The program in Figure
5.33 will illustrate the use of stat and fstat.

Calls pipe Cannot share pipe

Proc A

Proc D Proc E

-

Share pipe

Figure 5.15. Process Tree and Sharing Pipes

5.12 PIPES

Pipes allow transfer of data between processes in a first-in-first-out manner (FIFO),
and they also allow synchronization of process execution. Their implementation
allows processes to communicate even though they do not know what processes are
on the other end of the pipe. The traditional implementation of pipes uses the file
system for data storage. There are two kinds of pipes: named pipes and, for lack
of a better term, unnamed pipes, which are identical except for the way that a
process initially accesses them. Processes use the open system call for named pipes,
but the pipe system call to create an unnamed pipe. Afterwards, processes use the
regular system calls for files, such as read, write, and close when manipulating
pipes. Only related processes, descendants of a process that issued the pipe call,
can share access to unnamed pipes. In Figure 5.15 for example, if process B
creates a pipe and then spawns processes D and E, the three processes share access
to the pipe, but processes A and C do not. However, all processes can access a
named pipe regardless of their relationship, subject to the usual file permissions.
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Because unnamed pipes are more common, they will be presented first.

5.12.1 The Pipe System Cali

The syntax for creation of a pipe is

pipe (fdptr);

where fdptr is the pointer to an integer array that will contain the two file
descriptors for reading and writing the pipe. Because the kernel implements pipes
in the file system and because a pipe does not exist before its use, the kernel must
assign an mode for it on creation. It also allocates a pair of user file descriptors
and corresponding file table entries for the pipe: one file descriptor for reading
from the pipe and the other for writing to the pipe. It uses the file table so that the
interface for the read, write and other system calls is consistent with the interface
for regular files. As a result, processes do not have to know whether they are
reading or writing a regular file or a pipe.

algorithm pipe
input: none
output; read file descriptor

write file descriptor

assign new mode from pipe device (algorithm ialloc);
allocate file table entry for reading, another for writing;
initialize file table entries to point to new mode;
allocate user file descriptor for reading, another for writing,

initialize to point to respective file talie entries;
set m ode reference count to 2;
initialize count of mode readers, writers to 1;

Figure 5.16. Algorithm for Creation of (Unnamed) Pipes

Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel
assigns an mode for a pipe from a file system designated the pipe device using
algorithm ia/loc. A pipe device is just a file system from which the kernel can
assign inodes and data blocks for pipes. System administrators specify a pipe
device during system configuration, and it may be identical to another file system.
While a pipe is active, the kernel cannot reassign the pipe mode and data blocks to
another file.

The kernel then allocates two file table entries for the read and write
descriptors, respectively, and updates the bookkeeping information in the in-core
m ode. Each file table entry records how many instances of the pipe are open for
reading or writing, initially 1 for each file table entry, and the mode reference
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count indicates how many times the pipe was "opened," initially two — one for
each file table entry. Finally, the mode records byte offsets in the pipe where the
next read or write of the pipe will start. Maintaining the byte offsets in the mode
allows convenient FIFO access to the pipe data and differs from regular files where
the offset is maintained in the file table. Processes cannot adjust them via the lseek
system call and so random access I/O to a pipe is not possible.

5.12.2 Opening a Named Pipe

A named pipe is a file whose semantics are the same as those of an unnamed pipe,
except that it has a directory entry and is accessed by a path name. Processes open
named pipes in the same way that they open regular files and, hence, processes that
are not closely related can communicate. Named pipes permanently exist in the file
system hierarchy (subject to their removal by the unlink system call), but unnamed
pipes are transient: When all processes finish using the pipe, the kernel reclaims its
i node.

The algorithm for opening a named pipe is identical to the algorithm for
opening a regular file. However, before completing the system call, the kernel
increments the read or write counts in the mode, indicating the number of processes
that have the named pipe open for reading or writing. A process that opens the
named pipe for reading will sleep until another process opens the named pipe for
writing, and vice versa. It makes no sense for a pipe to be open for reading if there
is no hope for it to receive data; the same is true for writing. Depending on
whether the process opens the named pipe for reading or writing, the kernel
awakens other processes that were asleep, waiting for a writer or reader process
(respectively) on the named pipe.

If a process opens a named pipe for reading and a writing process exists, the
open call completes. Or if a process opens a named pipe with the no delay option,
the open returns immediately, even if there are no writing processes. But if neither
condition is true, the process sleeps until a writer process opens the pipe. Similar
rules hold for a process that opens a pipe for writing.

5.12.3 Reading and Writing Pipes

A pipe should be viewed as if processes write into one end of the pipe and read
from the other end. As mentioned above, processes access data from a pipe in
FIFO manner, meaning that the order that data is written into a pipe is the order
that it is read from the pipe. The number of processes reading from a pipe do not
necessarily equal the number of processes writing the pipe; if the number of readers
or writers is greater than 1, they must coordinate use of the pipe with other
mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for
a regular file: It stores data on the pipe device and assigns blocks to the pipe as
needed during write calls. The difference between storage allocation for a pipe and
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Figure 5.17. Logica! View of Reading and Writing a Pipe

a reguiar file is that a pipe uses only the direct blocks of the mode for greater
efficiency, although this places a limit on how much data a pipe can hold at a time.
The kernel manipulates the direct blocks of the mode as a circular queue,
maintaining read and write pointers internally to preserve the FIFO order (Figure
5. 1 7) .

Consider four cases for reading and writing pipes: writing a pipe that has room
for the data being written, reading from a pipe that contains enough data to satisfy
the read, reading from a pipe that does not contain enough data to satisfy the
read, and finally, writing a pipe that does not have room for the data being written.

Consider first the case that a process is writing a pipe and assume that the pipe
has room for the data being written: The sum of the number of bytes being written
and the number of bytes already in the pipe is fess than or equal to the pipe's
capacity. The kernel follows the algorithm for writing a regular file, except that it
increments the pipe size automatically after every write, since by definition the
amount of data in the pipe grows with every write. This differs from the growth of
a regular file where the process increments the file size only when it writes data
beyond the current end of file. 1f the next byte offset in the pipe were to require
use of an indirect block, the kernel adjusts the file offset value in the u area to
point to the beginning of the pipe (byte offset 0). The kernel never overwrites data
in the pipe; it can reset the byte offset to 0 because it has already determined that
the data will not overflow the pipe's capacity. When the writer process bas written
all its data into the pipe, the kernel updates the pipe's (mode) write pointer so that
the next process to write the pipe will proceed from where the last write stopped.
The kernel then awakens all other processes that fell asleep waiting to read data
from the pipe.

When a process reads a pipe, it checks if the pipe is empty or not. 1f the pipe
contains data, the kernel reads the data from the pipe as if the pipe were a regular
file, following the regular algorithm for read. However, its initial offset is the pipe
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read pointer stored in the Mode, indicating the extent of the previous read. After
reading each block, the kernel decrements the size of the pipe according to the
number of bytes it read, and it adjusts the u area offset value to wrap around to the
beginning of the pipe, if necessary. When the read system call completes, the
kernel awakens all sleeping writer processes and saves the current read offset in the
m ode (not in the file table entry).

If a process attempts to read more data than is in the pipe, the read will
complete successfully after returning all data currently in the pipe, even though it
does not satisfy the user count. If the pipe is empty, the process will typically sleep
until another process writes data into the pipe, at which time all sleeping processes
that were waiting for data wake up and race to read the pipe. If, however, a
process opens a named pipe with the no delay option, it will return immediately
from a read if the pipe contains no data. The semantics of reading and writing
pipes are similar to the semantics of reading and writing terminal devices (Chapter
10), allowing programs to ignore the type of file they are dealing with.

If a process writes a pipe and the pipe cannot hold all the data, the kernel
marks the mode and goes to sleep waiting for data to drain from the pipe. When
another process subsequently reads from the pipe, the kernel will notice that
processes are asleep waiting for data to drain from the pipe, and it will awaken
them, as explained above. The exception to this statement is when a process writes
an amount of data greater than the pipe capacity (that is, the amount of data that
can be stored in the Mode direct blocks); here, the kernel writes as much data as
possible to the pipe and puts the process to sleep until more room becomes
available. Thus, it is possible that written data will not be contiguous in the pipe if
other processes write their data to the pipe before this process resumes its write.

Analyzing the implementation of pipes, the process interface is consistent with
that of regular files, but the implementation differs because the kernel stores the
read and write offsets in the mode instead of in the file table. The kernel must
store the offsets in the mode for named pipes so that processes can share their
values: They cannot share values stored in file table entries because a process gets
a new file table entry for each open call. However, the sharing of read and write
offsets in the mode predates the implementation of named pipes. Processes with
access to unnamed pipes share access to the pipe through common file table entries,
so they could conceivably store the read and write offsets in the file table entry, as
is done for regular files. This was not done, because the low-level routines in the
kernel no longer have access to the file table entry: The code is simpler because the
processes share offsets stored in the Mode.

5.12.4 Closing Pipes

When closing a pipe, a process follows the same procedure it would follow for
closing a regular file, except that the kernel does special processing before releasing
the pipe's Mode. The kernel decrements the number of pipe readers or writers,
according to the type of the file descriptor. If the count of writer processes drops to
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0 and there are processes asleep waiting to read data from the pipe, the kernel
awakens them, and they return from their read calls without reading any data. If
the count of reader processes drops to 0 and there are processes asleep waiting to
write data to the pipe, the kernel awakens them and sends them a signa' (Chapter
7) to ' indicate an error condition. In both cases, it makes no sense to allow the
processes to continue sleeping when there is no hope that the state of the pipe will
ever change. For example, if a process is waiting to read an unnamed pipe and
there are no more writer processes, there win never be a writer process. Although
it is possible to get new reader or writer processes for named pipes, the kernel
treats them consistently with unnamed pipes. 1f no reader or writer processes
access the pipe, the kernel frees all its data blocks and adjusts the mode to indicate
that the pipe is empty. When it releases the mode of an ordinary pipe, it frees the
disk copy for reassignment.

char string() "hello";
main°

char buf110241;
char scpl, *cp2;
int fds(21;

cpi string;
cp2 buf;
while (*epl)

scp2++ *cp1++;
pipe(fds);
for (;;)

write (fds(1), buf, 6);
read(fds(0), buf, 6);

Figure 5.18. Reading and Writing a Pipe

5.12.5 Examples

The program in Figure 5.18 illustrates an artificial use of pipes. The process
creates a pipe and goes int° an infinite loop, writing the string "hello" to the pipe
and reading it from the pipe. The kernel does not know nor does it care that the
process that writes the pipe is the same process that reads the pipe.

A process executing the program in Figure 5.19 creates a named pipe node
called "fifo". If invoked with a second (dummy) argument, it continually writes
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#include <fentl.h>
char stringii "hello";
main(argc, argv)

int argc;
char *are[];

int fd;
char buf[2561;

/* create named pipe with read/write permission for all users 'V
mknod("fifo", 010777, 0);
if (argc 2)

fd open("fifo", O_WRONLY);
else

fd open("fifo", O_RDONLY);
for (;;)

if (argc 2)
write(fd, string, 6);

else
read(fd, buf, 6);

Figure 5.19. Reading and Writing a Named Pipe

the string "hello" into the pipe; if invoked without a second argument, it reads the
named pipe. The two processes are invocations of the identical program and have
secretly agreed to communicate through the named pipe "fifo", but they need not
be related. Other users could execute the program and participate in (or interfere
with) the conversation.

5.13 DUP

The dup system call copies a file descriptor into the first free slot of the user file
descriptor table, returning the new file descriptor to the user. It works for all file
types. The syntax of the system call is

newfd dup(fd);

where fd is the file descriptor being duped and newfd is the new file descriptor that
references the file. Because dup duplicates the file descriptor, it increments the
count of the corresponding file table entry, which now has one more file descriptor
entry that points to it. For example, examination of the data structures depicted in
Figure 5.20 indicates that the process did the following sequence of system calls: It
opened the file "ietc/passwd" (file descriptor 3), then opened the file "local" (file
descriptor 4), opened the file letcipasswd" again (file descriptor 5), and finally,
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user file
descriptor table
0

2

file table Mode table

Figure 5.20. Data Structures after Dup

duped file descriptor 3, returning file descriptor 6.
Dup is perhaps an inelegant system call, because it assumes that the user knows

that the system will return the lowest-numbered free entry in the user file
descriptor table. However, it serves an important purpose in building sophisticated
programs from simpler, building-block programs, as exemplified in the construction
of shell pipelines (Chapter 7).

Consider the program in Figure 5.21. The variable t contains the file descriptor
that the system returns as a result of opening the file "etcfpasswd," and the
variable j contains the file descriptor that the system returns as a result of duping
the file descriptor i. In the u area of the process, the two user file descriptor
entries represented by the user variables i and j point to one file table entry and
therefore use the same file offset. The first two reads in the process thus read thedata in sequence, and the two buffers, bult and bu.f2, do not contain the same data.
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#include <fcntl.h>
main()

int i, j;
char buflf5121, buf2[512];

open("/etcipasswd", O_RDONLY);
j dup(i);
read(i, buf1, sizeof(buf1));
read(j, buf2, sizeof(buf2));
close(i);
read(j, buf2, sizeof(buf2));

Figure 5.21. C Program Illustrating Dup

This differs from the case where a process opens the same file twice and reads the
same data twice (Section 5.2). A process can close either file descriptor if it wants,
but I/O continues normally on the other file descriptor, as illustrated in the
example. In particular, a process can close its standard output file descriptor (file
descriptor 1), dup another file descriptor so that it becomes file descriptor 1, then
treat the file as its standard output. Chapter 7 presents a more realistic example of
the use of pipe and dup when it describes the implementation of the shell.

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS

A physical disk unit consists of several logical sections, partitioned by the disk
driver, and each section has a device file name. Processes can access data in a
section by opening the appropriate device file name and then reading and writing
the "file," treating it as a sequence of disk blocks. Chapter 10 gives details on this
interface. A section of a disk may contain a logical file system, consisting of a boot
block, super block, Mode list, and data blocks, as described in Chapter 2. The
mount system call connects the file system in a specified section of a disk to the
existing file system hierarchy, and the umount system call disconnects a file system
from the hierarchy. The mount system call thus allows users to access data in a
disk section as a file system instead of a sequence of disk blocks.

The syntax for the mount system call is

mount(special pathname, directory pathname, options);

where special pathname is the name of the device special file of the disk section
containing the file system to be mounted, directory pathname is the directory in the
existing hierarchy where the file system will be mounted (called the mount point),
and options indicate whether the file system should be mounted "read-only"
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Figure 5.22. File System Tree Before and After Mount

(system calls such as write and creat that write the file system will fail). For
example, if a process issues the system call

mount ("idevidskl", "/usr", 0);

the kernel attaches the file system contained in the portion of the disk called
"idev/dskl" to directory "itisr" in the existing file system tree (see Figure 5.22).
The file "ftlev/dskl" is a block special file, meaning that it is the name of a block
device, typically a portion of a disk. The kernel assumes that the indicated portion
of the disk contains a file system with a super block, mode list, and root mode.
After completion of the mount system call, the root of the mounted file system is
accessed by the name "/usr". Processes can access files on the mounted file system
and ignore the fact that it is detachable. Only the link system cal' checks the file
system of a file, because System V does not allow file links to span multiple file
systems (see Section 5.15).

The kernel has a mount table with entries for every mounted file system. Each
mount table entry contains

• a device number that identifies the mounted file system (this is the logica! file
system number mentioned previously);

• a pointer to a buffer containing the file system super block;
• a pointer to the root Mode of the mounted file system ("1" of the "idev/dskl"

file system in Figure 5.22);
• a pointer to the mode of the directory that is the mount point ("usr" of the root

file system in Figure 5.22).
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Association of the mount point mode and the root mode of the mounted file system,
set up during the mount system call, allows the kernel to traverse the file system
hierarchy gracefully, without special user knowledge.

algorithm mount
inputs: file name of block special file

directory name of mount point
options (read only)

output: none

if (not super user)
return (error)

get mode for block special file (algorithm namei);
make legality checks;
get mode for "mounted on" directory name (algorithm namei);
if (not directory, or reference count > 1)

release modes (algorithm iput);
return(error);

find empty slot in mount table;
invoke block device driver open routine;
get free buffer from buffer cache;
read super block into free buffer;
initialize super block fields;
get root mode of mounted device (algorithm iget), save in mount table;
mark mode of "mounted on" directory as mount point;
release special file mode (algorithm iput);
unlock mode of mount point directory;

Figure 5.23. Algorithm for Mounting a File System

Figure 5.23 depicts the algorithm for mounting a file system. The kernel only
allows processes owned by a superuser to mount or umount file systems. Yielding
permission for mount and mount to the entire user community would allow
malicious (or not so malicious) users to wreak havoc on the file system. Super-
users should wreak havoc only by accident.

The kernel finds the mode of the special file that represents the file system to be
mounted, extracts the major and minor numbers that identify the appropriate disk
section, and finds the Mode of the directory on which the file system will be
mounted. The reference count of the directory mode must not be greater than 1 (it
must be at least I — why?), because of potentially dangerous side effects (see
exercise 5.27). The kernel then allocates a free slot in the mount table, marks the
slot in use, and assigns the device number field in the mount table. The above
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assignments are done immediately because the calling process could go to sleep in
the ensuing device open procedure or in reading the file system super block, and
another process could attempt to mount a file system. By having marked the
mount table entry in use, the kernel prevents two mounts from using the same
entry. By noting the device number of the attempted mount, the kernel can
prevent other processes from mounting the same file system again, because strange
things could happen if a double mount were allowed (see exercise 5.26).

The kernel calls the open procedure for the block device containing the file
system in the same way it invokes the procedure when opening the block device
directly (Chapter 10). The device open procedure typically checks that the device
is legal, sometimes initializing driver data structures and sending initialization
commands to the hardware. The kernel then allocates a free buffer from the buffer
pool (a variation of algorithm getbik) to hold the super block of the mounted file
system and reads the super block using a variation of algorithm read. The kernel
stores a pointer to the mode of the mounted-on directory of the original file tree to
allow file path names containing ".." to traverse the mount point, as will be seen.
It finds the root mode of the mounted file system and stores a pointer to the mode
in the mount table. To the user, the mounted-on directory and the root of the
mounted file system are logically equivalent, and the kernel establishes their
equivalence by their coexistence in the mount table entry. Processes can no longer
access the mode of the mounted-on directory.

The kernel initializes fields in the file system super block, clearing the lock fields
for the free block list and free Mode list and setting the number of free inodes in
the super block to 0. The purpose of the initializations is to minimize the danger of
file system corruption when mounting the file system after a system crash: Making
the kernel think that there are no free inodes in the super block forces algorithm
ialloc to search the disk for free inodes. Unfortunately, if the linked list of free
disk blocks is corrupt, the kernel does not fix the list internally (see Section 5.17 for
file system maintenance). lf the user mounts the file system read-only to disallow
all write operations to the file system, the kernel sets a flag in the super block.
Finally, the kernel marks the mounted-on mode as a mount point, so other
processes can later identify it. Figure 5.24 depicts the various data structures at
the conclusion of the mount call.

5.14.1 Crossing Mount Points in File Path Names

Let us reconsider algorithms namei and iget for the cases where a path name
crosses a mount point. The two cases for crossing a mount point are: crossing
from the mounted-on file system to the mounted file system (in the direction from
the global system root towards a leaf node) and crossing from the mounted file
system to the mounted-on file system. The following sequence of shell commands
illustrates the two cases.
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m ode Table Mount Table

Mounted on mode •..
Marked as mount point

Reference cnt 1

Device mode
Not in use

Reference cnt 0

Root mode of
mounted file system

Reference cnt I

Figure 5.24. Data Structures after Mount

mount idevidsk I iusr
cd /usr/srchts
cd ../.. ..

The mount command invokes the mount system call after doing some consistency
checks and mounts the file system in the disk section identified by "klev/dskl" onto
the directory "iusr". The first ed (change directory) command causes the shell to
execute the chdir system call, and the kernel parses the path name, crossing the
mount point at "iusr". The second ed command results in the kernel parsing the
path name and crossing the mount point at the third ".." in the path name.

For the case of crossing the mount point from the mounted-on file system to the
mounted file system, consider the revised algorithm for iget in Figure 5.25, which is
identical to that of Figure 4.3, except that it checks if the Mode is a mount point:
If the Mode is marked "mounted-on," the kernel knows that it is a mount point. It
finds the mount table entry whose mounted-on m ode is the one just accessed and
notes the device number of the mounted file system. Using the device number and
the mode number for root, which is common to all file systems, it then accesses the
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algorithm iget
input: file system mode number
output: locked mode

while (not done)

if (inode in mode cache)

if (m ode locked)

sleep (event blode becomes unlocked);
continue; /* loop */

1
/* special processing for mount points----*/
if (m ode a mount point)

find mount table entry for mount point;
get new file system number from mount table;
use root mode number in search;
continue; /* loop again */

if (m ode on mode free list)
remove from free list;

increment mode reference count;
return (mode);

/* mode not in mode cache *1
remove new mode from free list;
reset mode number and file system;
remove mode from old hash queue, place on new one;
read mode from disk (algorithm bread):
initialize mode (e.g. reference count to 1);
return mode;

Figure 5,25. Revised Algorithm for Accessing an mode

root mode of the mounted device and returns that mode. In the first change
directory example above, the kernel first accesses the mode for "iusr" in the
mounted-on file system, finds that the mode is marked "mounted-on," finds the root
m ode of the mounted file system in the mount table, and accesses the root mode of
the mounted file system.
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algorithm namei 1* convert path name to mode */
input: path name
output: locked Mode

if (path name starts from root)
working mode root mode (algorithm iget);

else
working Mode current directory mode (algorithm iget);

while (there is more path name)

read next path name component from input;
verify that mode is of directory, permissions;
if (Mode is of changed root and component is "..")

continue; /* loop */
component search:

read mode (directory) (algorithms bmap, bread, brelse);
if (component matches a directory entry)

get Mode number for matched component;
if (found mode of root and working mode is root and

and component name is "..")

/* crossing mount point */
get mount table entry for working Mode;
release working mode (algorithm iput);
working mode — mounted on mode;
lock mounted on mode;
increment reference count of working mode;
go to component search (for "..");

release working mode (algorithm iput);
working Mode mode for new mode number (algorithm iget);

else /* component not in directory */
return (no Mode);

return (working mode);

Figure 5.26. Revised Algorithm for Parsing a File Name

For the second case of crossing the mount point from the mounted file system to
the mounted-on file system, consider the revised algorithm for namei in Figure 5.26.
It is similar to that of Figure 4.11. However, after finding the Mode number for a
path name component in a directory, the kernel checks if the mode number is the
root mode of a file system. If it is, and if the mode of the current working Mode is
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also root, and the path name component is dot-dot (".."), the kernel identifies the
m ode as a mount point. It finds the mount table entry whose device number equals
the device number of the last found mode, gets the mode of the mounted-on
directory, and continues its search for dot-dot ("..") using the mounted-on mode as
the working mode. At the root of the file system, however, ".." is the root.

In the example above (cd "../../.."), assume the starting current directory of the
process is "/usrisrciuts". When parsing the path name in namei, the starting
working mode is the current directory. The kernel changes the working mode to
that of "/usrisrc" as a result of parsing the first ".." in the path name. Then, it
parses the second ".." in the path name, finds the root mode of the (previously)
mounted file system, "usr", and makes it the working mode in namei. Finaliy, it
parses the third ".." in the path name: It finds that the mode number for ".." is
the root mode number, its working mode is the root mode, and ".." is the current
path name component. The kernel finds the mount table entry for the "usr" mount
point, releases the current working mode (the root of the "usr" file system), and
allocates the mounted-on mode (the mode for directory "usr" in the root file
system) as the new working mode. It then searches the directory structures in the
mounted-on "lust" for ".." and finds the mode number for the root of the file
system ("1"). The chdir system call then completes as usual; the calling process is
oblivious to the fact that it crossed a mount point.

5.14.2 Unmoun mg a File Systern

The syntax for the umount system call is

umount (special filename) ;

where special filename indicates the file system to be unmounted. When
unmounting a file system (Figure 5.27), the kernel accesses the mode of the device
to be unmounted, retrieves the device number for the special file, releases the mode
(algorithm iput), and finds the mount table entry whose device number equals that
of the special file. Before the kernel actually unmounts a file system, it makes sure
that no files on that file system are still in use by searching the mode table for all
files whose device number equals that of the file system being unmounted. Active
files have a positive reference count and include files that are the current directory
of some process, files with shared text that are currently being executed (Chapter
7), and open files that have not been closed. If any files from the file system are
active, the umount call fails: if it were to succeed, the active files would be
inaccessible.

The buffer pool may stil' contain "delayed write" blocks that were not wntten
to disk, so the kernel flushes them from the buffer pool. The kernel removes shared
text entries that are in the region table but not operational (see Chapter 7 for
detail), writes out all recently modified super blocks to disk, and updates the disk
copy of all inodes that need updating. k would suffice for the kernel to update the
disk blocks, super block, and inodes for the unmounting file system only, but for
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algorithm umount
input: special file name of file system to be unmounted
output: none

if (not super user)
return (error);

get mode of special file (algorithm namei);
extract major, minor number of device being unmounted;
get mount table entry, based on major, minor number.

for unmounting file system;
release Mode of special file (algorithm iput);
remove shared text entries from region table for files

belonging to file system; I* chap 7xxx */
update super block, modes, flush buffers;
if (files from file system still in use)

return (error);
get root mode of mounted file system from mount table;
lock mode;
release mode (algorithm iput); /* iget was in mount *I
invoke close routine for special device;
invalidate buffers in pool from unmounted file system;
get Mode of mount point from mount table;
Lock Mode;
clear flag marking it as mount point;
release Mode (algorithm iput); /* iget in mount */
free buffer used for super block;
free mount table slot;

Figure 5.27. Algorithm for Unmounting a File System

historical reasons it does so for all file systems. The kernel then releases the root
m ode of the mounted file system, held since its original access during the mount
system call, and invokes the driver of the device that contains the file system to
close the device. Afterwards, it goes through the buffers in the buffer cache and
invalidates buffers for blocks on the now unmounted file system; there is no need to
cache data in those blocks any longer. When invalidating the buffers, it moves the
buffers to the beginning of the buffer free list, so that valid blocks remain in the
buffer cache longer. It clears the "mounted-on" flag in the mounted-on mode set
during the mount call and releases the mode. After marking the mount table entry
free for general use, the umount call completes.
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Figure 5.28. Linked Fiks in File System Tree

5.15 LINK

The link system call links a file to a new name in the file system directory
structure, creating a new directory entry for an existing mode. The syntax for the
link system call is

link(source file name, target file name);

where wurm file name is the name of an existing file and target file name is the
new (additional) name the file will have after completion of the link cal'. The file
system contains a path name for each link the file has, and processes can access the
file by any of the path names. The kernel does not know which name was the
original file name, so no file name is treated specially. For example, after executing
the system calls

link ("iusr/srciuts/sys", "/usr/include/sys");
link (lusr/include/realfile.h", "/usr/src/uts/sysitestfile.h");

the following three path names refer to the same file: "/usr/src/uts/sys/testfile.h",
"/u

sr/include/sys/testfile.h", and lusr/include/realfile" (see Figure 5.28).
The kernel allows only a superuser to link directories, simplifying the mling of

programs that traverse the file system tree. 1f arbitrary users could link directories,
programs designed to traverse the file hierarchy would have to worry about getting
into an infinite loop if a user were to link a directory to a node name below it in
the hierarchy, Super users are presumably more careful about making such links.
The capability to link directories had to be supported on early versions of the
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system, because the implementation of the mkdir command, which creates a new
directory, relies on the capability to link directories. Inclusion of the mkdir systetn

call eliminates the need to link directories.

algorithm link
input: existing file name

new file name
output: none

get Mode for existing file name (algorithm namei);
if (too many links on file or linking directory without super user permission)

release Mode (algorithm iput);
return (error);

1
increment link count on Mode;
update disk copy of mode;
unlock mode;
get parent mode for directory to contain new file name (algorithm namei);
if (new file name already exists or existing file, new file on

different file systems)

undo update done above;
return (error);

create new directory entry in patent directory of new file name:
include new file name, mode number of existing file name;

release patent directory mode (algorithm iput);
release Mode of existing file (algorithm iput);

Figure 5.29. Algorithm for Linking Files

Figure 5.29 shows the algorithm for link. The kernel first locates the Mode for
the source file using algorithm namei, increments its link count, updates the disk
copy of the Mode (for consistency, as will be seen), and unlocks the Mode. It then
searches for the target file; if the file is present, the link call (ais, and the kernel
decrements the link count incremented earlier. Otherwise, it notes the location of
an empty slot in the parent directory of the target file, writes the target file name
and the source file inode number into that slot, and releases the Mode of the target
file parent directory via algorithm iput. Since the target file did not originally
exist, there is no other Mode to release. The•kernel concludes by releasing the
source file Mode: Its link count is 1 greater than it was at the beginning of the eau,
and another name in the file system allows access to it. The link count keeps count
of the directory entries that refer to the file and is thus distinct from the Mode
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reference count. If no other processes access the file at the conclusion of the link
call, the mode reference count of the file is 0, and the link count of the file is at
least 2.

For example, when executing

link ("source", "diritarget");

the kernel locates the mode for file "source", increments its link count, remembers
its m ode number, say 74, and unlocks the mode. It locates the mode of "dir", the
parent directory of "target", finds an empty directory slot in "dir", and writes the
file name "target" and the mode number 74 into the empty directory slot. Finally,
it releases the mode for "source" via algorithm iput. If the link count of "source"
had been 1, it is now 2.

Two deadlock possibilities are worthy of note, both concerning the reason the
process unlocks the source file mode after incrementing its link count. If the kernel
did not unlock the mode, two processes could deadlock by executing the following
system calls simultaneously,

process A: link("a/b/c/d", "c/fig");
process B: link("e/f", "a/b/c/d/ee");

Suppose process A finds the mode for file "a/b/c/d" at the same time that process
B finds the mode for "e/f". The phrase at the same time means that the system
arrives at a state where each process has allocated its mode. Figure 5.30 illustrates
an execution scenario. When process A now attempts to find the mode for
directory "elf", it would sleep awaiting the event that the mode for "1" becomes
free. But when process B attempts to find the mode for directory "a/b/c/d", it
would sleep awaiting the event that the mode for "d" becomes free. Process A
would be holding a locked mode that process B wants, and process B would be
holding a locked mode that process A wants. The kernel avoids this classic
example of deadlock by releasing the source file's mode after incrementing its link
count. Since the first resource (mode) is free when accessing the next resource, no
deadlock can occur.

The last example showed how two processes could deadlock each other if the
m ode lock were not released. A single process could also deadlock itself. If it
executed

link ("a/b/c", "a/b/c/d");

it would allocate the mode for file "c" in the first part of the algorithm; if the
kernel did not release the mode lock, it would deadlock when encountering the
m ode "c" in searching for the file "d". If two processes, or even one process, could
not continue executing because of deadlock, what would be the effect on the
system? Since modes are finitely allocatable resources, receipt of a signal cannot
awaken the process from its sleep (Chapter 7). Hence, the system could not break
the deadlock without rebooting. If no other processes accessed the files over which
the processes deadlock, no other processes in the system would be affected.
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Figure 5.30. Deadlock Scenario for Link
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However, any processes that accessed those files (or attempted to access other files
via the locked directory) would deadlock. Thus, if the file were "Thin" or
"/usribin" (typical depositories for commands) or "Thinish" (the shell) the effect
on the system would be disastrous.

5.16 UNLINK

The unlink system call removes a directory entry for a file. The syntax for the
unlink call is

unlink(pathname);

where pathname identifies the name of the file to be unlinked from the directory
hierarchy. If a process unlinks a given file, no file is accessible by that name until
another directory entry with that name is created. In the following code fragment,
for example,

unlink("myfile");
fd open("myfile", O_RDONLY);

the open call should fail, because the current directory no longer contains a file
called myfile. If the file being unlinked is the last link of the file, the kernel
eventually frees its data blocks. However, if the file had several links, it is still
accessible by its other names.

Figure 5.31 gives the algorithm for unlinking a file. The kernel first uses a
variation of algorithm namei to find the file that it must unlink, but instead of
returning its mode, it returns the mode of the parent directory. It accesses the in-
core mode of the file to be unlinked, using algorithm iget. (The special case for
unlinking the file "." is covered in an exercise.) After checking error conditions
and, for executable files, removing inactive shared text entries from the region table
(Chapter 7), the kernel clears the file name from the parent directory: Writing a 0
for the value of the mode number suffices to clear the slot in the directory. The
kernel then does a synchronous write of the directory to disk to ensure that the file
is inaccessible by its old name, decrements the link count, and releases the in-core
m odes of the parent directory and the unlinked file via algorithm ipui.

When releasing the in-core mode of the unlinked file in iput, if the reference
count drops to 0, and if the link count is 0, the kernel reclaims the disk blocks
occupied by the file. No file names refer to the mode any longer and the mode is
not active. To reclaim the disk blocks, the kernel loops through the mode table of
contents, freeing all direct blocks immediately (according to algorithm free). For
the indirect blocks, it recursively frees all blocks that appear in the various levels of
indirection, freeing the more direct blocks first. It zeroes out the block numbers in
the mode table of contents and sets the file size in the mode to 0. It then clears the
m ode file type field to indicate that the mode is free and frees the mode with
algorithm ifree. It updates the disk since the disk copy of the mode still indicated
that the mode was in use; the mode is now free for assignment to other files.



5.16 UNL1NK 133

algorithin unlink
input: file name
output: none

get parent Mode of file to be unlinked (algorithm namei);
/* if unlinking the current directory... */
if (last component of file name is ".")

increment mode reference count;
else

get mode of file to be unlinked (algorithm iget);
if (file is directory but user is not super user)

release inodes (algorithm iput);
return (error);

1
if (shared text file and link count currently 1)

remove from region table;
write parent directory: zero mode number of unlinked file;
release mode parent directory (algoritlun iput);
decrement file link munt;
release file blode (algorithm iput);

/* iput checks if link count is 0: if so,
* releases file blocks (algorithm free) and
* frees Mode (algorithm ifree);al

Figure 5.31. Algorithm for Unlinking a File

5.16.1 File Systenrb Consistency

The kernel orders its writes to disk to minimize file system corruption in event of
system failure. For instance, when it removes a file name from its parent directory,
it writes the directory synchronously to the disk — before it destroys the contents of
the file and frees the mode. If the system were to crash before the file contents
were removed, damage to the file system would be minimal: There would be an
m ode that would have a link count 1 greater than the number of directory entries
that access it, but all other paths to the file would stil be legal. 1f the directory
write were not synchronous, it would be possible for the directory entry on disk to
point to a free (or reallocated!) mode after a system crash. Thus there would be
more directory entries in the file system that refer to the mode than the Mode
would have link counts. In particular, if the file name was that of the last link to
the file, it would refer to an unallocated mode. System damage is clearly less
severe and easier to correct in the first case (see Section 5.18).
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For example, suppose a file has two links with path names "a" and "b", and
suppose a process unlinks "a". If the kernel orders the disk write operations, then
it zeros the directory entry for "a" and writes it to disk. If the system crashes after
the write to disk completes, file "b" has link count of 2, but file "a" does not exist
because its old entry had been zeroed before the system crash. File "b" has an
extra link count, but the system functions properly when rebooted.

Now suppose the kernel ordered the disk write operations in the reverse order
and the system crashes: That is, it decrements the link count for the file "b" to 1,
writes the Mode to disk, and crashes before it could zero the directory entry for file
"a". When the system is rebooted, entries for files "a" and "b" exist in their
respective directories, but the link count for the file they reference is 1. If a process
then unlinks file "a", the file link count drops to 0 even though file "b" still
references the mode. If the kernel were later to reassign the mode as the result of
a crew system call, the new file would have link count 1 but two path names that
reference it. The system cannot rectify the situation except via maintenance
programs (fsck, described in Section 5.18) that access the file system through the
block or raw interface.

The kernel also frees Modes and disk blocks in a specific order to minimize
corruption in event of system failure. When removing the contents of a file and
clearing its mode, it is possible to free the blocks containing the file data first, or it
is possible to free and write out the mode first. The result is usually identical for
both cases, but it differs if the system crashes in the middle. Suppose the kernel
first frees the disk blocks of a file and crashes. When the system is rebooted, the
Mode still contains references to the old disk blocks, which may no longer contain
data relevant to the file. The kernel would see an apparently good file, but a user
accessing the file would notice corruption. It is also possible that other files were
assigned those disk blocks. The effort to clean the file system with the fsek
program would be great. However, if the system first writes the mode to disk and
the system crashes, a user would not notice anything wrong with the file system
when the system is rebooted. The data blocks that previously belonged to the file
would be inaccessible to the system, but users would notice no apparent corruption.
The fsck program also finds the task of reclaiming unlinked disk blocks easier than
the clean-up it would have to do for the first sequence of events.

5.16.2 Race Conditions

Race conditions abound in the unlink system call, particularly when unlinkingdirectories. The rmdir command removes a directory after verifying that thedirectory contains no files (it reads the directory and c-hecks -that all directory
entries have mode value 0). But since rmdir runs at user level, the actions of
verifying that a directory is empty and removing the directory are not atomic; the
system could do a context switch between execution of the read and unlink systemcalls. Hence, another process could crew a file in the directory after rmdir
determined that the directory was empty. Users can prevent this situation only by
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use of file and record locking. Once a process begins execution of the unlink eau,
however, no other process can access the file being unlinked since the inodes of the
parent directory and the file are locked.

Recall the algorithm for the link system call and how the kernel unlocks the
m ode before completion of the eau. 1f another process should unlink the file while
the mode lock is free, it would only-decrement the link count; since the link count
had been incremented before unlinking the mode, the count would stilt be greater
than 0. Hence, the file cannot be removed, and the system is safe. The condition is
equivalent to the case where the unlink happens immediately after the link call
completes.

Another race condition exists in the case where one process is converting a file
path name to an mode using algorithn-i namei and another process is remming a
directory in that path. Suppose process A is parsing the path name "a/b/c/d" and
goes to sleep while allocating the in-core mode for "c". It could go to sleep while
trying to lock the Mode or while trying to access the disk block in which the mode
resides (see algorithms iget and bread). 1f process 13 wants to unlink the directory
"c", it may go to sleep, possibly for the same reasons that process A is sleeping.
Suppose the kernel later schedules process B to run before process A. Process B
would run to completion, unlinking directory "c" and removing it and its contents
(for the last link) before process A runs again. Later, process A would try to
access an illegal in-core Mode that had been removed. Algorithm namei therefore
checks that the link count is not 0 before proceeding, reporting an error otherwise.

The check is not sufficient, however, because another process could conceivably
create a new directory somewhere in the file system and allocate the mode that had
previously been used for "c". Process A is tricked Mto thinking that it accessed the
correct mode (see Figure 5.32). Nevertheless, the system maintains its integrity;
the worst that could happen is that the wrong file is accessed — a possible security
breach — but the race condition is rare in practice.

A process can unlink a file while another process has the file open. (The
unlinking process could even be the process that did the open). Since the kernel
unlocks the mode at the end of the open eau, the unlink call will succeed. The
kernel will follow the unlink algorithm as if the file were not open, and it will
remove the directory entry for the file. No other processes will be able to access
the now unlinked file. However, since the open system call had incremented the
Mode reference count, the kernel does not clea.r the file contents when executing the
(put algorithm at the conclusion of the unlink eau. So the opening process can do
all the normal file operations with lis file descriptor, including reading and writing
the file. But when it doses the file, the mode reference count drops to 0 in (put,
and the kernel clears the contents of the file. In short, the process that had open cd
the file proceeds as if the unlink did not occur, and the unlink happens as if the file
were not open. Other system calls wilt continue to work for the opening process,
too.

In Figure 5.33 for example, a process opens a file supplied as a parameter and
then unlinks the file it just open cd. The stat call fails because the original path
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Figure 5.32. Unlink Race Condition
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5.17 FILE SYSTEM ABSTRACTIONS

Weinberger introduced file system types to support his network file system (see
( Killian 841 for a brief description of this mechanism), and the latest release of
System V supports a derivation of his scheme. File system types allow the kernel to
support multiple file systems simultaneously, such as network file systems (Chapter
13) or even file systems of other operating systems. Processes use the usual UNIX
system calls to access files, and the kernel maps a generic set of file operations Mto
operations specific to each file system type.

Figure 5.34. Inodes for File System Types

The mode is the interface between the abstract file system and the specific file
system. A generic in-core mode contains data that is independent of particular file
systems, and points to a file-system-specific mode that contains file-system-specific
data. The file-system-specific mode contains information such as access permissions
and block layout, but the generic mode contains the device number, Mode number,
file type, size, owner, and reference count. Other data that is file-system-specific
includes the super block and directory structures. Figure 5,34 depicts the generic
in-core mode table and two tables of file-system-specific inodes-, one for System V
file system structures and the other for a remote (network) mode. The 'atter mode
presumably contains enough information to identify a file on a remote system. A
file system may not have an mode-like structure; but the file-system-specific code
manufactures an object that satisfies UNIX file system semantics and allocates its
"mode" when the kernel allocates a generic mode.
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Each file system type has a structure that contains the addresses of functions
that perform abstract operations. When the kernel wants to access a file, it makes
an indirect function call, based on the file system type and the operation (see
Figure 5.34). Some abstract operations are to open a file, close it, read or write
data, return an mode for a file name component (like namei and iget), release an
m ode (like iput), update an mode, check access permissions, set file attributes
(permissions), and mount and unmount file systems. Chapter 13 will illustrate the
use of file system abstractions in the description of a distributed file system.

5.18 FILE SYSTEM MAINTENANCE

The kernel maintains consistency of the file system during normal operation.
However, extraordinary circumstances such as a power failure may cause a system
crash that leaves a file system in an inconsistent state: most of the data in the file
system is acceptable for use, but some inconsistencies exist. The command fsck
checks for such inconsistencies and repairs the file system if necessary. It accesses
the file system by its block or raw interface (Chapter 10) and bypasses the regular
file access methods. This section describes several inconsistencies checked by fsck .

A disk block may belong to more than one mode or to the list of free blocks and
an mode. When a file system is originally set up, all disk blocks are on the free list.
When a disk block is assigned for use, the kernel removes it from the free list and
assigns it to an mode. The kernel may not reassign the disk block to another Mode
until the disk block has been returned to the free list. Therefore, a disk block is
either on the free list or assigned to a single mode. Consider the possibilities if the
kernel freed a disk block in a file, returning the block number to the in-core copy of
the super block, and allocated the disk block to a new file. If the kernel wrote the
m ode and blocks of the new file to disk but crashed before updating the mode of
the old file to disk, the two modes would address the same disk block number.
Similarly, if the kernel wrote the super block and its free list to disk and crashed
before writing the old mode out, the disk block would appear on the free list and in
the old mode.

If a block number is not on the free list of blocks nor contained in a file, the file
system is inconsistent because, as mentioned above, all blocks must appear
somewhere. This situation could happen if a block was removed from a file and
placed on the super block free list. If the old file was written to disk and the
system crashed before the super block was written to disk, the block would not
appear on any lists stored on disk.

An Mode may have a non-0 link count, but its mode number may not exist in
any directories in the file system. All files except (unnamed) pipes must exist in
the file system tree. If the system crashes after creating a pipe or after creating a
file but before creating its directory entry, the mode will have its link field set even
though it does not appear to be in the file system. The problem could also arise if a
directory were unlinked before making sure that all files contained in the directory
were unlinked.
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If the format of an Mode is incorrect (for instance, if the file type field has an
undefined value), something is wrong. This could happen if an administrator
mounted an improperly formatted file system. The kernel accesses disk blocks that
it thinks contain Modes but in reality contain data.

If an Mode number appears in a directory entry but the mode is free, the file
system is inconsistent because an Mode number that appears in a directory entry
should be that of an allocated Mode. This could happen if the kernel was creating
a new file and wrote the directory entry to disk but did not write the Mode to disk
before the crash. It could also occur if a process unlinked a file and wrote the
freed mode to disk, but did not write the directory element to disk before it
crashed. These situations are avoided by ordering the write operations properly.

If the number of free blocks or free modes recorded in the super block does not
conform to the number that exist on disk, the file system is inconsistent. The
summary information in the super block must always be consistent with the state of
the file system.

5.19 SUMMARY

This chapter concludes the first part of the book, the explanation of the file system.
It introduced three kernel tables: the user file descriptor table, the system file
table, and the mount table. It described the algorithms for many system calls
relating to the file system and their interaction. It introduced file system
abstractions, which allow the UNIX system to support varied file system types.
Finally, it described how fsck checks the consistency of the file system.

5.20 EXERCISES

1. Consider the program in Figure 5.35. What is the return value for all the reads and
what is the contents of the buffer? Describe what is happening in the kernel during
each read

2. Reconsider the program in Figure 5.35 but suppose the statement

iseek(fd, 9000L, 0);

is placed before the first read. What does the process see and what happens inside the
kernel?

3. A process can open a file in write-append mode, meaning that every write operations
starts at the byte offset marking the current end of file. Therefore, two processes can
open a file in write-append mode and write the file without overwriting data. What
happens if a process opens a file in write-append mode and seeks to the beginning of
the file?

4. The standard I/O library makes user reading and writing more efficient by buffering
the data in the library and thus potentially saving the number of system calls a user
has to make. How would you implement the library functions fread and fwrite?
What should the library functions fopen and felose do?



#include <fentl.h>
main()

fd ois+en("junk", 0 RDONLY);
read(fd, buf, 1024); /* read zero's */
read(fd, buf, 1024); /* catch something *1
read(fd, buf, 1024);
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Figure 5.35. Reading Os and End of File

5. 1f a process is reading data consecutively from a file, the kernel notes the value of the
read-ahead block in the in-core mode. What happens if severai processes
simultaneously read data conseeutively from the same file?

#include <fenti.h>
main()

int fd;
char buf[256];

fd open("/ete/passwd", ORDONLY);
if (read(fd, buf, 1024) < 0)

printf(`read fails\n");

Figure 5.36. A Big Read in a Liftte Buffer

6. Consider the program in Figure 5.36. What happens when the program is executed?
Why? What would happen if the deciaration of buf were sandwiched betwe,en the
declaration of two other arrays of size 1024? How does the kernel recognize that the
read is too big for the buffer?

* 7. The BSD file system allows fragmentation of the tast block of a file as needed,
according to the following tules:

• Structures similar to the super block keep track of free fragments;
• The kernel does not keep a preallocated pool of free fragments but breaks a free

block into fragments when nece,ssary;



142 SYSTEM CALIS FOR THE FILE SYSTEM

• The kernel can assign block fragments only for the last block of a file;
• If a block is partitioned into several fragments, the kernel can assign them to

different files;
• The number of fragments in a block is fixed per file system;
• The kernel allocates fragments during the write system eau.

Design an algorithm that allocates block fragments to a file. What changes must be
made to the mode to allow for fragments? How advantageous is it from a
performance standpoint to USC fragments for files that use indirect blocks? Would it
be more advantageous to allocate fragments during a close call instead of during a
write call?

* 8. Recall the discussion in Chapter 4 for placing data in a file's mode. If the size of the
m ode is that of a disk block, design an algorithm such that the last data of a file is
written in the mode block if it fits. Compare this method with that described in the
previous problem.

* 9. System V uses the fenti system call to implement file and record locking;

fcntl(fd, cmd, arg);

where fd is the file descriptor, cmd specifies the type of locking operation, and arg
specifies various parameters, such as lock type (read or write) and byte offsets (see the
appendix). The locking operations include
• Test for locks belonging to other processes and return immediately, indicating

whether other locks were found,
• Set a lock and sleep until successful,
• Set a lock but return immediately if unsuccessful.

The kernel autornatically releases locks set by a process when it closes the file.
Describe an algorithm that implements file and record boeking. If the locks are
mandatory, other processes should be prevented from accessing the file. What
changes must be made to read and write?

* 10. If a process goes to sleep white waiting for a file lock to become free, the possibility for
deadlock exists: process A may lock file "one" and attempt to lock file "two," and
process B may lock file "two" and attempt to lock file "one." Both processes are in a
state where they cannot continue. Extend the algorithm of the previous problem so
that the kernel detects the deadlock situation as it is about to occur and fails the
system call. Is the kernel the right place to check for deadlocks?

11. Before the existence of a file locking system call, users could get cooperating processes
to implement a locking rnechanism by executing system calls that exhibited atomic
features. What system calls described in this chapter could be used? What are the
dangers inherent in using such rnethods?

12. Ritchie claims (see [Ritchie 81]) that file locking is not sufficient to prevent the
confusion caused by programs such as editors that make a copy of a file while editing
and then write the original file when done. Explain what he meant and comment.

13. Consider another method for locking files to prevent destructive update: Suppose the
m ode contains a new permission setting such that it allows only one process at a time
to open the file for writing, but many processes can open the file for reading. Describe
an implementation.

* 14. Consider the program in Figure 5.37 that creates a directory node in the wrong format
(there are no directory entries for "." and ".."). Try a few commands on the new
directory such as Is —I, Is — Id, or cd. What is happening?
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main(argc, argv)
int argc;
char *argv[i;

if (argc 2)

printf("try: command directory nam n");
exit 0;

/* modes indicate: directory (04) rwx permission for all */
I* only super user can do this */
if (mknod(argv[ 040777, -- —1)

printf("mknod fails\n");

Figure 5.37. A Half-Baked Directory

15. Write a program that prints the owner, file type, access permissions, and access times
of files supplied as parameters. If a file (parameter) is a directory, the program should
read the directory and print the above information for all files in the directory.

16. Suppose a directory has read permission for a user but not execute permission. What
happens when the directory is used as a parameter to Is with the "—i" option? What
about the "-1" option? Explain the answers. Repeat the problem for the case that
the directory has execute permission but not read permission.

17. Compare the permissions a process must have for the following operations and
comment.

• Creating a new file requires write permission in a directory.
• Creating an existing file requires write permission on the file.
• Unlinking a file requires write permission in the directory, not on the file.

* 18. Write a program that visits every directory, starting with the current directory. How
should it handle loops in the directory hierarchy?

19. Execute the program in Figure 5.38 and describe what happens in the kernel. (Hint:
Execute pwd when the program completes.)

20. Write a program that changes its root to a particular directory, and investigate the
directory tree accessible to that program.

21. Why can't a process undo a previous chroot system call? Change the implementation
so that it can change its root back to a previous root. What are the advantages and
disadvantages of such a feature?

22. Consider the simple pipe example in Figure 5.19, where a process writes the string
"hello" in the pipe then reads the string. What would happen if the count of data
written to the pipe were 1024 instead of 6 (but the count of read data stays at 6)?
What would happen if the order of the read and write system calls were reversed?

23. In the program illustrating the use of named pipes (Figure 5.19), what happens if
rnknod discovers that the named pipe already exists? How does the kernel implement
this? What would happen if many reader and writer processes all attempted to
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main(arge, argv)
int argc;
char *argvil;

if (argc

printf("need 1 dir arg\n");
exit();

if (chdir(argy(li) —I)
printf("%s not a directory\n", argv[11);

Figure 5.38. Sample Program with Chdir System Cali

communicate through the named pipe instead of the one reader and one writer implieit
in the text? How could the proce,sses ensure that only one reader and one writer
process were communicating?

24. When opening a named pipe for reading, a process sleeps in the open until another
process opens the pipe for writing. Why? Couldn't the process return successfully
from the open, continue processing until it tried to read from the pipe, and sleep in the
read?

25. How would you implement the dup2 (from Version 7) system call with syntax

dup2(oldfd, newfd);

where oldfd is the file descriptor to be duped to file descriptor number newfd? What
should happen if newfd already refers to an open file?

* 26. What strange things could happen if the kernel would allow two processes to mount
the same file system simultaneously at two mount points?

27. Suppose a process changes its current directory to "/Innt/a/b/c" and a second process
then mounts a file system onto "imnt". Should the mouw succeed? What happens if
the first process executes pwd? The kernel does not ailow the mount to succeed if the
m ode reference count of "kimt" is greater than I. Comment.

28. In the algorithm for crossing a mount point on recognition of ".." in the file path
name, the kernel checks three conditions to see if it is at a mount point: that the
found mode bas the root Mode number, that the working mode is root of the file
system, and that the path name component is "..". Why must it check all three
conditions? Show that checking any two conditions is insufficient to allow the process
to cross the mount point.

29. If a user mounts a file system "read-only," the kernel sets a flag in the super block.
How should it prevent write operations during the write, ereat, link, unlink, chown,
and ehmod system calls? What write operations do all the above system calls do to
the file system?

* 30. Suppose a process attempts to umount a file system and another process is
simultaneously attempting to ereat a new file on that file system. Only one system call
can succeed. Explore the race condition.
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* 31. When the umount system call checks that no more files are active on a file system, it
has a problem with the file system root mode, allocated via iget during the mount
system call and hence having reference count greater than 0. How can mount be
sure there are no active files and take account for the file system root? Consider two
cases:

• umount releases the root Mode with the iput algorithm before checking for active
m odes. (How does it recover if there were active files after all?)

• umount checks for active files before releasing the root mode but permits the root
m ode to remain active. (How active can the root mode get?)

32. When executing the command Is — Id on a directory, note that the number of links to
the directory is never 1. Why?

33. How does the command mkdir (make a new directory) work? (Hint: When mkdir
completes, what are the mode numbers for "." and ".."?)

* 34. Symbolic links refer to the capability to link files that exist on different file systems.
A new type indicator specifies a symbolic link file; the data of the file is the path name
of the file to which it is linked. Describe an implementation of symbolic links.

* 35. What happens when a process executes

unlink(".");

What is the current directory of the process? Assume superuser permissions.
36. Design a system call that truncates an existing file to arbitrary sizes, supplied as an

argument, and describe an implementation. Implement a system call that allows a
user to remove a file segment between specified byte offsets, compressing the file size.
Without such system calls, encode a program that provides this functionality.

37. Describe all conditions where the reference count of an mode can be greater than 1.
38. In file system abstractions, should each file system type support a private lock

operation to be called from the generic code, or does a generic lock operation suffice?



THE STRUCTURE
OF PROCESSES

Chapter 2 formulated the high-level characteristics of processes. This chapter
presents the ideas more formally, defining the context of a process and showing how
the kernel identifies and locates a process. Section 6.1 defines the process state
model for the UNIX system and the set of state transitions. The kernel contains a
process table with an entry that describes the state of every active process in the
system. The u area contains additional information that controls the operation of a
process. The process table entry and the u area are part of the context of a
process. The aspect of the process context that most visibly distinguishes it from
the context of another process is, of course, the contents of its address space.
Section 6.2 describes the principles of memory management for processes and for
the kernel and how the operating system and the hardware cooperate to do virtual
memory address translation. Section 6.3 examines the components of the context of
a process, and the rest of the chapter describes the low-level algorithms that
manipulate the process context. Section 6.4 shows how the kernel saves the context
of a process during an interrupt, system eau, or context switch and how it later
resumes execution of the suspended process. Section 6.5 gives various algorithms,
used by the system calls described in the next chapter, that manipulate the process
address space. Finally, Section 6.6 covers the algorithms for putting a process to
sleep and for waking it up.
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Figure 6,1 Process State Transition Diagram.
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when it is about to return to user mode. Consequently, the kernel could swap a
process from the state "preempted" if necessary. Eventually, the scheduler will
choose the process to execute, and it returns to the state "user running," executing
in user mode again.

When a process executes a system call, it leaves the state "user running" and
enters the state "kernel running." Suppose the system call requires I/O from the
disk, and the process must wait for the I/O to complete. It enters the state "asleep
in memory," putting itself to sleep until it is notified that the I/O has completed.
When the I/O later completes, the hardware interrupts the CPU, and the interrupt
handler awakens the process, causing it to enter the state "ready to run in

memory."
Suppose the system is executing many processes that do not fit simultaneously

into main memory, and the swapper (process 0) swaps out the process to make
room for another process that is in the state "ready to run swapped." When
evicted from main memory, the process enters the state "ready to run swapped."
Eventually, the swapper chooses the process as the most suitable to swap into main
memory, and the process reenters the state "ready to run in memory." The
scheduler will eventually choose to run the process, and it enters the state "kernel
running" and proceeds. When a process completes, it invokes the exit system eau,
thus entering the states "kernel running" and, finally, the "zombie" state.

The process has control over some state transitions at user-level. First, a
process can create another process. However, the state transitions the process takes
from the "created" state (that is, to the states "ready to run in memory" or "ready
to run swapped") depend on the kernel: The process has no control over those state
transitions. Second, a process can make system calls to move from state "user
running" to state "kernel running" and enter the kernel of its own volition.
However, the process has no control over when it will return from the kernel; events
may dictate that it never returns but enters the zombie state (see Section 7.2 on
signals). Finally, a process can exit of its own volition, but as indicated before,
external events may dictate that it exits without explicitly invoking the exit system
eau. All other state transitions follow a rigid model encoded in the kernel, reacting
to events in a predictable way according to rules formulated in this and later
chapters. Some rules have already been cited: No process can preempt another
process executing in the kernel, for example.

Two kernel data structures describe the state of a process: the process table
entry and the u area. The process table contains fields that must always be
accessible to the kernel, but the u area contains fields that need to be accessible
only to the running process. Therefore, the kernel allocates space for the u area
only when creating a process: It does not need u areas for process table entries
that do not have processes.

The fields in the process table are the following.

• The state field identifies the process state.
• The process table entry contains fields that allow the kernel to locate the process

and its u area in main memory or in secondary storage. The kernel uses the
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information to do a context switch to the process when the process moves from
state "ready to run in memory" to the state "kernel running" or from the state
"preempted" to the state "user running." In addition, it uses this information
when swapping (or paging) processes to and from main memory (between the
two "in memory" states and the two "swapped" states). The process table
entry also contains a field that gives the process size, so that the kernel knows
how much space to allocate for the process.

• Several user identifiers (user IDs or UIDs) determine various process privileges.
For example, the user ID fields delineate the sets of processes that can send
signals to each other, as will be explained in the next chapter.

• Process identifiers (process IDs or PIDs) specify the relationship of processes to
each other. These ID fields are set up when the process enters the state
"created" in the fork system call.

• The process table entry contains an event descriptor when the process is in the
"sleep" state. This chapter will examine its use in the algorithms for sleep and
wakeup.

• Scheduling parameters allow the kernel to determine the order in which
processes move to the states "kernel running" and "user running."

• A signal field enumerates the signals sent to a process but not yet handled
(Section 7.2).

• Various timers give process execution time and kernel resource utilization, used
for process accounting and for the calculation of process scheduling priority.
One field is a user-set timer used to send an alarm signal to a process (Section
8.3).

The u area contains the following fields that further characterize the process
states. Previous chapters have described the last seven fields, which are briefly
described again for completeness.

• A pointer to the process table identifies the entry that corresponds to the u area.
• The real and effective user IDs determine various privileges allowed the process,

such as file access rights (see Section 7.6).
• Timer fields record the time the process (and its descendants) spent executing in

user mode and in kernel mode.
• An array indicates how the process wishes to react to signals.
• The control terminal field identifies the "login terminal" associated with the

process, if one exists,
• An error field records errors encountered during a system call.
• A return value field contains the result of system calls.
• I/O parameters describe the amount of data to transfer, the address of the

source (or target) data array in user space, file offsets for I/0, and so on.
• The current directory and current root describe the file system environment of

the process.
• The user file descriptor table records the files the process has open.
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• Limit fields restrict the size of a process and the size of a file it can write.

• A permission modes field masks mode settings on files the process creats.

This section has described the process state transitions on a logical level. Each
state has physical characteristics managed by the kernel, particularly the virtual
address space of the process. The next section describes a model for memory
management; later sections describe the states and state transitions at a physical
level, focusing on the states "user running," "kernel running," "preempted," and
"sleep (in memory)." The next chapter describes the states "created" and
"zombie," and Chapter 8 describes the state "ready to run in memory." Chapter 9
discusses the two "swap" states and demand paging.

6.2 LAYOUT OF SYSTEM MEMORY

Assume that the physical memory of a machine is addressable, starting at byte
offset 0 and going up to a byte offset equal to the amount of memory on the
machine. As outlined in Chapter 2, a process on the UNIX system consists of
three logica! sections: text, data, and stack. (Shared memory, discussed in
Chapter 11, should be considered part of the data section for purposes of this
discussion.) The text section contains the set of instructions the machine executes
for the process; addresses in the text section include text addresses (for branch
instructions or subroutine calls), data addresses (for access to global data
variables), or stack addresses (for access to data structures local to a subroutine).
If the machine were to treat the generated addresses as address locations in
physical memory, it would be impossible for two processes to execute concurrently
if their set of generated addresses overlapped. The compiler could generate
addresses that did not overlap between programs, but such a procedure is
impractical for general-purpose computers because the amount of memory en a
machine is finite and the set of all programs that could be compiled is infinite.
Even if the compiler used heuristics to try to avoid unnecessary overlap of
generated addresses, the implementation would be inflexible and therefore
undesirable.

The compiler therefore generates addresses for a virtual address space with a
given address range, and the machines memory management unit translates the
virtual addresses generated by the compiler into address locations in physical
memory. The compiler does not have to know where in memory the kernel will
later bad the program for execution. In fact, several copies of a program can
coexist in memory: All execute using the same virtual addresses but reference
different physical addresses. The subsystems of the kernel and the hardware that
cooperate to translate virtual to physical addresses comprise the memory
management subsystem.
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6.2.1 Regions

The System V kernel divides the virtual address space of a process into logical
regions. A region is a contiguous area of the virtual address space of a process that
can be treated as a distinct object to be shared or protected. Thus text, data, and
stack usually form separate regions of a process. Several processes can share a
region. For instance, several processes may execute the same program, and it is
natural that they share one copy of the text region. Similarly, several processes
may cooperate to share a common shared-memory region.

The kernel contains a region table and allocates an entry from the table for
each active region in the system. Section 6.5 will describe the fields of the region
table and region operations in greater detail, but for now, assume the region table
contains the information to determine where its contents are located in physical
memory. Each process contains a private per process region table, called a pregion
for short. Pregion entries may exist in the process table, the u area, or in a
separately allocated area of memory, dependent on the implementation, but for
simplicity, assume that they are part of the process table entry. Each pregion entry
points to a region table entry and contains the starting virtual address of the region
in the process. Shared regions may have different virtual addresses in each process.
The pregion entry also contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute. The pregion and the
region structure are analogous to the file table and the mode structure in the file
system: Several processes can share parts of their address space via a region, much
as they can share access to a file via an mode; each process accesses the region via
a private pregion entry, much as it accesses the mode via private entries in its user
file descriptor table and the kernel file table.

Figure 6.2 depicts two processes, A and B, showing their regions, pregions, and
the virtual addresses where the regions are connected. The processes share text
region 'a' at virtual addresses 8K and 4K, respectively. If process A reads memory
location 8K and process B reads memory location 4K, they read the identical
memory location in region 'a'. The data regions and stack regions of the two
processes are private.

The concept of the region is independent of the memory management policies
implemented by the operating system. Memory management policy refers to the
actions the kernel takes to insure that processes share main memory fairly. For
example, the two memory management policies considered in Chapter 9 are process
swapping and demand paging. The concept of the region is also independent of the
memory management implementation: whether memory is divided into pages or
segments, for example. To lay the foundation for the description of demand paging
algorithms in Chapter 9, the discussion., here assumes a memory architecture based
on pages, but it does not assume that the memory management policy is based on
demand paging algorithms.
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Per Proc Region Tables
(Virtual Addresses)

Text 8K
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A Data 16K
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B Data 8K

Stack 32K
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Figure 6.2. Processes and Regions

6.2.2 Pages and Page Tantes

This section defines the memory model that will be used throughout this book, but
it is not specific to the UNIX system. In a memory management architecture
based on pages, the memory management hardware divides physical memory Mto a
set of equal-sized blocks called pages. Typical page sizes range from 512 bytes to
4K bytes and are defined by the hardware. Every addressable location in memory
is contained in a page and, consequently, every memory location can be addressed
by a

(page number, byte offset in page)

pair. For example, if a machine has 2 32 bytes of physical memory and a page size
of 1K bytes, it has 222 pages of physical memory; every 32-bit address can be
treated as a pair consisting of a 22-bit page number and a 10-bit offset into the
page (Figure 6.3).

When the kernel assigns physical pages of memory to a region, it need not
assign the pages contiguously or in a particular order. The purpose of paged
memory is to allow greater flexibility in assigning physical memory, analogous to
the assignment of disk blocks to files in a file system. Just as the kernel assigns
blocks to a file to increase fiexibility and to reduce the amount of unused space
caused by block fragmentation, so it assigns pages of memory to a region.
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Hexadecimal Address 58432

Binary 0101 1000 0100 0011 0010

Page Number, Page Offset 01 0110 0001 00 0011 0010

In Hexadecimal 161 32

Figure 6.3. Addressing Physical Memory as Pages

Logical Page Number Physical Page Number

0 177
1 54
2 209
3 17

Figure 6.4. Mapping of Logical to Physical Page Numbers

The kernel correlates the virtual addresses of a region to their physical machine
addresses by mapping the logical page numbers in the region to physical page
numbers on the machine, as shown in Figure 6.4. Since a region is a contiguous
range of virtual addresses in a program, the logical page number is the index into
an array of physical page numbers. The region table entry contains a pointer to a
table of physical page numbers called a page table. Page table entries may also
contain machine-dependent information such as permission bits to allow reading or
writing of the page. The kernel stores page tables in memory and accesses them
like all other kernel data structures.

Figure 6.5 shows a sample mapping of a process into physical memory. Assume
that the size of a page is 1K bytes, and suppose the process wants to access virtual
memory address 68,432. The pregion entries show that the virtual address is in the
stack region starting at virtual address 64K (65,536 in decimal), assuming the
direction of stack growth is towards higher addresses. Subtracting, address 68,432
is at byte offset 2896 in the region. Since each page consists of 1K bytes, the
address is contained at byte offset 848 in page 2 (counting from 0) of the region,
located at physical address 986K. Section 6.5.5 (loading a region) discusses the
meaning of the page table entry marked "empty."

Modern machines use a variety of hardware registers and caches to speed up
the address translation procedure just described, because the memory references
and address calculations would otherwise be too slow. When resuming the
execution of a process, the kernel therefore informs the memory management
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Table

Page Tables (Physical Addresses)
8K

data 32K empty
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Virtual Address s 87K 764K
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Figure 6.5. Mapping Virtual Addresses to Physical Addresses

hardware where the page tables and physical memory of the process reside by
loading the appropriate registers. Since such operations are machine dependent
and vary from one implementation to another, this text will not discuss them. The
exercises at the end of the chapter cite specific machine architectures.

Let us use the following simple memory model in discussing memory
management. Memory is organized in pages of 1K bytes, accessed via page tables
as described earlier. The system contains a set of memory management register
triples (assume a large supply), such that the first register in the triple contains the
address of a page table in physical memory, the second register contains the first
virtual address mapped via the triple, and the third register contains control
information such as the number of pages in the page table and page access
permissions (read-only, read-write). This model corresponds to the region model,
just described. When the kernel prepares a process for execution, it loads the set of
memory management register triples with the corresponding data stored in the
pregion entries.
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If a process addresses memory locations outside its virtual address space, the
hardware causes an exception condition. For example, if the size of the text region
in Figure 6.5 is 16K bytes and a process accesses virtual address 26K, the hardware
will cause an exception that the operating system handles. Similarly, if a process
tries to access memory without proper permissions, such as writing an address in its
write-protected text region, the hardware will cause an exception. In both these
examples, the process would normally exit; the next chapter provides more detail.

6.2.3 Layout of the Kernel

Although the kernel executes in the context of a process, the virtual memory
mapping associated with the kernel is independent of all processes. The code and
data for the kernel reside in the system permanently, and all processes share it.
When the system is brought into service (booted), it loads the kernel code into
memory and sets up the necessary tables and registers to map its virtual addresses
into physical memory addresses. The kernel page tables are analogous to the page
tables associated with a process, and the mechanisms used to map kernel virtual
addresses are similar to those used for user addresses. In many machines, the
virtual address space of a process is divided into several classes, including system
and user, and each class has its own page tables. When executing in kernel mode,
the system permits access to kernel addresses, but it prohibits such access when
executing in user mode. Thus, when changing mode from user to kernel as a result
of an interrupt or system call, the operating system collaborates with the hardware
to permit kernel address references, and when changing mode back to user, the
operating system and hardware prohibit such references. Other machines change
the virtual address translation by loading special registers when executing in kernel
mode.

Figure 6.6 gives an example of the virtual addresses of the kernel and a process,
where kernel virtual addresses range from 0 to 4M-1 and user virtual addresses
range from 4M up. There are two sets of memory management triples, one for
kernel addresses and one for user addresses, and each triple points to a page table
that contains the physical page numbers corresponding to the virtual page
addresses. The system allows address references via the kernel register triples only
when in kernel mode; hence, switching mode between kernel and user requires only
that the system permit or deny address references via the kernel register triples.

Some system implementations load the kernel into memory such that most
kernel virtual addresses are identical to their physical addresses and the virtual to
physical memory map of those addresses is the identity function. However, the
treatment of the u area requires-virtual to physical address mapping in the kernel-.
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Process (Region) Page Tables Kernel Page Tables

Figure 6.6. Changing Mode from User to Kernel

6.2.4 The U Area

Every process has a private u area, yet the kernel accesses it as if there were only
one u area in the system, that of the running process. The kernel changes its
virtual address translation map according to the executing process to access the
correct u area. When compiling the operating system, the loader assigns the
variable u, the name of the u area, a fixed virtual address. The value of the u area
virtual address is known to other parts of the kernel, in particular, the module that
does the context switch (Section 6.4.3). The kernel knows where in its memory
management tables the virtual address translation for the u area is done, and it can
dynamically change the address mapping of the u area to another physical address.
The two physical addresses represent the u areas of two processes, but the kernel
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accesses them via the same virtual address.
A process can access its u area when it executes in kernel mode but not when it

executes in user mode. Because the kernel can access only one u area at a time by
its virtual address, the u area partially defines the context of the process that is
running on the system. When the kernel schedules a process for execution, it finds
the corresponding u area in physical memory and makes it accessible by its virtual
address.

Address of Virtual Addr No. of Pages

Reg Triple 1

Reg Triple 2

(U Area) Reg Triple 3

Page Table in Process in rage i awe_

2M 4

114K 843K

708K 794K

143K 361K

565K 847K

1879K 184K

290K 176K

450K 209K

770K 477K
Proc A Proc B Proc C Proc D

Figure 6.7. Memory Map of U Area in the Kernel

For example, suppose the u area is 4K bytes long and resides at kernel virtual
address 2M. Figure 6.7 shows a sample memory layout, where the first two
register triples refer to kernel text and data (the addresses and pointers are not
shown), and the third triple refers to the u area for process D. If the kernel wants
to access the u area of process A, it copies the appropriate page table information
for the u area into the third register triple. At any instant, the third kernel register
triple refers to the u area of the currently running process, but the kernel can refer
to the u area of another process by overwriting the entries for the u area page table
address with a new address. The entries for register triples I and 2 do not change
for the kernel, because all processes share kernel text and data.
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6.3 THE CONTEXT OF A PROCESS

The context of a process consists of the contents of its (user) address space and the
contents of hardware registers and kernei data structures that relate to the process.
Formally, the context of a process is the union of its user-level context, register

context, and system-level context) The user-level context consists of the process
text, data, user stack, and shared memory that occupy the virtual address space of
the process. Parts of the virtual address space of a process that periodically do not
reside in main memory because of swapping or paging stilt constitute a part of the

user-ievel context.
The register context consists of the following components.

• The program counter specifies the address of the next instruction the CPU will
execute; the address is a virtual address in kernel or in user memory space.

• The processor status register (PS) specifies the hardware status of the machine
as it relates to the process. For example, the PS usually contains subfields to
indicate that the result of a recent computation resulted in a zero, positive or
negative result, or that a register overfiowed and a carry bit is set, and so on.
The operations that caused the PS to be set were done for a particular process,
hence the PS contains the hardware status of the machine as it relates to the
process. Other important subfields typically found in the PS are those that
indicate the current processor execution level (for interrupts) and the current
and most recent modes of execution (such as kernel, user). The subfield that
shows the current execution mode determines whether a process can execute
privilegecl instructions and whether it can access kernel address space.

• The stack pointer contains the current address of' the next entry in the kernel or
user stack, determined by the mode of execution. Machine architectures dictate
whether the stack pointer points to the next free entry on the stack or to the last
used entry. Similarly, the machine dictates the direction of stack growth
toward numerically higher or lower addresses, but such issues are immaterial
for purposes of this discussion.

• The general-purpose registers contain data generated by the process during its
execution. To simplify the following discussion, let us distinguish two general
purpose registers, register 0 and register 1, for additional use in transmitting
information between processes and the kernel.

The system-level context of a process has a "statie part" (first three items of the
following list) and a "dynamic part" (last two items). A process has one statie
part of the system-level context throughout its lifetime, but it can have a variable
number of dynamic parts. The dynamic part of the system-level context should be

1. The terms user-level context, register context, system-kvel context, and context layers used in this
section are the author's terminology.
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viewed as a stack of context layers that the kernel pushes and pops on occurrence
of various events. The system-level context consists of the following components.

• The process table entry of a process defines the state of a process, as described
in Section 6.1, and contains control information that is always accessible to the
kernel.

• The u area of a process contains process control information that need be
accessed only in the context of the process. General control parameters such as
the process priority are stored in the process table because they must be
accessed outside the process context.

• Pregion entries, region tables and page tables, define the mapping from virtual
to physical addresses and therefore define the text, data, stack, and other
regions of a process. If several processes share common regions, the regions are
considered part of the context of each process, because each process manipulates
the regions independently. Part of the memory management task is to indicate
which parts of the virtual address space of a process are not memory resident.

• The kernel stack contains the stack frames of kernel procedures as a process
executes in kernel mode. Although all processes execute the identical kernel
code, they have a private copy of the kernel stack that specifies their particular
invocation of the kernel functions. For instance, one process may invoke the
creat system call and go to sleep waiting for the kernel to assign a new mode,
and another process may invoke the read system call and go to sleep awaiting
the transfer of data from disk to memory. Both processes execute kernel
functions, but they have separate stacks that contain their private function call
sequence. The kernel must be able to recover the contents of the kernel stack
and the position of the stack pointer to resume execution of a process in kernel
mode. System implementations frequently place the kernel stack in the process
u area, but it is logically independent and can exist in an independently
allocated area of memory. The kernel stack is empty when the process executes
in user mode.

• The dynamic part of the system-level context of a process consists of a set of
layers, visualized as a last-in-first-out stack. Each system-level context layer
contains the necessary information to recover the previous layer, including the
register context of the previous level.

The kernel pushes a context layer when an interrupt occurs, when a process
makes a system call, or when a process does a context switch. It pops a context
layer when the kernel returns from handling an interrupt, when a process returns to
user mode after the kernel completes execution of a system call, or when a process
does a context switch. The context switch thus entails a push and a pop of a
system-level context layer: The kernel pushes the context layer of the old process
and pops the context layer of the new process. The process table entry stores the
necessary information to recover the current context layer.

Figure 6.8 depicts the components that form the context of a process. The left
side of the figure shows the static portion of the context. It consists of the user-
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Figure 6.8. Components of the Context of a Process

level context, containing the process text (instructions), data, stack, and shared
memory (if the process bas any), and the statie part of the system-level context,
containing the process table entry, the u area, and the pregion entries (the virtual
address mapping information for the user-level context). The right side of the
figure shows the dynamic portion of the context. It consists of several stack frames,
where e-ach frame contains the saved register context of the previous layer, and the
kernel stack as the kernel executes in that layer. System context layer 0 is a
dummy layer that represents the user-level context; growth of the stack here is in
the user address space, and the kornel stack is null, The arrow pointing from the
static part of the system-level context to the top layer of the dynamic portion of the
context represents the logica! information stored in the process table entry to enable
the kernel to recover the current context layer of the process.

A process runs within its context or, more precisely, within its current 'Context
layer, The number of context layers is bounded by the number of interrupt levels
the machine supports. For instance, if a machine supports different interrupt levels
for software interrupts, terminals, disks, all other peripherals, and the clock, it
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supports 5 interrupt levels, and hence, a process can contain at most 7 context
layers: 1 for each interrupt level, I for system calls, and 1 for user-level. The 7
layers are sufficient to hold all context layers even if interrupts occur in the "worst"
possible sequence, because an interrupt of a given level is blocked (that is, the CPU
defers it) while the kernel handles interrupts of that level or higher.

Although the kernel always executes in the context of some process, the logical
function that it executes does not necessarily pertain to that process. For instance,
if a disk drive interrupts the machine because it has returned data, it interrupts the
running process and the kernel executes the interrupt handler in a new system-level
context layer of the executing process, even though the data belongs to another
process. Interrupt handlers do not generally access or modify the static parts of the
process context, since those parts have nothing to do with the interrupt.

6.4 SAVING THE CONTEXT OF A PROCESS

As observed in previous sections, the kernel saves the context of a process whenever
it pushes a new system context layer. In particular, this happens when the system
receives an interrupt, when a process executes a system call, or when the kernel
does a context switch. This section considers each case in detail.

6.4.1 Interrupts and Exceptions

The system is responsible for handling interrupts, whether they result from
hardware (such as from the clock or from peripheral devices), from a programmed
interrupt (execution of instructions designed to cause "software interrupts"), or
from exceptions (such as page faults). If the CPU is executing at a lower processor
execution level than the level of the interrupt, it accepts the interrupt before
decoding the next instruction and raises the processor execution level, so that no
other interrupts of that level (or lower) can happen while it handles the current
interrupt, preserving the integrity of kernel data structures (see Section 2.2.2). The
kernel handles the interrupt with the following sequence of operations:

1. It saves the current register context of the executing process and creates
(pushes) a new context layer.

2. It determines the "source" or cause of the interrupt, identifying the type of
interrupt (such as clock or disk) and the unit number of the interrupt, if
applicable (such as which disk drive caused the interrupt). When the system
receives an interrupt, it gets a number from the machine that it uses as an
offset into a table, commonly called an interrupt vector. The contents of
interrupt vectors vary from machine to machine, but they usually contain the
address of the interrupt handler for the corresponding interrupt source and a
way of finding a parameter for the interrupt handler. For example, consider
the table of interrupt handlers in Figure 6.9. If a terminal interrupts the
system, the kernel gets interrupt number 2 from the hardware and invokes the
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Interrupt Number Interrupt Handier

0 clockintr
I diskintr
2 ttyintr
3 devintr
4 softintr
5 otherintr

Figure 6.9. Sample Interrupt Vector

terminal interrupt handler ttyintr.

3. The kernel invokes the interrupt handler. The kernel stack for the new
context layer is logically distinct from the kernel stack of the previous context
layer. Some implementations use the kernel stack of the executing process to
store the interrupt handler stack frames, and other implementations use a
global interrupt stack to store the frames for interrupt handlers that are
guaranteed to return without switching context.

4. The interrupt handler completes it work and returns. The kernel executes a
machine-specific sequence of instructions that restores the register context and
kernel stack of the previous context layer as they existed at the time of the
interrupt and then resumes execution of the restored context layer. The
behavior of the process may be affected by the interrupt handler, since the
interrupt handler may have altered global kernel data structures and
awakened sleeping processes. Usually, however, the process continues
execution as if the interrupt had never happened.   

Figure 6.10 summarizes how the kernel handles interrupts. Some machines do
part of the sequence of operations in hardware or microcode to get better
performance than if all operations were done by software, but there are tradeoffs,
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based on how much of the context layer must be saved and the speed of the
hardware instructions doing the save. The specific operations required in a UNIX
system implementation are therefore machine dependent.

Interrupt Sequence

Kernel Context Layer 3
Execute Clock

Interrupt Handler

Save Register Context
of Disk Interrupt

Handler

Clock Interrupt

Kernel Context Layer 2
Execute Disk

Interrupt Handler

Save Register Context
of Sys Call

Disk Interrupt

Kernel Context Layer I
Execute Sys Call

Save Register Context
User Level

Make System Call
A

Executing User Mode

Figure 6.11. Example of Interrupts

Figure 6.11 shows an example where a process issues a system call (see the next
section) and receives a disk interrupt while executing the system call. While
executing the disk interrupt handler, the system receives a clock interrupt and
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executes the clock interrupt handler. Every time the system receives an interrupt
(or makes a system call), it creates a new context layer and saves the register

context of the previous layer.

6.4.2 System Cali Interface

The system call interface to the kernel has been described in previous chapters as
though it were a normal function eau. Obviously, the usual calling sequence cannot
change the mode of a process from user to kernel. The C compiler uses a
predefined library of functions (the C library) that have the names of the system
calls, thus resolving the system call references in the user program to what would
otherwise be undefined names. The library functions typically invoke an instruction
that changes the process execution mode to kernel mode and causes the kernel to
start executing code for system calls. The ensuing discussion refers to the
instruction as an operating system trap. The library routines execute in user mode,
but the system call interface is, in short, a special case of an interrupt handler.
The library functions pass the kernel a unique number per system eau in a
machine-dependent way — either as a parameter to the operating system trap, in a
particular register, or on the stack — and the kernel thus determines the specific
system call the user is invoking.

algorithm syscall /* algorithm for invocation of system call */
input: system call number
output: result of system call

find entry in system call table corresponding to system call number;
determine number of parameters to system call;
copy parameters from user address space to u area;
save current context for abortive return (described in section 6.4.4);
invoke system call code in kernel;
if (error during execution of system call)

set register 0 in user saved register context to error number;
turn on carry bit in PS register in user saved register context;

1
else

set registers 0, 1 in user saved register context
to return values from system eau;

Figure 6.12. Aigorithm for System Calls
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In handling the operating system trap, the kernel looks up the system call
number in a table to find the address of the appropriate kernel routine that is the
entry point for the system call and to find the number of parameters the system call
expects (Figure 6.12). The kernel calculates the (user) address of the first
parameter to the system call by adding (or subtracting, depending on the direction
of stack growth) an offset to the user stack pointer, corresponding to the number of
parameters to the system call. Finally, it copies the user parameters to the u area
and calls the appropriate system call routine. After executing the code for the
system call, the kernel determines whether there was error. If so, it adjusts register
locations in the saved user register context, typically setting the "carry" bit for the
PS register and copying the error number into the register 0 location. If there were
no errors in the execution of the system call, the kernel clears the "carry" bit in the
PS register and copies the appropriate return values from the system call into the
locations for registers 0 and 1 in the saved user register context. When the kernel
returns from the operating system trap to user mode, it returns to the library
instruction after the trap. The library interprets the return values from the kernel
and returns a value to the user program.

For example, consider the program that creates a file with read and write
permission for all users (mode 0666) in the first part of Figure 6.13. The second
part of the figure shows an edited portion of the generated output for the program,
as compiled and disassembled on a Motorola 68000 system. Figure 6.14 depicts the
stack configurations during the system call. The compiler generates code to push
the two parameters onto the user stack, where the first parameter pushed is the
permission mode setting, 0666, and the second parameter pushed is the variable
narne. 2 The process then calls the library function for the creat system call (address
7a) from address 64. The return address from the function call is 6a, and the
process pushes this number onto the stack. The library function for creat moves
the constant 8 into register 0 and executes a trap instruction that causes the process
to change from user mode to kernel mode and handle the system call. The kernel
recognizes that the user is making a system call and recovers the number 8 from
register 0 to determine that the system call is creat. Looking up an internal table,
the kernel finds that the creat system call takes two parameters; recovering the
stack register of the previous context layer, it copies the parameters from user space
into the u area. Kernel routines that need the parameters can find them in
predictable locations in the u area. When the kernel completes executing the code
for creat, it returns to the system call handler, which checks if the u area error
field is set (meaning there was some error in the system call); if so, the handler sets
the carry bit in the PS register, places the error code into register 0, and returns.
If there is no error, the kernel places the system return code into registers 0 and 1.

2. The order that the compiler evaluates and pushes function parameters is implementation dependent.



Portions of Generated Motorola 68000 Assembler Code

Addr Instruction

# code for main

# library code
13c: mov
142: movq
144: mova
146: rts

for errors in system call
%d0,&0x20e # move data reg 0 to location 20e (errno)
& —Oxl,%d0 # move constant — 1 into data register 0
Tod0,%a0

# return from subroutine

&Ox1b6,(%sp)
&Ox204,—(%sp)

# move 0666 onto stack
# move stack ptr
# and move variable "name" onto stack
# call C library for creat

# move data value 8 into data register 0
# operating system trap
# branch to addr 86 if carry bit clear
# jump to addr 13c
# return from subroutine

Ox7a

for creat
&Ox8,%d0
&Ox0
&0x6 <86>
Ox13c

58: mov
Se: mov

64:

# library code
7a: movq
7e: trap
7e: bcc
80: jmp
86: rts
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char name[l — "file";
main()

int Id;
fd creat(name, 0666);

Figure 6.13. Creat System Call and Generated Code for Motorola 68000

When returning from the system call handler to user mode, the C library checks
the carry bit in the PS register at address 7e: If it is set, the process jumps to
address 13c, takes the error code from register 0 and places it into the global
variable errno at address 20e, places a — 1 in register 0, and returns to the next
instruction after the call at address 64. The return code for the function is —1,
signifying an error in the system call. If, when returning from kernel mode to user
mode, the carry bit in the PS register is clear, the process jumps from address 7e to
address 86 and returns to the caller (address 64): Register 0 contains the return
value from the system call.
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mode value (octal 666)

address of variable name

return address after call to library

1b6

204

6a

Figure 6.14. Stack Configuration for Creat System Call

Several library functions can map into one system call entry point. The system
call entry point deflnes the true syntax and semantics for every system call, but the
libraries frequently provide a more convenient interface. For example, there are
several flavors of the exec system call, such as execl and execle, which provide
slightly different interfaces for one system eau. The libraries for these calls
rrianipulate their parameters to implement the advertised features, but eventually,
map into one kernel entry point.

6.4.3 Context Switch

Referring to the process state diagram in Figure 6.1, we see that the kernel permits
a context switch ander four circumstances: when a process puts itself to sleep,
when it exits, when it returns from a system call to user mode but is not the most
eligible process to run, or when it returns to user mode after the kernel completes
handling an interrupt but is not the most eligible process to run. The kernel
ensures integrity and consistency of internal data structures by prohibiting arbitrary
context switches, as explained in Chapter 2. It makes sure that the state of its data
structures is consistent before it does a context switch: that-is, that all appropriate
updates are done, that queues are properly linked, that appropriate locks are set to
prevent intrusion by other processes, that no data structures are left unnecessarily
locked, and so on. For example, if the kernel allocates a buffer, reads a block in a
file, and goes to sleep waiting for I/O transmission from the disk to complete, it
keeps the buffer locked so that no other process can tamper with the buffer. Bat if
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a process executes the link system call, the kernel releases the lock of the first mode

before locking the second mode to avoid deadlocks.
The kernel must do a context switch at the conclusion of the exit system call,

because there is nothing else for it to do. Similarly, the kernel allows a context

switch when a process enters the sleep state, since a considerable amount of time
may elapse until the process wakes up, and other processes can meanwhile execute.
The kernel allows a context switch when a process is not the most eligible to run to
permit fairer process scheduling: If a process completes a system call or returns
from an interrupt and there is another process with higher priority waiting to run,
it would be unfair to keep the high-priority process waiting.

The procedure for a context switch is similar to the procedures for handling
interrupts and system calls, except that the kernel restores the context layer of a
different process instead of the previous context layer of the same process. The
reasons for the context switch are irrelevant. Similarly, the choice of which process
to schedule next is a policy decision that does not affect the mechanics of the

context switch.

Decide whether to do a context switch,
and whether a context switch is permissible now.

2. Save the context of the "old" process.
3. Find the "best" process to schedule for execution,

using the process scheduling algorithm in Chapter 8.
4, Restore its context.

Figure 635. Steps for a Context Switch

The code that implements the context switch on UNIX systems is usually the
most difficult to understand in the operating system, because function calls give the
appearance of not returning on some occasions and materializing from nowhere on
others. This is because the kernel, in many implementations, saves the process
context at one point in the code but proceeds to execute the context switch and
scheduling algorithms in the context of the "old" process. When it later restores
the context of the process, it resumes execution according to the previously saved
context. To differentiate between the case where the kernel resumes the context of
a new process and the case where it continues to execute in the old context after
having saved it, the return values of critical functions may vary, or the program
counter where the kernel executes may be set artificially.

Figure 6.16 shows a scenario for doing a context switch. The function
save context saves information about the context of the running process and returns
the value 1. Among other pieces of information, the kernel saves the value of the
current program counter (in the function save context) and the value 0, to be used
later as the return value in register 0 from save context. The kernel continues to
execute in the context of the old process (A), picking another process (8) to run
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if (save context()) 1* save context of executing process *1

/* pick another process to run */

resume_context(new_process);
1* never gets here ! */

/* resuming process executes from here */

Figure 6.16. Pseudo-Code for Context Switch

and calling resume_context to restore the new context (of B). After the new
context is restored, the system is executing process B; the old process (A) is no
longer executing but leaves its saved context behind (hence, the comment in the
figure "never gets here"). Later, the kernel will again piek process A to run
(except for the exit case, of course) when another process does a context switch, as
just described. When process A's context is restored, the kernel will set the
program counter to the value process A had previously saved in the function
save_context, and it will also place the value 0, saved for the return value, into
register 0. The kernel resumes execution of process A inside save context even
though it had executed the code up to the call to resume_context before the context
switch. Finally, process A returns from the function save context with the value 0
(in register 0) and resumes execution after the comment line "resuming process
executes from here."

6.4.4 Saving Context for Abortive Returns

Situations arise when the kernel must abort its current execution sequence and
immediateiy execute out of a previously saved context. Later sections dealing with
sleep and signals describe the circumstances when a process must suddenly change
its context; this section explains the mechanisms for executing a previous context.
The algorithm to save a context is setjmp and the algorithm to restore the context
is longjmp. 3 The method is identical to that described for the function save context
in the previous section, except that save_context pushes a new context layer,
whereas setjmp stores the saved context in the u area and continues to execute in

3. These algorithms should not be confused with the library funetions of the same name that users can
can directiy from th& programs (see [SVID However, their functions are sirnilar.

1
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mnegl $1,r0 # error return (-1)
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the old context layer. When the kernel wishes to resume the context it had saved
in setjmp, it does a longimp, restoring its context from the u area and returning a
1 from setjrnp.

6.4.5 Copying Data between System and User Address Space

As presented so far, a process executes in kernel mode or in user mode with no
overlap of modes. However, many system calls examined in the last chapter move
data between kernel and user space, such as when copying system call parameters
from user to kernel space or when copying data from I/O buffers in the read

system call Many machines allow the kernel to reference addresses in user space
directly. The kernel must ascertain that the address being read or written is
accessible as if it had been executing in user mode; otherwise, it could override the
ordinary protection mechanisms and inadvertently read or write addresses outside
the user address space (possibly kernel data structures). Therefore, copying data
between kernel space and user space is an expensive proposition, requiring more
than one instruction.

Figure 6.17. Moving Data from User to System Space on a VAX

Figure 6.17 shows sample VAX code for moving one character from user
address space to kernel address space. The prober instruction checks if one byte at
address argument pointer register+4 (*4(ap)) could be read in user mode (mode
3) and, if not, the kernel branches to address eret, stores — 1 in register 0, and
returns; the character move failed. Otherwise, the kernel moves one byte from the
given user address to register 0 and returns that value to the caller. The procedure
is expensive, requiring five instructions (with the function cal to fubyte) to move 1
character.

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE

So far, this chapter bas described how the kernel switches context between
processes and how it pushes and paps context layers, viewing the user-level context
as a static object that does not change during restoration of the process context.
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However, various system calls manipulate the virtual address space of a process, as
will be seen in the next chapter, doing so according to well defined operations on
regions. This section describes the region data structure and the operations on
regions; the next chapter deals with the system calls that use the region operations.

The region table entry contains the information necessary to describe a region.
In particular, it contains the following entries:

• A pointer to the mode of the file whose contents were originally loaded into the
region

• The region type (text, shared memory, private data or stack)
• The size of the region
• The location of the region in physical memory
• The status of a region, which may be a combination of

— locked
— in demand

in the process of being loaded into memory
— valid, loaded into memory

• The reference count, giving the number of processes that reference the region.

The operations that manipulate regions are to lock a region, unlock a region,
allocate a region, attach a region to the memory space of a process, change the size
of a region, load a region from a file into the memory space of a process, free a
region, detach a region from the memory space of a process, and duplicate the
contents of a region. For example, the exec system call, which overlays the user
address space with the contents of an executable file, detaches old regions, frees
them if they were not shared, allocates new regions, attaches them, and loads them
with the contents of the file. The remainder of this section describes the region
operations in detail, assuming the memory management model described earlier
(page tables and hardware register triples) and the existence of algorithms for
allocation of page tables and pages of physical memory (Chapter 9).

6.5.1 Locking and Unlocking a Region

The kernel has operations to lock and unlock a region, independent of the
operations to allocate and free a region, just as the file system has lock-unlock and
allocate-release operations for modes (algorithms iget and iput). Thus the kernel
can lock and allocate a region and later unlock it without having to free the region.
Similarly, if it wants to manipulate an allocated region, it can lock the region to
prevent access by other processes and later unlock it.

6.5.2 Allocating a Region

The kernel allocates a new region (algorithm allocreg, Figure 6.18) during fork,
exec, and shmget (shared memory) system calls. The kernel contains a region
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table whose entries appear either on a free linked list or on an active linked list.
When it allocates a region table entry, the kernel removes the first available entry
from the free list, places it on the active list, locks the region, and marks its type
(shared or private). With few exceptions, every process is associated with an
exeeutable file as a result of a prior exec can, and allocreg sets the mode field in
the region table entry to point to the mode of the executable file. The Mode
identifies the region to the kernel so that other processes can share the region if
desired. The kernel increments the mode reference Count to prevent other processes
from removing its contents when unlinking it, as will be explained in Section 7.5.
Allocreg returns a locked, allocated region.

algorithm allocreg /* allocate a region data structure */
input: (I) mode pointer

(2) region type
output: locked region

remove region from linkecl list of free regions;
assign region type;
assign region mode pointer;
if (m ode pointer not null)

increment mode reference count;
place region on linked list of active regions;
return(locked region);

1

Figure 6.18. Algorithm for Allocating a Region

6.5.3 Attaching a Region to a Process

The kernel attaches a region during the fork, exec, and shmat system calls to
connect it to the address space of a process (algorithm attachreg, Figure 6.19).
The region may be a newly allocated region or an existing region that the process
will share with other processes. The kernel allocates a free pregion entry, sets its
type field to text, data, shared memory, or stack, and records the virtual address
where the region will exist in the process address space. The process must not
exceed the system-imposed limit for the highest virtual address, and the virtual
addresses of the new region must not overlap the addresses of existing regions. For
example, if the system restricts the highest virtual address of a process to 8
megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address
7.5M. If it is legal to attach the region, the kernel increments the size field in the
process table entry according to the region size, and increments the region reference
count.
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algorithm attachreg /* attach a region to a process */
input: (1) pointer to (locked) region being attached

(2) process to which region is being attached
(3) virtual address in process where region will be attached
(4) region type

output: per process region table entry

allocate per process region table entry for process;
initialize per process region table entry:

set pointer to region being attached;
set type field;
set virtual address field;

check legality of virtual address, region size;
increment region reference count;
increment process size according to attached region;
initialize new hardware register triple for process;
return(per process region table entry);

Figure 6.19. Algorithm for Attachreg

Attachreg then initializes a new set of memory management register triples for
the process: If the region is not already attached to another process, the kernel
allocates page tables for it in a subsequent call to growreg (next section); otherwise,
it uses the existing page tables. Finally, attachreg returns a pointer to the pregion
entry for the newly attached region. For example, suppose the kernel wants to
attach an existing (shared) text region of size 7K bytes to virtual address 0 of a
process (Figure 6.20): it allocates a new memory management register triple and
initializes the triple with the address of the region page table, the process virtual
address (0), and the size of the page table (9 entries).

6.5.4 Changing the Size of a Region

A process may expand or contract its virtual address space with the sbrk system
call. Similarly, the stack of a process automatically expands (that is, the process
does not make an explicit system call) according to the depth of nested procedure
calls. Internally, the kernel invokes the algorithm growreg to change the size of a
region (Figure 6.21). When a region expands, the kernel makes sure that the
virtual addresses of the expanded region do not overlap those of another region and
that the growth of the region does not cause the process size to become greater
than the maximum allowed virtual memory space. The kernel never invokes
growreg to increase the size of a shared region that is already attached to several
processes; therefore, it does not have to worry about increasing the size of a region
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Figure 6.20. Example of Attaching to an Existing Text Region

for one process and causing another process to grow beyond the system limit for
process size. The two cases where the kernel uses growreg on an existing region are
sbrk on the data region of a process and automatie growth of the user stack. Both
regions are private. Text regions and shared memory regions cannot grow after
they are initialized. These cases will become clear in the next chapter.

The kernel now allocates page tables (or extends existing page tables) to
accommodate the larger region and allocates physical memory on systems that do
not support demand ming. When allocating physical memory, it makes sure such
memory is available before invoking growreg; if the memory is unavailable, it
resorts to other measures to increase the region size, as will be covered in Chapter
9. If the process contracts the region, the kernel simply releases memory assigned
to the region. In both cases, it adjusts the process size and region size and
reinitializes the pregion entry and memory management register triples to conform
to the new mapping.

For example, suppose the stack region of a process starts at virtual address
128K and currently contains 6K bytes, and the kernel wants to extend the size of
the region by 1K bytes (1 page). 1f the process size is acceptable and virtual
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algorithm growreg /* change the size of a region */
input: (1) pointer to per process region table entry

(2) change in size of region (may be positive or negative)
output: none

if (region size increasing)

check legality of new region size;
allocate auxiliary tables (page tables);
if (not system supporting demand paging)

allocate physical memory;
initialize auxiliary tables, as necessary;

else /* region size decreasing */

free physical memory, as appropriate;
free auxiliary tables, as appropriate;

do (other) initialization of auxiliary tables, as necessary;
set size field in process table;

Figure 6.21. Algorithm Growreg for Changing the Size of a Region

addresses 134K to 135K — 1 do not belong to another region attached to the
process, the kernel extends the size of the region. It extends the page table,
allocates a page of memory, and initializes the new page table entry. Figure 6.22
illustrates this case.

6.5.5 Loading a Region

In a system that supports demand paging, the kernel can "map" a file into the
process address space during the exec system call, arranging to read individual
physical pages later on demand, as will be explained in Chapter 9. If the kernel
does not support demand paging, it must copy the executable file into memory,
loading the process regions at virtual addresses specified in the executable file. It
may attach a region at a different virtual address from where it loads the contents
of the file, creating a gap in the page table (recall Figure 6.20). For example, this
feature is used to cause memory faults when user programs access address 0
illegally. Programs with pointer variables sometimes use them erroneously without
checking that their value is 0 and, hence, that they are illegal for use as a pointer
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reference. By protecting the page containing address 0 appropriately, processes
that errantly access address 0 incur a fault and abort, allowing programmers to
discover such bugs more quickly.

To bad a file into a region, loadreg (Figure 6.23) accounts for the gap between
the virtual address where the region is attached to the process and the starting
virtual address of the region data and expands the region according to the amount
of memory the region requires. Then it places the region in the state "being loaded
into memory" and reads the region data into memory from the fik, using an
internal variation of the read system eau algorithm.

if the kernel is loading a text region that can be shared by several processes t
is possible that another process could find the region and attempt to use it before its
contents were fully loaded, because the first process could sleep while reading the
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algorithm loadreg /* load a portion of a file into a region 'V
input: (1) pointer to per process region table entry

(2) virtual address to load region
(3) Mode pointer of file for loading region
(4) byte offset in file for start of region
(5) byte count for amount of data to load

output: none

increase region size according to eventual size of region
(algorithm growreg);

mark region state: being loaded into memory;
unlock region;
set up u area parameters for reading file:

target virtual address where data is read to,
start offset value for reading file,
count of bytes to read from file;

read file into region (internal variant of read algorithm);
lock region;
mark region state: completely loaded into memory;
awaken all processes waiting for region to be loaded;

Figure 6.23. Algorithm for Loadreg

file. The details of how this could happen and why locks cannot be used are left for
the discussion of exec in the next chapter and in Chapter 9. To avoid a problem,
the kernel checks a region state flag to see if the region is completely loaded and, if
the region is not loaded, the process sleeps. At the end of loadreg, the kernel
awakens processes that were waiting for the region to be loaded and changes the
region state to valid and in memory.

For example, suppose the kernel wants to load text of size 7K into a region that
is attached at virtual address 0 of a process but wants to leave a gap of 1K bytes at
the beginning of the region (Figure 6.24). By this time, the kernel will have
allocated a region table entry and will have attached the region at address 0 using
algorithms allocreg and attachreg. Now it invokes loadreg, which invokes growreg
twice — first, to account for the 1K byte gap at the beginning of the region, and
second, to allocate storage for the contents of the region — and growreg allocates a
page table for the region. The kernel then sets up fields in the u area to read the
file: It reads 7K bytes from a specified byte offset in the file (supplied as a
parameter by the kernel) into virtual address 1K of the process.
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6.5.6 Freeing a Region

When a region is no longer attached to any processes, the kernel can free the region
and return it to the list of free regions (Figure 6.25). If the region is associated
with an mode, the kernel releases the mode using algorithm iput, corresponding to
the increment of the mode reference count in allocreg. The kernel releases physical
resources associated with the region, such as page tables and memory pages. For
example, suppose the kernel wants to free the stack region in Figure 6.22.
Assuming the region reference count is 0, it releases the 7 pages of physical
memory and the page table.
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algorithm freereg /* free an allocated region */
input: pointer to a (locked) region
output: none

if (region reference count non zero)

P some proeess stil using region */
release region lock;
if (region has an associated mode)

release mode lock;
return;

if (region has associated blode)
release Mode (algorithm iput);

free physical memory stil associated with region;
free auxiliary tables associated with region;
clear region fields;
place region on region free list;
unlock region;

1

Figure 6.25. Algorithm for Freeing a Region

algorithm detachreg /* detach a region from a process */
input: pointer to per process region table entry
output: none

get auxiliary memory management tables for process,
release as appropriate;

decrement process size;
decrement region reference count;
if (region reference count is 0 and region not sticky bit)

free region (algorithm freereg);
else /* either reference count non-0 or region sticky bit on */

free mode lock, if applicable (mode associated with region);
free region lock;

Figure 6.26. Algorithm Detachreg
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6.5.7 Detaching a Region from a Process

The kernel detaches regions in the exec, exit, and shmdt (detach shared memory)
system calls. It updates the pregion entry and severs the connection to physical
memory by invalidating the associated memory management register triple

(algorithm detachreg, Figure 6.26). The address translation mechanisms thus
invalidated apply specifically to the process, not to the region (as in algorithm

freereg). The kernel decrements the region reference count and the size field in the
process table entry according to the size of the region. If the region reference
count drops to 0 and if there is no reason to leave the region intact (the region is
not a shared memory region or a text region with the sticky bit on, as will be
described in Section 7.5), the kernel frees the region using algorithm freereg.
Otherwise, it releases the region and mode locks, which had been locked to prevent
race conditions as will be described in Section 7.5 but leaves the region and its
resources allocated.

Text Private Data

Data Copy

Stac
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algorithm dupreg 1* duplicate an existing region *1
input: pointer to region table entry
output: pointer to a region that looks identical to input region

if (region type shared)
caller will increment region reference count

* with subsequent attachreg call
•1

return(input region pointer);
allocate new region (algorithm allocreg);
set up auxiliary memory management structures, as currently

exists in input region;
allocate physical memory for region contents;
"copy" region contents from input region to newly allocated

region;
return(pointer to allocated region);

Figure 6.28. Algorithm for Dupreg

6.5.8 Duplicating a Region

The fork system cal requires that the kernel duplicate the regions of a process. If
a region is shared (shared text or shared memory), however, the kernel need not
physically eopy the region; instead, it increments the region reference count,
allowing the parent and child processes to share the region. If the region is not
shared and the kernel must physically copy the region, it allocates a new region
table entry, page talie, and physical memory for the region. In Figure 6.27 for
example, process A forked process B and duplicated its regions. The text region of
process A is shared, so process B can share it with proeess A. But the data and
stack regions of process A are private, so process B duplicates them by copying
their contents to newly allocated regions. Even for private regions, a physical copy
of the region is not always necessary, as will be seen (Chapter 9). Figure 6.28
shows the algorithm for dupreg.

6.6 SLEEP

So far, this ehapter has covered all the low-level functions that are executed for the
transitions to and from the state "kernel running" excepi. for the functions that
move a process into the sleep state. k will conclude with a presentation of the
algorithms for sleep, which changes the process state from "kernel running" to
"asleep in memory," and wakeup, which changes the process state from "asleep" to
"ready to run" in memory or swapped.
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Figure 6.29. Typical Context Layers of a Sleeping Process

When a process goes to sleep, it typically does so during execution of a system
call: The process enters the kernel (context layer I) when it executes an operating
system trap and goes to sleep awaiting a resource. When the process goes to sleep,
it does a context switch, pushing its current context layer and executing in kernel
context layer 2 (Figure 6.29). Processes also go to sleep when they incur page
faults as a result of accessing virtual addresses that are not physically loaded; they
sleep while the kernel reads in the contents of the pages.

6.6.1 Sleep Events and Addresses

Recall from Chapter 2 that processes are said to sleep on an event, meaning that
they are in the sleep state until the event occurs, at which time they wake up and
enter a "ready-to-run" state (in memory or swapped out). Although the system
uses the abstraction of sleeping on an event, the implementation maps the set of
events into a set of (kernel) virtual addresses. The addresses that represent the
events are coded into the kernel, and their only significance is that the kernel
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Figure 6.30. Processes Sleeping on Events and Events Mapping into Addresses

expects an event to map into a particular address. The abstraction of the event
does not distinguish how many processes are awaiting the event, nor does the
implementation. As a result, two anomalies arise. First, when an event occurs and
a wakeup call is issued for processes that are sleeping on the event, they all wake
up and move from a sleep state to a ready-to-run state. The kernel does not wake
up one process at a time, even though they may contend for a single locked
structure, and many may go back to sleep after a brief visit to the kernel running
state (recall the discussion in Chapters 2 and 3). Figure 6.30 shows several
processes sleeping on events.

The second anomaly in the implementation is that several events may map into
one address. In Figure 6.30, for example, the events "waiting for the buffer" to
become free and "awaiting I/O completion" map into the address of the buffer
("addr A"). When I/O for the buffer completes, the kernel wakes up all processes
sleeping on both events. Since a process waiting for I/O keeps the buffer locked,
other processes waiting for the buffer to become free will go back to sleep if the
buffer is still locked when they execute. It would be more efficient if there would
be a one-to-one mapping of events to addresses. In practice, however, performance
is not hurt, because the mapping of multiple events into one address is rare and
because the running process usually frees the locked resource before the other
processes are scheduled to run. Stylistically, however, it would make the kernel a
little easier to understand if the mapping were one-to-one.
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algorithm sleep
input: (1) sleep address

(2) priority
output: 1 if process awakened as a result of a signal that process catches,

longjump algorithm if process awakened as a result of a signal
that it does not catch,

0 otherwise;

raise processor execution level to block all interrupts;
set process state to sleep;
put process on sleep hash queue, based on sleep address;
save sleep address in process table slot;
set process priority level to input priority;
if (process sleep is NOT interruptible)

do context switch;
/* process resumes execution here when it wakes up */
reset processor priority level to allow interrupts as when

process went to sleep;
return (0);

1

/* here, process sleep is interruptible by signals */
if (no signal pending against process)

do context switch;
/* process resumes execution here when it wakes up *1
if (no signal pending against process)

reset processor priority level to what it was when
process went to sleep;

return (0);

1
remove process from sleep hash queue, if stilt there;

reset processor priority level to what it was when process went to sleep;
if (process sleep priority set to catch signals)

return(1)
do longjmp algorithm;

Figure 6.31. Sleep Algorithm
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6.6.2 Algorithms for Sleep and Wakeup

Figure 6.31 shows the algorithm for sleep. The kernel first raises the processor
execution level to block out all interrupts so that there can be no race conditions
when it manipulates the sleep queues, and it saves the old processor execution level
so that it can be restored when the process later wakes up. It marks the process
state "asleep," saves the sleep address and priority in the process table, and puts it
onto a hashed queue of sleeping processes. In the simple case (sleep cannot be
interrupted), the process does a context switch and is safely asleep. When a
sleeping process wakes up, the kernel later schedules it to run: The process returns
from its context switch in the sleep algorithm, restores the processor execution level
to the value it had when the process entered the algorithm, and returns.

algorithm wakeup /* wake up a sleeping process */
input: sleep address
output: none

raise processor execution level to block all interrupts;
find sleep hash queue for sleep address;
for (every process asleep on sleep address)

remove process from hash queue;
mark process state "ready to run";
put process on scheduler list of processes ready to run;
clear field in process table entry for sleep address;
if (process not loaded in memory)

wake up swapper process (0);
else if (awakened process is more elligible to run than

currently running process)
set scheduler flag;

restore processor execution level to original level;

Figure 6.32. Algorithm for Wakeup

To wake up sleeping processes, the kernel executes the wakeup algorithm
(Figure 6.32), either during the usual system call algorithms or when handling an
interrupt. For instance, the algorithm iput releases a locked mode and awakens all
processes waiting for the lock to become free. Similarly, the disk interrupt handler
awakens a process waiting for 1/0 completion. The kernel raises the processor
execution level in wakeup to block out interrupts. Then for every process sleeping
on the input sleep address, it marks the process state field "ready to run," removes
the process from the linked list of sleeping processes, places it on a linked list of
processes eligible for scheduling, and clears the field in the process table that
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marked its sleep address. If a process that wake up was not loaded in memory, thi
kernel awakens the swapper process to swap the process into memory (assuming thi

or system is one that does not support demand paging); otherwise, if the awakene(
ns process is more eligible to run than the currently executing process, the kernel set.
'el a scheduler fiag so that it will go through the process scheduling algorithm whei
;ss the process returns to user mode (Chapter 8). Finally, the kernel restores thi
it processor execution level. It cannot be stressed enough: wakeup does not cause

be process to be scheduled immediately; it only makes the process eligible fo
a

scheduling.»ns The discussion above is the simple case of the sleep and wakeup algorithms
vel because it assumes that the process sleeps until the proper event occurs. Processe

frequently sleep on events that are "sure" to happen, such as when awaiting
locked resource (inodes or buffers) or when awaiting completion of disk I/0. Th,
process is sure to wake up because the use of such resources is designed to b
temporary. However, a process may sometimes sleep on an event that is not sure
happen, and if so, it must have a way to regain control and continue execution. Fo
such cases, the kernel "interrupts" the sleeping process immediately by sending it
signal. The next chapter explains signals in great detail; for now, assume that th,
kernel can (selectively) wake up a sleeping process as a result of the signal, arm
that the process can recognize that it has been sent a signal.

For instance, if a process issues a read system call to a terminal, the kernel doe
not satisfy the call until a user types data on the terminal keyboard (Chapter 10)
However, the user that started the process may leave the terminal for an all-da:
meeting, leaving the process asleep and waiting for input, and another user ma:
want to use the terminal. If the second user resorts to drastic measures (such a;
turning the terminal off), the kernel needs a way to recover the disconnecte(
process: As a first step, it must awaken the process from its sleep as the result of
signal. Parenthetically, there is nothing wrong with processes sleeping for a 'om
time. Sleeping process occupy a slot in the process table and could thus lengther
the search times for certain algorithms, but they do not use CPU time, so theil
overhead is small.

To distinguish the types of sleep states, the kernel sets the scheduling priority oi
the sleeping process when it enters the sleep state, based on the sleep priorit)
parameter. That is, it invokes the sleep algorithm with a priority value, based or
its knowledge that the sleep event is sure to occur or not. If the priority is above a

thrn threshold value, the process will not wake up prematurely on receipt of a signal bul
g an will sleep until the event it is waiting for happens. But if the priority value is belov,
s all the threshold value, the process will awaken immediately on receipt of the signal.4
'dier
tsso
ping

4. The term "above" and "below" refer to the normal usage of the terms high priority and low priority
However, the kernel implementation uses integers to measure the priority value, with lower valueE

lavet_ irnplying higher priority.

St of ---

that
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If a signal is already set against a process when it enters the sleep algorithm,
the conditions just stated determine whether the process ever gets to sleep. For
instance, if the sleep priority is above the threshold value, the process goes to sleep
and waits for an explicit wakeup call. If the sleep priority is below the threshold
value, however, the process does not go to sleep but responds to the signal as if the
signal had arrived while it was asleep. If the kernel did not check for signals before
going to sleep, the signal may not arrive again and the process would never wake
up.

When a process is awakened as a result of a signal (or if it never gets to sleep
because of existence of a signal), the kernel may do a /ongimp, depending on the
reason the process originally went to sleep. The kernel does a long imp to restore a
previously saved context if it has no way to complete the system call it is executing,
For instance, if a terminal read call is interrupted because a user turns the terminal
off, the read should not complete but should return with an error indication. This
holds for all system calls that can be interrupted while they are asleep. The process
should not continue normally after waking up from its sleep, because the sleep
event was not satisfied. The kernel saves the process context at the beginning of
most system calls using seymp in anticipation of the need for a later longjmp.

There are occasions when the kernel wants the process to wake up on receipt of
a signal but not do a longjmp. The kernel invokes the sleep algorithm with a
special priority parameter that suppresses execution of the longjmp and causes the
sleep algorithm to return the value I. This is more efficient than doing a setjmp
immediately before the sleep call and then a longjmp to restore the context of the
process as it was before entering the sleep state. The purpose is to allow the kernel
to clean up local data structures. For example, a device driver may allocate private
data structures and then go to sleep at an interruptible priority; if it wakes up
because of a signal, it should free the allocated data structures, then longjmp if
necessary. The user has no control over whether a process does a longjmp; that
depends on the reason the process was sleeping and whether kernel data structures
need modification before the process returns from the system call.

6.7 SUMMARY

This chapter has defined the context of a process. Processes in the UNIX system
move between various logical states according to well-defined transition rules, and
state information is saved in the process table and the u area. The context of a
process consists of its user-level context and its system-level context. The user-level
context consists of the process text, data, (user) stack, and shared memory regions,
and the system-level context consists of a static part (process table entry, u area,
and memory mapping information) and a dynamic part (kernel stack and saved
registers of previous system context layer) that is pushed and popped as the process
executes system calls, handles interrupts, and does context switches. The user-level
context of a process is divided into separate regions, comprising contiguous ranges
of virtual addresses that are treated as distinct objects for protection and sharing.
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The memory management model used to describe the virtual address layout of 2

process assumes the use of a page table for each process region. The kerne
contains various algorithms that manipulate regions. Finally, the chapter describec
the algorithms for sleep and wakeup. The following chapters use the low-leve
structures and algorithms described here, in the explanation of the system calls
process management, process scheduling, and the implementation of memor,
management policies.

6.8 EXERCISES

1 Design an algorithm that translates virtual addresses to physical addresses, given
virtual address and the address of the pregion entry.

2. The AT&T 3B2 computer and the NSC Series 32000 use a two-tiered (segmented,
translation scheme to translate virtual addresses to physical addresses. That is, th.
system contains a pointer to a table of page table pointers, and each entry in the tabl,
can address a fixed portion of the process address space, according to its offset in th,
table. Compare the algorithm for virtual address translation on these machines to th.
algorithm diseussed for the memory model in the text. Consider issues of performanc,
and the space needecl for auxiliary tables.

3. The VAX-11 architecture contains two sets of base and limit registers that th,
machine uses for user address translation. The scheme is the same as that describe•
in the previous problem, exeept that the number of page table pointers is two. Givei
that processes have three regions, text, data, and stack, what is a good way of mappini
the regions into page tables and using the two sets of registers? The stack in th,
VAX-11 architecture grows towards lower virtual addresses. What should the stad
region look like? Chapter 11 will describe another region for shared memory: Hom
should it fit into the VAX-11 arehitecture?

4. Design an algorithm for allocating and freeing memory pages and page tables. Wha
data structures would allow best performance or simplest implementation?

5. The MC68451 memory management unit for the Motorola 68000 Family o
Microprocessors allows allocation of memory segments with sizes ranging from 25(
bytes to 16 megabytes in powers of 2. Each (physical) memory management uni
contains 32 segment descriptors. Describe an efficient rnethod for memory allocation
What should the implementation of regions look like?

6. Consider the virtual address map in Figure 6.5. Suppose the kernel swaps the proces!
out (in a swapping system) or swaps out many pages in the stack region (in a pagink
system). If the process later reads (virtual) address 68,432, must it read the identica
location in physical memory that it would have read before the swap or pagink
operation? If the lower levels of memory management were implemented with page
tables, must the page tables be located in the same locations of physical memory?

* It is possible to implement the system such that the kernel stack grows on top of th<
user stack. Discuss the advantages and disadvantages of such an implementation.

8. When attaching a region to a process, how can the kernel check that the region doe:
not overlap virtual addresses in regions already attached to the process?

9. Consider the algorithm for doing a context switch. Suppose the system contains °nl)
one process that is ready to run. In other words, the kernel picks the process that jusi
saved its context to run. Describe what happens.
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10. Suppose a process goes to sleep and the system contains no processes ready to run,
What happens when the (about to be) sleeping process does its context switch?

11. Suppose that a process executing in user mode uses up its time slice and, as a result of
a clock interrupt, the kernel schedules a new process to run. Show that the context
switch takes place at kernel context layer 2.

12. In a paging system, a process executing in user mode may incur a page fault because
it is attempting to access a page that is not loaded in memory. In the course of
servicing the interrupt, the kernel reads the page from a swap device and goes to sleep.
Show that the context switch (during the sleep) takes place at kernel context layer 2.

13. A process executes the system call

read(fd, buf, 1024);

on a paging system. Suppose the kernel executes algorithm read to the point where it
has read the data into a system buffer, but it incurs a page fault when trying to copy
the data into the user address space because the page containing buf was paged out.
The kernel handles the interrupt by reading the offending page into memory. What
happens in each kernel context layer? What happens if the page fault handler goes to
sleep while waiting for the page to be written into main memory?

14. When copying data from user address space to the kernel in Figure 6.17, what would
happen if the user supplied address was illegal?

* 15. In algorithms sleep and wakeup, the kernel raises the processor execution level to
prevent interrupts. What bad things could happen if it did not raise the processor
execution level? (Hint: The kernel frequently awakens sleeping processes from
interrupt handlers.)

* 16. Suppose a process attempts to go to sleep on event A but has not yet executed the
code in the sleep algorithm to block interrupts; suppose an interrupt occurs before the
process raises the processor execution level in sleep, and the interrupt handler attempts
to awaken all processes asleep on event A. What will happen to the process
attempting to go to sleep? Is this a dangerous situation? 1f so, how can the kernel
avoid it?

17. What happens if the kernel issues a wakeup call for all processes asleep on address A,
but no processes are asleep on that address at the time?

18. Many processes can sleep on an address, but the kernel may want to wake up selected
processes that receive a signal. Assume the signal meehanism can identify the
partieular processes. Describe how the wakeup algorithm should be changed to wake
up one process on a sleep address instead of all the processes.

19. The Multics system contains algorithms for sleep and wakeup with the following
syntax:

sleep(event);
wakeup(event, priority);

That is, the wakeup algorithm assigns a priority to the process it is awakening.
Compare these calls to the sleep and wakeup calls in the UNIX system.



7

PROCESS

CONTROL

The last chapter defined the context of a process and explained the algorithms that
manipulate it; this chapter will describe the use and implementation of the system
calls that control the process context. The fork system call creates a new process,

the exit call terminates process execution, and the wait call allows a parent process
to synchronize its execution with the exit of a child process. Signals inform
processes of asynchronous events. Because the kernel synchronizes execution of
exit and wait via signals, the chapter presents signals before exit and wait. The
exec system call allows a process to invoke a "new" program, overlaying its address
space with the executable image of a file. The brk system call allows a process to
allocate more memory dynamically; similarly, the system allows the user stack to
grow dynamically by allocating more space when necessary, using the same
mechanisms as for brk. Finally, the chapter sketches the construction of the major
loops of the shell and of init.

Figure 7.1 shows the relationship between the system calls described in this
chapter and the memory management algorithms described in the last chapter.
Almost all calls use sleep and wakeup, not shown in the figure. Furthermore, exec
interacts with the file system algorithms described in Chapters 4 and 5.

191
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System Calls Dealing

with Memory Management

System Calls Dealing

with Synchronization
Miscellaneous

fork exec brk exit wait signal kill setpgrp setuid

dupreg
a ttachreg

detachreg
allocreg

attachreg
growreg
loadreg
mapreg 1

growreg detachreg

Figure 7.1. Process System Calls and Relation to Other Algorithms

7.1 PROCESS CREATION

The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent
process, and the newly created process is called the child process. The syntax for
the fork system call is

pid fork();

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system is booted, is the only process not created via fork.

The kernel does the following sequence of operations for fork.

1. It allocates a slot in the process table for the new process.
2. It assigns a unique ID number to the child process.
3. It makes a logical copy of the context of the parent process. Since certain

portions of a process, such as the text region, may be shared between
processes, the kernel can sometimes increment a region reference count
instead of copying the region to a new physical location in memory,

4. It increments file and mode table counters for files associated with the
process.

5. It returns the ID number of the child to the parent process, and a 0 value to
the child process.

The implementation of the fork system call is not trivial, because the child process
appears to start its execution sequence out of thin air. The algorithm for fork
varies slightly for demand paging and swapping systems; the ensuing discussion is
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based on traditional swapping systems but will point out the places that change for

demand paging systems. It also assumes that the system bas enough main memory
available to store the child process. Chapter 9 considers the case where not enough
memory is available for the child process, and it also describes the implementation

of fork on a paging system.

algorithm fork
input: none
output: to parent process, child PID number

to child process, 0

check for available kernel resources;
get free proc table slot, unique PID nurnber;
check that user not running too many processes;
mark child state "being created;"
copy data from patent proc table slot to new child slot;
increment counts on current directory Mode and changed root Of applicahle);
incrernent open file counts in file table;
make copy of patent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;

dummy context contains data allowing child process
to recognize itself, and start running from here
when scheduled;

if (executing process is patent process)

change child state to "ready to run;"
return(child ID); /* from system to user */

else /* executing process is the child process */

initialize u area timing fields;
return(0); 1* to user */

Figure 7.2. Algorithm for Fork

Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it has
available resources to complete the fork successfully. On a swapping system, it
needs space either in memory or on disk to hold the child process; on a paging
system, it bas to allocate memory for auxiliary tables such as page tables. 1f the
resources are unavailable, the fork call fails. The kernel finds a slot in the process
table to start constructing the context of the child process and makes sure that the
user doing the fork does not have too many processes already running. It also picks
a unique ID number for the new process, one greater than the most recently
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assigned ID number. If another process already has the proposed ID number, the
kernel attempts to assign the next higher ID number. When the ID numbers reach
a maximum value, assignment starts from 0 again. Since most processes execute
for a short time, most ID numbers are not in use when ID assignment wraps
around.

The system imposes a (configurable) limit on the number of processes a user
can simultaneously execute so that no user can steal many process table slots,
thereby preventing other users from creating new processes. Similarly, ordinary
users cannot create a process that would occupy the last remaining slot in the
process table, or else the system could effectively deadlock. That is, the kernel
cannot guarantee that existing processes will exit naturally and, therefore, no new
processes could be created, because all the process table slots are in use. On the
other hand, a superuser can execute as many processes as it likes, bounded by the
size of the process table, and a superuser process can occupy the last available slot
in the process table. Presumably, a superuser could take drastic action and spawn
a process that forces other processes to exit if necessary (see Section 7.2.3 for the
kill system call).

The kernel next initializes the child's process table slot, copying various fields
from the parent slot. For instance, the child "inherits" the parent process real and
effective user ID numbers, the parent process group, and the parent nice value, used
for calculation of scheduling priority. Later sections discuss the meaning of these
fields. The kernel assigns the parent process ID field in the child slot, putting the
child in the process tree structure, and initializes various scheduling parameters,
such as the initial priority value, initial CPU usage, and other timing fields. The
initial state of the process is "being created" (recall Figure 6.1).

The kernel now adjusts reference counts for files with which the child process is
automatically associated. First, the child process resides in the current directory of
the parent process. The number of processes that currently access the directory
increases by 1 and, accordingly, the kernel increments its mode reference count.
Second, if the parent process or one of its ancestors had ever executed the chroot
system call to change its root, the child process inherits the changed root and
increments its mode reference count. Finally, the kernel searches the parent's user
file descriptor table for open files known to the process and increments the global
file table reference count associated with each open file. Not only does the child
process inherit access rights to open files, but it also shares access to the files with
the parent process because both processes manipulate the same file table entries.
The effect of fork is similar to that of dup vis-a-vis open files: A new entry in the
user file descriptor table points to the entry in the global file table for the open file.
For dup, however, the entries in the user file descriptor table are in one process; for
fork, they are in different processes.

The kernel is now ready to create the user-level context of the child process. It
allocates memory for the child process u area, regions, and auxiliary page tables,
duplicates every region in the parent process using algorithm dupreg, and attaches
every region to the child process using algorithm attachreg. In a swapping system,
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it copies the contents of regions that are not shared into a new area of main
memory. Recall from Section 6.2.4 that the u area contains a pointer to its process

table slot. Exeept for that field, the contents of the child u area are initially the

same as the contents of the parent process u area, but they can diverge after

completion of the fork. For instance, the parent process may open a new file after

the fork, but the child process does not have automatie access to it.
So far, the kernel has created the statie portion of the child context; now it

creates the dynamic portion. The kernel copies the parent context layer 1,
containing the user saved register context and the kernel stack frame of the fork

system cal'. If the implementation is one where the kernel stack is part of the u

area, the kernel automatically creates the child kernel stack when it creates the

child u area. Otherwise, the parent process must Copy its kernel stack to a private
area of memory associated with the child process. In either case, the kernel stacks
for the parent and child processes are identical. The kernel then creates a dummy
context layer (2) for the child process, containing the saved register context for
context layer (1). k sets the program counter and other registers in the saved
register context so that it can "restore" the child context, even though it had nevel
executed before, and so that the child process can recognize itself as the child wher
it runs. For instance, if the kernel code tests the value of register 0 to decide if thc
process is the parent or the child, it writes the appropriate value in the child savec
register context in layer 1. The mechanism is similar to that discussed for g
context switch in the previous chapter.

When the child context is ready, the parent completes its part of fork 1)3

ehanging the child state to "ready to run (in memory)" and by returning the chil<
process ID to the user. The kernel later schedules the child process for executior
via the normal scheduling algorithm, and the child process "completes" its part o

the fork. The context of the child process was set up by the parent process; to tho
kernel, the child process appears to have awakened after awaiting a resource. Tb
child process executes part of the code for the fork system call, according to th'
program counter that the kernel restored from the saved register context in contex
layer 2, and returns a 0 from the system eau.

Figure 7.3 gives a logica! view of the parent and child processes and thei:
relationship to other kernel data structures immediately after completion of tip
fork system cal'. To summarize, both processes share files that the parent ha<
open at the time of the fork, and the file table reference count for those files is ono
greater than it had been. Similarly, the child process has the same curren
directory and changed root (if applicable) as the parent, and the Mode referencd
count of those directories is one greater than it had been. The processes havi
identical copies of the text, data, and (user) stack regions; the region type and tb
system implementation determine whether the processes can share a physical cop:
of the text region.

Consider the program in Figure 7.4, an example of sharing file access across
fork system cal!. A user should invoke the program with two parameters, the nam
of an existing file and the name of a new file to be created. The process opens
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Parent Process

Figure 7.3. Fork Creating a New Process Context

existing file, creats the new file, and — assuming it encounters no errors — forks
and creates a child process. Internally, the kernel makes a copy of the parent
context for the child process, and the parent process executes in one address space
and the child process executes in another. Each process can access private copies of
the global variables fdrd, fdwt, and c and private copies of the stack variables argc
and argv, but neither process can access the variables of the other process.
However, the kernel copied the u area of the original process to the child process
during the fork, and the child thus inherits access to the parent files (that is, the
files the parent originally opened and created) using the same file descriptors.
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that they alternate execution of their system calls, or even if they alternate the
execution of pairs of read-write system calls, the contents of the target file would
be identical to the contents of the source file. But consider the following scenario
where the processes are about to read the two character sequence "ab" in the
source file. Suppose the parent process reads the character 'a', and the kernel does
a context switch to execute the child process before the parent does the write, If
the child process reads the character 'b' and writes it to the target file before the
parent is rescheduled, the target file will not contain the string "ab" in the proper
place, but "ba". The kernel does not guarantee the relative rates of process
execution.

Now consider the program in Figure 7.5, which inherits file descriptors 0 and 1
(standard input and standard output) from its parent. The execution of each pipe
system call allocates two more file descriptors in the arrays to_par and to_chil,
respectively. The process forks and makes a copy of its context: each process can
access its own data, as in the previous example. The parent process doses its
standard output file (file descriptor I), and dups the write descriptor returned for
the pipe to chil. Because the first free slot in the parent file descriptor table is the
slot just cleared by the close, the kernel copies the pipe write descriptor to slot I in
the file descriptor table, and the standard output file descriptor becomes the pipe
write descriptor for to chil. The parent process does a similar operation to make
its standard input descriptor the pipe read descriptor for to_par. Similarly, the
child process closes its standard input file (descriptor 0) and dups the pipe read
descriptor for to_chil. Since the first free slot in the file descriptor table is the
previous standard input slot, the child standard input becomes the pipe read
descriptor for to chil. The child does a similar set of operations to make its
standard output the pipe write descriptor for to_par. Both processes close the file
descriptors returned from pipe— good programming practice, as will be explained.
As a result, when the parent writes its standard output, it is writing the pipe
to_chil and sending data to the child process, which reads the pipe on its standard
input. When the child writes its standard output, it is writing the pipe to_par and
sending data to the parent process, which reads the pipe on its standard input. The
processes thus exchange messages over the two pipes.

The results of this example are invariant, regardless of the order that the
processes execute their respective system calls. That is, it makes no difference
whether the parent returns from the fork eall before the and or afterwards.
Similarly, it makes no difference in what relative order the processes execute the
system calls until they enter their loops: The kernel structures are identical. If the
child process executes its read system call before the parent does its write, the child
process will sleep until the parent writes the pipe and awakens it. If the parent
process writes the pipe before the child reads the pipe, the parent will not complete
its read of standard input until the child reads its standard input and writes its
standard output. From then on, the order of execution is fixed: Each process
completes a read and write system call and cannot complete its next read system
call until the other process completes a read and write system cal!. The parent



#include <string.h>
char stringE "hello world";
main()

int count, i;
int to_par[2], to_chil[21; /* for pipes to parent, child */

char bun2561;
pipe(to_par);
pipe(to_chil);
if (fork()

/* child process c
close (0)
dup(to_chil[01);
close (1);
dup (to_parE I D ;
close(to_par[1]);
close(to_chil[0]);
close(to_par[0]);
close(to_chil[1]);
for (;;)

if ((count ead(0, buf, sizeof(buf)))
exit();

write (1, buf, count);

/* parent process executes here */
close(1); /* rearrange standard in, out
dup(to chilE1D;
close (0);
dup(to_par[01);
close (to chil[11) ;
close(to_par[01);
close(to chil[01);
close(to_par[li);
for (i 0; i < 15; i++)

write(1, string, strlen(string));
read(0, buf, sizeof(buf));

xecutes here */
/* close old standard input */

/* dup pipe read to standard inpu
/* close old standard output */

/* dup pipe write to standard out
/* close unnecessary pipe descriptors

*1

*1

*1
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Figure 7.5. Use of Pipe, Dup, and Fork
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exits after 15 iterations through the loop; the child then reads "end-of-file" because
the pipe bas no writer processes and exits. If the child were to write the pipe after
the parent had exited, it would receive a signa' for writing a pipe with no reader
processes.

We mentioned above that it is good programming practice to close superfluous
file descriptors. This is truc for three reasons. First, it conserves file descriptors in
view of the system-imposed limit. Second, if a child process execs, the file
descriptors remain assigned in the new context, as will be seen. Closing extraneous
files before an exec allows programs to execute in a clean, surprise-free
environment, with only standard input, standard output, and standard error file
descriptors open. Finally, a read of a pipe returns end-of-file only if no processes
have the pipe open for writing. If a reader process keeps the pipe write descriptor
open, it will never know when the writer processes close their end of the pipe. The
example above would not work properly unless the child doses its write pipe
descriptors before entering its loop.

7.2 SIGNALS

Signals inform processes of the occurrence of asynchronous events. Processes may
send each other signals with the kill system call, or the kernel may send signals
internally. There are 19 signals in the System V (Release 2) UNIX system that
can be classified as follows (see the description of the signal system call in [SVID
85D:

• Signals having to do with the termination of a process, sent when a process
exits or when a process invokes the signal system call with the death of child
parameter;

• Signals having to do with process induced exceptions such as when a process
accesses an address outside its virtual address space, when it attempts to write
memory that is read-only (such as program text), or when it executes a
privileged instruction or for various hardware errors;

• Signals having to do with the unrecoverable conditions during a system call,
such as running out of system resources during exec after the original address
space bas been released (see Section 7.5);

• Signals caused by an unexpected error condition during a system Cali, such as
making a nonexistent system call (the process passed a system call number that
does not carrespond to a legal system eau), writing a pipe that has no reader
processes, or using an illegal "reference" value for the lseek system call. It
would be more consistent to return an error on such system calls instead of
generating a signa', but the use of signals to abort misbehaving processes is
more pragmatic;I
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• Signals originating from a process in user mode, such as when a process wishes

to receive an alarm signal after a period of time, or when processes send

arbitrary signals to each other with the kill system call;

• Signals related to terminal interaction such as when a user hangs up a terminal
(or the "carrier" signal drops on such a line for any reason), or when a user
presses the "break" or "delete" keys on a terminal keyboard;

• Signals for tracing execution of a process.

The discussion in this and in following chapters explains the circumstances under

which signals of the various classes are used.
The treatment of signals has several facets, namely how the kernel sends a

signal to a process, how the process handles a signal, and how a process controls its
reaction to signals. To send a signal to a process, the kernel sets a bit in the signal
field of the process table entry, corresponding to the type of signal received. If the
process is asleep at an interruptible priority, the kernel awakens it. The job of the
sender (process or kernel) is complete. A process can remember different types of
signals, but it has no memory of how many signals it receives of a particular type.
For example, if a process receives a hangup signal and a kill signal, it sets the
appropriate bits in the process table signal field, but it cannot tell how many
instances of the signals it receives.

The kernel checks for receipt of a signal when a process is about to return from
kernel mode to user mode and when it enters or leaves the sleep state at a suitably
low scheduling priority (see Figure 7.6). The kernel handles signals only when a
process returns from kernel mode to user mode. Thus, a signal does not have an
instant effect on a process running in kernel mode. If a process is running in user
mode, and the kernel handles an interrupt that causes a signal to be sent to the
process, the kernel will recognize and handle the signal when it returns from the
interrupt. Thus, a process never executes in user mode before handling outstanding
signals.

Figure 7.7 shows the algorithm the kernel executes to determine if a process
received a signal. The case for "death of child" signals will be treated later in the
chapter. As will be seen, a process can choose to ignore signals with the signal
system call. In the algorithm issig, the kernel simply turns off the signal indication
for signals the process wants to ignore but notes the existence of signals it does not
ignore.

1. The use of signals in some circumstances uncovers errors in programs that do not check for failure of
system calls (private communication from D. Ritchie).
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1
algorithm issig /* test for receipt of signals 41
input: none
output: true, if process received signals that it does not ignore

false otherwise

while (received signal field in process table entry not 0)

find a signal number sent to the process;
if (signal is death of child)

if (ignoring death of child signals)
free process table entries of zombie children;

else if (catching death of child signals)
return (true);

else if (not ignoring signal)
return (true) ;

turn off signal bit in received signal field in process table;

return (false);

Figure 7.7. Algorithm for Recognizing Signals

7.2.1 Handling Signals

The kernel handles signals in the context of the process that receives them so a
process must run to handle signals. There are three cases for handling signals: the
process exits on receipt of the signal, it ignores the signal, or it executes a
particular (user) function on receipt of the signal. The default action is to call exit
in kernel mode, but a process can specify special action to take on receipt of certain
signals with the signal system call.

The syntax for the signal system call is

oldfunction signal(signum, function);

where signum is the signal number the process is specifying the action for, function
is the address of the (user) function the process wants to invoke on receipt of the
signal, and the return value oldfunction was the value of function in the most
recently specified call to signal for sign urn. The process can pass the values 1 or 0
instead of a function address: The process will ignore future occurrences of the
signal if the parameter value is 1 (Section 7.4 deals with the special case for
ignoring the "death of child" signal) and exit in the kernel on receipt of the signal
if its value is 0 (the default value). The u area contains an array of signal-handler
fields, one for each signal defined in the system. The kernel stores the address of
the user function in the field that corresponds to the signal number. Specification
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a gorithm psig * handle signals after recognizing their ex s ence V
input: none
output: none

get signal number set in process table entry;
clear signal number in process table entry;
if (user had called signal sys call to ignore this signal)

return; /* done V
if (user specified function to handle the signa!)

get user virtual address of signal catcher stored in u area;
/* the next statement has undesirable side-effects */
clear u area entry that stored address of signal catcher;
modify user level context:

artificially create user stack frame to mimic
call to signal catcher function;

modify system level context:
write address of signal catcher into program
counter field of user saved register context;

return;

if (signal is type that system should dump core image of process)

create file named "core" in current directory;
write contents of user level context to file "core";

invoke exit algorithm immediately;

Figure 7.8. Algorithm for Handling Signals

to handle signals of one type has no effect on handling signals of other types.
When handling a signa' (Figure 7.8) the kernel determines the signal type and

turns off the appropriate signa' bit in the process table entry, set when the process
received the signal. If the signal handling funetion is set to its default value, the
kernel will dump a "core" image of the process (see exercise 7.7) for certain types
of signals before exiting. The dump is a convenience to programmers, allowing
them to ascertain its causes and, thereby, to debug their programs. The kernel
dumps core for signals that imply something is wrong with a process, such as when
a process executes an illegal instruction -or when it accesses an address outside its
virtual address space. But the kernel does not dump core for signals that do not
imply a program error. For instance, receipt of an interrupt signa', sent when a
user hits the "delete" or "break" key on a terminal, implies that the user wants to
terminate a process prematurely, and receipt of a hangup signa' implies that the
login terminal is no langer "connected." These signals do not imply that anything
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is wrong with the process. The quit signal, however, induces a core dump even
though it is initiated outside the running process. Usually sent by typing the
control-vertical-bar character at the terminal, it allows the programmer to obtain a
core dump of a running process, useful for one that is in an infinite loop.

When a process receives a signal that it had previously decided to ignore, it
continues as if the signal had never occurred. Because the kernel does not reset the
field in the u area that shows the signal is ignored, the process will ignore the signal
if it happens again, too. If a process receives a signal that it had previously decided
to catch, it executes the user specified signal handling function immediately when it
returns to user mode, after the kernel does the following steps.

1. The kernel accesses the user saved register context, finding the program
counter and stack pointer that it had saved for return to the user process.

2. It clears the signal handler field in the u area, setting it to the default state.
3. The kernel creates a new stack frame on the user stack, writing in the values

of the program counter and stack pointer it had retrieved from the user saved
register context and allocating new space, if necessary. The user stack looks
as if the process had called a user-level function (the signal catcher) at the
point where it had made the system call or where the kernel had interrupted
it (before recognition of the signal).

4. The kernel changes the user saved register context: It resets the value for the
program counter to the address of the signal catcher function and sets the
value for the stack pointer to account for the growth of the user stack.

After returning from the kernel to user mode, the process will thus execute the
signal handling function; when it returns from the signal handling function, it
returns to the place in the user code where the system call or interrupt originally
occurred, mimicking a return from the system call or interrupt.

For example, Figure 7.9 contains a program that catches interrupt signals
(SIGINT) and sends itself an interrupt signal (the result of the kill call here), and
Figure 7.10 contains relevant parts of a disassembly of the load module on a VAX
11/780. When the system executes the process, the call to the kill library routine
comes from address (hexadecimal) ee, and the library routine executes the clunk
(change mode to kernel) instruction at address 10a to call the kill system call. The
return address from the system call is 10c. In executing the system call, the kernel
sends an interrupt signal to the process. The kernel notices the interrupt signal
when it is about to return to user mode, removes the address 10c from the user
saved register context, and places it on the user stack. The kernel takes the address
of the function catcher, 104, and puts it into the user saved register context.
Figure 7.11 illustrates the states of the user stack and saved register context.

Several anomalies exist in the algorithm described here for the treatment of
signals, First and most important, when a process handles a signal but before it
returns to user mode, the kernel clears the field in the u area that contains the
address of the user signal handling function. If the process wants to handle the
signal again, it must call the signal system call again. This has unfortunate



**** VAX DISASSEMBLER

_main°
e4:
e6: pushab 0x18 (pc)
ec: pushl $0x2

# next line calls signal
ee: calls $0x2,0x23(pc)
f5: pushl $0x2
f7: dr! —(sp)

# next line calls kill library routine
f9: calls $0x2,0x8(pc)

100: ret
101: halt
102: halt
103: halt

_catcher()
104:
106: ret
107: halt

_kin()
108:

# next line traps into kernel
10a: chmk $0x25
10e: bgequ 0x6 <0x114>
10e: jmp 0x14(pc)
114: dr! r0
116: ret
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#include <signal.h>
main°

extern catchero;
signal(SIGINT, catcher);
kill (0, SIGINT);

1

catcher()

Figure 7.9. Source Code for a Program that Catches Signals

Figure 7.10. Disassembly of Program that Catches Signais
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Figure 7.11. User Stack and Kernel Save Area Before and After Receipt of Signal

ramifications: A race condition results because a second instance of the signal may
arrive before the process has a chance to invoke the system call. Since the process
is executing in user mode, the kernel could do a context switch, increasing the
chance that the process will receive the signal before resetting the signal catcher.

The program in Figure 7.12 illustrates the race condition. The process calls the
signal system call to arrange to catch interrupt signals and execute the function
sigratcher. It then creates a child process, invokes the nice system call to lower its
scheduling priority relative to the child process (see Chapter 8), and goes into an
infinite loop. The child process suspends execution for 5 seconds to give the parent
process time to execute the nice system call and lower its priority. The child
process then goes into a loop, sending an interrupt signal (via kill) to the parent
process during each iteration. If the kill returns because of an error, probably
because the parent process no longer exists, the child process exits. The idea is
that the parent process should invoke the signal catcher every time it receives an
interrupt signal. The signal catcher prints a message and calls signal again to
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#include <signal.h>
sigcatcher0

printf("PID %d caught one\n", getpid0); I* print proc id */
signal(SIGINT, sigcatcher);

1

main()

int ppid;

signal(SIGINT, sigcatcher);

if (fork() 0)

/* give enough time for both procs to set up */
sleep(5); islib function to delay 5 secs */
ppid getppid0; /* get parent id */
for (;;)

if (kill(ppid, SIGINT) —1)
exit();

/* lower priority, greater chance of exhibiting race */
nice(10);
for (;;)

Figure 7.12. Program Demonstrating Race Condition in Catching Signals

catch the next occurrence of an interrupt signa', and the parent continues to
execute in the infinite loop.

It is possible for the following sequence of events to occur, however.

1. The child process sends an interrupt signal to the parent process.
2. The parent process catches the signa' and calls the signal catcher, but the

kernel preempts the process and switches context before it executes the signal

system call again.
3. The child process executes again and sends another interrupt signal to the

parent process.
4. The parent process receives the second interrupt signa', but it has not made

arrangements to catch the signal. When it resumes execution, it exits.

The program was written to encourage such behavior, since invocation of the nice

system call by the parent process induces the kernel to schedule the chi1d process
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more frequently. However, it is indeterminate when this result will occur.
According to Ritchie (private communication), signals were designed as events

that are fatal or ignored, not necessarily handled, and hence the race condition was
not fixed in early releases. However, it poses a serious problem to programs that
want to catch signals. The problem would be solved if the signal field were not
cleared on receipt of the signal. But such a solution could result in a new problem:
If signals keep arriving and are caught, the user stack could grow out of bounds
because of the nested calls to the signal catcher. Alternatively, the kernel could
reset the value of the signal-handling function to ignore signals of that type until
the user again specifies what to do for such signals. Such a solution implies a loss
of information, because the process has no way of knowing how many signals it
receives. However, the loss of information is no more severe than it is for the case
where the process receives many signals of one type before it has a chance to
handle them. Finally, the BSD system allows a process to block and unblock
receipt of signals with a new system call; when a process unblocks signals, the
kernel sends pending signals that had been blocked to the process. When a process
receives a signal, the kernel automatically blocks further receipt of the signal until
the signal handler completes. This is analogous to how the kernel reacts to
hardware interrupts: it blocks report of new interrupts while it handles previous
interrupts.

A second anomaly in the treatment of signals concerns catching signals that
occur while the process is in a system call, sleeping at an interruptible priority.
The signal causes the process to take a longimp out of its sleep, return to user
mode, and call the signal handler. When the signal handler returns, the process
appears to return from the system call with an error indicating that the system call
was interrupted. The user can check for the error return and restart the system
call, but it would sometimes be more convenient if the kernel automatically
restarted the system call, as is done in the BSD system.

A third anomaly exists for the case where the process ignores a signal. If the
signal arrives while the process is asleep at an interruptible sleep priority level, the
process will wake up but will not do a kngjmp. That is, the kernel realizes that
the process ignores the signal only after waking it up and running it. A more
consistent policy would be to leave the process asleep. However, the kernel stores
the signal function address in the u area, and the u area may not be accessible
when the signal is sent to the process. A solution to this problem would be to store
the signal function address in the process table entry, where the kernel could check
whether it should awaken the process on receipt of the signal. Alternatively, the
process could immediately go back to sleep in the sleep algorithm, if it discovers
that it should not have awakened. Nevertheless, user processes never realize that
the process woke up, because the kernel encloses entry to the sleep algorithm in a
"while" loop (recall from Chapter 2), putting the process back to sleep if the sleep
event did not really occur.

Finally, the kernel does not treat "death of child" signals the same as other
signals. In particular, when the process recognizes that it has received a "death of



210 PROCESS CONTROL

child" signal, it turns off the notification of the signa' in the process table entry
signal field and in the default case, it acts as if no signa] had been sent. The effect
of a "death of child" signal is to wake up a process sleeping at interruptible
priority. 1f the process catches "death of child" signals, it invokes the user handler
as it does for other signals. The operations that the kernel does if the process
ignores "death of child" signals will be discussed in Section 7.4. Finally, if a
process invokes the signal system call with "death of child" parameter, the kernel
sends the calling process a "death of child" signal if it has child processes in the
zombie state. Section 7.4 discusses the rationale for calling signal with the "de,ath
of child" parameter.

7.2.2 Process Groups

Although processes on a UNIX system are identified by a unique ID number, the
system must sometimes identify processes by "group." For instance, processes with
a common ancestor process that is a login shell are generally related, and therefore
all such processes receive signals when a user hits the "delete" or "break" key or
when the terminal line hangs up. The kernel uses the process group ID to identify
groups of related processes that should receive a common signa' for certain events.
It saves the group ID in the process table; processes in the same process group have
identical group ID's.

The setpgrp system call initializes the process group number of a process and
sets it equal to the value of its process ID. The syntax for the system call is

grp setpgrp0;

where grp is the new process group number. A child retains the process group
number of its parent during fork. Setpgrp also has important ramifications for
setting up the control terminal of a process (see Section 10.3.5).

7.2.3 Sending Signals from Processes

Processes use the kill system call to send signals. The syntax for the system call is

kill(pid, signum)

where pid identifies the set of processes to receive the signal, and signum is the
signal number being sent. The following list shows the correspondence between
values of pid and sets of processes.

• 1f pid is a positive integer, the kernel sends the signal to the process with
process ID pid.

• If pid is 0, the kernel sends the signal to all processes in the sender's process
group.

• If pid is —1, the kernel sends the signal to all processes whose real user ID
equals the effective user ID of the sender (Section 7.6 will define real and
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effective user ID's). If the sending process has effective user ID of superuser,
the kernel sends the signal to all processes except processes 0 and 1.

• If pid is a negative integer but not — 1, the kernel sends the signal to all
processes in the process group equal to the absolute value of pid.

In all cases, if the sending process does not have effective user ID of superuser, or
its real or effective user ID do not match the real or effective user ID of the
receiving process, kill fails.

—
#include <signal.h>
main 0

register int i;

setpgrp0;
for (i 0; i < 10; i++)

if (fork() 0)

1* child proc
if (i & 1)

setpgrp0;
printf("pid %d pgrp n•• %d\n", getpid(), getpgrpo);
pause(); /* sys call to suspend execution */

SIG1NT);

Figure 7.13. Sample Use of Setpgrp

In the program in Figure 7.13, the process resets its process group number and
creates 10 child processes. When created, each child process has the same process
group number as the parent process, but processes created during odd iterations of
the loop reset their process group number. The system calls getpid and getpgrp
return the process ID and the group ID of the executing process, and the pause
system call suspends execution of the process until it receives a signal. Finally, the
parent executes the kill system call and sends an interrupt signal to all processes in
its process group. The kernel sends the signal to the 5 "even" processes that did
not reset their process group, but the 5 "odd" processes continue to loop.
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7.3 PROCESS TERMINATION

Processes on a UNIX system terminate by executing the exit system eau. An

exiting process enters the zombie state (recall Figure 6.1), relinquishes its
resources, and dismantles its context except for its slot in the process table. The
syntax for the call is

exit (status) ;

where the value of status is returned to the parent process for its examination.
Processes may call exit explicitly or implicitly at the end of a program: the startup
routine linked with all C programs calls exit when the program returns from the
main function, the entry point of all programs. Alternatively, the kernel may
invoke exit internally for a process on receipt of uncaught signals as discussed
above. If so, the value of status is the signal number.

The system imposes no time limit on the execution of a process, and processes
frequently exist for a long time. For instance, processes 0 (the swapper) and 1

(mi:) exist throughout the lifetime of a system. Other examples are getty
processes, which monitor a terminal line, waiting for a user to log in, and special-
purpose administrative processes.

algorithm exit
input: return code for parent process
output: none

ignore all signals;
if (process group leader with associated control terminal)

send hangup signa' to all members of process group;
reset process group for all members to 0;

close all open files (internal version of algorithm close);
release current directory (algorithm iput);
release current (changed) root, if exists (algorithm iput);
free regions, memory associated with process (algorithm freereg);
write accounting record;
make process state zombie
assign parent process ID of all child processes to be init process (I);

if any children were zombie, send death of child signal to init;
send death of child signa' to parent process;
context switch;

Figure 7.14. Algorithm for Exit
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Figure 7.14 shows the algorithm for exit. The kernel first disables signal
handling for the process, because it no longer makes any sense to handle signals. If
the exiting process is a process group leader associated with a control terminal (see
Section 10.3.5), the kernel assumes the user is not doing any useful work and sends
a "hangup" signal to all processes in the process group. Thus, if a user types "end
of file" (control-d character) in the login shell while some processes associated with
the terminal are still alive, the exiting process will send them a hangup signal. The

kernel also resets the process group number to 0 for processes in the process group,
because it is possible that another process will later get the process ID of the
process that just exited and that it too will be a process group leader. Processes
that belonged to the old process group will not belong to the later process group.
The kernel then goes through the open file descriptors, closing each one internally
with algorithm close, and releases the modes it had accessed for the current
directory and changed root (if it exists) via algorithm iput.

The kernel now releases all user memory by freeing the appropriate regions with
algorithm detachreg and changes the process state to zombie. It saves the exit
status code and the accumulated user and kernel execution time of the process and
its descendants in the process table. The description of wait in Section 7.4 shows
how a process gets the timing data for descendant processes. The kernel also writes
an accounting record to a global accounting file, containing various run-time
statistics such as user ID, CPU and memory usage, and amount of I/O for the
process. User-level programs can later read the accounting file to gather various
statistics, useful for performance monitoring and customer billing. Finally, the
kernel disconnects the process from the process tree by making process 1 (init)
adopt all its child processes. That is, process I becomes the legal parent of all live
children that the exiting process had created. If any of the children are zombie,
the exiting process sends init a "death of child" signal so that init can remove them
from the process table (see Section 7.9); the exiting process sends its parent a
"death of child" signal, too. In the typical scenario, the parent process executes a
wait system call to synchronize with the exiting child. The now-zombie process
does a context switch so that the kernel can schedule another process to execute;
the kernel never schedules a zombie process to execute.

In the program in Figure 7.15, a process creates a child process, which prints its
ND and executes the pause system call, suspending itself until it receives a signal.
The parent prints the child's ND and exits, returning the child's PID as its status
code. If the exit call were not present, the startup routine calls exit when the
process returns from main. The child process spawned by the parent lives on until
it receives a signal, even though the parent process is gone.

7.4 AWAITING PROCESS TERMINATION

A process can synchronize its execution with the termination of a child process by
executing the wait system call. The syntax for the system call is
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main()

int child;

if ((child fork()) 0)

printf(
M
child PID Mit", getpid0);

pause0; /* suspend execution until signal *1

/* parent */
printf(child PID %d\n", child);
exit(child);

Figure 7.15. Example of Exit

pid wait(stat addr);

where pid is the process ID of the zombie child, and stat addr is the address
user space of an integer that will contain the exit status code of the child.

Figure 7.16 shows the algorithm for walt. The kernel searches for a zombie
child of the process and, if there are no children, returns an error. If it finds a
zombie child, it extracts the PID number and the parameter supplied to the child's
exit call and returns those values from the system call. An exiting process can
thus specify various return codes to give the reason it exited, but many programs
do not consistently set it in practice. The kernel adds the accumulated time the
child process executed in user and in kernel mode to the appropriate fields in the
parent process u area and, finally, releases the process table slot formerly occupied
by the zombie process. The slot is now available for a new process.

1f the process executing wait has child processes but none are zombie, it sleeps
at an interruptible priority until the arrival of a signal. The kernel does not contain
an explicit wake up call for a process sleeping in wait: such processes only wake up
on receipt of signals. For any signal except "death of child," the process will react
as described above. However, if the signa' is "death of child," the process may
respond differently.

• In the default case, it will wake up from its sleep in walt, and sleep invokes
algorithm issig to check for signals. issig (Figure 7.7) recognizes the special
case of "death of child" signals and returns "false." Consequently, the kernel
does not "long jump" from sleep, but returns to walt. The kernel will restart
the walt loop, find a zombie child — at least one is guaranteed to exist, release
the child's process table slot, and return from the walt system call.

• If the process catches "death of child" signals, the kernel arranges to call the
user signal-handler routine, as it does for other signals.
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algorithm wait
input: address of variable to store status of exiting process
output: child ID, child exit code

if (waiting process has no child processes)
return (error)

for (;;) /* loop until return from inside loop */

if (waiting process has zombie child)

pick arbitrary zombie child;
add child CPU usage to parent;
free child process table entry;
return(child ID, child exit code);

if (process has no children)
return error;

sleep at interruptible priority (event child process exits);

Figure 7.16. Algorithm for Wait

• If the process ignores "death of child" signals, the kernel restarts the wait loop,
frees the process table slots of zombie children, and searches for more children.

For example, a user gets different results when invoking the program in Figure
7.17 with or without a parameter. Consider first the case where a user invokes the
program without a parameter (argc is 1, the program name). The (parent) process
creates 15 child processes that eventually exit with return code I, the value of the
loop variable when the child was created. The kernel, executing wait for the
parent, finds a zombie child process and returns its process ID and exit code. It is
indeterminate which child process it finds. The C library code for the exit system
call stores the exit code in bits 8 to 15 of ret_code and returns the child process ID
for the wait call. Thus ret_code equals 256*1, depending on the value of i for the
child process, and ret_val equals the value of the child process ID.

If a user invokes the above program with a parameter (argc > 1), the (parent)
process calls signal to ignore "death of child" signals. Assume the parent process
sleeps in wait before any child processes exit: When a child process exits, it sends
a "death of child" signal to the parent process; the parent process wakes up because
its sleep in wait is at an interruptible priority. When the parent process eventually
runs, it finds that the outstanding signal was for "death of child"; but because it
ignores "death of child" signals, the kernel removes the entry of the zombie child
from the process table and continues executing wait as if no signal had happened.



#include <signall>
main(argc, argv)

int argc;
char sargvn;

/* child proc here *I
printf("child proc %x\n", getpid());
exit (i);

ret val wait(8Lret code);
printf("wait ret_val %x ret code %x\n", ret_val, ret_code);
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Figure 7.17. Example of Wait and Ignoring Death of Child Signal

The kernel does the above procedure each time the parent receives a "death of
child" signal, until it finally goes through the walt loop and finds that the parent
bas no children. The walt system call then returns a — 1. The difference between
the two invocations of the program is that the parent process waits for the
termination of any child process in the first case but waits for the termination of all
child processes in the second case.

Older versions of the UNIX system implemented the exit and walt system calls
without the "death of child" signa'. Instead of sending a "death of child" signa!,
exit would wake up the parent process. If the parent process was sleeping in the
walt system cal', it would wake up, find a zombie child, and return. 1f it was not
sleeping in the walt system eau, the wake up would have no effect; it would find a
zombie child on its next walt can. Similarly, the int: process would sleep in walt,
and exiting processes would wake it up if it were to adopt new zombie processes.

The problem with that implementation is that it is impossible to clean up
zombie processes unless the parent executes wait. 1f a process creates many
children but never executes walt, the process table will become cluttered with
zombie children when the children exit. For example, consider the dispatcher
program in Figure 7.18. The process reads its standard input file until it
encounters the end of file, creating a child process for each read. However, the
parent process does not wal: for the termination of the child process, because it
wants to dispatch processes as fast as possible and the child process may take too
long until it exits. If the parent makes the signal call to ignore "death of child"



/* child proc here typically does something with buf */

exit (0)
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Figure 7.18. Example Depicting the Reason for Death of Child Signal

signals, the kernel will release the entries for the zombie processes automatically.
Otherwise, zombie processes would eventually fill the maximum allowed slots of the
process table.

7.5 INVOKING OTHER PROGRAMS

The exec system call invokes another program, overlaying the memory space of a
process with a copy of an executable file. The contents of the user-level context
that existed before the exec call are no longer accessible afterward except for exec's
parameters, which the kernel copies from the old address space to the new address
space. The syntax for the system call is

execve(filename, argv, envp)

where filename is the name of the executable file being invoked, argv is a pointer to
an array of character pointers that are parameters to the executable program, and
envp is a pointer to an array of character pointers that are the environment of the
executed program. There are several library functions that call the exec system

call such as exec!, execv, execk, and so on. All call execve eventually, hence it is
used here to specify the exec system call. When a program uses command line
parameters, as in

main(argc, argv)

the array argv is a copy of the argv parameter to exec. The character strings in
the environment are of the form "name...value" and may contain useful information
for programs, such as the user's home directory and a path of directories to search
for executable programs. Processes can access their environment via the global
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algorithm exec
input: (1) file name

(2) parameter list
(3) environment variables list

output: none

get file mode (algorithm namei);
verify file executable, user bas permission to execute;
read file headers, check that it is a bad module;
copy exec parameters from old address space to system space;
for (every region attached to process)

detach all old regions (algorithm detach);
for (every region specified in laad module)

allocate new regions (algorithm allocreg);
attach the regions (algorithm attachreg);
b ad region into memory if appropriate (algorithm loadreg);

1
copy exec parameters into new user stack region;
special processing for setuid programs, tracing;
initialize user register save area for return to user mode;
release mode of file (algorithm iput);

Figure 7.19. Algorithm for Exec

variable environ, initialized by the C startup routine.
Figure 7.19 shows the algorithm for the exee system call. Exee first accesses

the file via algorithm namei to determine if it is an executable, regular
(nondirectory) file and to determine if the user has permission to execute the
program. The kernel then reads the file header to determine the layout of the
executable file.

Figure 7.20 shows the logical format of an executable file as it exists in the file
system, typically generated by the assembler or loader. It consists of four parts:

1. The primary header describes how many sections are in the file, the start
address for process execution, and the magie number, which gives the type of
the executable file.

2. Section headers describe each section in the file, giving the section size, the
virtual addresses the section should occupy when running in the system, and
other information.

3. The sections contain the "data," such as text, that are initially loaded in the
process address space.

4. Miscellaneous sections may contain symbol tables and other data, useful for
debugging.
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Figure 7.20. Image of an Executable File

Specific formats have evolved through the years, but all executable files have
contained a primary header with a magic number.

The magic number is a short integer, which identifies the file as a load module
and enables the kernel to distinguish run-time characteristics about it. For
example, use of particular magic numbers on a PDP 11/70 informed the kernel
that processes could use up to 128K bytes of memory instead of 64K bytes, 2 but the
magic number still plays an important role in paging systems, as will be seen in
Chapter 9.

2. The values of the magic numbers were the values of PDP 11 jump instructions; original versions of
the system executed the instructions, and the program counter jumped to various locations depending
on the size of the header and on the type of executable file being executed! This feature was no
longer in use by the time the system was written in C.
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At this point, the kernel has accessed the Mode for the executable file and bas
verified that it can execute it. It is about to free the memory resources that
currently form the user-level context of the process. But since the parameters to
the new program are contained in the memory space about to be freed, the kernel
first copies the arguments from the old memory space to a temporary buffer until it
attaches the regions for the new memory space.

Because the parameters to exec are user addresses of arrays of character strings,
the kernel copies the address of the character string and then the character string
to kernel space for each character string. It may choose several places to store the
character strings, dependent on the implementation. The more popular places are
the kernel stack (a local array in a kernel routine), unallocated areas (such as
pages) of memory that can be borrowed temporarily, or secondary memory such as
a swapping device.

The simplest implementation for copying parameters to the new user-level
context is to use the kernel stack. But because system configurations usually
impose a limit on the size of the kernel stack and because the exec parameters can
have arbitrary length, the scheme must be combined with another. Of the other
choices, implementations use the fastest method. If it is easy to allocate pages of
memory, such a method is preferable since access to primary memory is faster than
access to secondary memory (such as a swapping device).

After copying the exec parameters to a holding place in the kernel, the kernel
detaches the old regions of the process using algorithm detachreg. Special
treatment for text regions will be discussed later in this section. At this point the
process has no user-level context, so any errors that it incurs from now on result in
its termination, caused by a signal. Such errors include running out of space in the
kernel region table, attempting to bad a program whose size exceeds the system
limit, attempting to bad a program whose region addresses overlap, and others.
The kernel allocates and attaches regions for text and data, loading the contents of
the executable file into main memory (algorithms allocreg, attachreg, and
kadreg). The data region of a process is (initially) divided into two parts: data
initialized at compile time and data not initialized at compile time ("bss"). The
initial allocation and attachment of the data region is for the initialized data. The
kernel then increases the size of the data region using algorithm growreg for the
"bss" data, and initializes the value of the memory to 0. Finally, it allocates a
region for the process stack, attaches it to the process, and allocates memory to
store the exec parameters. 1f the kernel has saved the exec parameters in memory
pages, it can use those pages for the stack. Otherwise, it copies the exec
parameters to the user stack.

The kernel clears the addresses of user signal catchers from the u area, because
those addresses are meaningless in the new user-level context. Signals that are
ignored remain ignored in the new context. Then the kernel sets the saved register
context for user mode, specifically setting the initial user stack pointer and program
counter: The loader had written the initial program counter in the file header. The
kernel takes special action for setuid programs and for process tracing, covered in
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the next section and in Chapter 11, respectively. Finally, it invokes algorithm iput,
releasing the mode that was originally allocated in the namei algorithm at the
beginning of exec. The use of namei and iput in exec corresponds to their use in
opening and closing a file; the state of a file during the exec call resembles that of
an open file except for the absence of a file table entry. When the process
"returns" from the exec system call, it executes the code of the new program.
However, it is the same process it was before the exec; its process ID number does
not change, nor does its position in the process hierarchy. Only the user-level
context changes.

main 0

int status;
if (fork0 0)

execi("/bin/date", "date", 0);
wait(&status);

Figure 7,21. Use of Exec

For example, the program in Figure 7.21 creates a child process that invokes
the exec system call. Immediately after the parent , and child processes return from
fork, they execute independent copies of the program. When the child process is
about to invoke the exec call, its text region consists of the instructions for the
program, its data region consists of the strings "Thin/date" and "date", and its
stack contains the stack frames the process pushed to get to the exec call. The
kernel finds the file "Thin/date" in the file system, finds that all users can execute
it, and determines that it is an executable load module. By convention, the first
parameter of the argument list argv to exec is the (last component of the) path
name of the executable file. The process thus has access to the program name at
user-level, sometimes a useful feature. 3 The kernel then copies the strings
"Min/date" and "date" to an internal holding area and frees the text, data, and
stack regions occupied by the process. It allocates new text, data, and stack regions
for the process, copies the instruction section of the file "Min/date" into the text
region, and copies the data section of the file into the data region. The kernel
reconstructs the original parameter list (here, the character string "date") and puts
it in the stack region. After the exec call, the child process no longer executes the

3. On System V for instance, the standard programs for renaming a file (my), copying a file (cp), and
linking a file (in) are one executable file because they execute similar code. The process looks at the
name the user used to invoke it to determine what it should do.
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old program but executes the program "date": When the "date" program
completes, the parent process receives its exit status from the walt call.

Until now, we have assumed that process text and data occupy separate sections
of an executable program and, hence, separate regions of a running process. There
are two advantages for keeping text and data separate: protection and sharing. 1f
text and data were in the same region, the system could not prevent a process from
overwriting its instructions, because it would not know which addresses contain
instructions and which contain data. But if text and data are in separate regions,
the kernel can set up hardware protection mechanisms to prevent processes from
overwriting their text space. If a process mistakenly attempts to overwrite its text
space, it incurs a protection fault that typically results in termination of the
process.

#include <signal.h>
main()

int i, *ip;
extern , sigcateh 0;

ip (int *)f; /* assign ip to address of function f */
for 0; i < 20; i++)

signal (i, sigcatch);
*ip 1; /* attempt to overwrite address of f
printf(after assign to ip\n");
f0;

f0

sigeatch(n)
int n;

printf(caught sig %d\n", n);
exit (1);

Figure 7.22. Example of Program Overwriting its Text

For example, the program in Figure 7.22 assigns the pointer ip to the address of
the function f" and then arranges to catch all signals. If the program is compiled so
that text and data are in separate regions, the process executing the program incurs
a protection fault when it attempts to write the contents of ip, because it is writingits write-protected text region. The kernel sends a SIGBUS signal to the process on
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an AT&T 3820 computer, although other implementations may send other signals.
The process catches the signal and exits without executing the print statement in

main. However, if the program were compiled so that the program text and data
were part of one region (the data region), the kernel would not realize that a
process was overwriting the address of the function f. The address off contains the

value 1! The process executes the print statement in main but executes an illegal

instruction when it calls f. The kernel sends it a SIGILL signal, and the process

exits.
Having instructions and data in separate regions makes it easier to protect

against addressing errors. Early versions of the UNIX system allowed text and
data to be in the same region, however, because of process size limitations imposed
by PDP machines: Programs were smaller and required fewer "segmentation"
registers if text and data occupied the same region. Current versions of the system
do not have such stringent size limitations on processes, and future compilers will
not support the option to load text and data in one region.

The second advantage of having separate regions for text and data is to allow
sharing of regions. If a process cannot write its text region, its text does not change
from the time the kernel loads it from the executable file. If several processes
execute a file they can, therefore, share one text region, saving memory. Thus,
when the kernel allocates a text region for a process in exec, it checks if the

executable file allows its text to be shared, indicated by its magic number. If so, it
follows algorithm xalloc to find an existing region for the file text or to assign a

new one (see Figure 7.23).
In xalloc, the kernel searches the active region list for the file's text region,

identifying it as the one whose mode pointer matches the Mode of the executable
file. If no such region exists, the kernel allocates a new region (algorithm
allocreg), attaches it to the process (algorithm attachreg), loads it into memory

(algorithm loadreg), and changes its protection to read-only. The latter step
causes a memory protection fault if a process attempts to write the text region. If,
in searching the active region list, the kernel locates a region that contains the file
text, it makes sure that the region is loaded into memory (it sleeps otherwise) and
attaches it to the process. The kernel unlocks the region at the conclusion of xalloc
and decrements the region count later, when it executes detachreg during exit or
exec. Traditional implementations of the system contain a text table that the
kernel manipulates in the way just described for text regions. The set of text
regions can thus be viewed as a modern version of the old text table.

Recall that when allocating a region for the first time in allocreg (Section
6.5.2), the kernel increments the reference count of the mode associated with the
region, after it had incremented the reference count in namei (invoking iget) at the
beginning of exec. Because the kernel decrements the reference count once in iput
at the end of exec, the mode reference count of a (shared text) file being executed
is at least 1: Therefore, if a process unlinks the file, its contents remain intact.
The kernel no longer needs the file after loading it into memory, but it needs the
pointer to the in-core Mode in the region table to identify the file that corresponds
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algorithm xalloc /* allocate and initialize text region *I
input: mode of executable file
output: none

if (executable file does not have separate text region)
return;

if (text region associated with text of Mode)

text region already exists...attach to it */
lock region;
while (contents of region not ready yet)

/* manipulation of reference count prevents total
* removal of the region.
*1

increment region reference count;
unlock region;
sleep (event contents of region ready);
lock region;
decrement region reference count;

attach region to process (algorithm attachreg);
unlock region;
return;

1
no such text region exists---create one

allocate text region (algorithm allocreg); /* region is locked */
if (m ode mode has sticky bit set)

turn on region sticky flag;
attach region to virtual address indicated by mode file header

(algorithm attachreg);
if (file specially formatted for paging system)

Chapter 9 discusses this case */
else /* not formatted for paging system */

read file text into region (algorithm loadreg);
change region protection in per process region table to read only;
unlock region;

Figure 7.23. Algorithm for Allocation of Text Regions

to the region. 1f the reference count were to drop to 0, the kernel Gould reallocate
the in-core mode to another file, compromising the meaning of the mode pointer in
the region table: If a user were to exec the new file, the kernel would find the text
region of the old file by mistake. The kernel avoids this problem by incrementing
the m ode reference count in allocreg, preventing reassignment of the in-core mode.
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When the process detaches the text region during exit or exec, the kernel

decrements the Mode reference count an extra time in freereg, unless the Mode has

the sticky-bit mode set, as will be seen.

m ode Table

in-core ',node
for /bin/date

possible scenario
if Min/date reference

count could be 0

pointer o
in-core Mode

Region Table

text region
for /bin/who

text region
for /bin/date

Figure 7,24. Relationship of mode Table and Region Table for Shared Text

For example, reconsider the exec of "Min/date" in Figure 7.21, and assume
that the file has separate text and data sections. The first time a process executes
"Thin/date", the kernel allocates a region table entry for the text (Figure 7.24) and
leaves the Mode reference count at 1 (after the exec completes). When

"Min/date" exits, the kernel invokes detachreg and freereg, decrementing the
Mode reference count to 0. However, if the kernel had not incremented the Mode
reference count for "Thin/date" the first time it was execed, its reference count
would be 0 and the Mode would be on the free list while the process was running.
Suppose another process execs the file "Min/who", and the kernel allocates the in-
core Mode previously used for "Min/date" to "Thin/who". The kernel would search
the region table for the Mode for "Thin/who" but find the Mode for "Min/date"
instead. Thinking that the region contains the text for "Thin/who", it would
execute the wrong program. Consequently, the mode reference count for running,
shared text files is at least 1, so that the kernel cannot reallocate the Mode.

The capability to share text regions allows the kernel to decrease the startup
time of an execed program by using the sticky-bit. System administrators can set
the sticky-bit file mode with the chmod system call (and command) for frequently
used executable files. When a process executes a file that has its sticky-bit set, the
kernel does not release the memory allocated for text when it later detaches the
region during exit or exec, even if the region reference count drops to 0. The
kernel leaves the text region intact with m ode reference count 1, even though it is
no longer attached to any processes. When another process execs the file, it finds
the region table entry for the file text. The process startup time is small, because it
does not have to read the text from the file system: If the text is still in memory,
the kernel does not do any I/O for the text; if the kernel has swapped the text to a



226 PROCESS CONTROL

swap device, it is faster to bad the text from a swap device than from the file
system, as will be seen in Chapter 9.

The kernel removes the entries for sticky-bit text regions in the following cases:

1. If a process opens the file for writing, the write operations will change the
contents of the file, invalidating the contents of the region.

2. If a process changes the permission modes of the file (ehmod) such that the
sticky-bit is no Jonger set, the file should not remain in the region table.

3. If a process unlinks the file, no process will be able to exec it any more
because the file has no entry in the file system; hence no new processes wili
access the file's region table entry. Because there is no need for the text
region, the kernel can remove it to free some resources.

4. If a process unmounts the file system, the file is no Jonger accessible and ne
processes can exec it, so the logje of the previous case applies.

5. If the kernel runs out of space on the swap device, it attempts to free
available space by freeing sticky-bit regions that are currently unused.
Although other processes may need the text region soon, the kernel has more
immediate needs.

The sticky text region must be removed in the first two cases because it. no Jonger
reflects the current state of the file. The kernel removes the sticky entries in the
last three cases because it is pragmatic to do so. Of course, the kernel frees the
region only if no processes currently use it (its reference count is 0); otherwise, the
system calls open, unlink, and umount (cases 1, 3 and 4) fail.

The scenario for exec is slightly more complicated if a process execs itself. 1f a
user types

sh script

the shell forks and the child process exces the shell and executes the commands in
the file "script". 1f a process execs itself and allows sharing of its text region, the
kernel must avoid deadlocks over the mode and region locks. That is, the kernel
cannot lock the "old" text region, hold the lock, and then attempt to lock the
"new" text region, because the old and new regions are one region. Instead, the
kernel simply leaves the old text region attached to the process, since it will be
reused anyway.

Processes usually invoke exec after fork; the child process thus copies the parent
address space during the fork, discards it during the exec, and executes a different
program image than the parent process. Would it not be more natural to combine
the two system calls into one to invoke a program and run it as a new process?
Ritchie surmises that fork and exec exist as separate system calls because, when
designing the UNIX system, he and Thompson were able to add the fork system
call without having to change much code in the existing kernel (see page 1584 of
[Ritchie 84a]). But separation of the fork and exec system calls is functionally
important too, because the processes can manipulate their standard input and
standard output file descriptors independently to set up pipes more elegantly than if
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the two system calls were combined. The example of the shell in Section 7.

highlights this feature.

7.6 THE USER ID OF A PROCESS

The kernel associates two user IDs with a process, independent of the process IT

the real user ID and the effective user ID or set uid (set user ID). The real user II

identifies the user who is responsible for the running process. The effective user
is used to assign ownership of newly created files, to check file access permission;
and to check permission to send signals to processes via the kill system call. Tin

kernel allows a process to change its effective user ID when it execs a setui
program or when it invokes the setuid system call explicitly.

A setuid program is an executable file that has the setuid bit set in

permission mode field. When a process execs a setuid program, the kernel sets

effective user ID fields in the process table and u area to the owner ID of the fill
To distinguish the two fields, let us call the field in the process table the saved us(
ID. An example illustrates the difference between the two fields.

The syntax for the set uid system call is

set uid (uid)

where uid is the new user ID, and its result depends on the current value of th
effective user ID. If the effective user ID of the calling process is superuser, th
kernel resets the real and effective user ID fields in the process table and u area t
uid. If the effective user ID of the calling process is not superuser, the kern4
resets the effective user ID in the u area to uid if uid has the value of the real use
ID or if it has the value of the saved user ID. Otherwise, the system call return
an error. Generally, a process inherits its real and effective user IDs from it
parent during the fork system call and maintains their values across exec syster

The program in Figure 7.25 demonstrates the setuid system call. Suppose th
le

executable file produced by compiling the program has owner "maury" (user H
Le

8319), its setuid bit is on, and all users have permission to execute it Furthet
assume that users "mjb" (user ID 5088) and "maury" own the files of thei
respective names, and that both files have read-only permission for their owners
User "mjb" sees the following output when executing the program:

re uid 5088 euid 8319
fdmjb — 1 fdmaury 3
after setuid(5088): uid 5088 euid 5088
fdmjb 4 fdmaury —1

Df- after setuid(8319): uid 5088 euid 8319
ly

The system calls getuid and geteuid return the real and effective user IDs of till

if

	

	 process, 5088 and 8319 respectively for user "mjb". Therefore, the process canno
open file "mjb", because its effective user ID (8319) does not have read permissioi
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#include <fentl.h>
main°

int uid, euid, fdmjb, fdmaury;

uid getuid(); I* get real UID */
euid geteuid(); /* get effective UID */
printf("uid %d euid %d\n", uid, euid);

fdmjb open("mjb", O_RDONLY);
fdmaury open("maury", 0 RDONLY);

70printf("fdmjb %d fdmaury .-de\n", fdmjb, fdmaury);

setuid(uid);
printWafter setuid(70d): uid %d euid %d\n", uid, getuid°, geteuid());

fdmjb open("mjb", O_RDONLY);
fdmaury open("maury", 0 RDONLY);
printf("fdmjb %d fdmaury %a\n", fdmjb, fdinaury);

setuid(euid);
printf("after setuid(%d): uid %d euid %d\n", euid, getuid°, geteuid());

Figure 7.25. Example of Execution of Setuid Program

for the file, but the process can open file "maury". After calling setuid to reset the
effective user ID of the process to the real user 1D ("mjb"), the second print
statement prints values 5088 and 5088, the user ID of "mjb". Now the process can
open the file "mjb", because its effective user ID bas read permission on the file,
but the process cannot open file "maury". Finally, after calling setuid to reset the
effective user 1D to the saved setuid value of the program (8319), the third print
statement prints values 5088 and 8319 again. The last case shows that a process
can exec a setuid program and toggle its effective user 1D between its real user 1D
and its execed setuid.

User "maury" sees the following output when executing the program:

uid 8319 euid 8319
fdmjb — 1 fdmaury 3
after setuid(8319): uid 8319 cuid 8313
fdmjb — 1 fdmaury 4
after setuid(8319): uid 8319 euid 8319

The real and effective user IDs are always 8319: the process can never open file
"mjb", but it can open file "maury". The effective user ID stored in the u area is
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the result of the most recent setuid system call or the exec of a set uid program; i.

is solely responsible for determining file access permissions. The saved user ID it
the process table allows a process to reset its effective user ID to it by executing th4

set uid system call, thus recalling its original, effective user ID.

The login program executed by users when logging into the system is a typica

program that calls the setuid system call. Login is setuid to root (superuser) an(

therefore runs with effective user ID root. It queries the user for variou.

information such as name and password and, when satisfied, invokes the setuii
system call to set its real and effective user ID to that of the user trying to log ii
(found in fields in the file "ietc/passwd"). Login finally execs the shell, which run

with its real and effective user IDs set for the appropriate user.
The mkdir command is a typical setuid program. Recall from Section 5.8 tha

only a process with effective user ID superuser can create a directory. To alio\
ordinary users the capability to create directories, the mkdir command is a setuio
program owned by root (superuser permission). When executing mkdir, th
process runs with superuser access rights, creates the directory for the user IA

mknod, and then changes the owner and access permissions of the directory to tha

of the real user.

7.7 CHANGING THE SIZE OF A PROCESS

A process may increase or decrease the size of its data region by using the bri
system call. The syntax for the brk system call is

brk (endds) ;

where endds becomes the value of the highest virtual address of the data region o
the process (called its break value). Alternatively, a user can call

oldendds sbrk(increment);

where increment changes the current break value by the specified number of bytes
and oldendds is the break value before the call. Sbrk is a C library routine tha
calls brk. If the data space of the process increases as a result of the call, thi
newly allocated data space is virtually contiguous to the old data space; that is, till
virtual address space of the process extends continuously into the newly allocate(
data space. The kernel checks that the new process size is less than the systenr
maximum and that the new data region does not overlap previously assigned virtua
address space (Figure 7.26). If all checks pass, the kernel invokes growreg t(
allocate auxiliary memory (e.g., page tables) for the data region and increments th(
process size field. On a swapping system, it also attempts to allocate memory foi
the new space and clear its contents to zero; if there is no room in memory, i
swaps the process out to get the new space (explained in detail in Chapter 9). L
the process is calling brk to free previously allocated space, the kernel releases th(
memory; if the process accesses virtual addresses in pages that it had released,
incurs a memory fault.
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algorithm brk
input: new break value
output: old break value

lock process data region;
if (region size increasing)

if (new region size is illegal)

unlock data region;
return (error);

change region size (algoriiiim growreg);
zero out addresses in new data space;
unlock process data region;

Figure 7.26. Algorithm for Brk

Figure 7.27 shows a program that uses brk and sample output when run on an
AT&T 3B20 computer. After arranging to catch segrnentation Wolation signals by
calling signal, the process calls sbrk and prints out its initial break value. Then it
loops, inerementing a character pointer and writing its contents, until it attempts to
write an address beyond lis data region, causing a segmentation violation signa'.
Catching the signal, catcher calls sbrk to allocate another 256 bytes in the data
region; the process continues from where it was interrupted in the loop, writing into
the newly acquired data space. When it loops beyond the data region again, the
entire procedure repeats. An interesting phenomenon occurs on machines whose
memory is allocated by pages, as on the 3B20. A page is the smallest unit of
memory that is protected by the hardware and so the hardware cannot detect when
a process writes addresses that are beyond its break value but still on a "semilegal"
page. This is shown by the output in Figure 7.27: the first sbrk call returns
140924, meaning that there are 388 bytes left on the page, which contain 2K bytes
on a 3820. But the process will fault only when it addresses the next page, at
address 141312. Catcher adds 256 to the break value, making it 141180, still
below the address of the next page. Hence, the process immediately faults again,
printing the same address, 141312. After the next sbrk, the kernel allocates a new
page of memory, so the process eau address another 2K bytes, to 143360, even
though the break value is not that high. When it faults, it will can sbrk 8 times
until it eau continue. Thus, a process can sometimes cheat beyond its official break
value, although it is poor programming style.

The kernel automatically extends the size of the user stack when it overfiows,
following an algorithm similar to that for brk. A process originally contains
enough (user) stack space to hold the exec parameters, but it overflows its initial
stack area as it pushes data onto the stack during execution. When it overflows its



7.7 CHANGING THE SIZE OF A PROCESS 231

#include <signal.h>
char *cp;
int callno;

main°

char *sbrk();
extern catcher0;

signal(SIGSEGV, catcher);
cp sbrk(0);
printf("original brk value %u\n", cp);
for (;;)

*cp++ 1;

catcher(signo)
int signo;

callno++;
printf("caught sig %d 7odth call at addr %u\n", signo, callno, cp);
sbrk(256);
signal(SIGSEGV, catcher);

original brk value 140924
caught sig 11 1 th call at addr 141312
caught sig 11 2th call at addr 141312
caught sig 11 3th call at addr 143360

. (same address printed out to 10th call)
caught sig 11 10th call at addr 143360
caught sig 11 11th call at addr 145408

(same address printed out to 18th call)
caught sig 11 18th call at addr 145408
caught sig 11 19th call at addr 145408

Figure 7.27. Use of Brk and Sample Output

stack, the machine incurs a memory fault, because the process is attempting to
access a location outside its address space. The kernel determines that the reason
for the memory fault was because of stack overflow by comparing the value of the
(faulted) stack pointer to the size of the stack region. The kernel allocates new
space for the stack region exactly as it allocates space for brk, above. When it
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/* read command line until "end of file" */
while (read(stdin, buffer, numchars))

/* parse command line */
if (P command line contains & */)

amper -• 1;
else

amper 0;
/* for commands not part of the shell command language *1
if (fork°

/* redirection of 10? */
if (/* redirect output */)

fd creat(newfile, fmask);
close(stdout);
dup(fd);
close(fd);
/* stdout is now redirected */

if (/* piping */ )

pipe(fildes);

Figure 7.28. Main Loop of the Shell

returns from the interrupt, the process has the necessary stack space to continue.

7.8 THE SHELL

This chapter has covered enough material to explain how the shell works. The
shell is more complex than described here, but the process relationships are
illustrative of the real program. Figure 7.28 shows the main loop of the shell and
demonstrates asynchronous execution, redirection of output, and pipes.

The shell reads a command line from its standard input and interprets it
according to a fixed set of rules. The standard input and standard output file
descriptors for the login shell are usually the terminal on which the user logged in,
as will be seen in Chapter 10. If the shell recognizes the input string as a built-in
command (for example, commands cd, for, while and others), it executes the
command internally without creating new processes; otherwise, it assumes the
command is the name of an executable file,
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if (fork0 0)

/* first component of command line */
close(stdout);
dup(ffidest li);
close(ffidesi I D;
close(fildes[0]);
/* stdout now goes to pipe *I
/* child process does command */
execlp(commandl, commandl, 0);

1
/* 2nd command component of command line
close(stdin);
dup(Mdes[01);
close(fildes[O]);
close(fildes[11);
/* standard input now comes from pipe */

execve(command2, command2, 0);

/* parent continues over here...
* waas for child to exit if required
*1

if (amper
retid wait(&status);

Figure 7.28. Main Loop of the Shell (continued)

The simplest command lines contain a program name and some parameters,
such as

who
grep —n include *.c
Is —1

The shell forks and creates a child process, which execs the program that the user
specified on the command line. The parent process, the shell that the user is using,
waits until the child process exits from the command and then loops back to read
the next command.

To run a process asynchronously (in the background), as in

nroff —mm bigdocument &

the shell sets an internal variable amper when it parses the ampersand character.
If it finds the variable set at the end of the loop, it does not execute wait but
immediately restarts the loop and reads the next command line.
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The figure shows that the child process has access to a copy of the shell
command line after the fork. To redirect standard output to a file, as in

nroff —mm bigdocument > output

the child creats the output file specified on the command line; if the creat fails (for
creating a file in a directory with wrong permissions, for example), the child would
exit immediately. But if the creat succeeds, the child closes its previous standard
output file and dups the file descriptor of the new output file. The standard output
file descriptor now refers to the redirected output file. The child process closes the
file descriptor obtained from creat to conserve file descriptors for the execed
program. The shell redirects standard input and standard error files in a similar
way.

Figure 7.29. Relationship of Processes for is —I 1 we

The code shows how the shell could handle a command line with a single pipe,
as in

Is —I 1 wc

After the parent process forks and creates a child process, the child creates a pipe.
The child process then forks; it and its child each handle one component of the
command line. The grandchild process created by the second fork executes the first
command component (is): It writes to the pipe, so it closes its standard output file
descriptor, dups the pipe write descriptor, and closes the original pipe write
descriptor since it is unnecessary. The parent (wc) of,the last child process (Is) is
the child of the original shell process (see Figure 7.29). This process (we) closes
its standard input file and dups the pipe read descriptor, causing it to become the
standard input file descriptor. It then closes the original pipe read descriptor since
it no longer needs it, and execs the second command component of the original
command line. The two processes that execute the command line execute
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asynchronously, and the output of one process goes to the input of the other
process. The parent shell meanwhile waits for its child process (wc) to exit, then
proceeds as usual: The entire command line completes when wc exits. The shell
loops and reads the next command.

7.9 SYSTEM BOOT AND THE INIT PROCESS

To initialize a system from an inactive state, an administrator goes through a
"bootstrap" sequence: The administrator "boots" the system. Boot procedures
vary according to machine type, but the goal is common to all machines: to get a
copy of the operating system into machine memory and to start executing it. This
is usually done in a series of stages; hence the name bootstrap. The administrator
may set switches en the computer console to specify the address of a special hard-
coded bootstrap program or just push a single button that instructs the machine to
b ad a bootstrap program from its microcode. This program may consist of only a
few instructions that instruct the machine to execute another program. On UNIX
systems, the bootstrap procedure eventually reads the boot block (block 0) of a
disk, and loads it into memory. The program contained in the boot block loads the
kernel from the file system (from the file "/unix", for example, or another name
specified by an administrator). After the kernel is loaded in memory, the boot
program transfers control to the start address of the kernel, and the kernel starts
running (algorithm start, Figure 7.30).

The kernel initializes its internal data structures. For instance, it constructs the
linked lists of free buffers and inodes, constructs hash queues for buffers and inodes,
initializes region structures, page table entries, and so on. After completing the
initialization phase, it mounts the root file system onto root ("1") and fashions the
environment for process 0, creating a u area, initializing slot 0 in the process table
and making root the current directory of process 0, among other things.

When the environment of process 0 is set up, the system is running as process 0.
Process 0 forks, invoking the fork algorithm directly from the kernel, because it is
executing in kernel mode. The new process, process 1, running in kernel mode,
creates its user-level context by allocating a data region and attaching it to its
address space. It grows the region to its proper size and copies code (described
shortly) from the kernel address space to the new region: This code now forms the
user-level context of process I. Process 1 then sets up the saved user register
context, "returns" from kernel to user mode, and executes the code it had just
copied from the kernel. Process 1 is a user-level process as opposed to process 0,
which is a kernel-level process that executes in kernel mode. The text for process 1,
copied from the kernel, consists of a call to the exec system call to execute the
program "tetc/init". Process 1 calls exec and executes the program in the normal
fashion. Proeess 1 is commonly called init because it is responsible for initialization
of new processes.

Why does the kernel copy the code for the exec system call to the user address
space of process 1? It could invoke an internal version of exec directly from the
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algorithm start 1* system startup procedure */
input: none
output: none

initialize all kernel data structures;
pseudo-mount of root;
hand-craft environment of process 0;
fork process 1:

/* process 1 in here */
allocate region;
attach region to init address space;
grow region to accommodate code about to copy in;
copy code from kernel space to init user space to exec init;
change mode: return from kernel to user mode;
/* init never gets here---as result of above change mode,
* init exec's ietc/init and becomes a "normar user process
* with respect to invocation of system calls
*1

/* proc 0 continues here */
fork kernel processes;
/* process 0 invokes the swapper to manage the allocation of
* process address space to main memory and the swap devices,
* This is an infinite loop; process 0 usually sleeps in the
* loop unless there is work for it to do.
*1

execute code for swapper algorithrn;

Figure 7.30. Algorithm for Booting the System

kernel, but that would be more complicated than the implementation just described.
To follow the latter procedure, exec would have to parse file names in kernel space,
not just in user space, as in the current implementation. Such generality, needed
only for init, would complicate the exec code and slow its performance in more
common cases.

The init process (Figure 7.31) is a process dispatcher, spawning processes that
allow users to log in to the system, among others. Init reads the file "tetchnittab"
for instructions about which processes to spawn. The file "/etc/inittab" contains
lines that contain an "id," a state identifier (single user, multi-user, etc.), an
"action" (see exercise 7.43), and a program specification (see Figure 7.32). Init
reads the file and, if the state in which it was invoked matches the state identifier
of a line, creates a process that executes the given program specification. For
example, when invoking init for the multi-user state (state 2), init typically spawns
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algorithm init /* init process, process I of the system */
input; none
output: none
t

fd — open("/etc/inittab", O_RDONLY);
while (line_read(fd, buffer))
t

/* read every line of file */
if (invoked state !, buffer state)

continue; /* loop back to while *1
/* state matched */
if (fork() ..... 0)
t

execl("process specified in buffer");
exit();

)
/* init process does not wait 'V
/* loop back to while */

)

while ((id ..., wait((int *) 0)) ' -1)
f

1* check here if a spawned child died;
* consider respawning it */

/* otherwise, just continue */
I

Figure 7.31. Algorithm for Init

Format: identifier, state, action, process specification
Fields separated by colons.
Comment at end of line preceded by '#'

co:sespawn:/etc/getty console console # Console in machine room
46:2:respawn:/etc/getty -t 60 tty46 480011 # comments here 

Figure 7.32. Sample Inittab File
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getty processes to monitor the terminal lines configured on a system. When a user
successfully logs in, getty goes through a login procedure and execs a login shell,
described in Chapter 10, Meanwhile, init executes the walt system call, monitoring
the death of its child processes and the death of processes "orphaned" by exiting
parents.

Processes in the UNIX system are either user processes, daemon processes, or
kernel processes. Most processes on typical systems are user processes, associated
with users at a terminal. Daernon processes are not associated with any users but
do system-wide functions, such as administration and control of networks, execution
of time-dependent activities, line printer spooling, and so on. Init may spawn
daemon processes that exist throughout the lifetime of the system or, on occasion,
users may spawn them. They are like user processes in that they run at user mode
and make system calls to access system services.

Kernel processes execute only in kernel mode. Process 0 spawns kernel
processes, such as the page-reclaiming process vhand, and then becomes the
swapper process. Kernel processes are similar to daemon processes in that they
provide system-wide services, but they have greater control over their execution
priorities since their code is part of the kernel. They can access kernel algorithms
and data structures directly without the use of system calls, so they are extremely
powerful. However, they are not as fiexible as daemon processes, because the
kernel must be recompiled to change them.

7.10 SUMMARY

This chapter has discussed the system calls that manipulate the process context and
control its execution. The fork system call creates a new process by duplicating all
the regions attached to the parent process. The tricky part of the fork
implementation is to initialize the saved register context of the child process, so that
it starts executing inside the fork system call and recognizes that it is the child
process. All processes terminate in a call to the exit system call, which detaches
the regions of a process and sends a "death of child" signal to its parent. A parent
process can synchronize execution with the termination of a child process with the
wait system call. The exec system call allows a process to invoke other programs,
overlaying its address space with the contents of an executable file. The kernel
detaches the old process regions and allocates new regions, corresponding to the
executable file. Shared-text files and use of the sticky-bit mode improve memory
utilization and the startup time of execed programs. The system allows ordinary
users to execute with the privileges of other users, possibly superuser, with setuid
programs and use of the setuid system call. The brk system call allows a process to
change the size of its data region. Processes control their reaction to signals with
the signal system cal'. When they catch a signa', the kernel changes the user stack
and the user saved register context to set up the call to the signa' handler.
Processes can send signals with the kill system cal', and they can control receipt of
signals designated for particular process groups through the setpgrp system call.
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The shell and init use standard system calls to provide sophisticated functions
normally found in the kernel of other systems. The shell uses the system calls to
interpret user commands, redirecting standard input, standard output and standard
error, spawning processes, setting up pipes between spawned processes,
synchronizing execution with child processes, and recording the exit status of
commands. Similarly, init spawns various processes, particularly to control
terminal execution. When such a process exits, init can respawn a new process for
the same function, if so specified in the file "ietchnittab".

7.11 EXERCISES

1. Run the program in Figure 7.33 at the terminal. Redirect its standard output to a file
and compare the results.

[ main()

printf("hello\n");
if (fork() 0)

printf("world\n")',

Figure 7.33. Fork and the Standard I/O Package

2. Describe what happens in the program in Figure 7.34 and compare to the results of
Figure 7.4.

3. Reconsider the program in Figure 7.5, where two processes exchange messages through
a pair of pipes. What happens if they try to exchange messages through one pipe?

4. In general, could there be any loss of information if a process receives several instances
of a signal before it has a chance to react? (Consider a process that counts the
number of interrupt signals it receives.) Should this problem be fixed?

5. Describe an implementation of the kill system call.
6. The program in Figure 7.35 catches "death of child" signals, and like many signal-

catcher functions, resets the signal catcher. What happens in the program?
7. When a process receives certain signals and does not handle them, the kernel dumps

an image of the process as it existed when it received the signal. The kernel creates a
file called "core" in the current directory of the process and copies the u area, text,
data, and stack regions into the file. A user can subsequently investigate the dumped
image of the process with standard debugging tools. Describe an algorithm the kernel
could follow to create a core file. What should the algorithm do if a file "core"
already exists in the current directory? What should the kernel do if multiple
processes dump "core" files in one directory?

8. Reconsider the program in Figure 7.12 where a process bombards another process with
signals that the second process catches. Discuss what would happen if the signal-
handling algorithm were changed in either of the following two ways:
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#include <fenti,h>
int fdrd, fdwt;
char c;

main(argc, argv)
int argc;
char *argv[];

if (argc != 3)
exit(1);

fork();

if ((fdrd = open(argv[11, O_RDONLY)) — 1)
exit( 1);

if (((fdwt = creat(argv[2], 0666)) -----  1) &&
((fdwt open(argv[2], O_WRONLY)) —1))

exit(1);
rdvvrt();

rdwrt()

for (;;)

if (read(fdrd, &c, 1) != 1)
return;

write(fdwt, &c, 1);

Figure 7.34. Program where Parent and Child Do Not Share File Access

• The kernel does not change the signal-handling function until the user explicitly
requests to do so;

• The kernel causes the process to ignore the signal until the user calls signal again.
9. Redesign the algorithm for handling signals such that the kernel automatically

arranges for a process to ignore further instances of a signal it is handling until the
signal handler returns. How can the kernel find out when the signal handler, running
in user mode, returns? This specification is closer to the treatment of signals on BSD
systems.

* 10. If a process receives a signal while sleeping at an interruptible priority in a system call,
it long/nips out of the system call. The kernel arranges for the process to execute its
signal handler, if specified; when the process returns from the signal handler, it
appears to have returned from the system call with an error indication (interrupted)
on System V. The BSD system automatically restarts the system call for the process.
How can this feature be implemented?
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#include <signal.h>
main 0

extern catcher();

signa' (S1GCLD, catcher);
if (fork -- 0)

exit();
/* pause suspends execution until receipt of a signa! *I
pause();

catcher 0

printf("parent caught sig\n");
signal(SIGCLD, catcher);

Figure 7.35. Catching Death of Child Signals

11. The conventional implementation of the mkdir command invokes the mknod system
call to create the directory node, then calls the link system call twice to link the
directory entries "." and ".." to the directory node and its parent directory. Without
the three operations, the direetory will not be in the correct format. What happens if
mkdir receives a signa' while executing? What if the signa! is S1GKILL, which
cannot be caught? Reconsider this problem if the system were to implement a mkdir
system can,

12. A process checks for signals when it enters or leaves the sleep state (if it sleeps at an
interruptible priority) and when it returns to user mode from the kernel after
completion of a system call or after handling an interrupt. Why does the process not
have to check for signals when entering the system for execution of a system call?

* 13. Suppose a proce,ss is about to return to user mode after executing a system call, and it
finds that it laas no outstanding signals. Immediately after checking, the kernel
handles an interrupt and sends the process a signa'. (For instance, a user hits the
"break" key.) What does the process do when the kernel returns from the interrupt?

* 14. If several signals are sent to a process simultaneously, the kernel handles them in the
order that they are listed in the manual. Given the three possibilities for responding to
receipt of a signal — catching the signals, exit ing after dumping a core image of the
process, and exiting without dumping a vore image of the process — is there a better
order for handling simultaneous signals? For example, if a process receives a guit
signa] (causes a core dump) and an interrupt signal (no core dump), does it make
more sense to handle the quit signa' or the interrupt signa' first?

15. Implement a new system call

newpgrp(pid, ngrp);

that resets the process group of another process, identified by process ID pid to ngrp.
Discuss possible uses and dangers of such a system call.
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16. Comment on the following statement: A process can sleep on any event in the wait
algorithm, and the system would work correctly.

17. Consider implementation of a new system call,

nowait(pid);

where the process ID pid identifies a child of the process issuing the call. When
issuing the call, the process informs the kernel that it will never wait for the child

process to exit, so that the kernel can immediately clean up the child process slot when
the child dies. How could the kernel implement such a solution? Discuss the merits
of such a system call and compare it to the use of "death of child" signals.

18. The C loader automatically includes a startup routine that calls the function main in
the user program. If the user program does not call exit internally, the startup routine

calls exit for the user after the return from main. What would happen if the call to
exit were missing from the startup routine (because of a bug in the loader) when the
process returns from main?

19. What information does wait find when the child process invokes exit without a
parameter? That is, the child process calls exit0 instead of exiaid . If a programmer
consistently invokes exit without a parameter, how predictable is the value that wait
examines? Demonstrate and prove your claim.

20. Describe what happens when a process executing the program in Figure 7.36 execs
itself. How does the kernel avoid deadlocks over locked modes?

main(argc, argv)
int argc;
char *argvn;

execl(argv[0], argv[0], 0);

Figure 7.36. An Interesting Program

21. By convention, the first argument to exec is the (last component of the) file name that
the process executes. What happens when a user executes the program in Figure 7.37.
What happens if "a.out" is the load module produced by compiling the program in
Figure 7.36?

22. Suppose the C language supported a new data type "read-only," such that a process
incurs a protection fault whenever it attempts to write "read-only" data. Describe an
implementation. (Hint: Compare to shared text.) What algorithms in the kernel
change? What other objects could one consider for implementation as regions?

23. Describe how the algorithms for open, chmod, unlink, and unmount change for
sticky-bit files. For example, what should the kernel do with a sticky-bit file when the
file is unlinked?

24. The superuser is the only user who has permission to write the password file
"ietcipasswd", preventing malicious or errant users from corrupting its contents. The
passwd program allows users to change their password entry, but it must make sure
that they do not change other people's entries. How should it work?
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main()

if (fork()

execl("a.out", 0);
printf("exec failed\n");

1

Figure 7.37. An Unconventional Program

* 25. Explain the security problem that exists if a setuid program is not write-protected.
26. Execute the following sequence of shell commands, where the file "a.out" is an

executable file.

chmod 4777 a.out
chown root a.out

The chmod command turns on the setuid bit (the 4 in 4777), and the owner "root" is
conventionally the superuser. Can execution of such a sequence allow a simple breach
of security?

27. What happens if you run the program in Figure 7.38? Why?

main()

char *endpt;
char *sbrk();
int brk();

endpt sbrk(0);
printf("endpt %ud after sbrk\n", (int) endpt);

while (endpt--)

if (brk(endpt) mar —1)

printfebrk of %ud failed\n", endpo;
exit();

Figure 7.38. A Tight Squeeze

28. The library routine malloc allocates more data space to a process by invoking the brk
system call, and the library routine free releases memory previously allocated by
mailoc. The syntax for the calls is
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ptr malloc(size);
free (ptr);

where size is an unsigned integer representing the number of bytes to allocate, and pi,
is a character pointer that points to the newly acquired space. When used as a
parameter for free, ptr must have been previously returned by malloc. Implement the
library routines.

29. What happens when running the program in Figure 7.39? Compare to the results
predicted by the system manual.

main 0

int i;
char *cp;
extern char *sbrk0;

cp sbrk(10);
for 0 i < 10; i++)

*cp++ 'a' + i;
sbrk(-10);
cp sbrk(10);
for (1 ... 0; i < 10; i++)

printf("char "%d '7oc'\n", i,*cp++);

Figure 7.39. A Simple Sbrk Example

30. When the shell creates a new process to execute a command, how does it know that
the file is executable? If it is executable, how does it distinguish between a shell script
and a file produced by a compilation? What is the correct sequence for checking the
above cases?

31. The shell symbol ">>" appends output to the specified file: for example,

run >> outfile

creats the file "outfile" if it does not already exist and writes the file, or it opens the
file and writes after the existing data. Write code to implement this.

main()

exit(0);

Figure 7.40. Truth Program

32. The shell tests the exit return from a process, treating a 0 value as true and a non-0
value as false (note the inconsistency with C). Suppose the name of the executable
file corresponding to the program in Figure 7.40 is truth. Describe what happens
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when the shell executes the following loop. Enhance the sample shell code to handle
this case.

while truth
do
truth &
done

33. Why must the shell create the processes to handle the two command components of a
pipeline in the indicated order (Figure 7.29)?

34. Make the sample code for the shell loop more genera] in how it handles pipes. That is,
allow it to handle an arbitrary number of pipes on the command line.

35. The environment variable PATH describes the ordered set of directories that the shell
should search for executahle files. The library functions execlp and execvp prepend
directories listed in PATH to file name arguments that do not begin with a slash
character. lmplement these functions.

* 36. A superuser should set up the PATH environment variable so that the shell does not

search for executable files in the current directory. What security problem exists if it
attempts to execute files in the current directory?

37. How does the shell handle the cd (change directory) command? For the command
line

cd pathname &

what does the shell do?
38. When the user types a "delete" or "break" key at the terminal, the terminal driver

sends an interrupt signa' to all processes in the process group of the login shell. The
user intends to stop processes spawned by the shell but probably does not want to log
off. How should the shell loop in Figure 7.28 be enhanced?

39. The user can type the command

nohup commandjine

to disallow reccipt of hangup signals and guit signals in the processes generated for
"command line." How should the shell loop in Figure 7.28 handle this?

40. Consider the sequence of shell commands

nroff —mm bigfilel > biglout &
nroff —mm bigfile2 > big2out

and reexamine the shell loop shown in Figure 7.28. What would happen if the first
nroff finished executing before the second one? How should the code for the shell loop
be modified to handle this case correctly?

41. When executing untested programs from the shell, a common error message printed by
the shell is "Bus error — core dumped." The program apparently did something
illegal; how does the shell know that it should print an error message?

42. Only one Mit process can execute as process 1 on a system. However, a system
administrator can change the state of the system by invoking init. For example, the
system comes up in single user state when it is booted, meaning that the system
console is active but user terminals are not. A system administrator types the
command
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init 2

at the console to change the state of init to state 2 (multi-user). The console shell
forks and execs Mit. What should happen in the system, given that only one init
process should be active?

43. The format of entries in the file "ietc/inittab" allows specification of an action
associated with each generated process. For example, the action typically associated
with getty is respawn, meaning that Mit should recreate the process if it dies.
Practically, this means that Mit will spawn another getty process when a user logs off,
allowing another user to access the now inoperative terminal line. How can init
implement the respawn action?

44. Several kernel algorithms require a search of the process table. The search time can
be improved by use of parent, child, and sibling pointers: The parent pointer points to
the parent of the process, the child pointer points to any child process, and the sibling
pointer points to another process with the same parent. A process finds all its children
by following its child pointer and then following the sibling pointers (loops are illegal).
What algorithms benefit from this implementation? What algorithms must remain the
same?
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AND TIME

On a time sharing system, the kernel allocates the CPU to a process for a period of
time called a time slice or time quantum, preempts the process and schedules
another one when the time slice expires, and reschedules the process to continue
execution at a later time. The scheduler function on the UNIX system uses
relative time of execution as a parameter to determine which process to schedule
next. Every active process has a scheduling priority; the kernel switches context to
that of the process with the highest priority when it does a context switch. The
kernel recalculates the priority of the running process when it returns from kernel
mode to user mode, and it periodically readjusts the priority of every "ready-to-
run" process in user mode.

Some user processes also have a need to know about time: For example, the
time command prints the time it took for another command to execute, and the
date command prints the date and time of day. Various time-related system calls
allow processes to set or retrieve kernel time values or to ascertain the amount of
process CPU usage. The system keeps time with a hardware clock that interrupts
the CPU at a fixed, hardware-dependent rate, typically between 50 and 100 times a
second. Each occurrence of a clock interrupt is called a clock tick. This chapter
explores time related activities on the UNIX system, considering process
scheduling, system calls for time, and the functions of the clock interrupt handler.

247
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8.1 PROCESS SCHEDULING

The scheduler on the UNIX system belongs to the general class of operating system
schedulers known as round robin with multilevel feedback, meaning that the kernel
allocates the CPU to a process for a time quantum, preempts a process that exceeds
its time quantum, and feeds it back into one of several priority queues. A process
may need many iterations through the "feedback loop" before it finishes. When
the kernel does a context switch and restores the context of a process, the process
resumes execution from the point where it had been suspended.

algorithm schedule_process
input: none
output: none

while (no process picked to execute)

for (every process on run queue)
pick highest priority process that is loaded in memory;

if (no process eligible to execute)
idle the machine;
/* interrupt takes machine out of idle state */

remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

Figure 8.1. Algorithm for Process Scheduling

8.1.1 Algorithm

At the conclusion of a context switch, the kernel executes the algorithm to schedule
a process (Figure 8.1), selecting the highest priority process from those in the states
"ready to run and loaded in memory" and "preempted." It makes no sense to
select a process if it is not loaded in memory, since it cannot execute until it is
swapped in. If several processes tie for highest priority, the kernel picks the one
that has been "ready to run" for the longest time, following a round robin
scheduling policy. If there are no processes eligible for execution, the processor
idles until the next interrupt, which will happen in at most one clock tick; after
handling that interrupt, the kernel again attempts to schedule a process to run.
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81.2 Seheduling Parameters

Each process table entry contains a priority field for process scheduling. The
priority of a process in user mode is a function of its recent CPU usage, with
processes getting a lower priority if they have recently used the CPU. The range of
process priorities can be partitioned into two classes (see Figure 8.2): user
priorities and kernel priorities. Each class contains several priority values, and each
priority has a queue of processes logically associated with it. Processes with user-
level priorities were preempted on their return from the kernel to user mode, and
processes with kernel-level priorities achieved them in the sleep algorithm. User-
level priorities are below a threshold value, and kernel-level priorities are above the
threshold value. Kernel-level priorities are further subdivided: Processes with low
kernel priority wake up on receipt of a signa', but processes with high kernel
priority continue to sleep (see Section 7.2.1).

Figure 8.2 shows the threshold priority between user priorities and kernel
priorities as the double line between priorities "waiting for child exit" and "user
level 0." The priorities called "swapper," "waiting for disk I/O," "waiting for
buffer," and "waiting for mode" are high, noninterruptible system priorities, with 1,
3, 2, and 1 processes queued on the respective priority level, and the priorities
called "waiting for tty input," "waiting for tty output," and "waiting for child exit"
are low, interruptible system priorities with 4, 0, and 2 processes queued,
respectively. The figure distinguishes user priorities, calling them "user level 0,"
"user level 1," to "user level n," 1 containing 0, 4, and 1 processes, respectively.

The kernel calculates the priority of a process in specific process states.

• It assigns priority to a process about to go to sleep, correlating a fixed, priority
value with the reason for sleeping. The priority does not depend on the run-
time characteristics of the process (I/0 bound or CPU bound), but instead is a
constant value that is hard-coded for each call to sleep, dependent on the reason
the process is sleeping. Processes that sleep in lower-level algorithms tend to
cause more system bottlenecks the longer they are inactive; hence they receive a
higher priority than prijacesses that would cause fewer system bottlenecks. For
instance, a process sleeping and waiting for the completion of disk I/O has a
higher priority than a process waiting for a free buffer for several reasons:
First, the process waiting for completion of disk I/O already has a buffer; when
it wakes up, there is a chance that it will do enough processing to release the
buffer and, possibly, other resources. The more resources it frees, the better the
chances are that other processes will not block waiting for resources. The
system will have fewer context switches and, consequently, process response

1. The highest priority value on the system is 0. Thus, user level 0 bas higher priority than user level 1,
and so on.
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Figure 8.2. Range of Process Priorities

time and system throughput are better. Second, a process waiting for a free
buffer may be waiting for a buffer held by the process waiting for completion of
I/O. When the I/0 completes, both processes wake up because they sleep on
the same address. If the process waiting for the buffer were to run first, it
would sleep again anyway until the other process frees the buffer; hence its
priority is lower.

• The kernel adjusts the priority of a process that returns from kernel mode to
user mode. The process may have previously entered the sleep state, changing
its priority to a kernel-level priority that must be lowered to a user-level priority
when returning to user mode. Also, the kernel penalizes the executing process
in fairness to other processes, since it had just used valuable kernel resources.

Kernel Mode
Priorities

Not

Interruptibl
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• The clock handler adjusts the priorities of all processes in user mode at 1 second
intervals (on System V) and causes the kernel to go through the scheduling
algorithm to prevent a process from monopolizing use of the CPU.

The clock may interrupt a process several times during its time quantum; at
every clock interrupt, the clock handler increments a field in the process table that
records the recent CPU usage of the process. Once a second, the clock handler also
adjusts the recent CPU usage of each process according to a decay function,

decay(CPU) CPU/2;

on System V. When it recomputes recent CPU usage, the clock handler also
recalculates the priority of every process in the "preempted but ready-to-run" state
according to the formula

priority ("recent CPU usage"/2) + (base level user priority)

where "base level user priority" is the threshold priority between kernel and user
mode described above. A numerically low value implies a high scheduling priority.
Examining the functions for recomputation of recent CPU usage and process
priority, the slower the decay rate for recent CPU usage, the longer it will take for
the priority of a process to reach its base level; consequently, processes in the
"ready-to-run" state will tend to occupy more priority levels.

The effect of priority recalculation once a second is that processes with user-
level priorities move between priority queues, as illustrated in Figure 8.3.
Comparing this figure to Figure 8.2, one process has moved from the queue for
user-level priority 1 to the queue for user-level priority 0. In a real system, all
processes with user-level priorities in the figure would change priority queues, but
only one has been depicted. The kernel does not change the priority of processes in
kernel mode, nor does it allow processes with user-level priority to cross the
threshold and attain kernel-level priority, unless they make a system call and go to
sleep.

The kernel attempts to recompute the priority of all active processes once a
second, but the interval can vary slightly. If the clock interrupt had come while the
kernel was executing a critical region of code (that is, while the processor execution
level was raised but, obviously, not raised high enough to block out the clock
interrupt), the kernel does not recompute priorities, since that would keep the
kernel in the critical region for too long a time. Instead, the kernel remembers that
it should have recomputed process priorities and does so at a succeeding clock
interrupt when the "previous" processor execution level is sufficiently low. Periodic
recalculation of process priority assures a round-robin scheduling policy for
processes executing in user mode. The kernel responds naturally to interactive
requests such as for text editors or form entry programs; such processes have a
high idle-time-to-CPU usage ratio, and consequently their priority value naturally
rises when they are ready for execution (see page 1937 of [Thompson 78]). Other
implementations of the scheduling mechanism vary the time quantum between 0
and 1 second dynamically, depending on system load. Such implementations can
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Figure 8.3. Movement of a Process on Priority Queues

thus give quicker response to processes, beeause they do not have to wait up to a
second to run; on the other hand, the kernel has more overhead because of extra
context switches.

8.1.3 Examples of Proeess Seheduling

Figure 8.4 shows the scheduling priorities on System V for 3 processes A. B, and C,
under the following assumptions: They are created simultaneously with initial
priority 60, the highest user-level priority is 60, the doek interrupts the system 60
times a second, the processes make no system calls, and no other processes are
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Figure 8.4. Example of Process Scheduling

ready to run. The kernel calculates the decay of the CPU usage by

CPU decay(CPU) CPU/2;

and the process priority as

priority (CPU/2) + 60;

Assuming process A is the first to run and that it starts running at the beginning of
a time quantum, it runs for 1 second: During that time the clock interrupts the
system 60 times and the interrupt handler increments the CPU usage field of
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process A 60 times (to 60). The kernel forces a context switch at the 1-second
mark and, after recalculating the priorities of all processes, schedules process B for
execution. The clock handler increments the CPU usage field of process B 60 times
during the next second and then recalculates the CPU usage and priority of all
processes and forces a context switch. The pattern repeats, with the processes
taking turns to execute.

Now consider the processes with priorities shown in Figure 8.5, and assume
other processes are in the system. The kernel may preempt process A, leaving it
the state "ready to run," after it had received several time quanta in succession on
the CPU, and its user-level priority may therefore be low (Figure 8.5a). As time
progresses, process B may enter the "ready-to-run" state, and its user-level priority
may be higher than that of process A at that instant (Figure 8.51)). If the kernel
does not schedule either process for a white (it schedules other processes), both
processes could eventually be at the same user priority level, although process B

would probably enter that level first since its starting level was originally closer
(Figures 8.5c and 8.5d). Nevertheless, the kernel would choose to schedule process
A ahead of process B because it was in the state "ready to run" for a longer time
(Figure 8.5e): This is the tie-breaker rule for processes with equal priority.

Recall from Section 6.4.3 that the kernel schedules a process at the conclusion
of a context switch: A process must do a context switch when it goes to sleep or
exits, and it has the opportunity to do a context switch when returning to user
mode from kernel mode. The kernel preempts a process about to return to user
mode if a process with higher priority is ready to run. Such a process exists if the
kernel awakened a process with higher priority than the currently running process,
or if the clock handler changed the priority of all "ready-to-run" processes. In the
first case, the current process should not run in user mode given that a higher-
priority kernel mode process is available. In the second case, the clock handler
decides that the process used up its time quantum, and since many processes had
their priorities changed, the kernel does a context switch to reschedule.

8.1.4 Controlling Process Priorities

Processes can exercise crude control of their scheduling priority by using the nice
system call:

n ice (value);

where value is added in the calculation of process priority:

priority ....
("recent CPU usage/constant) + (base priority) +. (nice value)

The nice system call increments or decrements the nice field in the process table by
the value of the parameter, although only the superuser can supply nice values that
increase the process priority. Similarly, only the superuser can supply a nice value
below a particular threshold. Users who invoke the nice system call to lower their
process priority when executing computation-intensive jobs are "nice" to other users
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Figure 8.5. Round Robin Scheduling and Process Priorities

on the system, hence the name. Processes inherit the nice value of their parent
during the fork system call. The nice system call works for the running process
only; a process cannot reset the nice value of another process. Practically, this
means that if a system administrator wishes to lower the priority values of various
processes because they consume too much time, there is no way to do so short of
killing them outright.

8.1.5 Fair Share Scheduler

The scheduler algorithm described above does not differentiate between classes of
users. That is, it is impossible to allocate half of the CPU time to a particular set
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8.1.6 Real-Time Processing

Real-time processing implies the capability to provide immediate response to
specific external events and, hence, to schedule particular processes to run within a
specified time limit after occurrence of an event. For example, a computer may
monitor the life-support systems of hospital patients to take instant action on a
change in status of a patient. Processes such as text editors are not considered
real-time processes: It is desirable that response to the user be quick, but it is not
that critical that a user cannot wait a few extra seconds (although the user may
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have other ideas.). The scheduler algorithms described above were designed for use
in a time-sharing environment and are inappropriate in a real-time environment,
because they cannot guarantee that the kernel can schedule a particular process
within a fixed time limit. Another impediment to the support of real-time
processing is that the kernel is nonpreemptive; the kernel cannot schedule a real-
time process in user mode if it is currently executing another process in kernel
mode, unless major changes are made. Currently, system programmers must insert
real-time processes into the kernel to achieve real-time response. A true solution to
the problem must allow real-time processes to exist dynamically (that is, not be
hard-coded in the kernel), providing them with a mechanism to inform the kernel
of their real-time constraints. No standard UNIX system has this capability today.

8.2 SYSTEM CALLS FOR TIME

There are several time-related system calls, stime, time, times, and alarm. The
first two deal with global system time, and the latter two deal with time for
individual processes.

Same allows the superuser to set a global kernel variable to a value that gives
the current time:

stime (pvalue);

where pvalue points to a long integer that gives the time as measured in seconds
from midnight before (00:00:00) January 1, 1970, GMT. The clock interrupt
handler increments the kernel variable once a second. Time retrieves the time as
set by stime:

time (tloc);

where doe points to a location in the user process for the return value. Time
returns this value from the system call, too. Commands such as date use time to
determine the current time.

Times retrieves the cumulative times that the calling process spent executing in
user mode and kernel mode and the cumulative times that all zombie children had
executed in user mode and kernel mode. The syntax for the call is

times (tbuffer)
struct tms *tbuffer;

where the structure tms contains the retrieved times and is defined by
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#include <sysitypes.h>
#include <sys/times.h>
extern long times();

main()

int i;
/* tms is data structure containing the 4 time elements */
struct tms pbl, pb2;
long ptl, pt2;

ptl ti mes(&pb1);
for (i = 0; i < 10; i++)

if (fork()
child(i);

for (i — 0; i < 10; i++)
wait((int *) 0);

pt2 times(&pb2);
printf("parent real %u user %u sys %u cuser %u csys %u\n",

pt2 ptl, pb2.tms_utirne pbl.tms_utime, pb2.tms_stime — pbl.tms_stime,
pb2.tms_cutime pbl.tms_cutime, pb2.tms_cstime pbl.tms cstime);

child (n)
int n;

int i;
struct tms cbl, cb2;
long t1, t2;

tl times(&cb1);
for (i 0; i < 10000; i++)

t2 times(&cb2);
printf('child %d: real %u user %u sys %u\n", n, t2 ti,

cb2.tms_utime — cbl.tms_utime, cb2.tms_stime cbl.tms_stime);
exit();

Figure 8.7. Program Using Times

struct tms
/* time_t is the data structure for time */
time_t tms_utime; /* user time of process */
time_t tms stime; /* kernel time of process *1
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timet tms_cutime; /* user time of children */
timet tms cstime /* kernel time of children */

Times returns the elapsed time "from an arbitrary point in the past," usually the
time of system boot.

In the program in Figure 8.7, a process creates 10 child processes, and each
child loops 10,000 times. The parent process calls times before creating the
children and after they all exit, and the child processes call times before and after
their loops. One would naively expect the parent child user and child system times
to equal the respective sums of the child processes' user and systern times, and the
parent real time to equal the sum of the child processes' real time. However, the
child times do not include time spent in the fork and exit system calls, and all
times can be distorted by time spent handling interrupts or doing context switches.

User processes can schedule alarm signals using the alarm system call. For
example, the program in Figure 8.8 checks the access time of a file every minute
and prints a message if the file had been accessed. To do so, it enters an infinite
loop: During each iteration, it calls stat to report the last time the file was accessed
and, if accessed during the last minute, prints a message. The process then calls
signal to catch alarm signals, calls alarm to schedule an alarm signa' in 60 seconds,
and calls pause to suspend its activity until receipt of a signal. After 60 seconds,
the alarm signa' goes off, the kernel sets up the process user stack to cal the signal
catcher function wakeup, the function returns to the position in the code after the
pause call, and the process executes the loop again.

The common factor in all the time related system calls is their reliance on the
system doek: the kernel manipulates various time counters when handling doek
interrupts and initiates appropriate action.

8.3 CLOCK

The functions of the doek interrupt handler are to

• restart the clock,
• schedule invocation of internal kernel functions based on internal timers,
• provide execution profiling capability for the kernel and for user processes,
• gather system and process accounting statistics,
• keep track of time,
• send alarm signals to processes on request,
• periodically wake up the swapper process (see the next chapter),
• control process scheduling.

Some operations are done every doek interrupt, whereas others are done after
several clock ticks. The clock handler runs with the processor execution level set
high, preventing other events (such as interrupts from peripheral devices) from
happening while the handler is active. The clock handler is therefore fast, so that
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#include <sys/types.h>
#include <sys/stat.h>
#include <sys/signal.h>

main(argc, argv)
int argc;
char *asp[];

extern unsigned alarm();
extern wakeup();
struct stat statbuf;
tirnet axtime;

if (argc 2

printf("only I arg\n");
exit();

axt me N.' (tiMei) 0;
for (;;)

/* find out file access time
if (stat(argv[1], &statbuf)

printf("file %s not there\n", argv[ i]);
exit();

if (axtime statbuf.st_atime)

printf("file %s accessed\n", argv[l i);
axtime statbufst_atime;

signal(SIGALRM, wakeup); /* reset for alarm */
alarm (60);
pause(); /* sleep until signal */

wakeup

Figure 8.8. Program Using Alarm Call
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algorithm clock
input: none
output: none

restart doek; /* so that it will interrupt again
if (callout table not empty)

adjust callout times;
schedule callout function if time elapsed;

if (kernel profiling on)
note program counter at time of interrupt;

if (user profiling on)
nate program counter at time of interrupt;

gather system statistics;
gather statistics per process;
adjust measure of process CPU utilitization;
if (1 second or more since last here and interrupt not in critical

region of code)

for (all processes in the system)

adjust alarm time if active;
adjust measure of CPU utilization;
if (process to execute in user mode)

adjust process priority;

wakeup swapper process is neeessary;

Figure 8.9. Algorithm for the Clock Handler

the critical time periods when other interrupts are blocked is as smalt as possible.
Figure 8.9 shows the algorithm for handling clock interrupts.

8.3.1 Restarting the Cloek

When the doek interrupts the system, most machines require that the clock be
reprimed by software instructions so that it will interrupt the processor again after
a suitable interval. Such instructions are hardware dependent and will not be
discussed.
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8.3.2 Internal System Timeouts

Some kernel operations, particularly device drivers and network protocols, require
invocation of kernel functions on a real-time basis. For instance, a process may put
a terminal into raw mode so that the kernel satisfies user read requests at fixed
intervals instead of waiting for the user to type a carriage return (see Section
10.3.3). The kernel stores the necessary information in the ca/lout table (Figure

8.9), which consists of the function to be invoked when time expires, a parameter
for the function, and the time in clock ticks until the function should be called.

The user has no direct control over the entries in the callout table; various
kernel algorithms make entries as needed. The kernel sorts entries in the callout
table according to their respective "time to fire," independent of the order they are
placed in the table. Because of the time ordering, the time field for each entry in
the callout table is stored as the amount of time to fire after the previous element
fires. The total time to fire for a given element in the table is the sum of the times
to fire of all entries up to and including the element.

Function Time to Fire Function Time to Fire

a() -2

b() 3

c0 10

Before

a() -2

b()

f0 2

co 8

After

Figure 8.10. Callout Table and New Entry for f

Figure 8.10 shows an instance of the cal/out table before and after addition of a
new entry for the function f. (The negative time field for function a will be
explained shortly.) When making a new entry, the kernel finds the correct (timed)
position for the new entry and appropriately adjusts the time field of the entry
immediately after the new entry. In the figure, the kernel arranges to invoke
function f after 5 clock ticks: it creates an entry for f after the entry for b with the
value of its time field 2 (the sum of the time fields for b and f is 5), and changes
the time field for c to 8 (c will still fire in 13 clock ticks). Kernel implementations
can use a linked list for each entry of the callout table, or they can readjust
position of the entries when changing the table. The latter option is not that
expensive if the kernel does not use the callout table too much.
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At every doek interrupt, the clock handler checks if there are any entries in the
callout table and, if there are any, decrements the time field of the first entry.
Because of the way the kernel keeps time in the callout table, decrementing ti C
time field for the first entry effectively decrements the time field for all entries in
the table. If the time field of the first entry in the list is less than or equal to 0,
then the specified function should be invoked. The clock handler does not invoke
the function directly so that it does not inadvertently block later doek interrupts:
The processor priority level is currently set to block out doek interrupts, but the
kernel bas no idea how long the function will take to complete. 1f the function
were to last langer than a clock tick, the next doek interrupt (and all other
interrupts that meur) would be blocked. Instead, the doek handler typically
schedules the function by causing a "software interrupt," sometimes called a
"programmed interrupt" because it is caused by execution of a particular machine
instruction. Because software interrupts are at a lower priority level than other
interrupts, they are blocked until the kernel finishes handling all other interrupts.
Many interrupts, including dock interrupts, could occur between the time the
kernel is ready to call a function in the callout table and the time the software
interrupt occurs and, therefore,the time field of the first callout entry can have a
negative value. When the software interrupt finally happens, the interrupt handler
removes entries from the callout table whose time fields have expired and calls the
appropriate function.

Since it is possible that the time field of the first entries in the callout talie are
0 or negative, the doek handler must find the first entry whose time field is positive
and decrement it. In Figure 8.10 for example, the time field of the entry for
function a is — 2, meaning that the system took 2 doek interrupts after a was
eligible to be called. Assuming the entry for b was in the table 2 ticks ago, the
kernel skipped the entry for a and decremented the time field for b.

8.33 Profiling

Kernel profiling gives a measure of how much time the system is executing in user
mode versus kernel mode, and how much time it spends executing individual
routines in the kernel. The kernel profile driver monitors the relative performance
of kernel modules by sampling system activity at the time of a clock interrupt. The
profile driver has a list of kernel addresses to sample, usually addresses of kernel
functions; a process had previously down-loaded these addresses by writing the
profile driver. lf kernel profiling is enabled, the doek interrupt handler invokes the
interrupt handler of the profile driver, which determines whether the processor
mode at the time of the interrupt was user or kernel. .. 1f the mode was user, the
profiler increments a count for user execution, but if the mode was kernel, it
increments an internal counter corresponding to the program counter. User
processes can read the profile driver to obtain the kernel counts and do statistica'
measurements.
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Algorithm Address Count

bread 100 5
breada 150 0
bwrite 200 0
brelse 300 2
getblk 400 1
user — 2

Figure 8.11. Sample Addresses of Kernel Algorithms

For example, Figure 8.11 shows hypothetical addresses of several kernel
routines. If the sequence of program counter values sampled over 10 clock
interrupts is 110, 330, 145, address in user space, 125, 440, 130, 320, address in
user space, and 104, the figure shows the counts the kernel would save. Examining
these figures, one would conclude that the system spends 20% of its time in user
mode and 50% of its time executing the kernel algorithm bread.

If kernel profiling is done for a long time period, the sampled pattern of
program counter values converges toward a true proportion of system usage.
However, the mechanism does not account for time spent executing the clock
handler and code that blocks out clock-level interrupts, because the clock cannot
interrupt such critical regions of code and therefore cannot invoke the profile
interrupt handler there. This is unfortunate since such critical regions of kernel
code are frequently those that are the most important to profile. Hence, results of
kernel profiling must be taken with a grain of salt. Weinberger [Weinberger 841
describes a scheme for generating counters into basic blocks of code, such as the
body of "if-then" and "else" statements, to provide exact counts of how many times
they are executed. However, the method increases CPU time anywhere from 50%
to 200%, so its use as a permanent kernel profiling mechanism is not practical.

Users can profile execution of processes at user-level with the profil system call:

profil(buff, bufsize, offset, scale);

where buff is the address of an array in user space, bufsize is the size of the array,
offset is the virtual address of a user subroutine (usually, the first), and scale is a
factor that maps user virtual addresses into the array. The kernel treats scale as a
fixed-point binary fraction with the binary point at the extreme "left": The
hexadecimal value Oxffff gives a one to one mapping of program counters to words
in buff, Ox7fff maps pairs of program addresses into a single buff word, Ox3fff maps
groups of 4 program addresses into a single buff word, and so on. The kernel stores
the system call parameters in the process u area. When the clock interrupts the
process while in user mode, the clock handler examines the user program counter at
the time of the interrupt, compares it to offset, and increments a location in buff
whose address is a function of bufsize and scale.



266 PROCESS SCHEDULING AND TIME

#include <signal.h>
int bufferi40961;
main()
{

int offset, endof, scale, eff, gee, text;
extern theend(), f(), g();
signal(SIGINT, theend);
endof .... (int) theend;
offset — (int) main;
/* calculates number of words of program text */
text ... (endof — offset + sizeof(int) — 1)/sizeof(int);
scale siE Oxffff;
printf(

w
offset %d endof %d text %d\n", offset, endof, text);

eff — (int) f;
gee i= (int) g;
printf("f %d g %d fdiff %d gdiff %d\n", eff, gee, eff—offset, gee—offset);
profil (buffer, sizeof(int)*text, offset, scale);
for (;;)
{

f();
g0;

l
)
f()
{
}
g()
{
1
theend()
l

int i;
for (i — 0; i <4096; i++)

if (buffertip
printfebuft%d] — %d\n", i, buffer[ii);

exit();

Figure 8.12. Program Invoking Profii System Cali

For example, consider the program in Figure 8.12, profiling exeeution of a
program that calls the two funetions f and g successively in an infinite loop. The
process first invokes signa! to arrange to call the funetion theend on occurrence of
an interrupt signal and then calculates the range of text addresses it wishes to
profile, extending from the address of the function main to the address of the
function theend, and, finally, invokes prof! to inform the kernel that it wishes to
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212 endof 440 text 57
f 416 g428 fdiff 204 gdiff 216
buf[46] .2° 50
buf[48] — 8585216
buf[491 — 151
buf151) — 12189799
buft531 — 65
buf[54] — 10682455
bufi56] — 67

Figure 8.13. Sample Output for Profil Program

profile its execution. Running the program for about 10 seconds on a lightly loaded
AT&T 3B20 computer gave the output shown in Figure 8.13. The address of f is
204 greater than the 0th profiling address; because the size of the text of f is 12
bytes and the size of an integer is 4 on an AT&T 3B20 computer, the addresses of
f map into buf entries 51, 52, and 53. Similarly, the addresses of g map into buf

entries 54, 55, and 56. The buf entries 46, 48, and 49 are for addresses in the loop
in function main. In typical usage, the range of addresses to be profiled is
determined by examination of the text addresses in the symbol table of the program
being profiled. Users are discouraged from using the profil call directly because it
is complicated; instead, an option on the C compiler directs the compiler to
generate code to profile processes.

8.3.4 Accounting and Statistics

When the clock interrupts the system, the system may be executing in kernel mode,
executing in user mode, or idle (not executing any processes). It is idle if all
processes are sleeping, awaiting the occurrence of an event. The kernel keeps
internal counters for each processor state and adjusts them during each clock
interrupt, noting the current mode of the machine. User processes can later
analyze the statistics gathered in the kernel.

Every process has two fields in its u area to keep a record of elapsed kernel and
user time. When handling clock interrupts, the kernel updates the appropriate field
for the executing process, depending on whether the process was executing in kernel
mode or in user mode. Parent processes gather statistics for their child processes in
the wait system call when accumulating execution statistics for exiting child
processes.

Every process has one field in its u area for the kernel to log its memory usage.
When the clock interrupts a running process, the kernel calculates the total memory
used by a process as a function of its private memory regions and its proportional
usage of shared memory regions. For example, if a process shares a text region of
size 50K bytes with four other processes and uses data and stack regions of size
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25K and 40K bytes, respectively, the kernel charges the process for 75K bytel
(50K/5 + 25K + 40K). For a paging system, it calculates the memory usage by
counting the number of valid pages in each region. Thus, if the interrupted proeess
uses two private regions and shares another region with another process, the kernel
charges it for the number of valid pages in the private regions plus half the num
of valid pages in the shared region. The kernel writes the information in an
accounting record when the process exits, and the information can be used for
customer billing.

8.3.5 Keeping Time

The kernel increments a timer variable at every doek interrupt, keeping time in
clock ticks from the time the system was booted. The kernel uses the timer
variable to return a time value for the time system eau, and to calculate the total
(mal time) execution time of a process. The kernel saves the process start time in
its u area when a process is created in the fork system call, and it subtracts that
value from the current time when the process exits, giving the real execution time
of the process. Another timer variable, set by the stime system call and updated
once a second, keeps track of calendar time.

8.4 SUMMARY

This chapter has described the basic algorithm for process scheduling on the UNIX
system. The kernel associates a scheduling priority with every process in the
system, assigning the value when a process goes to sleep or, periodically, in the
doek interrupt handler. The priority assigned when a process goes to sleep is a
fixed value, dependent on the kernel algorithm the process was executing. The
priority assigned in the doek handler (or when a process returns from kernel mode
to user mode) depends on how much time the process has recently used the CPU:
It receives a lower priority if it bas used the CPU recently and a higher priority,
otherwise. The nice system call allows a process to adjust one parameter used in
computation of process priority.

This chapter also described system calls dealing with time: setting and
retrieving kernel time, retrieving process execution times, and setting process alarm
signals. Finally, it described the functions of the clock interrupt handler, which
keeps track of system time, manages the callout table, gathers statistics, and
arranges for invocation of the process scheduler, process swapper, and page stealer.
The swapper and page stealer are the topics of the next chapter.

8.5 EXERCISES

1, In assigning priorities when a process goes to sleep, the kernel assigns a higher prioritY
to a process waiting for a 1ocked inode than to a process waiting for a locked buffer.
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Similarly, it assigns higher priority to processes waiting to read terminal input than to
processes waiting to write terminal output. Justify both cases.
The algorithm for the clock interrupt handler recalculates process priorities and
reschedules processes in 1-second intervals. Discuss an algorithm that dynamically
changes the interval depending on system load. Is the gain worth the added
complexity?

3. The Sixth Edition of the UNIX system uses the following formula to adjust the recent
CPU usage of a process:

decay(CPU) max(threshold priority, CPU — 10);

and the Seventh Edition uses the formula:

decay(CPU) •-• .8 * CPU;

Both systems calculate process priority by the formula

priority CPU/16 + (base level priority);

Try the example in Figure 8.4 using these decay functions.
4. Repeat the example in Figure 8.4 with seven processes instead of three. Repeat the

example assuming there are 100 clock interrupts per second instead of 60. Comment.
5. Design a scheme such that the system puts a time limit on how long a process

executes, forcing it to exit if it exceeds the time limit. How should the user distinguish
such processes from processes that should run for ever? If the only requirement was
to run such a scheme from the shell, what would have to be done?

6. When a process executes the wait system call and finds a zombie process, the kernel
adds the child's CPU usage field to the parent's. What is the rationale for penalizing
the parent?

7. The command nice causes the subsequent command to be invoked with the given nice
value, as in

nice 6 nroff —mm big ...memo > output

Write C code for the nice command.
8. Trace the scheduling of the processes in Figure 8.4 given that the nice value of process

A is 5 or —5.
9. Implement a system call, renice x y, where x is a process ID (of an active process)

and y is the value that its nice value should take.
10. Reconsider the example in Figure 8.6 for the fair share scheduler. Suppose the group

containing process A pays for 33% of the CPU and the group containing processes B
and C pays for 66% of the CPU time. What should the sequence of scheduled
processes look like? Generalize the computation of process priorities so that it
normalizes the value of the group CPU usage field.

11. Implement the command date: with no arguments, the command prints the system's
opinion of the current date; using a parameter, as in

date mmddhhmmyy

a (super) user can set the system's opinion of the current date to the corresponding
month, day, year, hour, and minute. For example,

date 0911205084

sets the system date to September 11, 1984, 8:50 p.m.
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12. Programs can use a user-level sleep function

sleep (seconds);

to suspend execution for the indicated number of seconds. Implement the function
using the alarm and pause system calls. What should happen if the process had eend
alarm before calling sleep? Consider two possibilities: that the previous alarm cd
would expire white the process was sleeping, and that it would expire after the sleep

completed.
* 13. Refering to the last problem, the kernel could do a context switch between the alarm

and pause calls in the sleep function, and the process could receive the alarm signa]
before it calls pause. What would happen? How can this race condition be fixed?



MEMORY MANAGEMENT

POLICIES

The CPU scheduling algorithm described in the last chapter is strongly influenced
by memory management policies. At least part of a process must be contained in
primary memory to run; the CPU cannot execute a process that exists entirely in
secondary memory. However, primary memory is a precious resource that
frequently cannot contain all active processes in the system. For instance, if a
system contains 8 megabytes of primary memory, pine 1-megabyte processes will
not fit there simultaneously. The memory management subsystem decides which
processes should reside (at least partially) in main memory, and manages the parts
of the virtual address space of a process that are not core resident. It monitors the
amount of available primary memory and may periodically write processes to a
secondary memory device called the swap device to provide more space in primary
memory. At a later time, the kernel reads the data from the swap device back to
main memory.

Historically, UNIX systems transferred entire processes between primary
memory and the swap device, but did not transfer parts of a process independently,
except for shared text. Such a memory management policy is called swapping. It
made sense to implement such a policy on the PD? 11, where the maximum
process size was 64K bytes. For this policy, the size of a process is bounded by the
amount of physical memory available on a system. The BSD system (release 4.0)
was the first major implementation of a demand paging policy, transferring
memory pages instead of processes to and from a secondary device; recent releases

271



272 MEMORY MANAGEMENT POLICIES

of UNIX System V also support demand paging. The entire process does not have
to reside in main memory to execute, and the kernel loads pages for a process on
demand when the process references the pages. The advantage of a demand paging
policy is that it permits greater flexibility in mapping the virtual address space of a
process into the physical memory of a machine, usually allowing the size of a
process to be greater than the amount of available physical memory and allowing
more processes to fit simultaneously in main memory. The advantage of a
swapping policy is that it is easier to implement and results in less system overhead.
This chapter discusses the two memory management policies, swapping and paging.

9.1 SWAPPING

There are three parts to the description of the swapping algorithm: managing
space on the swap device, swapping processes out of main memory, and swapping

processes into main memory.

9.1.1 Allocation of Swap Space

The swap device is a block device in a configurable section of a disk. Whereas the
kernel allocates space for files one block at a time, it allocates space on the swap
device in groups of contiguous blocks. Space allocated for files is used statically;
since it will exist for a long time, the allocation scheme is flexible to reduce the
amount of fragmentation and, hence, unallocatable space in the file system. But
the allocation of space on the swap device is transitory, depending on the pattern of
process scheduling. A process that resides on the swap device will eventually
migrate back to main memory, freeing the space it had occupied on the swap
device. Since speed is critical and the system can do I/O faster in one multiblock
operation than in several single block operations, the kernel allocates contiguous
space on the swap device without regard for fragmentation.

Because the allocation scheme for the swap device differs from the allocation
scheme for file systems, the data structures that catalog free space differ too. The
kernel maintains free space for file systems in a linked list of free blocks, accessible
from the file system super block, but it maintains the free space for the swap device
in an in-core table, called a map. Maps, used for other resources besides the swap
device (some device drivers, for example), allow a first-fit allocation of contiguous
"blocks" of a resource.

A map is an array where each entry consists of an address of an allocatable
resource and the number of resource units available there; the kernel interprets the
address and units according to the type of map. Initially, a map contains one entry
that indicates the address and the total number of resources. For instance, the
kernel treats each unit of the swap map as a group of disk blocks, and it treats the
address as a block offset from the beginning of the swap area. Figure 9.1
illustrates an initial swap map that consists of 10,000 blocks starting at address 1.
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Address Units

1 10000

Figure 9.1. Initial Swap Map

algorithm malloc /* algorithm to allocate map space */
input: (1) map address /* indicates which map to use 'V

(2) requested number of units
output: address, if successful

0, otherwise

for (every map entry)
(

if (current map entry can fit requested units)
(

if (requested units —... number of units in entry)
delete entry from map;

else
adjust start address of entry;

return (original address of entry);
)

1
return (0);

Figure 9.2. Algorithm for Allocating Space from Maps

As the kernel allocates and frees resources, it updates the map so that it continues
to contain accurate information about free resources.

Figure 9.2 gives the algorithm malloc for allocating space from maps. The
kernel searches the map for the first entry that contains enough space to
accommodate the request. 1f the request consumes all the resources of the map
entry, the kernel removes the entry from the array and compresses the map (that
is, the map bas one fewer entries). Otherwise, it adjusts the address and unit fields
of the entry aceording to the amount of resources allocated. Figure 9.3 shows the
sequence of swap map configurations after allocating 100 units, 50 units, then 100
units again. The kernel adjusts the swap map to show that the first 250 units have
been allocated, and that it now contains 9750 free units starting at address 251.

When freeing resources, the kernel finds their proper position in the map by
address. Three cases are possible:
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Address Units Address Units

1 10000 101 9900

(a) (I))

Address Units Address Units

151 9850 251 9750

(c) (d)

Figure 9.3. Allocating Swap Space

1. The freed resources completely fill a hole in the map: they are contiguous to
the entries whose addresses would immediately precede them and follow them
in the map. In this case, the kernel combines the newly freed resources and
the existing (two) entries into one entry in the map.

2. The freed resources partially fill a hole in the map. If the address of the
freed resources are contiguous with the map entry that would immediately
precede them or with the entry that would immediately follow them (but not
both), the kernel adjusts the address and units fields of the appropriate entry
to account for the resources just freed. The number of entries in the map
remains the same.

3. The freed resources partially fill a hole but are not contiguous to any
resources in the map. The kernel creates a new entry for the map and inserts
it in the proper position.

Returning to the previous example, if the kernel frees 50 units of the swap
resource starting at address 101, the swap map contains a new entry for the freed
resources, since the returned resources are not contiguous to existing entries in the
map. If the kernel then frees 100 units of the swap resource starting at address 1,
it adjusts the first entry of the swap map since the freed resources are contiguous to
those in the first entry. Figure 9.4 shows the sequence of swap map configurations
corresponding to these events.

Suppose the kernel now requests 200 units of swap space. Because the first
entry in the swap map only contains 150 units, the kernel satisfies the request from
the second entry (see Figure 9.5). Finally, suppose the kernel frees 350 units of
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Address Units Address Units

251 9750 101 50

251 9750
(a)

(b)

Address Units

150

251 9750

(c)

Figure 9.4. Freeing Swap Space

Address Units Address Units

                  

Figure 9.5. Allocating Swap Space from the Second Entry in the Map

swap space starting at address 151. Although the 350 units were allocated
separately, there is no reason the kernel could not free them at once. (It does not
do so for swap space, since requests for swap space are independent of each other.)
The kernel realizes that the freed resources fit neatly into the hole between the first
and second entries in the swap map and creates one entry for the former two (and
the freed resources).

Traditional implementations of the UNIX system use one swap device, but the
latest implementations of System V allow multiple swap devices. The kernel



276 MEMORY MANAGEMENT POLICIES

chooses the swap device in a round robin scheme, provided it contains enough
contiguous memory. Administrators can create and remove swap devices
dynamically. If a swap device is being removed, the kernel does not swap data to
it; as data is swapped from it, it empties out until it is free and can be removed.

9.1.2 Swapping Processes Out

The kernel swaps a process out if it needs space in memory, which may result from
any of the following:

1. The fork system call must allocate space for a child process',
2. The brk system call increases the size of a process,
3. A process becomes larger by the natural growth of its stack,
4. The kernel wants to free space in memory for processes it had previously

swapped out and should now swap in.

The case of fork stands out, because it is the only case where the in-core memory
previously occupied by the process is not relinquished.

When the kernel decides that a process is eligible for swapping from main
memory, it decrements the reference count of each region in the process and swaps
the region out if its reference count drops to 0. The kernel allocates space on a
swap device and locks the process in memory (for cases 1-3), preventing the
swapper from swapping it out (see exercise 9.12) while the current swap operation
is in progress. The kernel saves the swap address of the region in the region table
entry.

The kernel swaps as much data as possible per I/0 operation directly between
the swap device and user address space, bypassing the buffer cache. If the
hardware cannot transfer multiple pages in one operation, the kernel software must
iteratively transfer one page of memory at a time. The exact rate of data transfer
and its mechanics therefore depend on the capabilities of the disk controller and the
implementation of memory management, among other factors. For instance, if
memory is organized in pages, the data to be swapped out is likely to be
discontiguous in physical memory. The kernel must gather the page addresses of
data to be swapped out, and the disk driver may use the collection of page
addresses to set up the I/O. The swapper waits for each I/O operation to complete
before swapping out other data.

It is not necessary that the kernel write the entire virtual address space of a
process to a swap device. Instead, it copies the physical memory assigned to a
process to the allocated space on the swap device, ignoring unassigned virtual
addresses. When the kernel swaps the process back into memory, it knows the
virtual address map of the process, so it can reassign the process to the correct
virtual addresses. The kernel eliminates an extra copy from a data buffer to
physical memory by reading the data into the physical memory locations that were
previously set up to conform to the virtual address locations.
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Figure 9.6. Mapping Process Space onto the Swap Device

Figure 9.6 gives an example of mapping the in-core image of a process onto a
swap device.' The process contains three regions for text, data, and stack: the text
region ends at virtual address 2K, and the data region starts at virtual address 64K,
leaving a gap of 62K bytes in the virtual address space. When the kernel swaps the
process out, it swaps the pages for virtual addresses 0, 1K, 64K, 65K, 66K, and
128K; it does not allocate swap space for the empty 62K bytes between the text
and data regions or the empty 61K bytes between the data and stack regions but
fills the swap space contiguously. When the kernel swaps the process back in, it
knows that the process has a 62K-byte hole by consulting the process memory map,
and it assigns physical memory accordingly. Figure 9.7 demonstrates this case.
Comparison of Figures 9.6 and 9.7 shows that the physical addresses occupied by

1. For sirriplicity, the virtual address space of a process is depicted as a linear array of page table
entries in this and in later figures, disregarding the fact that each region usually has a separate page
table.
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Layout of Virtual Addresses

Virtual, Ph sical Addresses

Figure 9.7. Swapping a Process into Memory

the process before and after the swap are not the same; however, the process does
not notice a change at user-level, because the contents of its virtual space are the
same.

Theoretically, all memory space occupied by a process, including its u area and
kernel stack, is eligible to be swapped out, although the kernel may temporarily
lock a region into memory while a sensitive operation is underway. Practically,
however, kernel implementations do not swap the u area if the u area contains the
address translation tables for the process. The Implementation also dictates
whether a process can swap itself out or whether it must request another process to
swap it out (see exercise 9.4).

9.1.2.1 Fork Swap

The description of the fork system call (Section 7.1) assumed that the parent
process found enough memory to create the child context. Otherwise, the kernel
swaps the process out without freeing the memory occupied by the in-core (parent)
copy. When the swap is complete, the child process exists on the swap device; the
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parent places the child in the "ready-to-run" state (see Figure 6.1) and returns to
user mode. Since the child is in the "ready-to-run" state, the swapper will
eventually swap it into memory, where the kernel will schedule it; the child will
complete its part of the fork system call and return to user mode.

Figure 9.8. Adjusting Memory Map for Expansion Swap

9.1.2.2 Expansion Swap

If a process requires more physical memory than is currently allocated to it, either
as a result of user stack growth or invocation of the brk system call and if it needs
more memory than is currently available, the kernel does an expansion swap of the
process. It reserves enough space on the swap device to contain the memory space
of the process, including the newly requested space. Then, it adjusts the address
translation mapping of the process to account for the new virtual memory but does
not assign physical memory (since none was available). Finally, it swaps the
process out in a normal swapping operation, zeroing out the newly allocated space
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on the swap device (see Figure 9.8). When the kernel later swaps the process int()
memory, it will allocate physical memory according to the new (augmented size)
address translation map. When the process resumes execution, it will have enough
memory.

9.1.3 Swapping Proeesses lu

Process 0, the swapper, is the only process that swaps processes into memory from
swap devices. At the conclusion of system initialization, the swapper goes into an
infinite loop, where its only task is to do process swapping, as mentioned in Section
7.9. It attempts to swap processes in from the swap device, and it swaps processes
out if it needs space in main memory. The swapper sleeps if there is no work for it
to do (for example, if there are no processes to swap in) or if it is unable to do any
work (there are no processes eligible to swap out); the kernel periodically wakes it
up, as will be seen. The kernel schedules the swapper to execute just as it
schedules other processes, albeit at higher priority, but the swapper executes only in
kernel mode. The swapper makes no system calls but uses internal kernel functions
to do swapping; it is the archetype of all kernel processes.

As mentioned briefiy in Chapter 8, the clock handler measures the time that
each process has been in core or swapped out. When the swapper wakes up to
swap processes in, it examines all processes that are in the state "ready to run but
swapped out" and selects one that has been swapped out the longest (see Figure
9.9), 1f there is enough free memory available, the swapper swaps the process in,
reversing the operation done for swapping out: It allocates physical memory, reads
the process from the swap device, and frees the swap space.

1f the swapper successfully swaps in a process, it searches the set of "ready-to-
run but swapped out" processes for others to swap in and repeats the above
procedure. One of the following situations eventually arises:

• No "ready-to-run" processes exist on the swap device: The swapper goes to
sleep until a process on the swap device wakes up or until the kernel swaps out
a process that is "ready to run." (Recall the state diagram in Figure 6.1.)

• The swapper finds an eligible process to swap in but the system does not contain
enough memory: The swapper attempts to swap another process out and, if
successful, restarts the swapping algorithm, searching for a process to swap in.

1f the swapper must swap a process out, it examines every process in memory:
Zombie processes do not get swapped out, because they do not take up any physical
memory; processes locked in memory, doing region operations, for example, are also
not swapped out. The kernel swaps out sleeping processes rather than those "ready
to run," because "ready-to-run" processes have a greater chance of being scheduled
soon. The choice of which sleeping process to swap out is a function of the process
priority and the time the process has been in memory. If there are no sleeping
processes in memory, the choice of which "ready-to-run" process to swap out is a
function of the process nice value and the time the process has been in memory.
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algorithm swapper /* swap in swapped out processes,
* swap out other processes to make room */

input: none
output: none

loop:
for (all swapped out processes that are ready to run)

pick process swapped out longest;
if (no such process)

sleep (event must swap in);
goto loop;

if (enough room in main memory for process)

swap process in;
goto loop;

/* loop2; here in revised algorithm (see page 285) */
for (all processes loaded in main memory, not zombie and not locked in memory)

if (there is a sleeping process)
choose process such that priority + residence time

is numerically highest;
else /* no sleeping processes */

choose process such that residence time + nice
is numerically highest;

if (chosen process not sleeping or residency requirements not
satisfied)

sleep (event must swap process in);
else

swap out process;
goto loop; /* goto loop2 in revised algorithm */

Figure 9.9. Algorithm for the Swapper

A "ready-to-run" process must be core resident for at least 2 seconds before
being swapped out, and a process to be swapped in must have been swapped out for
at least 2 seconds. If the swapper cannot find any processes to swap out or if
neither the process to be swapped in nor the process to be swapped out have
accumulated more than 2 seconds2 residence time in their environment, then the
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swapper sleeps on the event that it wants to swap a process into memory but cannot
find room for it. The doek will awaken the swapper once a second in that state,
The kernel als° awakens the swapper if another process goes to sleep, since it rnay
be more eligible for swapping out than the processes previously considered by the
swapper. 1f the swapper swaps out a process or if it sleeps because it could not
swap out a process, it will resume execution at the beginning of the swapping
algorithm, attempting to swap in eligible processes.

Figure 9.10 depicts five processes and the time they spend in memory or on the
swap device as they go through a sequence of swapping operations. For simplicity,
assume that all processes are CPU intensive and that they do not make any system
calls; hence, a context switch happens only as a result of clock interrupts at 1-
second intervals. The swapper runs at highest scheduling priority, so it always runs
briefiy at 1-second intervals if it has work to do. Further, assume that the
processes are the same size and the system can contain at most two processes
simultaneously in main memory. Initially, processes A and B are in main memory
and the other processes are swapped out. The swapper cannot swap any processes
during the first 2 seconds, because none have been in memory or on the swap device
for 2 seconds (the residency requirement), but at the 2-second mark, it swaps out
processes A and B and swaps in processes C and D. It attempts to swap in process
E, too, but fails because there is no more room in main memory. At the 3 second
mark, process E is eligible for swapping because it has been on the swap device for
3 seconds, but the swapper cannot swap processes out of main memory because
their residency time is under 2 seconds. At the 4-second mark, the swapper swaps
out processes C and D and swaps in processes E and A.

The swapper chooses processes to swap in based on the amount of time the
processes had been swapped out. Another criterion could have been to swap in the
highest-priority process that is ready to run, since such processes deserve a better
chance to execute. It has been demonstrated that such a policy results in "slightly"
better throughput under heavy system bad (see [Peachey 84]).

The algorithm for choosing a process to swap out to make room in memory has
more serious flaws, however. First, the swapper swaps out a process based on its
priority, memory-residence time, and nice value. Although it swaps out a process
only to make room for a process being swapped in, it may swap out a process that
does not provide enough memory for the incoming process. For instance, if the
swapper attempts to swap in a process that occupies 1 megabyte of memory and the
system eontains no free memory, it is futile to swap out a process that occupies only
2K bytes of memory. An alternative strategy would be to swap out groups of

2. The Version 6 Implementation of the UN/X system did not swap a process out to make room for an
incoming process until the incoming process had been disk resident for 3 seconds. The outgoing
process had to reside in memory at least 2 seconds. The choice of the time interval cuts down on
thrashing and increases system throughput.
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Figure 9.11. Thrashing due to Swapping

processes only if they provide enough memory for the incoming process.
Experiments using a PDP 11/23 computer have shown that such a strategy can
increase system throughput by about 10 percent under heavy loads (see [Peachey
84)),



9.1 SWAPPING 285

Second, if the swapper sleeps because it could not find enough memory to swap
in a process, it searches again for a process to swap in although it had previously
chosen one. The reason is that other swapped processes may have awakened in the
meantime and they may be more eligible for swapping in than the previously
chosen process. But that is small solace to the original process still trying to be
swapped in. In some implementations, the swapper tries to swap out many smaller
processes to make room for the big process to be swapped in before searching for
another process to swap in; this is the revision in the swapper algorithm shown by
the comments in Figure 9.9.

Third, if the swapper chooses a "ready-to-run" process to swap out, it is possible
that the process had not executed since it was previously swapped in. Figure 9.11
depicts such a case, where the kernel swaps in process D at the 2-second mark,
schedules process C, and then swaps out process D at the 3-second mark in favor of
process E (because of the interaction of the nice value) even though process D had
never run. Such thrashing is clearly undesirable.

One final danger is worthy of mention. If the swapper attempts to swap out a
process but cannot find space on the swap device, a system deadlock could arise if
the following four conditions are met: All processes in main memory are asleep, all
"ready-to-run" processes are swapped out, there is no room on the swap device for
new processes, and there is no room in main memory for incoming processes.
Exercise 9.5 explores this situation. Interest in fixing problems with the swapper
has declined in recent years as demand paging algorithms have been implemented
for UNIX systems.

9.2 DEMAND PAGING

Machines whose memory architecture is based on pages and whose CPU has
restartable instructions 3 can support a kernel that implements a demand paging
algorithm, swapping pages of memory between main memory and a swap device.
Demand paging systems free processes from size limitations otherwise imposed by
the amount of physical memory available on a machine. For instance, machines
that contain 1 or 2 megabytes of physical memory can execute processes whose
sizes are 4 or 5 megabytes. The kernel still imposes a limit on the virtual size of a
process, dependent on the amount of virtual memory the machine can address.
Since a process may not fit into physical memory, the kernel must load its relevant
portions into memory dynamically and execute it even though other parts are not
loaded. Demand paging is transparent to user programs except for the virtual size

3. If a machine executes "part" of an instruction and incurs a page fault, the CPU must restart the
instruction after handling the fault, because intermediate computations done before the page fault
may have been lost.
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permissible to a process.
Processes tend to execute instructions in small portions of their text space, sach

as program loops and frequently called subroutines, and their data references tend
to cluster in small subsets of the total data space of the process. This is known as
the principle of "locality." Denning [Denning 681 formalized the notion of tie
working set of a process, which is the set of pages that the process has referenced
in its last n memory references; the number n is called the window of the working
set. Because the working set is a fraction of the entire process, more processes may
fit simultaneously into main memory than in a swapping system, potentially
increasing system throughput because of reduced swapping traffic. When a process
addresses a page that is not in its working set, it incurs a page fault; in handling
the fault, the kernel updates the working set, reading in pages from a secondary
device if necessary.

Figure 9.12 shows a sequence of page references a process could make,
depicting the working sets for various window sizes and following a least recently
used replacement policy. As a process executes, its working set changes, depending
on the pattern of memory references the process makes; a larger window size yields
a iarger working set, implying that •a process will not fault as often. It is
impractical to implement a pure working set model, because it is expensive to
remember the order of page references. Instead, systems approximate a working
set model by setting a reference bit whenever a process accesses a page and by
sampling memory references periodically: 1f a page was recently referenced, it is
part of a working set; otherwise, it "ages" in memory until it is eligible for
swapping.

When a process accesses a page that is not part of its working set, it incurs a
validity page fata:. The kernel suspends execution of the process until it reads the
page into memory and makes it accessible to the process. When the page is loaded
in memory, the process restarts the instruction it was executing when it incurred
the fault. Thus, the implementation of a paging subsystem has two parts:
swapping rarely used pages to a swapping device and handling page faults. This
general description of ming schemes extends to non-UNIX systems, too. The rest
of this chapter examines the paging scheme for UNIX System V in detail.

9.2.1 Data Structures for Dentand Paging

The kernel contains 4 major data structures to support low-level memory
management functions and demand paging: page table entries, disk block
descriptors, the page frame data table (called pfdata for short), and the swap-use
table. The kernel allocates space for the pfdata table once for the lifetime of the
system but allocates memory pages for the other structures dynamically.

Recall from Chapter 6 that a region contains page tables to access physical
memory. Each entry of a page table (Figure 9.13) contains the physical address of
the page, protection bits indicating whether processes can read, write or execute
from the page, and the following bit fields to support demand paging:
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Figure 9.12. Working Set of a Process

• Valid
• Reference
• Modify
• Copy on write
• Age

The kernel turns on the valid bit to indicate that the contents of a page are legal,
but the page reference is not necessarily illegal if the valid bit is off, as will be
seen. The reference bit indicates whether a process recently referenced a page, and
the modify bit indicates whether a process recently modified the contents of a page.
The copy on write bit, used in the fork system call, indicates that the kernel must
create a new copy of the page when a process modifies its contents. Finally, the
kernel manipulates the age bits to indicate how long a page has been a member of
the working set of a process. Assume the kernel manipulates the valid, copy on
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write, and age bits, and the hardware sets the reference and modify bits of the page
table entry; Section 9.2.4 will consider hardware that does not have these
capabilities.

Page Table Entry

Page (Physical) Address Age Cp/Wrt Mod Ref Val Prot

Disk Block Descriptor

Figure 9.13. Page Table Entries and Disk Block Descriptors

Each page table entry is associated with a disk block descriptor, which describes
the disk copy of the virtual page (Figure 9.13). Processes that share a region
therefore access common page table entries and disk block descriptors. The
contents of a virtual page are either in a particular block on a swap device, in an
executable file, or not on a swap device. If the page is on a swap device, the disk
block descriptor contains the logical device number and block number containing
the page contents. If the page is contained in an executable file, the disk block
descriptor contains the logical block number in the file that contains the page; the
kernel can quickly map this number into its disk address. The disk block descriptor
also indicates two special conditions set during exec: that a page is "demand fill"
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or "demand zero." Section 9.2.1.2 will explain these conditions.
The pfdata table describes each page of physical memory and is indexed by

page number. The fields of an entry are

• The page state, indicating that the page is on a swap device or executable file,
that DMA is currently underway for the page (reading data from a swap
device), or that the page can be reassigned.

• The number of processes that reference the page. The reference count equals
the number of valid page table entries that reference the page. It may differ
from the number of processes that share regions containing the page, as will be
described below when reconsidering the algorithm for fork.

• The logical device (swap or file system) and block number that contains a copy
of the page.

• Pointers to other pfdata table entries on a list of free pages and on a hash queue
of pages.

The kernel links entries of the pfdata table onto a free list and a hashed list,
analogous to the linked lists of the buffer cache. The free list is a cache of pages
that are available for reassignment, but a process may fault on an address and still
find the corresponding page intact on the free list. The free list thus allows the
kernel to avoid unnecessary read operations from the swap device. The kernel
allocates new pages from the list in least recently used order. The kernel also
hashes the pfdata table entry according to its (swap) device number and block
number. Thus, given a device and block number, the kernel can quickly locate a
page if it is in memory. To assign a physical page to a region, the kernel removes a
free page frame entry from the head of the free list, updates its swap device and
block numbers, and puts it onto the correct hash queue.

The swap-use table contains an entry for every page on a swap device. The
entry consists of a reference count of how many page table entries point to a page
on a swap device.

Figure 9.14 shows the relationship between page table entries, disk block
descriptors, pfdata table entries, and the swap-use count table. Virtual address
1493K of a process maps into a page table entry that points to physical page 794;
the disk block descriptor for the page table entry shows that a copy of the page
exists at disk block 2743 on swap device I. The pfdata table entry for physical
page 794 also shows that a copy of the page exists at disk block 2743 on swap
device 1, and its in-core reference count is 1. Section 9.2.4.1 will explain why the
disk block number is duplicated in the pfdata table and the disk block descriptor.
The swap use count for the virtual page is 1, meaning that one page table entry
points to the swap copy.

9.2.1.1 Fork in a Paging System

As explained in Section 7.1, the kernel duplicates every region of the parent process
during the fork system call and attaches it to the child process. Traditionally, the
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Page Table Entry Disk Block Descriptor

Page No 794
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Swap Dev 1 Block No 2743
1

Virtual Address

1493K    

Figure 9.14. Relationship of Data Structures for Demand Paging

kernel of a swapping system makes a physical copy of the parent's address space,
usually a wasteful operation, because processes often call exec soon after the fork
call and immediately free the memory just copied. On the System V paging
system, the kernel avoids copying the page by manipulating the region tables, page
table entries, and pfdata table entries: It simply increments the region reference
count of shared regions. For private regions such as data and stack, however, it
allocates a new region table entry and page table and then examines each parent
page table entry: If a page is valid, it increments the ,:eference count in the pfdata
table entry, indicating the number of processes that share the page via different
regions (as opposed to the number that share the page by sharing the region). If
the page exists on a swap device, it increments the swap-use table reference count
for the page.

The page can now be referenced through both regions, which share the page
until a process writes to it. The kernel then copies the page so that each region has
a private version. To do this, the kernel turns on the "copy on write" bit for every
page table entry in private regions of the parent and child processes during fork. If
either process writes the page, it incurs a protection fault, and in handling the fault,
the kernel makes a new copy of the page for the faulting process. The physical
copying of the page is thus deferred until a process really needs it.

Figure 9.15 shows the data structures when a process forks. The processes
share access to the page table of the shared text region T, so the region reference
count is 2 and the pfdata reference count for pages in the text region is I. The
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Figure 9.15. A Page in a Process that Forks

kernel allocates a new child data region, Cl, a Copy of region Pl in the parent
process. The page table entries of the two regions are identical, as illustrated by
the entry for virtual address 97K. The page table entries point to pfdata table
entry 613, whose reference count is 2, indicating that two regions reference the
page.

The implementation of the fork system call in the BSD system makes a physical
copy of the pages of the patent process. Recognizing the performance improvement
gained by not having to do the copy, however, the BSD system also contains the
vfork system eau, which assumes that a child process will immediately invoke exec

on return from the vfork call. Vfork does not copy page tables so it is faster than
the System V fork implementation. But the child process executes in the same
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physical address space as the parent process (until an exec or exit) and can thus
overwrite the parent's data and stack. A dangerous situation could arise if 3
programmer uses vfork incorrectly, so the onus for calling vfork lies with the
programmer. The difference between the System V approach and the BSD
approach is philosophical: Should the kernel hide idiosyncrasies of its
implementation from users, or should it allow sophisticated users the opportunity to
take advantage of the implementation to do a logical function more efficiently?

int global;
main()

int local;

local — 1;
if (vfork0

/* child *I
global -• 2; /* write parent data space */
local a• 3; /* write parent stack */
_exit();

printf("global %d local %d\n", global, local);

Figure 9.16. Vfork and Corruption of Process Memory

For example, consider the program in Figure 9.16. After the vfork call, the
child process does not exec, but resets the variables global and local and exits.4
The system guarantees that the parent process is suspended until the child process
execs or exits. When the parent process finally resumes execution, it finds that the
values of the two variables are not the same as they were before the vfork! More
spectacular effects can occur if the child process returns from the function that had
called vfork (see exercise 9.8).

4. The call to _exit is used, because exit "cleans up" the standard I/O (user-level) data structures fo r
the parent and child processes, preventing the parent's printf statement from working correctly —
another unfortunate side effect of vfork.
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9.2.1.2 Exee in a Paging System

When a process invokes the exec system call, the kernel reads the executable file
into memory from the file system, as described in Chapter 7. On a demand paged
system, however, the executable file may be too large to fit in the available main
memory. The kernel, therefore, does not preassign memory to the executable file
but "faults" it in, assigning memory as needed. It first assigns the page tables and
disk block descriptors for the executable file, marking the page table entries
"dernand fill" (for non-bss data) or "demand zero" (for bss data). Following a
variant of the read algorithm for reading the file into memory, the process incurs a
validity fault as it reads each page. The fault handler notes whether the page is
"demand fill," meaning its contents will immediately be overwritten with the
contents of the executable file so it need not be cleared, or that it is "demand zero,"
meaning that its contents should be cleared. The description of the validity fault
handler in Section 9.2.3 will show how this is done. 1f the process cannot fit into
memory, the page-stealer process periodically swaps pages from memory, making
room for the incoming file.

There are obvious inefficiencies in this scheme. First, a process incurs a page
fault when reading each page of the executable file, even though it may never
access the page. Second, the page stealer may swap pages from memory before the
exec is done, resulting in two extra swap operations per page if the process needs
the page early. To make exec more efficient, the kernel can demand page directly
from the executable file if the data is properly aligned, as indicated by a special
magie number. However, use of standard algorithms (such as bmap, in Chapter 4)
to access a file would make it expensive to demand page from indirect blocks
because of the multiple buffer cache accesses necessary to read a block.
Furthermore, consistency problems could arise because bmap is not reentrant. The
kernel sets various 1/0 parameters in the u area during the read system call. 1f a
process incurs a page fault during a read system call when attempting to copy data
to user space, it would overwrite these fields in the u area to read the page from the
file system. Therefore, the kernel cannot use the regular algorithms to fault in
pages from the file system. The algorithms are, of course, reentrant in regular
cases, because each process bas a separate u area and a process cannot
simultaneously execute multiple system calls.

To page directly from an executable file, the kernel finds all the disk block
numbers of the executable file when it does the exec and attaches the list to the file
m ode. When setting up the page tables for such an executable file, the kernel
marks the disk block descriptor with the logica! block number (starting from block
0 in the file) containing the page; the validity fault handler later uses this
information to bad the page from the file. Figure 9.17 shows a typical
arrangement, where the disk block descriptor indicates that the page is at logica!
block offset 84 in the file. The kerne! follows the pointer from the region to the
m ode and looks up the appropriate disk block number (279).
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m ode
Block List
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Figure 9.17. Mapping a File into a Region

9.2.2 The Page-Stealer Process

The page stealer is a kernel process that swaps out memory pages that are no
longer part of the working set of a process. The kernel creates the page stealer
during system initialization and invokes it throughout the lifetime of the system
when low on free pages. It examines every active, unlocked region, skipping locked
regions in the expectation of examining them during its next pass through the
region list, and increments the age field of all valid pages. The kernel locks a
region when a process faults on a page in the region, so that the page stealer cannot
steal the page being faulted in.

There are two paging states for a page in memory: The page is aging and is not
yet eligible for swapping, or the page is eligible for swapping and is available for
reassignment to other virtual pages. The first state indicates that a process recently
accessed the page, and the page is therefore in its working set. Some machines set
a reference bit when they reference a page, but software methods can be substituted
if the hardware does not have this feature (Section 9.2.4). The page stealer turns
off the reference bit for such pages but remembers how many examinations have
passed since the page was last referenced. The first state thus consists of several
substates, corresponding to the number of passes the page stealer makes before the
page is eligible for swapping (see Figure 9.18). When the number exceeds a
threshold value, the kernel puts the page into the second state, ready to be
swapped. The maximum period that a page can age before it is eligible to be
swapped is implementation dependent, constrained by the number of bits available
in the page table entry.

Figure 9.19 depicts the interaction between processes accessing a page and
examinations by the page stealer. The page starts out in main memory, and the
figure shows the number of examinations by the page stealer between memory               
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Figure 9.18. State Diagram for Page Aging

references. A process referenced the page after the second examination, dropping
its age to 0. Similarly, a process referenced the page again after one more
examination. Finally, the page stealer examined the page three times without an
intervening reference and swapped the page out.

If two or more processes share a region, they update the reference bits of the
same set of page table entries. Pages can thus be part of the working set of more
than one process, but that does not matter to the page stealer. 1f a page is part of
the working set of any process, it remains in memory; if it is not part of the
working set of any process, it is eligible for swapping. It does not matter if one
region has more pages in memory than others: the page stealer does not attempt to
swap out equal numbers of pages from all active regions.

The kernel wakes up the page stealer when the available free memory in the
system is below a low-water mark, and the page stealer swaps out pages until the
available free memory in the system exceeds a high-water mark. The use of high-
and low-water marks reduces thrashing: 1f the kernel were only to use one
threshold, it would swap out enough pages to get above the threshold (of free
pages), but as a result of faulting pages back into memory, the number would soon
drop below the threshold. The page stealer would effectively thrash about the
threshold. By swapping out pages until the number of free pages exceeds a high-
water mark, it takes longer until the number of free pages drops below the low-
water mark, so the page stealer does not run as often. Administrators can
configure the values of the high- and low-water marks for best performance.

When the page stealer decides to swap out a page, it considers whether a copy
of the page is on a swap device. There are three possibilities.
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Figure 9.19. Example of Aging a Page

1. If no copy of the page is on a wap device, the kernel "schedules" the page
for swapping: The page stealer places the page on a list of pages to be
swapped out and continues; the swap is logically complete. When the list of
pages to be swapped reaches a limit (dependent on the capabilities of the disk
controller), the kernel writes the pages to the swap device.

2. If a copy of the page is already on a swap device and no process had modified
its in-core contents (the page table entry modify bit is clear), the kernel
clears the page table entry valid bit, decrements the reference count in the
pfdata table entry, and puts the entry on the free list for future allocation.

3. 1f a copy of the page is on a swap device but a process had rnodified its
contents in memory, the kernel schedules the page for swapping, as above,
and frees the space it currently occupies on the swap device.

The page stealer copies the page to a swap device if case 1 or case 3 is true.
To illustrate the differences between the last two cases, suppose a page is on a

swap device and is swapped into main memory after a process incurs a validity
fault. Assume the kernel does not automatically remove the disk copy. Eventually,
the page stealer decides to swap the page out again. 1f no process has written the
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page since it was swapped in, the memory copy is identical to the disk copy and
there is no need to write the page to the swap device. If a process has written the
page, however, the memory copy differs from the disk copy, so the kernel must
write the page to the swap device, after freeing the space on the swap device
previously occupied by the page. It does not reuse the space on the swap device
immediately, so that it can keep swap space contiguous for better performance.

The page stealer fills a list of pages to be swapped, possibly from different
regions, and swaps them to a swap device when the list is full. Every page of a
process need not be swapped: Some pages may not have aged sufficiently, for
example. This differs from the policy of the swapping process, which swaps every
page of a process from memory, but the method for writing data to the swap device
is identical to that described in Section 9.1.2 for a swapping system. If no swap
device contains enough contiguous space, the kernel swaps out one page at a time,
which is clearly more costly. There is more fragmentation of a swap device in the
paging scheme than in a swapping scheme, because the kernel swaps out blocks of
pages but swaps in only one page at a time.

When the kernel writes a page to a swap device, it turns off the valid bit in its
page table entry and decrements the use count of its pfdata table entry. If the
count drops to 0, it places the pfdata table entry at the end of the free list, caching
it until reassignment. If the count is not 0, several processes are sharing the page
as a result of a previous fork call, but the kernel still swaps the page out. Finally,
the kernel allocates swap space, saves the swap address in the disk block descriptor,
and increments the swap-use table count for the page. If a process incurs a page
fault while the page is on the free list, however, the kernel can rescue the page
from memory instead of having to retrieve it from the swap device. However, the
page is still swapped if it is on the swap list.

For example, suppose the page stealer swaps out 30, 40, 50 and 20 pages from
processes A, B, C, and D, respectively, and that it writes 64 pages to the swap
device in one disk write operation. Figure 9.20 shows the sequence of page-
swapping operations that would occur if the page stealer examines pages of the
processes in the order A, B, C, and D. The page stealer allocates space for 64
pages on the swap device and swaps out the 30 pages of process A and 34 pages of
process B. It then allocates more space on the swap device for another 64 pages
and swaps out the remaining 6 pages of process B, the 50 pages of process C, and 8
pages of process D. The two areas of the swap device for the two write operations
need not be contiguous. The page stealer keeps the remaining 12 pages of process
D on the list of pages to be swapped but does not swap them until the list is full.
As processes fault in pages from the swap device or when the pages are no longer
in use (processes exit), free space develops on the swap device.

To summarize, there are two phases to swapping a page from memory. First,
the page stealer finds the page eligible for swapping and places the page number on
a list of pages to be swapped. Second, the kernel copies the page to a swap device
when convenient, turns off the valid bit in the page table entry, decrements the
pfdata table entry reference count, and places the pfdata table entry at the end of



298 MEMORY MANAGEMENT POL1CIES

Groups of 64 Pages to Swap

Proc A 30 pgs

Proc B 34 pgs

•.

Proc B 6 pgs

Proc C 50 pgs

Proc D 8 pgs

Proc D 12 pgs

 

Swap Device

Figure 9.20. Allocation of Swap Space in Paging Scheme

the free list if its reference count is 0. The contents of the physical page in
memory are valid until the page is reassigned.

9.2.3 Page Faults

The system can incur two types of page faults: validity faults and protection faults.
Because the fault handlers may have to read a page from disk to memory and sleep
during the I/O operation, fault handlers are an exception to the genera' rule that
interrupt handlers cannot sleep. However, because the fault handler sleeps in the
context of the process that caused the memory fault, the fault relates to the running
process; hence, no arbitrary processes are put to sleep.

9.2.3.1 Validity Fault Handler

If a process attempts to access a page whose valid bit is not set, it incurs a validity
fault and the kernel invokes the validity faalt handler (Figure 9.21). The valid bit
is not set for pages outside the virtual address space of a process, nor is it set for
pages that are part of the virtual address space but do not currently have a physical
page assigned to them. The hardware supplies the kernel with the virtual address
that was accessed to cause the memory fault, and the kernel finds the page table
entry and disk block descriptor for the page. The kernel locks the region containing
the page table entry to prevent race conditions that would occur if the page stealer
attempted to swap the page out. If the disk block descriptor has no record of the
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algorithm vfault /* handler for validity faults */
input: address where process faulted
output: none

find region, page table entry, disk block descriptor
corresponding to faulted address, lock region;

if (address outside virtual address space)

send signal (SIGSEGV: segmentation violation) to process;
goto out;

if (address now valid) /* process may have slept above */
goto out;

if (page in cache)

remove page from cache;
adjust page table entry;
while (page contents not valid) /* another proc faulted first */

sleep (event contents become valid);

else /* page not in cache */

assign new page to region;

put new page in cache, update pfdata entry;
if (page not previously loaded and page "demand zero")

clear assigned page to 0;
else

read virtual page from swap dev or exec file;
sleep (event I/O done);

awaken processes (event page contents valid);

set page valid bit;
clear page modify bit, page age;
recalculate process priority;

out: unlock region;

Figure 9.21. Algorithm for Validity Fault Handler
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faulted page, the attempted memory reference is invalid and the kernel sends a
"segmentation violation" signal to the offending process (recall Figure 7.25), This
is the same procedure a swapping system fellows when a process accesses an invalid
address, except that it recognizes the error immediately because all legal pages are
memory resident. If the memory reference was legal, the kernel allocates a page of
memory to read in the page contents from the swap device or from the executable
file.

The page that caused the fault is in one of five states:

1. On a swap device and not in memory,
2. On the free page list in memory,
3. In an executable file,
4. Marked "demand zero,"
5. Marked "demand fill."

Let us consider each case in detail.
If a page is on a swap device and not in memory (case 1), it once resided in

main memory but the page stealer had swapped it out. From the disk block
descriptor, the kernel finds the swap device and block number where the page is
stored and verifies that the page is not in the page cache. The kernel updates the
page table entry so that it points to the page about to be read in, places the pfdata
table entry on a hash list to speed later operation of the fault handler, and reads
the page from the swap device. The faulting process sleeps until the I/O completes,
when the kernel awakens other processes who were waiting for the contents of the
page to be read in.

For example, consider the page table entry for virtual address 66K in Figure
9.22. 1f a process incurs a validity fault when accessing the page, the fault handler
examines the disk block descriptor and sees that the page is contained in block 847
of the swap device (assume there is only one swap device): Hence, the virtual
address is legal. The fault handler then searches the page cache but fails to find an
entry for disk block 847. Therefore, there is no copy of the virtual page in
memory, and the fault handler must read it from the swap device. The kernel
assigns page 1776 (Figure 9.23), reads the contents of the virtual page from the
swap device into the new page, and updates the page table entry to refer to page
1776. Finally, it updates the disk block descriptor to indicate that the page is still
swapped and the pfdata table entry for page 1776 to indicate that block 847 of the
swap device contains a duplicate copy of the virtual page.

The kernel does not always have to do an I/0 operation when it incurs a
validity fault, even though the disk block descriptor indicates that the page is
swapped (case 2). It is possible that the kernel had never reassigned the physical
page after swapping it out, or that another process had faulted the virtual page into
another physical page. In either case, the fault handler finds the page in the page
cache, keying off the block number in the disk block descriptor. It reassigns the
page table entry to point to the page just found, increments its page reference
count, and removes the page from the free list, if necessary. For example, suppose
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Figure 9.22. Occurrence of a Validity Fault

a process faults when accessing virtual address 64K in Figure 9.22. Searching the
page cache, the kernel finds that page frame 1861 is associated with disk block
1206, as is the disk block descriptor. It resets the page table entry for virtual
address 64K to point to page 1861, sets the valid bit, and returns. The disk block
number thus associates a page table entry with a pfdata table entry, explaining why
both tables save it.

Similarly, the fault handler does not have to read the page into memory if
another process had faulted on the same page but had not completely read it in yet.
The fault handler finds the region containing the page table entry locked by
another instance of the fault handler. It sleeps until the other instance of the fault
handler completes, finds the page now valid, and returns. Figure 9.24 depicts such
a scenario.
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Figure 9.23. After Swapping Page into Memory
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Figure 9.24. Double Fault on a Page

If a copy of the page does not exist on a swap device but is in the original
executable file (case 3), the kernel reads the page from the original file. The fault
handler examines the disk block descriptor, finds the logical block number in the
file that contains the page, and finds the mode associated with the region table
entry. It uses the logica! block number as an offset into the array of disk block
numbers attached to the mode during exec. Knowing the disk block number, it
reads the page into memory. For example, the disk block descriptor for virtual
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address 1K in Figure 9.22 shows that the page contents are in logical block 3 in the
executable file.

If a process incurs a page fault for a page marked "demand fill" or "demand
zero" (cases 4 and 5), the kernel allocates a free page in memory and updates the
appropriate page table entry. For "demand zero," it also clears the page to zero.
-Finally, it clears the "demand fill" or "demand zero" flags: The page is now valid
in memory and its contents are not duplicated on a swap device or in a file system.
This would happen when accessing virtual addresses 3K and 65K in Figure 9.22:
No process had accessed those pages since the file was execed.

The validity fault handler concludes by setting the valid bit of the page and

clearing the modify bit. It recalculates the process priority, because the process
may have slept in the fault handler at a kernel-level priority, giving it an unfair
scheduling advantage when returning to user mode. Finally, if returning to user
mode, it checks for receipt of any signals that occurred while handling the page
fault.

9.2.3.2 Protection Fault Handler

The second kind of memory fault that a process can incur is a protection fault,
meaning that the process accessed a valid page but the permission bits associated
with the page did not permit access. (Recall the example of a process attempting
to write its text space, in Figure 7.22.) A process also incurs a protection fault
when it attempts to write a page whose copy on write bit was set during the fork
system call. The kernel must determine whether permission was denied because the
page requires a copy on write or whether something truly illegal happened.

The hardware supplies the protection fault handler with the virtual address
where the fault occurred, and the fault handler finds the appropriate region and
page table entry (Figure 9.25). It locks the region so that the page stealer cannot
steal the page while the protection fault handler operates on it. If the fault handler
determines that the fault was caused because the copy on write bit was set, and if
the page is shared with other processes, the kernel allocates a new page and copies
the contents of the old page to it; the other processes retain their references to the
old page. After copying the page and updating the page table entry with the new
page number, the kernel decrements the reference count of the old pfdata table
entry. Figure 9.26 illustrates the scenario: Three processes share physical page
828. Process B writes the page but incurs a protection fault, because the copy on
write bit is set. The protection fault handler allocates page 786, copies the contents
of page 828 to the new page, decrements the reference count of page 828, and
updates the page table entry accessed by process B to point to page 786.

If the copy on write bit is set but no other processes share the page, the kernel
allows the process to reuse the physical page. It turns off the copy on write bit and
disassociates the page from its disk copy, if one exists, because other processes may
share the disk copy. It then removes the pfdata table entry from the page queue,
because the new copy of the virtual page is not on the swap device. Then, it
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algorithm pfault /* protection fault handler */
input: address where process faulted
output: none

find region, page table entry, disk block descriptor,
page frame for address, lock region;

if (page not valid in memory)
goto out;

if (copy on write bit not set)
goto out; Is real program error — signal *I

if (page frame reference count > 1)

allocate a new physical page;
copy contents of old page to new page;
decrement old page frame reference count;
update page table entry to point to new physical page;

else P steal" page, since nobody else is using it */

if (copy of page exists on swap device)
free space on swap device, break page association;

if (page is on page hash queue)
remove from hash queue;

set modify bit, clear copy on write bit in page table entry;
recalculate process priority;
check for signals;

out: unlock region;

Figure 9.25. Algorithm for Protection Fault Handler

decrements the swap-use count for the page and, if the count drops to 0, frees the
swap space (see exercise 9.11).

1f a page table entry is invalid and its eopy on write bit is set to cause a
protection fault, let us assume that the system handles the validity fault first when
a process accesses the page (exercise 9.17 covers the reverse case). Nevertheless,
the protection fault handler must check that a page is stilt valid, because it could
sleep when locking a region, and the page stealer could meanwhile swap the page
from memory. 1f the page is invalid (the valid bit is clear), the fault handler
returns immediately, and the process will incur a validity fault. The kernel handles
the validity fault, but the process will incur the protection fault again. More than
likely, it will handle the final protection fault without any more interference,
because it will take a long time until the page will age sufficiently to be swapped
out. Figure 9.27 illustrates this sequence of events.
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Page Table Entry - Proc C

Page 828 Valid, Copy on Write

(a) Before Proe B Incurs Protection Fault

Page Table Entry - Proc A

(b) After Protection Fault Handler Runs for Proc B

Figure 9.26. Protection Fault with Copy on Write Set

When the protection fault handler finishes executing, it sets the modify and
protection bits, but clears the copy on write bit. It recalculates the process priority
and checks for signals, as is done at the end of the validity fault handler.
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Process Incurring Page Faults Page Stealer

Locks Region

Incur Validity Fault

Time

Figure 9.27. Interaction of Protection Fault and Validity Fault

9.2.4 Demand Paging on Less-Sophisticated Hardware

The algorithms for demand paging are most efficient if the hardware sets the
reference and modify bits and causes a protection fault when a process writes a
page whose copy on write bit is set. However, it is possible to implement the
paging algorithms described here if the hardware recognizes only the valid and
protection bits. 1f the valid bit is duplicated by a software-valid bit that indicates
whether the page is really valid or not, then the kernel could turn off the hardware
valid bit and simulate the setting of the other bits in software. For example, the
VAX-1 1 hardware does not have a reference bit (see [Levy 82D. The kernel can
turn off the hardware valid bit for the page and follow this scenario: 1f a process
references the page, it incurs a page fault because the hardware valid bit is off, and
the page fault interrupt handler examines the page. Because the software-valid bit
is set, the kernel knows that the page is really valid and in memory; it sets the
software reference bit and turns the hardware valid bit on, but it will have acquired
the knowledge that the page had been referenced. Subsequent references to the
page will not incur a fault because the hardware valid bit is on. When the page
stealer examines the page, it turns off the hardware valid bit again, causing
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Hardware Software Software Hardware Software Software

Valid Valid Reference Valid Valid Reference

Off On Off On On On

(a) Before Modifying Page (b) After Modifying Page

Figure 9.28. Mimicking Hardware Modify Bit in Software

processes to fault when referencing the page, repeating the cycle. Figure 9.28

depicts this case.

9.3 A HYBRID SYSTEM WITH SWAPPING AND DEMAND PAGING

Although demand paging systems treat memory more flexibly than swapping
systems, situations can arise where the page stealer and validity fault handler
thrash because of a shortage of memory. If the sum of the working sets of all
processes is greater than the physical memory on a machine, the fault handler will
usually sleep, because it cannot allocate pages for a process. The page stealer will
not be able to steal pages fast enough, because all pages are in a working set.
System throughput suffers because the kernel spends too much time in overhead,
rearranging memory at a frantic pace.

The System V kernel runs swapping and demand paging algorithms to avoid
thrashing problems. When the kernel cannot allocate pages for a process, it wakes
up the swapper and puts the calling process into a state that is the equivalent of
"ready to run but swapped." Several processes may be in this state simultaneously.
The swapper swaps out entire processes until available memory exceeds the high-
water mark. For each process swapped out, it makes one "ready-to-run but
swapped" process ready to run. It does not swap those processes in via the normal
swapping algorithm but lets them fault in pages as needed. Later iterations of the
swapper will allow other processes to be faulted in if there is sufficient memory in
the system, This method slows down the system fault rate and reduces thrashing; it
is similar in philosophy to methods used in the VAX/VMS operating system ([Levy
82]).

9.4 SUMMARY

This chapter has explored the UNIX System V algorithms for process swapping
and demand paging. The swapping algorithm swaps entire processes between main
memory and a swap device. The kernel swaps processes from memory if their size
grows such that there is no more room in main memory (as a result of a fork,
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exec, or sbrk system cal or as a result of normal stack growth), or if it bas ta
make room for a process being swapped in. The kernel swaps processes in via tie
special swapper process, process 0, invoking it whenever there exists a "ready-to.
run" process on the swap device. The swapper swaps in all such processes until
there are no more processes on the swap device or until there is no more room in
memory. In the latter case, it attempts to swap processes from main memory, bui
it reduces the amount of thrashing by prohibiting swapping of processes that do not
satisfy residency requirements; hence, the swapper is not always successful in
swapping all processes into memory during each pass. The doek handler wakes up
the swapper every second if it has work to do.

The implementation of demand paging allows processes to execute even though
their entire virtual address space is not loaded in memory; therefore the virtual size
of a process can exceed the amount of physical memory available in a system.
When the kernel runs low on free pages, the page stealer goes through the active
pages of every region, marks pages eligible for stealing if they have aged
sufficiently, and eventually copies them to a swap device. When a process addresses
a virtual page that is currently swapped out, it incurs a validity fault. The kernel
invokes the validity fault handler to assign a new physical page to the region and
copies the contents of the virtual page to main memory.

With the implementation of the demand paging algorithm, several features
improve system performance. First, the kernel uses the copy on write bit for
forking processes, removing the need to make physical copies of pages in most
cases. Second, the kernel can demand page contents of an executable file from the
file system, eliminating the need for exec to read the file into memory immediately.
This helps performance because such pages may never be needed during the
lifetime of a process, and it eliminates extra thrashing caused if the page stealer
were to swap such pages from memory before they are used.

9.5 EXERCISES

1. Sketch the design of an algorithm mfree, which frees space and returns it to a map.
2. Section 9.11 states that the system locks a process being swapped so that no other

process can swap it while the first operation is underway. What would happen if the
system did not lock the process?

3. Suppose the u area contains the segment tables and page tables for a process. How
can the kernel swap the u area out?

4. 1f the kernel stack is inside the u area, why can't a process swap itself out? How
would you encode a kernel process to swap out other processes and how should it be
invoked?

* 5. Suppose the kernel attempts to swap out a process to make room for processes on a
swap device. 1f there is not enough space on any swap devices, the swapper sleeps
until more space becomes available. Is it possible for all processes in memory to be
asleep and for all ready-to-run processes to be on the swap device? Describe such a
scenario. What should the kernel do to rectify the situation?
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6. Reconsider the swapping example in Figure 9.10 if there is room for only 1 process in

memory.
7. Reconsider the swapping example in Figure 9.11. Construct an example where a

process is permanently starved from use of the CPU. Is there any way to prevent
this?

Figure 9.29. Vfork and More Corruption

8. What happens when executing the program in Figure 9.29 on a 4.2 BSD system?
What happens to the parent's stack?

9. Why is it advantageous to schedule the child process before the parent after a fork

call if copy on write bits are set on shared pages? How can the kernel force the child
to run first?

* 10. The validity fault algorithm presented in the text swaps in one page at a time. Its
efficiency can be improved by prepaging other pages around the page that caused the
fault. Enhance the page fault algorithm to allow prepaging.

11. The algorithms for the page stealer and for the validity fault handler assume that the
size of a page equals the size of a disk block. How should the algorithms be enhanced
to handle the cases where the respective sizes are not equal?

* 12. When a process forks, the page use count in the pfdata table is incremented for all
shared pages. Suppose the page stealer swaps a (shared) page to a swap device, and
one process (say, the parent) later faults it in. The virtual page now resides in a
physical page. Explain why the child process will always be able to find a legal copy
of the page, even after the parent writes the page. If the parent writes the page, why
must it disassociate itself from the disk copy immediately?

13. What should a fault handler do if the system runs out of pages?
* 14. Design an algorithm that pages out infrequently used parts of the kernel. What parts

of the kernel cannot be paged and how should they be identified?
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15. Devise an algorithm that tracks the allocation of space on a swap device by means of a
bit map instead of the maps described in the chapter. Compare the efficiency of taa
two methods.

16. Suppose a machine has no hardware valid bit but has protection bits to allow read,
write, and execute from a page. Simulate manipulation of a software valid bit.

17. The VAX-11 hardware checks for protection faults before validity faults. What
ramifications does this have for the algorithms for the fault handlers?

18. The plock system call allows superusers to lock and unlock the text and data regio!».
of the calling process into memory. The swapper and page stealer processes cannot
remove locked pages from memory. Processes that use this call never have to wait
be swapped in, assuring them faster response than other processes. How should the
system call be implemented? Should there be an option to lock the stack region int°
memory too? What should happen if the total memory space of plocked regions is
greater than the available memory on the machine?

19. What is the program in Figure 9.30 doing? Consider an alternative paging policy,
where each process has a maximum allowed number of pages in its working set.
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struct fourmeg

int pagei5121; /* assume int is 4 bytes */
fourmeg120481;

main()

for (;;)

switch(fork())

case —1: /* parent can't fork---too many children */
case 0: /* child */

Wilco;
default:

continue;

funco

int i;

for (;;)

printf("proc %d loops again\e, getpid());
for 0; i < 2048; i++)

fourmegfil.page[01 i;

Figure 930. A Misbehaving Program
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THE I/O
SUBSYSTEM

The I/O subsystem allows a process to communicate with peripheral devices such
as disks, tape drives, terminals, printers, and networks, and the kernel modules that
control devices are known as device drivers. There is usually a one-to-one
correspondence between device drivers and device types: Systems may contain one
disk driver to control all disk drives, one terminal driver to control all terminals,
and one tape driver to control all tape drives. Installations that have devices from
more than one manufacturer — for example, two brands of tape drives — may
treat the devices as two different device types and have two separate drivers,
because such devices may require different command sequences to operate properly.
A device driver controls many physical devices of a given type. For example, one
terminal driver may control all terminals connected to the system. The driver
distinguishes among the many devices it controls: Output intended for one terminal
must not be sent to another.

The system supports "software devices," which have no associated physical
device. For example, it treats physical memory as a device to allow a process
access to physical memory outside its address space, even though memory is not a
peripheral device. The ps command, for instance, reads kernel data structures
from physical memory to report process statistics. Sirnilarly, drivers may write
trace records useful for debugging, and a trace driver may allow users to read the
records. Finally, the kernel profiler described in Chapter 8 is implemented as a
driver: A process writes addresses of kernel routines found in the kernel symbol

312
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table and reads profiling results.
This chapter examines the interfaces between processes and the I/O subsystem

and between the machine and the device drivers. It investigates the general
structure and function of device drivers, then treats disk drivers and terminal
drivers as detailed examples of the general interface. It concludes with a
description of a new method for implementing device drivers called streams.

10.1 DRIVER INTERFACES

The UNIX system contains two types of devices, block devices and raw or

character devices. As defined in Chapter 2, block devices, such as disks and tapes,

look like random access storage devices to the rest of the system; character devices
include all other devices such as terminals and network media. Block devices may
have a character device interface, too.

The user interface to devices goes through the file system (recall Figure 2.1):
Every device has a name that looks like a file name and is accessed like a file. The
device special file has an mode and occupies a node in the directory hierarchy of
the file system. The device file is distinguished from other files by the file type
stored in its Mode, either "block" or "character special," corresponding to the
device it represents. If a device has both a block and character interface, it is
represented by two device files: its block device special file and its character device
special file. System calls for regular files, such as open, close, read, and write,

have an appropriate meaning for devices, as will be explained later. The ioctl
system call provides an interface that allows processes to control character devices,
but it is not applicable to regular files) However, each device driver need not
support every system call interface. For example, the trace driver mentioned earlier
allows users to read records written by other drivers, but it does not allow users to
write it.

10.1.1 System Configuration

System configuration is the procedure by which administrators specify parameters
that are installation dependent. Some parameters specify the sizes of kernel tables,
such as the process table, mode table, and file table, and the number of buffers to
be allocated for the buffer pool. Other parameters specify device configuration,
telling the kernel which devices are included in the installation and their "address."
For instance, a configuration may specify that a terminal board is plugged into a

I. Conversely, the ftnti system call provides control of operations at the file descriptor level, not the
device level. Other implementations interpret loch for all file types.
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particular slot on the hardware backplane.
There are three stages at which device configuration can be specified. First

administrators can hard-code configuration data into files that are compiled and
linked when building the kernel code. The configuration data is typically specified
in a simple format, and a configuration program converts it into a file suitable for
compilation. Second, administrators can supply configuration information after the
system is already running; the kernel updates internal configuration tables
dynamically. Finally, self-identifying devices permit the kernel to recognize which
devices are installed. The kernel reads hardware switches to configure itself. The
details of system configuration are beyond the scope of this book, but in all cases,
the configuration procedure generates or fills in tables that form part of the code of
the kernel.

The kernel to driver interface is described by the block device switch table and
the character device switch table (Figure 10.1). Each device type has entries in the
table that direct the kernel to the appropriate driver interfaces for the system calls,
The open and close system calls of a device file funnel through the two device
switch tables, according to the file type. The mount and umount system calls also
invoke the device open and close procedures for block devices. Read, write, and
ioctl system calls of character special files pass through the respective procedures in
the character device switch table. Read and write system calls of block devices and
of files on mounted file systems invoke the algorithms of the buffer cache, which
invoke the device strategy procedure. Some drivers invoke the strategy procedure
internally from their read and write procedures, as will be seen. The next section
explores each driver interface in greater detail.

The hardware to driver interface consists of machine-dependent control registers
or I/O instructions for manipulating devices and interrupt vectors: When a device
interrupt accurs, the system identifies the interrupting device and calls the
appropriate interrupt handler. Obviously, software devices such as the kernel
profiler driver (Chapter 8) do not have a hardware interface, but other interrupt
handlers may cal] a "software interrupt handler" directly. For example, the doek
interrupt handler calls the kernel profiler interrupt handler.

Administrators set up device special files with the mknod command, supplying
file type (block or character) and major and minor numbers. The mknod command
invokes the mknod system uil to create the device file. For example, in the
command line

mknod /devitty13 c 2 13

"Jdevitty13" is the file name of the device, c specifies that it is a character special
file (b specifies a block special file), 2 is the major number, and 13 is the minor
number. The major number indicates a device type that corresponds to the
appropriate entry in the block or character device switch tables, and the minor
number indicates a unit of the device. 1f a process opens the block special file
"idev/dsk 1" and its major number is 0, the kernel calls the routine gdopen in entry
0 of the block device switch table (Figure 10.2); if a process reads the character
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Figure 10.1. Driver Entry Points

special file "idevimem" and its major number is 3, the kernel calls the routine
mmread in entry 3 of the character device switch table. The routine nulidev is an
"empty" routine, used when there is no need for a particular driver function.
Many peripheral devices can be associated with a major device number; the minor
device number distinguishes them from each other. Device special files do not have
to be created every time the system is booted; they need be changed only if the
configuration changes, such as when adding devices to an installation.

10.1.2 System Calls and the Driver Interface

This section describes the interface between the kernel and device drivers. For
system calls that use file descriptors, the kernel follows pointers from the user file

315
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block device switch table
entry open close strategy

0 gdopen gdclose gdstrategy
gtopen gtclose gtstrategy

cbaracter device switch table
entry open 1 close read write ioctl

0 conopen conclose conread conwrite conioctl
1 dzbopen dzbclose dzbread dzbwri e dzbioctl

2 syopen nulldev syread sywrite syloctl

3 nulldev nulldev mmread mmwrite nodev
4 gdopen gdclose gdread gdwrite nodev

gtopen gtclose gtread gtwrite noclev

Figure 10.2. Sample Block and Character Device Switch Tables

descriptor to the kernel file table and mode, where it examines the file type and
accesses the block or character device switch table, as appropriate. It extracts the
major and minor numbers from the mode, uses the major number as an index into
the appropriate table, and calls the driver function according to the system eau
being made, passing the minor number as a parameter. An important difference
between system calls for devices and regular files is that the mode of a special file is
not locked while the kernel executes the driver. Drivers frequently sleep, waiting
for hardware connections or for the arrival of data, so the kernel cannot determine
how long a process will sleep. If the mode was locked, other processes that access
the mode (via the stat system call, for example) would sleep indefinitely because
another process is asleep in the driver.

The device driver interprets the parameters of the system call as appropriate for
the device. A driver maintains data structures that describe the state of each unit
that it controls; driver functions and interrupt handlers execute according to the
state of the driver and the action being done (for example, data being input or
output). Each interface will now be described in greater detail.

10.1.2.1 Open

The kernel follows the same procedure for opening a device as it does for opening
regular files (see Section 5.1), allocating an in-core mode, incrementing its
reference count, and assigning a file table entry and user file descriptor. The kerne'
eventually returns the user file descriptor to the calling process, so that opening a
device looks like opening a regular file, However, it invokes the device-specific
open procedure before returning to user mode, (Figure 10.3). For a block device, it



convert pathname to mode, increment Mode reference count,
allocate entry in file table, user file descriptor,

as in open of regular file;

get major, minor number from mode;

save context (algorithm setjmp) in case of long jump from driver;

if (block device)

use major number as index to block device switch table;
call driver open procedure for index:

pass minor number, open modes;

else

use major number as index to character device switch table;
call driver open procedure for index:

pass minor number, open modes;

if (open fails in driver)
decrement file table, mode counts;
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Figure 10.3. Algorithm for Opening a Device

invokes the open procedure encoded in the block device switch table, and for a
character device, it invokes the open procedure in the character device switch table.
If a device is both a block and a character device, the kernel will invoke the
appropriate open procedure depending on the particular device file the user opened:
The two open procedures may even be identical, depending on the driver.

The device-specific open procedure establishes a connection between the calling
process and the opened device and initializes private driver data structures. For a
terminal, for example, the open procedure may put the process to sleep until the
machine detects a (hardware) carrier signal indicating that a user is trying to log
in. It then initializes driver data structures according to appropriate terminal
settings (such as the terminal baud rate). For software devices such as system
memory, the open procedure may have no initialization to do.
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If a process must sleep for some external reason when opening a device, it is
possible that the event that should awaken the process from its sleep may never
occur. For example, if no user ever logs in to a particular terminal, the getty
process that opened the terminal (Section 7.9) sleeps until a user attempts to log
in, potentially a long time. The kernel must be able to awaken the process from its
sleep and cancel the open call en receipt of a signal: It must reset the mode, file
table entry, and user file descriptor that it had allocated before entry int° the
driver, because the open fails. Hence, the kernel saves the process context using
algorithm setfmp (Section 6.4.4) before entering the device-specific open routine; d
the process awakens from its sleep because of a signal, the kernel restores the
process context to its state before entering the driver using algorithm longjmp
(Section 6.4.4) and releases all data structures it had allocated for the open.
Similarly, the driver can catch the signal and clean up private data structures, if
necessary. The kernel also readjusts the file system data structures when the driver
encounters error conditions, such as when a user attempts to access a device that
was not configured. The open call fails in such cases.

Processes may specify various options to qualify the device open. The most
common option is "no delay," meaning that the process will not sleep during the
open procedure if the device is not ready. The open system call returns
immediately, and the user process has no knowledge of whether a hardware
connection was made or not. Opening a device with the "no delay" option also
affects the semantics of the read system call, as will be seen (Section 10.3.4).

If a device is open cd many times, the kernel manipulates the user file
descriptors and the Mode and file table entries as described in Chapter 5, invoking
the device specific open procedure for each open system call. The device driver can
thus count how many times a device was open cd and fail the open eau ir the count
is inappropriate. For example, it makes sense to allow multiple processes to open a
terminal for writing so that users can exchange messages. But it does not make
sense to allow multiple processes to open a printer for writing simultaneously, since
they could overwrite each other's data. The differences are practical rather than
implementational: allowing simultaneous writing to terminals fosters
communication between users; preventing simultaneous writing to printers increases
the chance of getting readable printouts.2

10.1.2.2 Close

A process severs its connection to an open device by closing it. However, the
kernel invokes the device-specific close procedure only for the last close of the

2. In practice, printers are usually controlled by special spooler processes, and perrnissions are set up sc
that °ni), the spooler can access the printer. But the analogy is still applicable.
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device, that is, only if no other processes have the device open, because the device

close procedure terminates hardware connections; clearly this must wait until no
processes are accessing the device. Because the kernel invokes the device open

procedure during every open system call but invokes the device close procedure only
once, the device driver is never sure how many processes are still using the device.
Drivers can easily put themselves out -of state if not coded carefully: If they sleep

in the close procedure and another process opens the device before the close
completes, the device can be rendered useless if the combination of open and close
results in an unrecognized state.

algorithm close /* for devices */
input: file descriptor
output: none

do regular close algorithm (chapter 5xxx);
if (file table reference count not 0)

goto finish;
if (there is another open file and its major, minor numbers

are same as device being closed)
goto finish; /* not last close after all */

if (character device)

use major number to index into character device switch table;
call driver close routine: parameter minor number;

if (block device)

if (device mounted)
goto finish;

write device blocks in buffer cache to device;
use major number to index into block device switch table;
call driver close routine: parameter minor number;
invalidate device blocks still in buffer cache;

finish:
release mode;

Figure 10.4. Algorithm for Closing a Device

The algorithm for closing a device is similar to the algorithm for closing a
regular file (Figure 10.4). However, before the kernel releases the mode it does
operations specific to device files.

I. It searches the file table to make sure that no other processes still have the
device open. It is not sufficient to rely on the file table count to indicate the
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last close of a device, because several processes may access the device via a
different file table entry. It is also not sufficient to rely on the Mode table
count, because several device files may specify the same device. For example,
the results of the following Is — 1 command show two character device files
(the first "c" on the line) that refer to one device, because their major and
minor numbers (9 and 1) are equal. The link count of 1 for each file implies
that there are two inodes.

crw--w--w— 	1 root vis 9, 1 Aug 6 1984 idevitty01
crw— w w 1 root unix 9, 1 May 3 15:02 idevifty01

1f processes open the two files independently, they access different inodes hut
the same device.

2. For a character device, the kernel invokes the device close procedure and
returns to user mode. For a block device, the kernel searches the mount table
to make sure that the device does not contain a mounted file system, 1f there
is a mounted file system from the block device, the kernel cannot invoke the
device close procedure, because it is not the last close of the device. Even if
the device does not contain a mounted file system, the buffer cache could stijl
contain blocks of data that were left over from a previously mounted file
system and never written to the device, because they were marked "delayed
write." The kernel therefore searches the buffer cache for such blocks and
writes them to the device before invoking the device close procedure. After
closing the device, the kernel again goes through the buffer cache and
invalidates all buffers that contain blocks for the now closed device, allowing
buffers with useful data to stay in the cache longer.

3. The kernel releases the mode of the device file.

To summarize, the device close procedure severs the device connection and
reinitializes driver data structures and device hardware, so that the kernel can
reopen the device later on.

10.1.2.3 Read and Write

The kernel algorithms for read and write of a device are similar to those for a
regular file. If the process is reading or writing a character device, the kernel
invokes the device driver read or write procedure. Although there are important
cases where the kernel transmits data directly between the user address space and
the device, device drivers may buffer data internally. For example, terminal drivers
use clists to buffer data (Section 10.3.1). In such cases, the device driver allocates
a "buffer," capjes data from user space during a write, and outputs the data from
the "buffer" to the device. The driver write procedure throttles the amount of data
being output (called flow control): 1f processes generate data faster than the device
can output it, the write procedure puts processes to sleep until the device can accept
more data. For a read, the device driver receives the data from the device in a
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Figure 10.5, Memory Mapped I/O with the VAX DZ11 Controller

buffer and copies the data from the buffer to the user address specified in the
system call.

The precise method in which a driver communicates with a device depends on
the hardware. Some machines provide memory mapped I/O, meaning that certain
addresses in the kernel address space are not locations in physical memory but are
special registers that control particular devices. By writing control parameters to
specified registers according to hardware specifications, the driver controls the
device. For example, I/O controllers for the VAX-11 computer contain special
registers for recording device status (control and status registers) and for data
transmission (data buffer registers), which are configured at specific addresses in
physical memory. In particular, the VAX DZ11 terminal controller controls 8
asynchronous lines for terminal communication (see [Levy 80] for more detail on
the VAX architecture). Assume that the control and status register of a particular
DZ11 is at address 160120, the transmit data buffer register is at address 160126,
and the receive data buffer register is at address 160122 (Figure 10.5). To write a
character to terminal "idevitty09", the terminal driver writes the number 1 (1 — 9
modulo 8) to a specified bit position in the control and status register and then
writes the character to the transmit data buffer register. The operation of writing
the transmit data buffer register transmits the data. The DZ11 controller sets a
done bit in the control and status register when it is ready to accept more data.
The driver can optionally set a transmit interrupt enable bit in the control and
status register, which causes the DZ11 controller to interrupt the system when it is
ready to accept more data. Reading data from the DZ11 is similar.
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Other machines have programmed I/O, meaning that the machine contains
instructions to control devices, Drivers control devices by executing the appropriate
instructions. For example, the IBM 370 computer has a Start I/O instruction to
initiate an I/O operation to a device. The method a driver uses to communicate
with peripherals is transparent to the user.

Because the interface between device drivers and the underlying hardware is
machine dependent, no standard interfaces exist at this level. For both memory-
mapped I/O and programmed I/O, a driver can issue control sequences to a device
to set up direct memory access (DMA) between the device and memory. The
system allows bulk DMA transfer of •data between the device and memory in
parallel to CPU operations, and the device interrupts the system when such a
transfer has completed. The driver sets up the virtual memory mapping so that the
correct locations in memory are used for DMA.

High-speed devices can sometimes transfer data directly between the device and
the user's address space, without intervention of a kernel buffer. This results in
higher transfer speed because there is one less copy operation in the kernel, and the
amount of data transmitted per transfer operation is not bounded by the size of
kernel buffers. Drivers that make use of this "raw" I/O transfer usually invoke the
block strategy interface from the character read and write procedures if they have
a block counterpart.

10.1.2.4 Strategy Interface

The kernel uses the strategy interface to transmit data between the buffer cache
and a device, although as mentioned above, the read and write procedures of
character devices sometimes use their (block counterpart) strategy procedure to
transfer data directly between the device and the user address space. The strategy
procedure may queue I/0 jobs for a device on a work list or do more sophisticated
processing to schedule I/O jobs. Drivers can set up data transmission for one
physical address or many, as appropriate. The kernel passes a buffer header
address to the driver strategy procedure; the header contains a list of (page)
addresses and sizes for transmission of data to or from the device. This is also how
the swapping operations discussed in Chapter 9 work. For the buffer cache, the
kernel transmits data from one data address; when swapping, the kernel transmits
data from many data addresses (pages). If data is being copied to or from the
user's address space, the driver must lock the process (or at least, the relevant
pages) in memory until the I/O transfer is complete.

For example, after mourzting a file system, the kernel identifies every file in the
file system by its device number and mode number. The device number is an
encoding of the device major and minor numbers. When the kernel accesses a
block from a file, it copies the device number and block number into the buffer
header, as described in Chapter 3. When the buffer cache algorithms (bread or
bwrite, for example) access the disk, they invoke the strategy procedure indicated
by the device major number. The strategy procedure Lises the minor number and
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block number fields in the buffer header to identify where to find the data on the
device, and it uses the buffer address to identify where the data should be
transferred. Similarly, if a process accesses a block device directly (that is, the

process opens the block device and reads or writes it), it uses the buffer cache

algorithms, and the interface works as just described.

10.1.2.5 loctl

The ioctl system call is a generalization of the terminal-specific stty (set terminal

settings) and guy (get terminal settings) system calls available in earlier versions of
the UNIX system. It provides a general, catch-all entry point for device specific
commands, allowing a process to set hardware options associated with a device and
software options associated with the driver. The specific actions specified by the
ioctl call vary per device and are defined by the device driver. Programs that use

ioctl must know what type of file they are dealing with, because they are device-
specific. This is an exception to the general rule that the system does not
differentiate between different file types. Section 10.3.3 provides more detail on the
use of ioctl for terminals.

The syntax of the system call is

ioctl(fd, command, arg);

where fd is the file descriptor returned by a prior open system call, command is a
request of the driver to do a particular action, and arg is a parameter (possibly a
pointer to a structure) for the command. Commands are driver specific; hence,
each driver interprets commands according to internal specifications, and the
format of the data structure arg depends on the command. Drivers can read the
data structure arg from user space according to predefined formats, or they can
write device settings into user address space at arg. For instance, the ioctl
interface allows users to set terminal baud rates; it allows users to rewind tapes on
a tape drive; finally, it allows network operations such as specifying virtual circuit
numbers and network addresses.

10.1.2.6 Other File System Related Calls

File system calls such as stat and chmod work for devices as they do for regular
files; they manipulate the mode without accessing the driver. Even the lseek system
call works for devices. For example, if a process !seeks to a particular byte offset
on a tape, the kernel updates the file table offset but does no driver-specific
operations. When the process later reads or writes, the kernel moves the file table
offset to the u area, as is done for regular files, and the device physically seeks to
the correct offset indicated in the u area. An example in Section 10.3 illustrates
this case.
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Figure 10.6. Device Interrupts

10.1.3 Interrupt Handlers

As previously explained (Section 6.4.1), occurrence of an interrupt causes the
kernel to execute an interrupt handler, based on the correlation of the interrupting
device and an offset in the interrupt vector table. The kernel invokes the device
specific interrupt handler, passing it the device number or other parameters to
identify the specific unit that caused the interrupt. For example, Figure 10.6 shows
two entries in an interrupt vector table for handling terminal interrupts ("ttyintr"),
each handling interrupts for 8 terminals. 1f device tty09 interrupts the system, the
system calis the interrupt handler associated with the hardware position of the
interrupting device. Because many physical devices can be associated with one
interrupt vector entry, the driver must be able to resolve which device caused the
interrupt. In the figure, the two interrupt vector entries for "ttyintr" are labeled 0
and 1, implying that the system distinguishes between the two vector entries in
some way when calling the interrupt handler, such as using that number as a
parameter to the call. The interrupt handler would use that number and other
information passed by the interrupt mechanism to ascertain that device tty09
interrupted the system and not 11y12, for example. This example is a simplification
of what happens on real systems, where several levels of controllers and their
interrupt handlers enter the picture, but it illustrates the general principles.

In summary, the device number used by the interrupt handler identifies a
hardware unit, and the minor number in the device file identifies a device for the
kernel. The device driver correlates the minor device number to the hardware unit
number.
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10.2 DISK DRIVERS

Historically, disk units on UNIX systems have been configured into sections that
contain individual file systems, allowing "the [disk] pack to be broken up into more
manageable pieces" (see [System V 840. For instance, if a disk contains four file
systems, an administrator may leave one unmounted, mount another "read-only,"

and mount the last two "read-write." Even though all the file systems coexist on
one physical unit, users cannot access files in the unmounted file system using the
access methods described in Chapters 4 and 5, nor can any users write files in the
"read-only" file system. Furthermore, since each section (and hence file system)
spans contiguous tracks and cylinders of the disk, it is easier to copy entire file
systems than if they were dispersed throughout an entire disk volume.

The disk driver translates a file system address, consisting of a logica' device
number and block number, to a particular sector on the disk. The driver gets the
address in one of two ways: Either the strategy procedure uses a buffer from the
buffer pool and the buffer header contains the device and block number, or the read

and write procedures are passed the logica' (minor) device number as a parameter;
they convert the byte offset saved in the u area to the appropriate block address.
The disk driver uses the device number to identify the physical drive and particular
section to be used, maintaining internal tables to find the sector that marks the
beginning of a disk section. Finally, it adds the block number of the file system to
the start sector number to identify the sector used for the I/O transmission.

Section Start Block Length in Blocks

Size of block 512 bytes

0 0 64000
1 64000 944000
2 168000 840000
3 336000 672000
4 504000 504000
5 672000 336000
6 840000 168000
7 0 1008000

Figure 10.7. Disk Sections for RP07 Disk

Historically, the sizes and lengths of disk sections have been fixed according to
the disk type. For instance, the DEC RP07 disk is partitioned into the sections
shown in Figure 10.7. Suppose the files "/dev/dsk0", "/dev/dskl", "idevidsk2"
and "/dev/dsk3" correspond to sections 0 through 3 of an RP07 disk and have
minor numbers 0 through 3. Assume the size of a logical file system block is the
same as that of a disk block. If the kernel attempts to access block 940 in the file
system contained in "/dev/dsk3", the disk driver converts the request to access
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block 336940 (section 3 starts at block 336000; 336000 + 940 336940) on the
disk.

The sizes of disk sections vary, and administrators configure file systems in
sections of the appropriate size: Large file systems go into large sections, and so
on. Sections may overlap on disk. For example, Sections 0 and 1 in the RP07 disk
are disjoint, but together they cover blocks 0 to 1008000, the entire disk. Section 7
also covers the entire disk. The overlap of sections does not matter, provided that
the file systems contained in the sections are configured such that they do not
overlap. It is advantageous to have one section include the entire disk, since the
entire volume can thus be quickly copied.

The use of fixed sections restricts the flexibility of disk configuration. The
hard-coded knowledge of disk sections should not be put into the disk driver but
should be placed in a configurable volume table of contents on the disk. However,
it is difficult to find a generic position on all disks for the volume table of contents
and retain compatibility with previous versions of the system. Current
implementations of System V expect the boot block of the first file system on a disk
to occupy the first sector of the volume, although that is the most logical place for a
volume table of contents. Nevertheless, the disk driver could contain hard-coded
information on where the volume table of contents is stored for that particular disk,
allowing variable sized disk sections.

Because of the high level of disk traffic typical of UNIX systems, the disk driver
must maximize data throughput to get the best system performance. Most modern
disk controllers take care of disk job scheduling, positioning the disk arm, and
transferring data between the disk and the CPU; otherwise, the disk driver must do
these tasks.

Utility programs can use either the raw or block interface to access disk data
directly, bypassing the regular file system access method investigated in Chapters 4
and 5. Two important programs that deal directly with the disk are Inkfs and fsck.
Mkfs formats a disk section for a UNIX file system, creating a super block, mode
list, linked list of free disk blocks, and a root directory on the new file system. Fmk
checks the consistency of an existing file system and corrects errors, as presented in
Chapter 5.

Consider the program in Figure 10.8 and the files "Alevidsk15" and
"idevirdsk15", and suppose the Is command prints the following information.

is —1 idevidsk15 idev/rdsk15

b r  - - - - - - - -  - - 2 root root 0, 21 Feb 12 15:40 /devidsk15
crw-rw  - - - - - - 2 root root 7, 21 Mar 7 09:29 /devirdsk15

It shows that "klevidsk15" is a block device owned by "root," and only "root" can
read it directly. Its major number is 0, and its minor number is 21. The file
"/devirdsk15" is a character device owned by "root" but allows read and write
permission for the owner and group (both root here). Its major number is 7, and
its minor number is 21. A process opening the files gains access to the device via
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#include "fentl„h"
rnain()

char bufl[4096), buf2140961;
int fdl, fd2, i;

if (((fdi open("/devidsk5", 0 RDONLY)) — 1) 11

((fd2 openeidevirdsk5", QRDONLY)) —1))

printfefailure on open\n");
exit();

iseek(fdl, 8192L, 0);
iseek(fd2, 8192L, 0);

if ((read(fdl, buf1, sizeof(bufa) —1)1T (read(fd2, buf2, sizeof(buf2)) —1))

printf(failure on read\n");
exit();

for 0; i < sizeof(buf1); i++)
if (bufl[ii buf2[i])

printf("different at offset %d\n", i);
exit();

printf("reads match\n");

Figure 10.8. Reading Disk Data Using Block and Raw Interface

the block device switch table and the Character device switch table, respectively,
and the minor number 21 informs the driver which disk section is being accessed —
for example, physical drive 2, section 1. Because the minor numbers are identical
for each file, both refer to the same disk section, assuming this is one device. 3 Thus,
a process executing the program opens the same driver twice (through different
interfaces), lseeks to byte offset 8192 in the devices, and reads data from that

3. There is no way to verify that a character driver and a block driver refer to the same device, except
by examination of the system configuration tables and the driver code.
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position. The results of the read calls should be identical, assuming no other file
system activity.

Programs that read and write the disk directly are dangerous because they eaa
read or write sensitive data, jeopardizing system security. Administrators must
protect the block and raw interfaces by putting the appropriate permissions on the
disk device files. For example, the disk files "idevidsk 15" and "idev/rdsk 15"
should be owned by "root," and their permissions should allow "root" to read the
file but should not allow any other users to read or write.

Programs that read and write the disk directly can also destroy the consistency
of file system data. The file system algorithms explained in Chapters 3, 4, and 5
coordinate disk I/O operations to maintain a consistent view of disk data structures,
including linked lists of free disk blocks and pointers from modes to direct and
indirect data blocks. Processes that access the disk directly bypass these
algorithms. Even if they are carefully encoded, there is still a consistency problem
if they run while other file system activity is going on. For this reason, fsck should
not be run on an active file system.

The difference between the two disk interfaces is whether they deal with the
buffer cache. When accessing the block device interface, the kernel follows the
same algorithm as for regular files, except that after converting the logical byte
offset into a logical block offset (recall algorithm bmap in Chapter 4), it treats the
logical block offset as a physical block number in the file system. It then accesses
the data via the buffer cache and, ultimately, the driver strategy interface.
However, when accessing the disk via the raw interface, the kernel does not convert
the byte offset into the file but passes the offset immediately to the driver via the II

area. The driver read or write routine converts the byte offset to a block offset and
copies the data directly to the user address space, bypassing kernel buffers.

Thus, if one process writes a block device and a second process then reads a
raw device at the same address, the second process may not read the data that the
first process had written, because the data may still be in the buffer cache and not
on disk. However, if the second process had read the block device, it would
automatically pick up the new data, as it exists in the buffer cache.

Use of the raw interface may also introduce strange behavior. If a process
reads or writes a raw device in units smaller than the block size, for example,
results are driver-dependent. For instance, when issuing 1-byte writes to a tape
drive, each byte may appear in different tape blocks.

The advantage of using the raw interface is speed, assuming there is no
advantage to caching data for later access. Processes accessing block devices
transfer blocks of data whose size is constrained by the file system logical block
size. For example, if a file system has a logical block size of 1K bytes, at most 1 K
bytes are transferred per I/O operation. However, processes accessing the disk as a
raw device can transfer many disk blocks during a disk operation, subject to the
capabilities of the disk controller. Functionally, the process sees the same result,
but the raw interface may be much faster. In Figure 10.8 for example, when a
process reads 4096 bytes using the block interface for a file system with 1K bytes
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per block, the kernel loops internally four times and accesses the disk during each
iteration before returning from the system eau, but when it reads the raw interface,

the driver may satisfy the read with one disk operation. Furthermore, use of the
block interface entails an extra copy of data between user address space and kernel
buffers, which is avoided in the raw interface.

10.3 TERMINAL DRI VERS

Terminal drivers have the same function as other drivers: to control the
transmission of data to and from terminals. However, terminals are special,
because they are the user's interface to the system. To accommodate interactive
use of the UNIX system, terminal drivers contain an internal interface to line

discipline modules, which interpret input and output. In canonical mode, the line
discipline converts raw data sequences typed at the keyboard to a canonical form
(what the user really meant) before sending the data to a receiving process; the line
discipline also converts raw output sequences written by a process to a format that
the user expects. In raw mode, the line discipline passes data between processes
and the terminal without such conversions.

For example, programmers are notoriously fast but error-prone typists.
Terminals provide an "erase" key (or such a key can be so designated) such that
the user can logically erase part of the typed sequence and enter corrections. The
terminal sends the entire sequence to the machine, including the erase characters.4
In canonical mode, the line discipline buffers the data into lines (the sequence of
characters until a carriage-return s character) and processes erase characters
internally before sending the revised sequence to the reading process.

The functions of a line discipline are

• to parse input strings into lines;
• to process erase characters;
• to process a "kill" character that invalidates all characters typed so far on the

current line;
• to echo (write) received characters to the terminal;
• to expand output such as tab characters to a sequence of blank spaces;
• to generate signals to processes for terminal hangups, line breaks, or in response

to a user hitting the delete key;
• to allow a raw mode that does not interpret special characters such as erase, kill

or carriage return.

4. This section will assume the use of dumb terminals, which transmit all characters typed by the user
without processing them.

5. This chapter will use the generic term "carriage return" for "carriage return" and "new-line"
characters,
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The support of raw mode implies the use of an asynchronous terminal, because
processes can read characters as they are typed instead of waiting until a user hits
a carriage return or "enter" key.

Ritchie notes that the original terminal line disciplines used during system
development in the early 1970s were in the shell and editor programs, not in the
kernel (see page 1580 of [Ritchie 84]). However, because their function is needed
by many programs, their proper place is in the kernel. Although the line discipline
performs a function that places it logically between the terminal driver and the rest
of the kernel, the kernel does not invoke the line discipline directly but only through
the terminal driver. Figure 10.9 shows the logical flow of data through the
terminal driver and line discipline and the corresponding flow of control through the
terminal driver. Users can specify what line discipline should be used via an ioctI

system call, but it is difficult to implement a scheme such that one device uses
several line disciplines simultaneously, where each line discipline module
successively calls the next module to process the data in turn.

Data Flow Control Flow

Process read/write Process read/write

output inputLine discipline
ni111.11111113

Terminal driver read/write

Terminal driver Line discipline

t
Driver input/output

Device input/output

Figure 10.9. Call Sequence and Data Flow through Line Discipline
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Figure 10.10. A Cblock

10.3.1 Clists

Line disciplines manipulate data on clists. A dist, or character list, is a variable-
length linked list of cblocks with a count of the number of characters on the list.
A cblock contains a pointer to the next cblock on the linked list, a small character
array to contain data, and a set of offsets indicating the position of the valid data in
the cblock (Figure 10.10). The start offset indicates the first location of valid data
in the array, and the end offset indicates the first location of nonvalid data.

The kernel maintains a linked list of free cblocks and has six operations on clists
and cblocks.

1. It has an operation to assign a cblock from the free list to a driver.
2. It also has an operation to return a cblock to the free list.
3. The kernel can retrieve the first character from a clist: It removes the first

character from the first cblock on the clist and adjusts the clist character
count and the indices into the cblock so that subsequent operations will not
retrieve the same character. If a retrieval operation consumes the last
character of a cblock, the kernel places the empty cblock on the free list and
adjusts the clist pointers. If a clist contains no characters when a retrieval
operation is done, the kernel returns the null character.

4. The kernel can place a character onto the end of a clist by finding the last
cblock on the clist, putting the character onto it, and adjusting the offset
values. If the cblock is full, the kernel allocates a new cblock, links it onto
the end of the clist, and places the character into the new cblock.

5. The kernel can remove a group of characters from the beginning of a clist one
cblock at a time, the operation being equivalent to removing all the characters
in the cblock one at a time.

6. The kernel can place a cblock of characters onto the end of a clist.

Clists provide a simple buffer mechanism, useful for the small volume of data
transmission typical of slow devices such as terminals. They allow manipulation of
data one character at a time or in groups of cblocks. For example, Figure 10.11
depicts the removal of characters from a clist; the kernel removes one character at
a time from the first cblock on the clist (Figure 10.11a —c) until there are no more
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Figure 10.12. Placing a Character on a Clist
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characters in the cblock (Figure 10.11d); then, it adjusts the clist pointer to point
to the next cblock, which becomes the first one on the linked list. Similarly, Figure
10.12 depicts how the kernel puts characters onto a dist; assuming a cblock holds
up to 8 characters, the kernel !inks a new cblock onto the end of the linked list
(Figure 10.12d).

10.3.2 The Terminal Driver in Canonieal Mode

The data structures for terminal drivers have three clists associated with them: a
dist to store data for output to the terminal, a clist to store "raw" input data
provided by the terminal interrupt handler as the user typed it in, and a dist to
store "cooked" input data, after the line discipline converts special characters in the
raw clist, such as the erase and kill characters,

a gorithm terminal write

while (more data to be copied from user space)

if (tty flooded with output data)

start write operation to hardware with data
cm output clist;

sleep (event: tty can accept more data);
continue; /* back to while loop */

1
copy cblock size of data from user space to output clist:

line discipline converts tab characters, etc;

start write operation to hardware with data cm output clist;

Figure 10.13. Algorithm for Writing Data to a Terminal

When a process writes a terminal (Figure 10.13), the terminal driver invokes
the line discipline. The line discipline loops, reading output characters from user
address space and placing them onto the output clist, until it exhausts the data.
The line discipline processes output characters, expanding tab characters to a series
of space characters, for example. If the number of characters on the output dist
becomes greater than a high-water mark, the line discipline calls driver procedures
to transmit the data on the output dist to the terminal and puts the writing process
to sleep. When the amount of data on the output clist drops below a low-water
mark, the interrupt handler awakens all processes asleep on the event the terminal
can accept more data. The line discipline finishes its loop, having copied all the
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output data from user space to the output clist, and calls driver procedures to
transmit the data to the terminal, as described earlier.

If multiple processes write to a terminal, they follow the given procedure
independently. The output could be garbled; that is, data written by the processes
may be interleaved on the terminal. This could happen because a process may
write the terminal using several write system calls. The kernel could switch context
while the process is in user mode between successive write system calls, and newly
scheduled processes could write the terminal while the original process sleeps.
Output data could also be garbled at a terminal because a writing process may
sleep in the middle of a write system call while waiting for previous output data to
drain from the system. The kernel could schedule other processes that write the
terminal before the original process is rescheduled. Because of this case, the kernel
does not guarantee that the contents of the data buffer to be output by a write
system call appear contiguously on the terminal.

char form "this is a sample output string from child ";
main()

char output[ 128);
int i;

for — 0; i < 18; i++)

switch (fork())

case — 1: /* error — hit max procs */
exit();

default: /* parent process */
break;

case 0: /* child process */
1* format output string in variable output */
sprintf(output, "%s%d\rasTod\n", form, i, form, 0;
for (;;)

write(1, output, sizeof(output));

Figure 10.14. Flooding Standard Output with Data

Consider the program in Figure 10,14. The parent process creates up to 18
children; each child process formats a string (via the library function sprint!) in the
array output, which includes a message and the value of i at the time of the fork
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and then goes into a loop, writing the string to its standard output file during each
iteration. 1f the standard output is the terminal, the terminal driver regulates the
flow of data to the terminal. The output string is more than 64 characters long, tec
large to fit into a cblock (64 bytes long) in System V implementations. Henee, the
terminal driver needs more than one cblock for each write eau, and output eould
become garbled. For example, the following lines were part of the output produced
when running the program on an AT&T 3820 computer:

this is a sample output string from child 1
this is a sample outthis is a sample output string from child 0

Reading data from a terminal in canonical mode is a more complex operation.
The read system call specifies the number of bytes the process wants to read, but
the line discipline satisfies the read on receipt of a carriage return even though the
character count is not satisfied. This is practical, since it is impossible for a process
to predict how many characters the user will enter at the keyboard, and it does not
make sense to wait for the user to type a large number of characters. For example,
users type command lines to the shell and expect the shell to respond to the
command on receipt of a carriage return character. It makes no difference whether
the commands are simple, such as "date" or "who," or whether they are more
complicated command sequences such as

pic file*Itblleqn1troff —mm —Taps 1apsend

The terminal driver and line discipline know nothing about shell syntax, and rightly
so, because other programs that read terminals (such as editors) have different
command syntax. Hence, the line discipline satisfies read calls on receipt of a
carriage return.

Figure 10.15 shows the algorithm for reading a terminal. Assume the terminal
is in canonical mode; Section 10.3.3 will cover the case of raw mode. If no data is
currently on either input dist, the reading process sleeps until the arrival of a line
of data. When data is entered, the terminal interrupt handler invokes the line
discipline "interrupt handler," which places the data on the raw clist for input to
reading processes and on the output clist for echoing back to the terminal. If the
input string contains a carriage return, the interrupt handler awakens all sleeping
reader processes. When a reading process runs, the driver removes characters from
the raw clist, does erase and kill character processing, and places the characters on
the canonical clist. It then copies characters to user address space until the
carriage return character or until it satisfies the count in the read system call,
whichever number is smaller. However, a process may find that the data for which
it woke up no longer exists: Other processes may read the terminal and remove the
data from the raw dist before the first process is rescheduled. This is similar to
what happens when multiple processes read data from a pipe.

Character processing in the input and output direction is asymmetrie, evidenced
by the two input elists and the one output clist. The line discipline outputs data
from user space, processes it, and places it on the output dist. To be symmetric,
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algorithm terminal_read

if (no data on canonical dist)

while (no data on raw dist)

if (tty opened with no delay option)
return;

if (tty in raw mode based on timer and timer not active)
arrange for timer wakeup (callow table);

sleep (event: data arrives from terminal);

I* there is data on raw clist */
if (tty in raw mode)

copy all data from raw clist to canonical clist;
else /* tty is in canonical mode */

while (characters on raw clist)

copy one character at a time from raw clist
to canonical dist:
do erase, kill processing;

if (char is carriage return or end—of—file)
break; /* out of while loop */

while (characters on canonical list and read count not satisfied)
copy from cblocks on canonical list to user address space;

Figure 10.15. Algorithm for Reading a Terminal

there should be only one input clist. However, this would require the interrupt
handler to process erase and kill characters, making it more complex and time
consuming, and blocking out other interrupts at a critical time. Use of two input
clists means that the interrupt handler can simply dump characters onto the raw
clist and wake up reading processes, which properly incur the expense of processing
input data. Nevertheless, the interrupt handler puts input characters immediately
on the output clist, so that the user experiences minimal delay in seeing typed
characters on the terminal.

Figure 10.16 shows a program where a process creates many child processes
that read their standard input file, contending for terminal data. Terminal input is
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char input[256];

main()

register int i;

for (i 0; i < 18; i++)

switch (fork0)

case — 1: /* error */
printf("error cannot fork\n");
exit();

default: /* parent process */
break;

case 0: /* child process */
for (;;)

read(0, input, 256); /* read line */
printf("%d read %An", i, input);

Figure 10.16. Contending for Terminal Input Data

usually too slow to satisfy all the reading processes, so the processes will spend
most of their time sleeping in the terminal read algorithm, waiting for input data.
When a user enters a line of data, the terminal interrupt handler awakens all the
reading processes; since they slept at the same priority level, they are eligible to run
at the same priority. The user cannot predict which process runs and reads the line
of data; the successful process prints the value of i at the time it was spawned. All
other processes will eventually be scheduled to run, but they will probably find no
input data on the input clists and go back to sleep. The entire procedure is
repeated for every input line; it is impossible to guarantee that one process does not
hog all the input data.

k is inherently ambiguous to allow multiple readers of a terminal, but the
kernel copes with situation as best as it can. On the other hand, the kernel must
allow multiple processes to read a terminal, otherwise processes spawned by the
shell that read standard input would never work, because the shell stilt accesses
standard input, too. In short, processes must synchronize terminal access at user
level.
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When the user types an "end of file" character (ASCII control-d), the line
discipline satisfies terminal reads of the input string up to, but not including, the
end of file character. It returns no data (return value 0) for the read system call
that encounters only the end of file on the clists; the calling process is responsible
for recognizing that it has read the end of file and that it should no longer read the
terminal. Referring to the code examples for the shell in Chapter 7, the shell loop
terminates when a user types control-d: The read call returns 0, and the shell
exits.

This section has considered the case of dumb terminal hardware, which
transmits data to the machine one character at a time, precisely as the user types
it. Intelligent terminals cook their input in the peripheral, freeing the CPU for
other work. The structure of their terminal drivers resembles that of dumb
terminal drivers, although the functions of the line discipline vary according to the
capabilities of the peripherals.

10.3.3 The Terminal Driver in Raw Mode

Users set terminal parameters such as erase and kill characters and retrieve the
values of current settings with the ioctl system call. Similarly, they control whether
the terminal echoes its input, set the terminal baud rate (the rate of bit transfers),
flush input and output character queues, or manually start up or stop character
output. The terminal driver data structure saves various control settings (see
(SVID 85] page 281), and the line discipline receives the parameters of the iocti
call and sets or gets the relevant fields in the terminal data structure. When a
process sets terminal parameters, it does so for all processes using the terminal.
The terminal settings are not automatically reset when the process that changed the
settings exits.

Processes can also put the terminal into raw mode, where the line discipline
transmits characters exactly as the user typed them: No input processing is done at
all. Still, the kernel must know when to satisfy user read calls, since the carriage
return is treated as an ordinary input character. It satisfies read system calls after
a minimum number of characters are input at the terminal, or after waiting a fixed
time from the receipt of any characters from the terminal. In the latter case, the
kernel times the entry of characters from the terminal by placing entries into the
callout table (Chapter 8). Both criteria (minimum number of characters and fixed
time) are set by an foal call. When the particular criterion is met, the line
discipline interrupt handler awakens all sleeping processes. The driver moves all
characters from the raw clist to the canonical clist and satisfies the process read
request, following the same algorithm as for the canonical case. Raw mode is
particularly important for screen oriented applications, such as the screen editor vi,
which has many commands that do not terminate with a carriage return. For
example, the command dw deletes the word at the current cursor position.

Figure 10.17 shows a program that does an ioctl to save the current terminal
settings of file descriptor 0, the standard input file descriptor. The ioctl command
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#include <signall>
#include <termio.h>
struct termio savetty;
main0

extern sigcatch0;
struct termio newtty;
int nrd;
char buf[32];
signal(SIGINT, sigcatch);
if (iocti(0, TCGETA, &savetty) —1)

printf( sioctl failed: not a tty\n");
exit 0;

newtty .•• savetty;
newtty.ciflag "KANON; /* turn off canonical mode */
newtty.c_Iflag "ECHO; /* turn off character echo */
newtty.c_cciYMINI 5; /* minimum 5 chars */
newtty.c_cc[VTIME] 100; /* 10 sec interval */
if (ioct1(0, TCSETAF, &newtty) —1)

printf("cannot put tty into raw mode\n");
exit 0;

for (;;)

nrd read(0, buf, sizeof(buf));
buftnrdl 0;
printf("read %d chars '%s"\n", nrd, buf);

sigeatch0

ioct1(0, TCSETAF, &savetty);
exit();

Figure 10.17. Raw Mode — Reading 5-Character Bursts

TCGETA instructs the driver to retrieve the settings and save them in the structure
savetty in the user's address space. This command is commonly used to determine
if a file is a terminal or not, because it does not change anything in the system: 1f
it fails, processes assume the file is not a terminal. Here, the process does a second
ioct/ call to put the terminal into raw mode: It turns off character echo and
arranges to satisfy terminal reads when at least 5 characters are received from the
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terminal or when any number of characters are received and about 10 seconds
elapse since the first was received. When it receives an interrupt signal, the process
resets the original terminal options and terminates.

#include <fcntl.h>

main 0

register int i, n;
int fd;
char buf12561;

/* open terminal read—only with no—delay option •/
if ((fd open("/dev/tty", 0_RDONLY10_NDELAY)) —1)

exit();

n 1;
for (;;) /* for ever */

for (i 0; i < n; i++)

if (read(fd, buf, sizeof(buf)) > 0)

printf("read at n %d\n", n);
n--;

else " 1* no data read; returns due to no—delay */
n++;

Figure 10.18. Polling a Terminal

10.3.4 Terminal Polling

It is sometimes convenient to poll a device, that is, to read it if there is data present
but to continue regular processing otherwise. The program in Figure 10.18
illustrates this case: By opening the terminal with the "no delay" option,
subsequent reads will not sleep if there is no data present but will return
immediately (refer to algorithm terminal read, Figure 10.15). Such a method also
works if a process is monitoring many devices: it can open each device "no delay"

and poll all of them, waiting for input from any of them. However, this method
wastes processing power.
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The BSD system bas a select system eau that allows device polling. The syntax
of the call is

select(nfds, rfds, wfds, efds, timeout)

where nfds gives the number of file descriptors being selected, and rfds, wfds and
efds point to bit masks that "select" open file descriptors. That is, the bit 1 << fd
(1 shifted left by the value of the file descriptor) is set if a user wants to select that
file descriptor. Timeout indicates how long select should sleep, waiting for data to
arrive, for example; if data arrives for any file descriptors and the timeout value bas
not expired, select returns, indicating in the bit masks which file descriptors were
selected. For instance, if a user wished to sleep until receiving input on file
descriptors 0, 1 or 2, /Yds would point to the bit mask 7; when select returns, the
bit mask would be overwritten with a mask indicating which file descriptors had
data ready. The bit mask wfds does a similar function for write file descriptors,
and the bit mask efds indicates when exceptional conditions exist for particular file
descriptors, useful in networking.

10.33 Establishment of a Control Terminal

The control terminal is the terminal on which a user logs into the system, and it
controls processes that the user initiates from the terminal. When a process opens
a terminal, the terminal driver opens the line discipline. If the process is a process
group leader as the result of a prior setpgrp system call and if the process does not
have an associated control terminal, the line discipline makes the opened terminal
the control terminal. It stores the major and minor device number of the terminal
device file in the u area, and it stores the process group number of the opening
process in the terminal driver data structure. The opening process is the control
process, typically the login shell, as wilt be seen later.

The control terminal plays an important role in handling signals. When a user
presses the delete, break, rubout, or quit keys, the interrupt handler invokes the line

which sends the appropriate signal to all processes in the control proeess
greep. Similarly, if the user hangs up, the terminal interrupt handler receives a
hangup indication from the hardware, and the line discipline sends a hangup signal
to all processes in the process group. In this way, all processes initiated at a
particular terminal receive the hangup signal; the default reaction of most processes
is to exit on receipt of the signal; this is how stray processes are killed when a user
suddenly shuts off a terminal. After sending the hangup signal, the terminal
interrupt handler disassociates the terminal from the process group so that
processes in the process group can no longer receive signals originating at the
terminal.



10.3 TERMINAL DRIVERS 343

10.3.6 Indirect Terminal Driver

Processes frequently have a need to read or write data directly to the control
terminal, even though the standard input and output may have been redirected to
other files. For example, a shell script can send urgent messages directly to the
terminal, although its standard output and standard error files may have been
redirected elsewhere, UNIX systems provide "indirect" terminal access via the
device file "idev/tty", which designates the control terminal for every process that
has one. Users logged onto separate terminals can access "idevitty", but they
access different terminals.

There are two common implementations for the kernel to find the control
terminal from the file name "idevitty". First, the kernel can define a special
device number for the indirect terminal file with a special entry in the character
device switch table. When invoking the indirect terminal, the driver for the
indirect terminal gets the major and minor number of the control terminal from the
u area and invokes the real terminal driver through the character device switch
table. The second implementation commonly used to find the control terminal from
the name "idevitty" tests if the major number is that of the indirect terminal
before calling the driver open routine. If so, it releases the mode for "idevitty",
allocates the mode for the control terminal, resets the file table entry to point to the
control terminal mode, and calls the open routine of the terminal driver. The file
descriptor returned when opening "idev/tty" refers directly to the control terminal
and its regular driver.

10.3.7 Logging In

As described in Chapter 7, process 1, init, executes an infinite loop, reading the file
"/etainittab" for instructions about what to do when entering system states such as
"single user" or "multi-user." In multi-user state, a primary responsibility of init is
to allow users to log into terminals (Figure 10.19). It spawns processes called getty
(for get terminal or get "tty") and keeps track of which getty process opens which
terminal; each getty process resets its process group using the setpgrp system call,
opens a particular terminal line, and usually sleeps in the open until the machine
senses a hardware connection for the terminal. When the open returns, getty execs
the login program, which requires users to identify themselves by login name and
password. If the user logs in successfully, login finally execs the shell, and the user
starts working. This invocation of the shell is called the login shell. The shell
process has the same process ID as the original getty process, and the login shell is
therefore a process group leader. If a user does not log in successfully, login exits
after a suitable time limit, closing the opened terminal line, and init spawns another
getty for the line. Init pauses until it receives a death of child signal. On waking
up, it finds out if the zombie process had been a login shell and, if so, spawns
another getty process to open the terminal in place of the one that died.
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algorithm login I* procedure for logging in *I

getty process executes:
set process group (setpgrp system call);
open tty line; I* sleeps until opened */
if (open successful)

exec login program:
prompt for user name;
tam off echo, prompt for password;
if (successful) /* matches password in /etc/passwd al/

put tty in canonical mode (ioctl);
exec shell;

else
count login attempts, try again up to a point;

1
J

Figure 10.19. Algorithm for Logging In

10.4 STREAMS

The scheme for implementation of device drivers, though adequate, suffers from
some drawbacks, which have become apparent over the years. Different drivers
tend to duplicate functionality, particularly drivers that implement network
protocols, which typically include a device-control portion and a protocol portion.
Although the protocol portion should be common for all network devices, this has
not been the case in practice, because the kernel did not provide adequate
mechanisms for common use. For example, clists would be useful for their
buffering capability, but they are expensive because of the character-by-character
manipulation. Attempts to bypass this mechanism for greater performance cause
the modularity of the I/O subsystem to break down. The lack of commonality at
the driver level percolates up to the user command level, where several commands
may accomplish common logical functions but over different media. Another
drawback of the clriver scheme is that network protocols require a line discipline-
like capability, where each discipline implements one part of a protocol and the
component parts can be combined in a flexible manner. However, it is difficult to
stack conventional line disciplines together.

Ritchie bas recently implemented a scheme called streams to provide greater
modularity and flexibility for the I/O subsystem, The description here is based on
his work [Ritchie 84b], although the implementation in System V differs slightly.
A stream is a full-duplex connection between a process and a device driver. It
consists of a set of linearly linked queue pairs, one member of each pair for input
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and the other for output. When a process writes data to a stream, the kernel sends
the data down the output queues; when a device driver receives input data, it sends
the data up the input queues to a reading process. The queues pass messages to
neighboring queues according to a well-defined interface. Each queue pair is
associated with an instance of a kernel module, such as a driver, line discipline, or
protocol, and •the modules manipulate data-passed through its queues.

Each queue is a data structure that contains the following elements:

• An open procedure, called during an open system call

• A close procedure, called during a close system call

• A "put" procedure, called to pass a message into the queue
• A "service" procedure, called when a queue is scheduled to execute
• A pointer to the next queue in the stream
• A pointer to a list of messages awaiting service
• A pointer to a private data structure that maintains the state of the queue

• Flags and high- and low-water marks, used for flow control, scheduling, and
maintaining the queue state

The kernel allocates queue pairs, which are adjacent in memory; hence, a queue
can easily find the other member of the pair.

m ode of
device file  

queue pair

Outpu
queue

Input
queueDriver

Figure 10.20. A Stream after Open

A device with a streams driver is a character device; it has a special field in the
character device switch table that points to a streams initialization structure,
containing the addresses of routines and high- and low-water marks mentioned
above. When the kernel executes the open system call and discovers that the device
file is character special, it examines the new field in the character device switch
table. If there is no entry there, the driver is not a streams driver, and the kernel
follows the usual procedure for character devices. However, for the first open of a
streams driver, the kernel allocates two pairs of queues, one for the stream-head
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and the other for the driver. The stream-head module is identical for all instances
of open streams: It has generic put and service procedures and is the interface to
higher-level kernel modules that implement the read, write, and ioctl system ealls
The kernel initializes the driver queue structure, assigning queue pointers and
copying addresses of driver routines from a per-driver initialization structure, and
invokes the driver open procedure. The driver open procedure does the usual
initialization but also saves information to recall the queue with which it is
associated. Finally, the kernel assigns a special pointer in the in-core mode to
indicate the stream-head (Figure 10.20). When another process opens the device,
the kernel finds the previously allocated stream via the mode pointer and invokes
the open procedure of all modules on the stream.

Modules communicate by passing messages to neighboring modules on a stream.
A message consists of a linked list of message block headers; each block header
points to the start and end location of the block's data. There are two types of
messages — control and data — identified by a type indicator in the message
header. Control messages may result from ioctl system calls or from special
conditions, such as a terminal hang-up, and data messages may result from write
system calls or the arrival of data from a device.

Message I Message 2 Message 3

Figure 10.21. Streams Messages

When a process writes a stream, the kernel copies the data from user space into
message blocks allocated by the stream-head. The stream-head module invokes the
put procedure of the next queue module, which may process the message, pass it
immediately to the next queue, or enqueue it for later processing. In the latter
case, the module links the message block headers on a linked list, forming a two-
way linked list (Figure 10.21). Then it sets a flag in its queue data structure to
indicate that it bas data to process, and schedules itself for servicing. The module
places the queue on a linked list of queues requesting service and invokes a



10.4 STREAMS 347

scheduling mechanism; that scheduler calls the service procedures of each queue on
the list. The kernel could schedule modules by software interrupt, similar to how it
invokes functions in the callout table (as described in Chapter 8); the software
interrupt handler calls the individual service procedures.

m ode of
device file

Stream Head
Output
queue

Input
queue

Line Output Input
Discipline queue queue

Terminal Output Input
Driver queue queue

Figure 10.22. Pushing a Module onto a Stream

Processes can "push" modules onto an opened stream by issuing locii system
calls. The kernel inserts the pushed module immediately below the stream head
and connects the queue pointers to keep the structure of the doubly linked list.
Lower modules on the stream do not care whether they are communicating with the
stream head or with a pushed module: The interface is the put procedure of the
next queue on the stream; the next queue belongs to the module just pushed. For
example, a process can push a line discipline module onto a terminal driver stream
to do erase and kill character processing (Figure 10.22); the line discipline module
does not have the same interfaces as the line disciplines described in Section 10.3,
but its function is the same. Without the line discipline module, the terminal driver
does not process input characters, and such characters arrive unaltered at the
stream-head. A code segment that opens a terminal and pushes a line discipline
may look like this:

fd open( sidevittyxy", ORDWR);
ioctl(fd, PUSH, TTYLD);

where PUSH is the command name and TTYLD is a number that identifies the line
discipline module. There is no restriction to how many modules can be pushed onto
a stream. A process can "pop" the modules off a stream in last-in-first-out order,
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using another focti system eau.

ioctl(fd, POP, 0);

Given that a terminal line discipline module implements regular terminal processing
functions, the underlying device can be a network connection instead of a
connection to a single terminal device. The line discipline module works the same
way, regardless of the module below it. This example shows the greater
derived from the combination of kernel modules.

10.4.1 A More Detailed Example of Streanas

Pike describes an implementation of multiplexed virtual terminals using streams
(see [Pike 841). The user sees several virtual terminals, each occupying a separate
window on a physical terminal. Although Pike's paper describes a scheme for an
intelligent graphics terminal, it would work for dumb terminals, too; each window
would occupy the entire screen, and the user would type a control sequence to
switch between virtual windows.

Figure 10.23. Windowing Virtual Terminals on a Physical Terminal

Figure 10.23 shows the arrangement of processes and kernel modules. The user
invokes a process, mpx, to control the physical terminal. Mpx reads the physical
terminal line and waits for notification of control events, such as creation of a new
window, switching control to another window, deletion of a window, and so on.
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assume file descriptors 0 and I already refer to physical tty /

(;) /* loop */

select(input); /* wait for some line with input *I
read input line;
switch (line with input data)

case physical tty: /* input on physical tty line */
if (control command) /* e.g. create new window */

open a free pseudo—tty;
fork a new process:
if (parent)

push a msg discipline on mpx side;
continue; /* back to for loop */

i s child here */
close unnecessary file descriptors;
open other member of pseudo— tty pair, get

stdin, stdout, stderr;
push tty line discipline;
exec shell; /* looks like virtual tty */

I* "regular" data from tty coming up for virtual tty */
demultiplex data read from physical tty, strip off

headers and write to appropriate pty;
continue; /* back to for loop */

case logical tty: /* a virtual tty is writing a window *V
encode header indicating what window data is for;
write header and data to physical tty;
continue; /* back to for loop *I

Figure 10.24. Pseudo-code for Multiplexing Windows

When it receives notification that a user wants to create a new window, mpx
creates a process to control the new window and communicates with it over a
pseudo-terminal (abbreviated pty). A pty is a software device that operates in
pairs: Output directed to one member of the pair is sent to the input of the other
member; input is sent to the upstream module. To set up a window (Figure 10.24),
mpx allocates a pty pair and opens one member, establishing a stream to it (the
driver open insures that the pty was not previously allocated). Mpx forks, and the
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new process opens the other member of the pty pair. Mpx pushes a mes
module onto its pty stream to convert control messages to data messages (explai
in the next paragraph), and the child process pushes a line discipline module on
its pty stream before execing the shell. That shell is now running on a virt
terminal; to the user, it is indistinguishable from a physical terminal.

The mpx process is a multiplexer, forwarding output from the virtual terminah
to the physical terminal and demultiplexing input from the physical terminal to the
correct virtual terminal. Mpx waits for the arrival of data on any line, using the
select system eau. When data arrives from the physical terminal, mpx decide4
whether it is a control message, informing it to create a new window or delete an
old one, or whether it is a data message to be sent to processes reading a virtual
terminal. In the latter case, the data has a header that identifies the target virtual
terminal; mpx strips the header from the message and writes the data to the
appropriate pty stream. The pty driver routes the data through the terminal line
discipline to reading processes. The reverse procedure happens when a process
writes the virtual terminal: mpx prepends a header onto the data, informing the
physical terminal which window the data should be printed to.

If a process issues an ioctl on a virtual terminal, the terminal line discipline sets
the necessary terminal settings for its virtual line; settings may differ for nel)
virtual terminal. However, some information may have to be sent to the physical
terminal, depending on the device. The message module converts the control
messages that are generated by the ioctl into data messages suitable for reading
and writing by mpx, and these messages are transmitted to the physical device.

10.4.2 Analysis of Stream

Ritchie mentions that he tried to implement streams only with put procedures or
only with service procedures. However, the service procedure is necessary for flow
control, since modules must sometimes enqueue data if neighboring modules cannot
receive any more data temporarily. The put procedure interface is als° necessary,
because data must sometimes be delivered to a neighboring module right away.
For example, a terminal line discipline must echo input data back to the terminal
as quickly as possible. It would be possible for the write system call to invoke the
put procedure of the next queue directly, which in turn would call the put
procedure of the next queue, and so on, without the need for a seheduling
mechanism. A process would sleep if the output queues were congested. However,
modules cannot sleep on the input side, because they are invoked by an interrupt
handler and an innocent process would be put to sleep. Intermodule
communication would not be symmetrie in the input and output directions,
detracting from the elegance of the scheme.

It would also have been preferable to implement each module as a separate
process, but use of a large number of modules could cause the process table to
overfiow. They are implemented with a special scheduling mechanism — software
interrupt — independent of the normal process scheduler. Therefore, modules
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cannot go to sleep, because they would be putting an arbitrary process to sleep (the
one that was interrupted). Modules must save their state information internally,
making their code more cumbersome than it would be if sleeping were allowed.

Several anomalies exist in the implementation of streams.

• Process accounting is difficult under streams, because modules do not necessarily
run in the context of the process that is using the stream. It is false to assume
that all processes uniformly share execution of streams modules, because some
processes may require use of complicated network protocols, whereas others may
use simple terminal line disciplines.

• Users can put a terminal driver into raw mode, such that read calls return after

a short time if no data is available (for example, if newtty.c cc[VMIN] 0; in
Figure 10.17). It is difficult to implement this feature with streams, unless
special-case code is introduced at the stream-head level.

• Streams are linear connections and do not easily allow multiplexing in the
kernel. For example, the window example in the previous section does the
multiplexing in a user-level process.

In spite of these anomalies, streams holds great promise for improving the design of
driver modules.

10.5 SUMMARY

This chapter presented an overview of device drivers on the UNIX system. Devices
are either block devices or character devices; the interface between them and the
rest of the kernel depends on the device type. The block device interface is the
block device switch table, which consists of entry points for device open, close, and
strategy procedures. The strategy procedure controls data transfer to and from the
block device. The character device interface is the character device switch table,
which consists of entry points for device open, close, read, write, and ioctl
procedures. The foal system call uses the foal interface to character devices,
which permits control information to be sent between processes and devices. The
kernel calls device interrupt handlers on receipt of a device interrupt, based on
information stored in the interrupt vector table and on parameters supplied by the
interrupting hardware.

Disk drivers convert logical block numbers used by the file system to locations
on the physical disk. The block interface allows the kernel to buffer data. The raw
interface allows faster I/O to and from the disk but bypasses the buffer cache,
allowing more chances for file system corruption.

Terminal drivers support the primary interface to users. The kernel associates
three clists with each terminal, one for raw input from the keyboard, one for
processed input to account for erase and kill characters and carriage returns, and
one for output. The foal system call allows processes to control how the kernel
treats input data, placing the terminal in canonical mode or setting various
parameters for raw mode. The getty process opens terminal lines and waits for a
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connection: It sets its process group so that the login shell is eventually a process
group leader, initializes terminal parameters via locti, and prompts the user
through a login sequence. The control terminal thus set up sends signals to
processes in the process group, in response to events such as when the user bangs
up or presses the break key.

Streams are a scheme for improving the modularity of device drivers and
protocols. A stream is a full-duplex connection between processes and device
drivers, which may contain line disciplines and protocols to process data en route.
Streams modules are characterized by well-defined interfaces and by their
fiexibility for use in combination with other modules. The fiexibility they offer has
strong benefits for network protocols and drivers.

10.6 EXERCISES

* 1. Suppose a system contains two device files that have the same major and minor
number and are both character devices. ff two processes wish to open the physical
device simultaneously, show that it makes no difference whether they open the same
device file or different device files. What happens when they close the device?

* 2. Recall from Chapter 5 that the mknod system call requires superuser permission to
create a device special file. Given that device access is governed by the permission
modes of a file, why must mknod require superuser permission?

3. Write a program that verifies that the file systems on a disk do not overlap. The
program should take two arguments: a device file that represents a disk volume and a
descriptor file that gives section numbers and section lengths for the disk type. The
program should read the super blocks to make sure that file systems do not overlap.
Will such a program always be correct?

4. The program mkfs initializes a file system on a disk by creating the super block,
leaving space for the Mode list, putting all the data blocks on a linked list, and making
the root Mode directory. How would you program mkfs? How does the program
change if there is a volume table of contents? How should it initialize the volume
table of contents?

5. The programs mkfs and .fsck (Chapter 5) are user-level programs instead of part of
the kernel. Comment.

6. Suppose a programmer wants to write a data base system to run on the UNIX system.
The data base programs run at user level, not as part of the kernel. How should the
system interact with the disk? Consider the following issues:

• Use of the regular file system interface versus the raw disk,
• Need for speed,
• Need to know when data actually resides on disk,
• Size of the data base: Does it fit into one file system, an entire disk volume, or

several disk volumes?
7. The UNIX kernel tacitly assumes that the file system is contained on perfect disks.

However, disks could contain faults that incapacitate certain sectors although the
remainder of the disk is still "good." How could a disk driver (or intelligent disk
controller) make allowances for small numbers of bad sectors. How would this affect
performance?
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8. When mounting a file system, the kernel invokes the driver open procedure but later
releases the Mode for the device special file at the end of the mount call. When
umounting a file system, the kernel accesses the mode of the device special file, invokes
the driver close procedure, and releases the mode. Compare the sequence of Mode
operations and driver open and close calls to the sequence when opening and closing a

block device. Comment.
9. Run the program in Figure 10.14 but direct the output to a file. Compare the

contents of the file to the output when output goes to the terminal. You will have to
interrupt the processes to stop them; let them run long enough to get a sufficient
amount of output. What happens if the write call in the program is replaced with

printf(output);

10. What happens when a user attempts to do text editing in the background:

ed file &

Why?
11. Terminal files typically have access permissions set as in

crw--w--w — 2 mjb lus 33, 11 Oct 25 20:27 tty6l

when a user is logged on. That is, read/write permission is permitted for user "mjb,"
but only write permission is allowed other users. Why?

12. Assuming you know the terminal device file name of a friend, write a program that
allows you to write messages to your friend's terminal. What other information do you
need to encode a reasonable facsimile of the usual write command?

13. Implement the say command: with no parameters, it retrieves the values of terminal
settings and reports them to the user. Otherwise, the user can set various settings
interactively.

14. Encode a line discipline that writes the machine name at the beginning of each line of
output.

15. In canonical mode, a user can temporarily stop output to a terminal by typing "control
s" at the terminal and resume output by typing "control q." How should the standard
line discipline implement this feature?

* 16. The init process spawns a getty process for each terminal line in the system. What
would happen if two getty processes were to exist simultaneously for one terminal,
waiting for a user to log in? Can the kernel prevent this?

17. Suppose the shell were coded so that it "ignored" the end of file and continued to read
its standard input. What would happen when a user (in the login shell) hits end of file
and continues typing?

* 18. Suppose a process reads its control terminal but ignores or catches hangup signals.
What happens when the process continues to read the control terminal after a hangup?

19. The getty program is responsible for opening a terminal line, and login is responsible
for checking login and password information. What advantages are there for doing the
two functions in separate programs?

20. Consider the two methods for implementing the indirect terminal driver ("/devitty"),
described in Section 10.3.6. What differences would a user perceive? (Hint: Think
about the system calls stat and fstat.)

21. Design a method for scheduling streams modules, where the kernel contains a special
process that executes module service procedures when they are scheduled to execute.
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* 22. Design a scheme for virtual terminals (windows) using conventional (nonstrea
drivers.

* 23. Design a method for implementing virtual terminals using streams such that a ke
module, rather than a user process, multiplexes I/O between the virtual and physieg
terminals. Describe a mechanism for c,onnecting the streams to allow fan-in and falb.
Out. Is it better to put a multiplexing module inside the kernel or construct it as a
user process?

24. The command ps reports interesting information on process activity in a running
system. In traditional implementations, ps reads the information in the process talie
directly from kernel memory. Suil a method is unstable in a development
environment where the size of process table entries changes and ps cannot easily find
the correct fields in the process table. Encode a driver that is impervious to a
changing environment.
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INTERPROCESS

COMMUNICATION

Interprocess communication mechanisms allow arbitrary processes to exchange data
and synchronize execution. We have already considered several forms of
interprocess communication, such as pipes, named pipes, and signals. Pipes
(unnamed) suffer from the drawback that they are known only to processes which
are descendants of the process that invoked the pipe system call: Unrelated
processes cannot communicate via pipes. Although named pipes allow unrelated
processes to communicate, they cannot generally be used across a network (see
Chapter 13), nor do they readily lend themselves to setting up multiple
communications paths for different sets of communicating processes: it is
impossible to multiplex a named pipe to provide private channels for pairs of
communicating processes. Arbitrary processes can also communicate by sending
signals via the kill system call, but the "message" consists only of the signal
number.

This chapter describes other forms of interprocess communication. It starts off
by examining process tracing, whereby one process traces and controls the
execution of another process and then explains the the System V IPC package:
messages, shared memory, and semaphores. It reviews the traditional methods by
which processes communicate with processes on other machines over a network and,
finally, gives a user-level overview of BSD sockets. It does not discuss network-
specific issues such as protocols, addressing, and name service, which are beyond
the scope of this book.
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11.1 PROCESS TRACING

The UNIX system provides a primitive form of interprocess com
munication for

tracing processes, useful for debugging. A debugger process, such as sdb, spawns aprocess to be traced and controls its execution with the ptrace system call, setting
and clearing break points, and reading and writing data in its virtual address space,
Process tracing thus consists of synchronization of the debugger process and the
traced process and controlling the execution of the traced process.

if ((pid fork0) ••«- 0)

/* child — traced process */
ptrace(0, 0, 0, 0);
exec("name of traced process here");

/* debugger process continues here */
for (;;)

wait((int *) 0);
read(input for tracing instructions)
ptrace(cmd, pid, ...);
if (quitting trace)

break;

Figure 11.1. Structure of Debugging Process

The pseudo-code in Figure 11.1 shows the typical structure of a debugger
program. The debugger spawns a child process, which invokes the ptrace system
call and, as a result, the kernel sets a trace bit in the child process table entry. The
child now execs the program being traced. For example, if a user is debugging the
program a.out, the child would exec a.out. The kernel executes the exec call as
usual, but at the end notes that the trace bit is set and sends the child a "trap"
signal. The kernel checks for signals when returning from the exec system call, just
as it checks for signals after any system call, finds the "trap" signal it had just sent
itself, and executes code for process tracing as a special case for handling signals.
Noting that the trace bit is set in its process table entry, the child awakens the
parent from its sleep in the walt system cal (as will be seen), enters a special trace
state similar to the sleep state (not shown in the process state diagram in Figure
6.1), and does a context switch.

Typically, the parent (debugger) process would have meanwhile entered a user-
level loop, waiting to be awakened by the traced process. When the traced process
awakens the debugger, the debugger returns from wait, reads user input
commands, and converts them to a series of ptrace calls to control the child
(traced) process. The syntax of the ptrace system cal] is
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ptrace(cmd, pid, addr, data);

where cmd specifies various commands such as reading data, writing data, resuming
execution and so on, pid is the process ID of the traced process, addr is the virtual
address to be read or written in the child process, and data is an integer value to be
written. When executing the ptrace system call, the kernel verifies that the
debugger has a child whose ID is pid and that the child is in the traced state and
then uses a global trace data structure to transfer data between the two processes.
It locks the trace data structure to prevent other tracing processes from overwriting
it, copies crnd, addr, and data into the data structure, wakes up the child process
and puts it into the "ready-to-run" state, then sleeps until the child responds.
When the child resumes execution (in kernel mode), it does the appropriate trace
command, writes its reply into the trace data structure, then awakens the debugger.
Depending on the command type, the child may reenter the trace state and wait for
a new command or return from handling signals and resume execution. When the
debugger resumes execution, the kernel saves the "return value" supplied by the
traced process, unlocks the trace data structure, and returns to the user.

If the debugger process is not sleeping in the wait system call when the child
enters the trace state, it will not discover its traced child until it calls wait, at
which time it returns immediately and proceeds as just described.

int data[32];
main()

int i;
for 0 •• 0; i < 32; i++)

printf("data[7odl Tod\n", i, datalip;
printf("ptrace data addr 000x\n", data);

Figure 11.2. Trace — A Traced Process

Consider the two programs in Figures 11.2 and 11.3, called trace and debug,
respectively. Running trace at the terminal, the array values for data will be 0; the
process prints the address of data and exits. Now, running debug with a
parameter equal to the value printed out by trace, debug saves the paratrieter in
addr, creates a child process that invokes ptrace to make itself eligible for tracing,
and execs trace. The kernel sends the child process (call it trace) a SIG TRAP
signal at the end of exec, and trace enters the trace state, waiting for a command
from debug. If debug had been sleeping in wait, it wakes up, finds the traced child
process, and returns from wait. Debug then calls ptrace, writes the value of the
loop variable i into the data space of trace at address addr, and increments addr;
in trace, addr is an address of an entry in the array data. Debug's last call to
ptrace causes trace to run, and this time, the array data contains the values 0 to



358 INTERPROCESS COMMUNICATION

#define TR_SETUP 0
#define TR WRITE 5
#define TR:RESUME 7
int addr;

main(argc, argv)
int argc;
char *argv[];

int i, pid;

sscanf(argy[1:1„ "%x", &addr);

if ((pid fork()) -- 0)

ptrace(TR_SETUP, 0, 0, 0);
execl("trace", "trace", 0);
exit();

for (i 0; i < 32; i++)

wait((int *) 0);
/* write value of i into address addr in proc pid */
if (ptrace(TR_WRITE, pid, addr, 1) -- —1)

exit();
addr sizeof(int);

/* traced process should resurne execution */
ptrace(TR_RESUME, pid, 1, 0);

Figure 11.3. Debug — A Tracing Process

31. A debugger such as sdb has access to the traced process's symbol table, from
which it determines the addresses it uses as parameters to ptrace calls.

The use of ptrace for process tracing is primitive and suffers several drawbacks.

• The kernel must do four context switches to transfer a word of data between a
debugger and a traced process: The kernel switches context in the debugger in
the ptrace call until the traced process replies to a query, switches context to
and from the traced process, and switches context back to the debugger process
with the answer to the ptrace call. The overhead is necessary, because a
debugger bas no other way to gain access to the virtual address space of a
traced process, but process tracing is consequently slow.
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• A debugger process can trace several child processes simultaneously, although
this feature is rarely used in practice. More critically, a debugger can only
trace child processes: If a traced child forks, the debugger has no control over
the grandchild, a severe handicap when debugging sophisticated programs. If a
traced process execs, the later execed images are still being traced because of
the original ptrace, but the debugger may not know the name of the execed
image, making symbolic debugging difficult.

• A debugger cannot trace a process that is already executing if the debugged
process had not called ptrace to let the kernel know that it consents to be
traced. This is inconvenient, because a process that needs debugging must be
killed and restarted in trace mode.

• It is impossible to trace set uid programs, because users could violate security by
writing their address space via ptrace and doing illegal operations. For
example, suppose a setuid program calls exec with file name "privatefile". A
clever user could use ptrace to overwrite the file name with "Thinish", executing
the shell (and all programs executed by the shell) with unauthorized permission.
Exec ignores the setuid bit if the process is traced to prevent a user from
overwriting the address space of a setuid program.

Killian [Killian 84] describes a different scheme for process tracing, based on
the file system switch described in Chapter 5. An administrator mounts a file
system, "iproc"; users identify processes by their PID and treat them as files in
"iproc". The kernel gives permission to open the files according to the process user
ID and group ID. Users can examine the process address space by reading the file,
and they can set breakpoints by writing the file. Stat returns various statistics
about the process. This method removes three disadvantages of ptrace. First, it is
faster, because a debugger process can transfer more data per system call than it
can with ptrace. Second, a debugger can trace arbitrary processes, not necessarily
a child process. Finally, the traced process does not have to make prior
arrangement to allow tracing; a debugger can trace existing processes. As part of
the regular file protection mechanism, only a superuser can debug processes that
are setuid to root.

11.2 SYSTEM V IPC

The UNIX System V 1PC package consists of three mechanisms. Messages allow
processes to send formatted data streams to arbitrary processes, shared memory
allows processes to share parts of their virtual address space, and semaphores allow
processes to synchronize execution. Implemented as a unit, they share common
properties.

• Each mechanism contains a table whose entries describe all instances of the
mechanism.

• Each entry contains a numeric key, which is its user-chosen name.



360 INTERPROCESS COMMUNICATION

• Each mechanism contains a "get" system call to create a new entry or to
retrieve an existing one, and the parameters to the calls include a key and flags
The kernel searches the proper table for an entry named by the key. Processes
can call the "get" system calls with the key IPC PRIVATE to assure the return
of an unused entry. They can set the IPC CREAT bit in the fiag field to create
a new entry if one by the given key does not already exist, and they can force
an error notification by setting the IPC EXCL and IPC_CREAT fiags, if an
entry already exists for the key. The "get" system calls return a kernel-chosen
descriptor for use in the other system calls and are thus analogous to the file
system crew and open calls.

• For each 1PC mechanism, the kernel uses the following formula to find the
index int° the table of data structures from the descriptor:

index descriptor modulo (number of entries in table)

For example, if the table of message structures contains 100 entries, the
descriptors for entry 1 are 1, 101, 201, and so on. When a process removes an
entry, the kernel increments the descriptor associated with it by the number of
entries in the table: The incremented value becomes the new descriptor for the
entry when it is next allocated by a "get" call. Processes that attempt to access
the entry by its old descriptor fail on their access. Referring to the previous
example, if the descriptor associated with message entry 1 is 201 when it is
removed, the kernel assigns a new descriptor, 301, to the entry. Processes that
attempt to access descriptor 201 receive an error, because it is no longer valid.
The kernel eventually recycles descriptor numbers, presumably after a long time
lapse.

• Each 1PC entry has a permissions structure that includes the user ID and group
ID of the process that created the entry, a user and group 1D set by the
"control" system call (below), and a set of read-write-execute permissions for
user, group, and others, similar to the file permission modes.

• Each entry contains other status information, such as the process ID of the last
process to update the entry (send a message, receive a message, attach shared
memory, and so on), and the time of last access or update.

• Each meehanism contains a "control" system call to query status of an entry, to
set status information, or to remove the entry from the system. When a proeess
queries the status of an entry, the kernel verifies that the process has read
permission and then copies data from the table entry to the user address.
Similarly, to set parameters on an entry, the kernel verifies that the user 1D of
the process matches the user ID or the creator user ED of the entry or that the
process is run by a superuser; write permission is not sufficient to set
parameters. The kernel Copies the user data into the table entry, setting the
user ID, group 1D, permission modes, and other fields dependent on the type of
mechanism. The kernel does not change the creator user and group 1D fields,
so the user who created an entry retains control rights to it. Finally, a user can
remove an entry if it is the superuser or if its process ID matches either ID field
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in the entry structure. The kernel increments the descriptor number so that the
next instance of assigning the entry will return a different descriptor. Hence,
system calls will fail if a process attempts to access an entry by an old
descriptor, as explained earlier.

11.2.1 Messages

There are four system calls for messages: msgget returns (and possibly creates) a
message descriptor that designates a message queue for use in other system calls,
msgcti has options to set and return parameters associated with a message
descriptor and an option to remove descriptors, msgsnd sends a message, and
msgrcv receives a message.

The syntax of the msgget system call is

msgqid msgget(key, flag);

where msgqid is the descriptor returned by the call, and key and flag have the
semantics described above for the general "get" calls. The kernel stores messages
on a linked list (queue) per descriptor, and it uses msgqid as an index into an array
of message queue headers. In addition to the general IPC permissions field
mentioned above, the queue structure contains the following fields:

• Pointers to the first and last messages on a linked list;
• The number of messages and the total number of data bytes on the linked list;
• The maximum number of bytes of data that can be on the linked list;
• The process IDs of the last processes to send and receive messages;
• Time stamps of the last rnsgsnd, msgrcv, and msgctl operations.

When a user calls msgget to create a new descriptor, the kernel searches the array
of message queues to see if one exists with the given key. If there is no entry for
the specified key, the kernel allocates a new queue structure, initializes it, and
returns an identifier to the user. Otherwise, it checks permissions and returns.

A process uses the msgsnd system call to send a message:

msgsnd(msgqid, msg, count, flag);

where msgqid is the descriptor of a message queue typically returned by a msgget
call, msg is a pointer to a structure consisting of a user-chosen integer type and a
character array, count gives the size of the data array, and flag specifies the action
the kernel should take if it runs out of internal buffer space.

The kernel checks (Figure 11.4) that the sending process has write permission
for the message descriptor, that the message length does not exceed the system
limit, that the message queue does not contain too many bytes, and that the
message type is a positive integer. If all tests succeed, the kernel allocates space for
the message from a message map (recall Section 9.1) and copies the data from user
space. The kernel allocates a message header and puts it on the end of the linked
list of message headers for the message queue. It records the message type and
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algorithm msgsnd I* send a message */
input: (1) message queue descriptor

(2) address of message structure
(3) size of message
(4) flags

output: nurnber of bytes sent

check legality of descriptor, permissions;
while (not enough space to store message)

if (flags specify not to wait)
return;

sleep(until event enough space is available);

get message header;
read message text from user space to kernel;
adjust data structures: enqueue message header,

message header points to data,
counts, time stamps, process 1D:

wakeup all processes waiting to read message from queue;

Figure 11.4. Algorithm for Msgsnd

size in the message header, sets the message header to point to the message data,
and updates various statistics fields (number of messages and bytes on queue, time
stamps and proeess ID of sender) in the queue header. The kernel then awakens
processes that were asleep, waiting for messages to arrive on the queue. 1f the
number of bytes on the queue exeeeds the queues limit, the process sleeps until
other messages are removed from the queue. 1f the process specified not to wait
(Dag IPC_NOWAIT), however, it returns immediately with an error indieation.
Figure 11.5 depicts messages on a queue, showing queue headers, linked lists ofmessage headers, and pointers from the message headers to a data area.

Consider the program in Figure 11.6: A process calls msgget to get a descriptorfor MSGKEY. It sets up a message of length 256 bytes, although it uses only the
first integer, copies its process ID into the message text, assigns the message type
value 1, then calls msgsnd to send the message. We will return to this example
later.

A process receives messages by

Count msgrcv(id, msg, maxcount, type, 'lag);

where kl is the message deseriptor, msg is the address of a user structure to contain
the received message, maxeount is the size of the data array in msg, type specifies
the message type the user wants to read, and flag specifies what the kernel should
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Figure 11.5. Data Structures for Messages

do if no messages are on the queue. The return value, count, is the number of
bytes returned to the user.

The kernel checks (Figure 11.7) that the user has the necessary access rights to
the message queue, as above. If the requested message type is 0, the kernel finds
the first message on the linked list. If its size is less than or equal to the size
requested by the user, the kernel copies the message data to the user data structure
and adjusts its internal structures appropriately: It decrements the count of
messages on the queue and the number of data bytes on the queue, sets the receive
time and receiving process ID, adjusts the linked list, and frees the kernel space
that had stored the message data. If processes were waiting to send messages
because there was no room on the list, the kernel awakens them. If the message is
bigger than maxcount specified by the user, the kernel returns an error for the
System call and leaves the message on the queue. If the process ignores sizec
onstraints, however (bit MSG NOERROR is set in flag), the kernel truncates the

message, returns the requested number of bytes, and removes the entire message
from the list.
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sysimsg.h>

#define MSGKEY 75

struct msgform
long mtype;
char mtext[2561;

I;

main()

struct msgform msg;
int msgid, pid, *pint;

msgid sgget(MSGKEY, 0777);

pid = getpid();
pint (int *) msg.mtext;
*pint pid; /* copy pid into message text */
msg.mtype

msgsnd(msgid, &msg, sizeof(int), 0);
msgrcv(msgid, &msg, 256, pid, 0); /* pid is used as the msg type */
printf("client: receive from pid %d\n", *pint);

Figure 11.6. A Client Process

A process can receive messages of a particular type by setting the type
parameter appropriately. If it is a positive integer, the kernel returns the first
message of the given type. If it is negative, the kernel finds the lowest type of all
messages on the queue, provided it is less than or equal to the absolute value of
type, and returns the first message of that type. For example, if a queue contains
three messages whose types are 3, 1, and 2, respectively, and a user requests a
message with type — 2, the kernel returns the message of type 1. In all cases, if no
messages on the queue satisfy the receive request, the kernel puts the process to
sleep, unless the process had specified to return immediately by setting the
IPC NO WAIT bit in flag.

Consider the programs in Figures 11.6 and 11.8. The program in Figure 11,8
shows the structure of a server that provides generic service to client processes. For
instance, it may receive requests from client processes to provide information from
a database; the server process is a single point of access to the database, making
consistency and security easier. The server creates a message structure by setting
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a gort h msgrcv / receive message */
input: (1) message descriptor

(2) address of data array for incoming message
(3) size of data array
(4) requested message type
(5) fiags

output: number of bytes in returned message

check permissions;
loop:

check legality of message descriptor;
/* find message to return to user */
if (requested message type 0)

consider first message on queue;
else if (requested message type > 0)

consider first message on queue with given type;
else /* requested message type < 0 */

consider first of the lowest typed messages cm queue,
such that its type is <— absolute value of
requested type;

if (there is a message)

adjust message size or return error if user size too small;
copy message type, text from kernel space to user space;
unlink message from queue;
return;

no message */
if (fiags specify not to sleep)

return witij error;
sleep (event message arrives on queue);
goto loop;

Figure 11.7. Algorithm for Receiving a Message

the IPC CREAT flag in the msgget call and receives all messages of type 1
requests from client processes. It reads the message text, finds the process 1D of
the client process, and sets the return message type to the client process ID. In this
example, it sends its process ID back to the client process in the message text, and
the dient process receives messages whose message type equals its process ID.
Thus, the server process receives only messages sent to it by client processes, and
client processes receive only messages sent to them by the server. The processes
cooperate to set up multiple channels on one message queue.
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MSGKEY 75
struct msgform

long mtype;
char mtexti256];

msg;
int msgid;

main()

int i, pid, *pint;
extern cleanup 0;

for (i 0; i < 20; i++)
signal (I, cleanup);

msgid msgget(MSGKEY, 0777 I IPC_CREAT);

for (;;)

msgrcv(msgid, &msg, 256, 1, 0);
pint (int *) msg.mtext;
pid — *pint;
printf("server: receive from pid %d\n", pid);
msg.mtype — pid;
*pint getpid();
msgsnd(msgid, &msg, sizeof(int), 0);

cleanup 0

msgctl (msgid, /PC_RMID, 0);
exit 0;

Figure 11.8. A Server Process

Messages are formatted as type-data pairs, whereas file data is a byte stream.
The type prefix allows processes to select messages of a particular type, if desired, a
Feature not readily available in the file system. Processes can thus extract messages
of particular types from the message queue in the order that they arrive, and the
kernel maintains the proper order. Although it is possible to implement a message
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passing scheme at user level with the file system, messages provide applications
with a more efficient way to transfer data between processes.

A process can query the status of a message descriptor, set its status, and
remove a message descriptor with the msgctl system cal'. The syntax of the call is

msgetl(id, cmd, mstatbuf)

where id identifies the message descriptor, cmd specifies the type of command, and
rnstatbuf is the address of a user data structure that will contain control parameters
or the results of a query. The implementation of the system cal] is straightforward;
the appendix specifies the parameters in detail.

Returning to the server example in Figure 11.8, the process catches signals and
calls the function cleanup to remove the message queue from the system, 1f it did
not catch signals or if it receives a SIGKILL signa' (which cannot be caught), the
message queue would remain in the system even though no processes refer to it.
Subsequent attempts to create (exclusively) a new message queue for the given key
would fail until it was removed.

11.2.2 Shared Memory

Processes can communicate directly with each other by sharing parts of their
virtual address space and then reading and writing the data stored in the shared
memory. The system calls for manipulating shared memory are similar to the
system calls for messages. The shmget system call creates a new region of shared
memory or returns an existing one, the shmat system call logically attaches a
region to the virtual address space of a process, the shmdt system call detaches a
region from the virtual address space of a process, and the shmctl system call
manipulates various parameters associated with the shared memory. Processes read
and write shared memory using the same machine instructions they use to read and
write regular memory. After attaching shared memory, it becomes part of the
virtual address space of a process, accessible in the same way other virtual
addresses are; no system calls are needed to access data in shared memory.

The syntax of the shmget system call is

shmid shmget(key, size, fiag);

where size is the number of bytes in the region. The kernel searches the shared
memory table for the given key: if it finds an entry and the permission modes are
acceptable, it returns the descriptor for the entry. If it does not find an entry and
the user had set the IPC CREAT flag to create a new region, the kernel verifies
that the size is between system-wide minimum and maximum values and then
allocates a region data structure using algorithm allocreg (Section 6.5.2). The
kernel saves the permission modes, size, and a pointer to the region table entry in
the shared memory table (Figure 11.9) and sets a flag there to indieate that no
memory is associated with the region. It allocates memory (page tables and so on)
for the region only when a process attaches the region to its address space. The
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kernel also sets a flag on the region table entry to indicate that the region should
not be freed when the last process attached to it exits. Thus, data in shar
memory remains intact even though no processes include it as part of their virt
address space.

Shared
Memory Region

Table Table

Process Table -
Per Process

Region Table

(after
shmat)

Figure 11.9. Data Structures for Shared Memory

A process attaches a shared memory region to its virtual address space with the
shmat system call:

virtaddr shmat(id, addr, flags);

Id, returned by a previous shin get system call, identifies the shared memory region,addr is the virtual address where the user wants to attach the shared memory, and
flags specify whether the region is read-only and whether the kernel should round
off the user-specified address. The return value, virtaddr, is the virtual address
where the kernel attached the region, not necessarily the value requested by the
process.

When executing the shmat system call, the kernel verifies that the process has
the necessary permissions to access the region (Figure 11.10). It examines the
address the user specifies: If 0, the kernel chooses a convenient virtual address.
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a lgorithm shmat /* attach shared memory */
input: (1) shared memory descriptor

(2) virtual address to attach memory
(3) flags

output: virtual address where memory was attached

check validity of descriptor, permissions;
if (user specified virtual address)

round off virtual address, as specified by flags;
check legality of virtual address, size of region;

else /* user wants kernel to find good address */
kernel picks virtual address: error if none available;

attach region to process address space (algorithm attachreg);
if (region being attached for first time)

allocate page tables, memory for region
(algorithm growreg);

return (virtual address where attached);

Figure 11.10. Algorithm for Attaching Shared Memory

The shared memory must not overlap other regions in the process virtual address
space; hence it must be chosen judiciously so that other regions do not grow into
the shared memory. For instance, a process can increase the size of its data region
with the brk system eau, and the new data region is virtually contiguous with the
previous data region; therefore, the kernel should not attach a shared memory
region close to the data region. Similarly, it should not place shared memory close
to the top of the stack so that the stack will not grow into it. For example, if the
stack grows towards higher addresses, the best place for shared memory is
immediately before the start of the stack region,

The kernel checks that the shared memory region fits into the process address
space and attaches the region, using algorithm attaehreg. If the calling process is
the first to attach the region, the kernel allocates the necessary tables, using
algorithm growreg, adjusts the shared memory table entry field for "last time
attached," and returns the virtual address at which it attached the region.

A process detaches a shared memory region from its virtual address space by

shmdt (addr)

where addr is the virtual address returned by a prior shmat cal]. Although it
would seem more logica' to pass an identifier, the virtual address of the shared
memory is used so that a process can distinguish between several instances of a
shared memory region that are attached to its address space, and because the
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identifier may have been removed. The kernel searches for the process region
attached at the indicated virtual address and detaches it from the process address
space, using algorithm detachreg (Section 6.5.7). Because the region tables have
no back pointers to the shared memory table, the kernel searches the shared
memory table for the entry that points to the region and adjusts the field for the
time the region was last detached.

Consider the program in Figure 11.11: A process creates a 128K-byte shared
memory region and attaches it twice to its address space at different virtual
addresses. It writes data in the "first" shared memory and reads it from the
"second" shared memory. Figure 11.12 shows another process attaching the same
region (it gets only 64K bytes, to show that each process can attach different
amounts of a shared memory region); it waits until the first process writes a
nonzero value in the first word of the shared memory region and then reads the
shared memory. The first process pauses to give the second process a chance to
execute; when the first process catches a signal, it removes the shared memory
region.

A process uses the shmal system call to query status and set parameters for the
shared memory region:

shmal(id, cmd, shmstatbuf);

Id identifies the shared memory table entry, and specifies the type of operation,
and shmstatbuf is the address of a user-level data structure that contains the status
information of the shared memory table entry when querying or setting its status.
The kernel treats the commands for querying status and changing owner and
permissions similar to the implementation for messages. When removing a shared
memory region, the kernel frees the entry and looks at the region table entry: If no
process has the region attached to its virtual address space, it frees the region table
entry and all its resources, using algorithm freereg (Section 6.5.6). If the region is
still attached to some processes (its reference count is greater than 0), the kernel
just clears the flag that indicates the region should not be freed when the last
process detaches the region. Processes that are using the shared memory may
continue doing so, but no new processes can attach it. When all processes detach
the region, the kernel frees the region. This is analogous to the case in the file
system where a process can open a file and continue to access it after it is unlinked.

11.2.3 Semaphores

The semaphore system calls allow processes to synchronize execution by doing a set
of operations atomically on a set of semaphores. Before the implementation of
semaphores, a process would create a lock file with the crew system call if it
wanted to lock a resource: The crew fails if the file already exists, and the process
would assume that another process had the resource locked. The major
disadvantages of this approach are that the process does not know when to try
again, and lock files may inadvertently be left behind when the system crashes or is
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sysishm.h>
#define SHMKEY 75
#define K 1024
int shmid;

main()

int i, *pint;
char *addri, *addr2;
extern char *shmato;
extern cleanup();

for (1 — 0; i < 20; i++)
signal(i, cleanup);

shmid shmget(SHMKEY, 128 * K, 0777 1 TPC_CREAT);
addrl shmat(shmid, 0, 0);
addr2 — shmat(shmid, 0, 0);
printf("addr1 Ox%x addr2 Ox%x\n", addrl, addr2);
pint — (int *) addr1;

for (i — 0; i <256;
*pint++ •

pint — (int *) addr1;
*pint 256;

pint (int 5 ) addr2;
for (i — 0; i < 256; i++)

printf("index %d\tvaltie %d\n", i, *pint++);

pause();

cleanup0

shmctl(shmid, IPC_RM1D, 0);
exit();

Figure 11.11. Attaching Shared Memory Twice to a Process

371
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#include <sysitypes.h>
#include <sysiipc.h>
#include <sys/shm.h>

#define SHMKEY 75
#define K 1024
int shmid;

main()

int i, *pint;
char *addr;
extern char *shmat

shmid •• shmget(SHMKEY, 64 * K, 0777);

addr shmat(shmid, 0, 0);
pint (int *) addr;

while (*pint 0)

for (i 0; i < 256; i++)
printf("Tod\n", *pint++);

Figure 11.12. Sharing Memory Between Processes

rebooted.

Dijkstra published the Dekker algorithm that describes an implementation of
semaphores, integer-valued objects that have two atomic operations defined for
them: P and V (see [Dijkstra 681). The P operation decrements the value of a
semaphore if its value is greater than 0, and the V operation increments its value.
Because the operations are atomic, at most one P or V operation can succeed on a
semaphore at any time. The semaphore system calls in System V are ageneralization of Dijkstra's P and V operations, in that several operations can be
done simultaneously and the increment and decrement operations can be by values
greater than I. The kernel does all the operations atomically; no other processes
adjust the semaphore values until all operations are done. If the kernel cannot do
all the operations, it does not do any; the process sleeps until it can do all the
operations, as will be explained.

A semaphore in UNIX System V consists of the following elements:
• The value of the semaphore,
• The process ID of the last process to manipulate the semaphore,
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• The number of processes waiting for the semaphore value to increase,
• The number of processes waiting for the semaphore value to equal 0.

The semaphore system calls are semget to create and gain access to a set of
semaphores, semctl to do various control operations on the set, and semop to
manipulate the values of semaphores.

Semaphore
Table

Semaphore Arrays

0 r 3 1 4 1

Figure 11.13. Data Structures for Semaphores

The semget system call creates an array of semaphores:

id semget(key, count, flag);

where key, 'lag and id are similar to those parameters for messages and shared
memory. The kernel allocates an entry that points to an array of semaphore
structures with count elements (Figure 11.13). The entry also specifies the number
of semaphores in the array, the time of the last semop call, and the time of the last
semctl call. For example, the semget system call in Figure 11.14 creates a
semaphore with two elements.

Processes manipulate semaphores with the semop system call:

oldval semop(id, oplist, count);

Id is the descriptor returned by semget, °pitst is a pointer to an array of semaphore
operations, and count is the size of the array. The return value, oldval, is the value
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#include <sysitypes.b>
#include <sys/ipc.h>
#include <sys/sem.h>

#define SEMKEY 75
int semid;
unsigned int count;
1* definition of sembuf in file sys/sem.h
* struct sembuf [
• unsigned shortsem_num;
• short sem op;
• short sem_fig;

1; */
struct sembuf psembuf, vsembuf; /* ops for P and V 5/

main(argc, argv)
int argc;
char *orgy[];

int i, first, second;
short initarray[2], outarray121;
extern cleanup();

if (argc 1)

for 0; i < 20; i++)
signal(i, cleanup);

semid semget(SEMKEY, 2, 0777 IPCSREAT);
initarray[0] initarray[ 1] 1;
seinctl(semid, 2, SETALL, initarray);
semctl(semid, 2, GETALL, outarray);
printf("sem init vals %d %d\n", outarray[0], outarrayn I);
pause(); PI sleep until awakened by a signal 5/

/* continued next page */

Figure 11.14. Locking and Unlocking Operations
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else if (argv(11[0] 'a')

first 0;
second — 1;

else

first — 1;
second — 0;

semid semget(SEMKEY, 2, 0777);
psembuf.sem_op
psembuf.sern_fig SEM_UNDO;
vsembuf.sern_op sir 1;
vsembuf.semllg SEM_UNDO;

for (count 0; ; count++)

psembuf.sem_num first;
semop(semid, &psembuf, 1);
psembuf.sem_num second;
semop(semid, &psembuf, 1);
printf("proc %d count %d\n", getpid(), count);
vsembuf.sern_num second;
semop(semid, &vsembuf, 1);
vsembuf.sem_num ai= first;
semop(sernid, &vsembuf, 1);

cleanup

semctl(semid, 2, IPC_RM1D, 0);
exit();

Figure 11.14. Locking and Unlocking Operations (continued)

The kernel reads the array of semaphore operations, oplist, from the user
address space and verifies that the semaphore numbers are legal and that the
process has the necessary permissions to read or change the semaphores (Figure
11.15). If permission is not allowed, the system call fails. If the kernel must sleep
as it does the list of operations, it restores the semaphores it bas already operated
on to their values at the start of the system eau; it sleeps until the event for which
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algorithm semop / semaphore operations /
inputs: (1) semaphore descriptor

(2) array of semaphore operations
(3) number of elements in array

output: start value of last semaphore operated on

check legality of semaphore descriptor;
start: read array of semaphore operations from user to kernel space;

check permissions for all semaphore operations;

for (each semaphore operation in array)

if (semaphore operation is positive)

add "operation" to semaphore value;
if (UNDO flag set on semaphore operation)

update process undo structure;
wakeup all processes sleeping (event semaphore value increases);

else if (semaphore operation is negative )

if ("operation" + semaphore value > 0)

add "operation" to semaphore value;
if (UNDO flag set)

update process undo structure;
if (semaphore value 0)

/* continued next page */ 

Figure 11.15. Algorithm for Semaphore Operation

it is waiting occurs and then restarts the system call. Because the kernel saves the
semaphore operations in a global array, it reads the array from user space again if
it must restart the system call. Thus, operations are done atomically either allat once or not at all.

The kernel changes the value of a semaphore according to the value of the
operation. If positive, it increments the value of the semaphore and awakens all
processes that are waiting for the value of the semaphore to increase, If the
semaphore operation is 0, the kernel checks the semaphore value: If 0, it continues
with the other operations in the array; otherwise, it increments the number ofprocesses asleep, waiting for the semaphore value to be 0, and goes to sleep. If the
semaphore operation is negative and its absolute value is less than or equal to the
value of the semaphore, the kernel adds the operation value (a negative number) to
the semaphore value. If the result is 0, the kernel awakens all processes asleep,
waiting for the semaphore value to be 0. If the value of the semaphore is less than
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wakeup all processes sleeping (event
semaphore value becomes 0);

continue;

reverse all semaphore operations already done
this system call (previous iterations);

if (flags specify not to sleep)
return with error;

sleep (event semaphore value increases);
goto start; /* start loop from beginning */

}
else /* semaphore operation is zero */
{

if (semaphore value non 0)
{

reverse all semaphore operations done
this systern call;

if (flags specify not to sleep)
return with error;

sleep (event sernaphore value -...- 0);
goto start; /* restart loop */

}
}

) /* for loop ends here */
I* semaphore operations all succeeded */
update time stamps, process ID's;
return value of last semaphore operated on before call succeeded;

}

Figure 11.15. Algorithm for Semaphore Operation (continued)

the absolute value of the semaphore operation, the kernel puts the process to sleep
on the event that the value of the semaphore increases. Whenever a process sleeps
in the middle of a semaphore operation, it sleeps at an interruptible priority; hence,
it wakes up on receipt of a signal.

Consider the program in Figure 11.14, and suppose a user executes it (a.out)

three times in the following sequence:

a.out &
a.out a 84.

a.out b &

When run without any parameters, the process creates a semaphore set with two
elements and initializes their values to 1. Then, it pauses and sleeps until
awakened by a signa', when it removes the semaphore in clearuip. When executing
the program with parameter 'a', the process (A) does four separate semaphore
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operations in the loop: It decrements the value of semaphore 0, de
crements the

value of semaphore 1, executes the print statement, and then increments the values
of semaphores 1 and 0. A process goes to sleep if it attempts to d

ecrement the
value of a semaphore that is 0, and hence the semaphore is considered lockedt
Because the semaphores were initialized to I and no other processes are using the
semaphores, process A will never sleep, and the semaphore values will oscillate
between 1 and 0. When executing the program with parameter 'b', the process (B)
decrements semaphores 0 and 1 in the opposite order from process A. When
processes A and B run simultaneously, a situation could arise whereby process A
has locked semaphore 0 and wants to lock semaphore 1, but process B has locked
semaphore I and wants to lock semaphore 0. Both processes sleep, unable to
continue. They are deadlocked and exit only on receipt of a signal.

To avoid such problems, processes can do multiple semaphore operations
simultaneously. Using the following structures and code in the last example would
give the desired effect.

strut sembuf psembuf[2];

psembuf[O].sem_num 0;
psembufill.sem_num — 1;
p
sembuflasem_op —1;

psembuffilsem_op —1;
semop(semid, psembuf, 2);

Psembuf is an array of semaphore operations that decrements semaphores 0 and I
simultaneously. If either operation cannot succeed, the process sleeps until they
both succeed. For instance, if the value of semaphore 0 is 1 and the value of
semaphore 1 is 0, the kernel would leave the values intact until it can decrement
both values.

A process can set the IPC NOWAIT flag in the semop system call; if the kernel
arrives at a situation where the process would sleep because it must wait for the
semaphore value to exceed a particular value or for it to have value 0, the kernel
returns from the system call with an error condition. Thus, it is possible to
implement a conditional semaphore, whereby a process does not sleep if it cannot
do the atomic action.

Dangerous situations could occur if a process does a semaphore operation,
presumably locking some resource, and then exits without resetting the semaphore
value. Such situations can occur as the result of a programmer error or because of
receipt of a signal that causes sudden termination of a process. If, in Figure 11.14
again, the process receives a kill signal after decrementing the semaphore values, it
has no chance to reincrement them, because kill signals cannot be caught. Hence,
other processes would find the semaphore locked even though the process that had
locked it no longer exists. To avoid such problems, a process can set the
SEM UNDO flag in the semop call; when it exits, the kernel reverses the effect of
every semaphore operation the process had done. To implement this feature, the
kernel maintains a table with one entry for every process in the system. Each entry
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Figure 11.16. Undo Structures for Semaphores

points to a set of undo structures, one for each semaphore used by the process
(Figure 11.16). Each undo structure is an array of triples consisting of a
semaphore ID, a semaphore number in the set identified by ID, and an adjustment
value.

The kernel allocates undo structures dynamically when a process executes its
first semop system call with the SEM UNDO flag set. On subsequent semop
system calls with the SEM_UNDO flag set, the kernel searches the process undo
structures for one with the same semaphore 1D and number as the semop
operation: 1f it finds one, it subtracts the value of the semaphore operation from
the adjustment value. Thus, the undo structure contains a negated summation of
all semaphore operations the process had done on the semaphore for which the
SEM UNDO flag was set. 1f no undo structure for the semaphore exists, the
kernel creates one, sorting a list of structures by semaphore ID and number. 1f an
adjustment value drops to 0, the kernel removes the undo structure. When a
process exits, the kernel calls a special routine that goes through the undo
structures associated with the process and does the specified action on the indicated
semaphore.

Referring back to Figure 11.14, the kernel creates an undo structure every time
the process decrements the semaphore value and removes the structure every time
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semaphore id semid

semaphore num 0

adjustment

(a) After first operation

semaphore id semid

semaphore num 0

adjustment

(c) After third operation

semaphore id semid semid

semaphore num 0

adjustment 1

(b) After second operation

empty

(d) After fourth operation

Figure 11.17. Sequence of Undo Structures

the process increments a semaphore value, because the adjustment value of the
undo structure is 0. Figure 11.17 shows the sequence when invoking the program
with parameter 'a'. After the first operation, the process has one triple for semid
with semaphore number 0 and adjustment value 1, and after the second operation,
it bas a second triple with semaphore number 1 and adjustment value 1. If the
process were to exit suddenly now, the kernel would go through the triples and add
the value 1 to each semaphore, restoring their values to 0. In the regular case, the
kernel decrements the adjustment value of semaphore 1 during the third operation,
corresponding to the increment of the semaphore valure, and it removes the triple,
because its adjustment value is 0. After the fourth operation, the process bas
more triples, because the adjustment values would all be 0.

The array operations on semaphores allow processes to avoid deadlock problems,
as illustrated above, but they are complicated, and most applications do not need
their full power, Applications that require use of multiple semaphores should deal
with deadlock conditions at user level, and the kernel should not contain such
complicated system calls.

The sem& system call contains a myriad of control operations for semaphores:

semctl(id, number, cmd, arg);
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arg;

The kernel interprets arg based on the value of cmd, similar to the way it interprets
ioctl commands (Chapter 10). The expected actions take place for the cmds that
retrieve or set control parameters (permissions and others), set one or all semaphore
values in a set, or read the semaphore values. The appendix gives the details for
each command. For the remove command, IPC_RMID, the kernel finds all
processes that have undo structures for the semaphore and removes the appropriate
triples. Then, it reinitializes the semaphore data structure and wakes up all
processes sleeping until the occurence of some semaphore event: When the
processes resume execution, they find that the semaphore ID is no longer valid and
return an error to the caller.

11.2.4 General Comments

There are several similarities between the file system and the 1PC mechanisms.
The "get" system calls are similar to the creat and open system calls, and the
"control" system calls contain an option to remove descriptors from the system,
similar to the unlink system call. But no operations are analogous to the file
system close system call. Thus, the kernel has no record of which processes can
access an 1PC mechanism, and, indeed, processes can access an IPC mechanism if
they guess the correct ID and if access permissions are suitable, even though they
never did a "get" call. The kernel cannot clean up unused IPC structures
automatically, because it never knows when they are no longer needed. Errant
processes can thus leave unneeded and unused structures cluttering the system.
Although the kernel can save state information and data in the !PC structures after
the death of a process, it is better to use files for such purposes.

The IPC mechanisms introduce a new name space, keys, instead of the
traditional, all-pervasive files. It is difficult to extend the semantics of keys across a
network, because they may describe different objects on different machines: In
short, they were designed for a single-machine environment. File names are more
amenable to a distributed environment as will be seen in Chapter 13. Use of keys
instead of file names also means that the IPC facilities are an entity unto
themselves, useful for special-purpose applications, but lacking the tool-building
capabilities inherent in pipes and files, for example. Much of their functionality
can be duplicated using other system facilities, so, esthetically, they should not be
in the kernel. However, they provide better performance for closely cooperating
application packages than standard file system facilities (see the exercises).
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11,3 NETWORK COMMUNICATIONS

Programs such as mail, remote file transfer, and remote login that wish
communicate with other machines have historically used ad hoc m

ethods to
establish connections and to exchange data. For example, standard mail program%
save the text of a user's mail messages in a particular file, such as "iusrimailimir

the mail program appends the mail to the addressee's file, using
for user "mjb". When a person sends mail to another user on the same machine.

lock files and
temporary files to preserve consistency. When a person reads mail, the mailprogram opens the person's mail file and reads the messages. To send mail to a
user on another machine, the mail program must ultimately find the appropriate
mail file on the other machine. Since it cannot manipulate files there directly, a
process on the other machine must act as an agent for the local mail process; hence
the local process needs a way to communicate with its remote agent across machine
boundaries. The local process is called the client of the remote server process.

Because the UNIX system creates new processes via the fork system call, the
server process must exist before the client process attempts to establish a
connection. It would be inconsistent with the design of the system if the remote
kernel were to create a new process when a connection request comes across the
network. Instead, some process, usually init, creates a server process that reads a
communications channel until it receives a request for service and then follows
some protocol to complete the setup of the connection. Client and server programs
typically choose the network media and protocols according to information in
application data bases, or the data may be hard-coded into the programs.

For example, the uucp program allows file transfer across a network and remote
execution of commands (see [Nowitz 80]). A client process queries a data base for
address and routing information (such as a telephone number), opens an auto-dialer device, writes or ioctls the information on the open file descriptor, and calls
up the remote machine. The remote machine may have special lines dedicated for
use by uucp; its process spawns getty processes — the servers — to monitor the
lines and wait for connection notification. After the hardware connection is
established, the client process logs in, following the usual login protocol: gettyexecs a special command interpreter, uucico, specified in the "ietc/passwd" file.
and the client process writes command sequences to the remote, machine, causing
the remote machine to execute processes on behalf of the local machine.

Network communications have posed a problem for UNIX systems, because
messages must frequently include data and control portions. The control portion
may contain addressing information to specify the destination of a message.
Addressing information is structured according to the type of network and protocol
being used. Hence, processes need to know what type of network they are talking
to, going against the principle that users do not have to be aware of a file type,
because all devices look like files. Traditional methods for implementing network
communications consequently rely heavily on the ioctl system call to specify control
information, but usage is not uniform across network types. This has the
unfortunate side effect that programs designed for one network may not be able to
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work for other networks.
There has been considerable effort to improve network interfaces for UNIX

systems. The streams implementation in the latest releases of System V provides
an elegant mechanism for network support, because protocol modules can be
combined flexibly by pushing them onto open streams and their use is consistent at
user level. The next section briefly describes sockets, the BSD solution to the
problem.

11.4 SOCKETS

The previous section showed how processes on different machines can communicate,
but the methods by which they establish communications are likely to differ,
depending on protocols and media. Furthermore, the methods may not allow
processes to communicate with other processes on the same machine, because they
assume the existence of a server process that sleeps in a driver open or read system
call. To provide common methods for interprocess communication and to allow use
of sophisticated network protocols, the BSD system provides a mechanism known as
sockets (see [Berkeley 83]). This section briefly describes some user-level aspects
of sockets.

Client Process Server Process

Network

Figure 11.18. Sockets Model
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The kernel structure consists of three parts: the socket layer, the p
rotocol layerand the device layer (Figure 11.18). The socket layer provides the interf

abetween the system calls and the lower layers, the protocol layer co
ntains the

protocol modules used for communication (TCP and IP in the figure), and the
device layer contains the device drivers that control the network devices. Legal
combinations of protocols and drivers are specified when configuring the sy

stem, amethod that is not as fiexible as pushing streams modules. Processes communicate
using the client-server model: a server process listens to a socket, one end point of
a two-way communications path, and client processes communicate to the server
process over another socket, the other end point of the communications path, w

hich
may be on another machine. The kernel maintains internal connections and routes
data from client to server.

Sockets that share common communications properties, such as naming
conventions and protocol address formats, are grouped into domains. The 4.2 BSD
system supports the "UNIX system domain" for processes communicating on one
machine and the "Internet domain" for processes communicating across a network
using the DARPA (Defense Advanced Research Project Agency) communications
protocols (see [Postel 80) and [Postel 81]). Each socket has a type — a virtualcircuit (stream socket in the Berkeley terminology) or datagram. A virtual circuit
allows sequenced, reliable delivery of data. Datagrams do not guarantee sequenced,
reliable, or unduplicated delivery, but they are less expensive than virtual circuits,
because they do not require expensive setup operations; hence, they are useful for
some types of communication. The system contains a default protocol for every
Iegal domain-socket type combination. For example, the Transport Conneet
Protocol (TCP) provides virtual circuit service and the User Datagram Protocol
(UDP) provides datagram service in the Internet domain.

The socket mechanism contains several system calls. The socket system call
establishes the end point of a communications link.

sd socket(format, type, protocol);

Format specifies the communications domain (the UNIX system domain or the
Internet domain), type indicates the type of communication over the socket (virtual
circuit or datagram), and protocol indicates a particular protocol to control the
communication. Processes use the socket descriptor sd in other system calls. Theclose system call closes sockets.

The bind system call associates a name with the socket descriptor:
bind(sd, address, length);

Sd is the socket descriptor, and address points to a structure that specifies anidentifier specific to the co
mmunications domain and protocol specified in the socketsystem eau. Length is the length of the address structure; without this parameter,

the kernel would not know how long the address is because it can vary across
domains and protocols. For example, an address in the UNIX system domain is a
file name. Server processes bind addresses to sockets and "advertise" their names
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to identify themselves to client processes.
The connect system call requests that the kernel make a connection to an

existing socket:

connect(sd, address, length);

The semantics of the parameters are the same as for bind, but address is the
address of the target socket that will form the other end of the communications
line. Both sockets must use the same communications domain and protocol, and
the kernel arranges that the communications links are set up correctly. If the type
of the socket is a datagram, the connect call informs the kernel of the address to be
used on subsequent send calls over the socket; no connections are made at the time
of the call.

When a server process arranges to accept connections over a virtual circuit, the
kernel must queue incoming requests until it can service them. The listen system
call specifies the maximum queue length:

listen(sd, qlength)

where sd is the socket descriptor and glength is the maximum number of
outstanding requests.

Figure 11.19. A Server Accepting a Call

The accept call receives incoming requests for a connection to a server process:

nsd accept(sd, address, addrlen);

where sd is the socket descriptor, address points to a user data array that the
kernel fills with the return address of the connecting client, and addrlen indicates
the size of the user array. When accept returns, the kernel overwrites the contents
of addrlen with a number that indicates the amount of space taken up by the
address. Accept returns a new socket descriptor nsd, different from the socket
descriptor sd. A server can continue listening to the advertised socket while
communicating with a client process over a separate communications channel
(Figure 11.19).
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The send and recv system calls transmit data over a connected socket:

count send(sd, msg, length, flags);

where sd is the socket descriptor, msg is a pointer to the data being sent, length
its length, and count is the number of bytes actually sent. The flags parameter
may be set to the value SOF 00B to send data "out-of-band," meaning that data
being sent is not considered part of the regular sequence of data exchange between
the communicating processes. A "remote login" program, for instance, may send
an "out of band" message to simulate a user hitting the delete key at a terminal.
The syntax of the recv system calls is

count recv(sd, buf, length, flags);

where buf is the data array for incoming data, length is the expected length, and
count is the number of bytes copied to the user program. Flags can be set to
"peek" at an incoming message and examine its contents without removing it from
the queue, or to receive "out of band" data. The datagram versions of these system
calis, sendto and recyfrom, have additional parameters for addresses. Processes can
use read and write system calls on stream sockets instead of send and recv after the
connection is set up. Thus, servers can take care of network-specific protocol
negotiation and spawn processes that use read and write calls only, as if they are
using regular files.

The shutdown system call doses a socket connection:

shutdown(sd, mode)

where mode indicates whether the sending side, the receiving side, or both sides
longer allow data transmission. It informs the underlying protocols to close down
the network communications, but the socket descriptors are still intact. The closesystem call frees the socket descriptor.

The getsockname system call gets the name of a socket bound by a previous
bind eau:

g
etsockname(sd, name, length);

The getsockopt and setsockopt calls retrieve and set various options associated with
the socket, according to the com

munications domain and protocol of the socket.
Consider the server program in Figure 11.20. The process creates a stream

socket in the "UNIX system domain" and binds the name sockname to it. Then itinvokes the listen system call to specify the internal queue length for incoming
messages and enters a loop, waiting for incoming requests. The accept cal] sleeps
until the underlying protocol notices that a connection request is directed toward
the socket with the bound name; then, accept returns a new descriptor for theincoming request, The server process forks a process to communicate with theclient process: parent and child processes close their respective descriptors so thatthey do not interfere with co

mmunications traffic of the other process. The child
process carries on its conversation with the client process, terminating, in this
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#include <sys/types.h>
#include <sys/socket.h>

main()

int sd, ns;
char bun2561;
struct sockaddr sockaddr;
int fromlen;

sd socket(AFJJNIX, SOCK _STREAM, 0);

/* bind name — don't include null char in the name */
bind(sd, "socknarne TM , sizeof("sockname") 1);
listen(sd, 1);

for (;;)

ns accept(sd, &sockaddr, &fromlen);
if (fork() --

/* child */
close(sd);
read(ns, buf, sizeof(buf));
printf("server read '%sAn", buf);
exit();

close(ns);

Figure 11.20. A Server Process in the UNIX System Domain

example, after return from the read system call. The server process loops and waits
for another connection request in the accept call.

Figure 11.21 shows the client process that corresponds to the server process.
The client creates a socket in the same domain as the server and issues a connect
request for the name sockname, bound to some socket by a server process. When
the connect returns, the client process has a virtual circuit to a server process. In
this example, it writes a single message and exits.

If the server process were to serve processes on a network, its system calls may
specify that the socket is in the "Internet domain" by

socket(AF INET, SOCK STREAM, 0);
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#include <sysitypes.h>
#include <sys/socket.h>

main°

int sd, ns;
char bu11256];
struct sockaddr sockaddr;
int fromlen;

sd ocket(AF_UNIX, SOCK STREAM, 0);

/* connect to name — null char is not part of name *I
if (connect(sd, "sockname", sizeof("sockname") — 1) —1)

exit();

write(sd, "hi guy", 6);

Figure 11.21. A Client Process in the UNIX System Domain

and bind a network address obtained from a name server. The BSD system has
library calls that do these functions. Similarly, the second parameter to the client's
connect would contain the addressing information needed to identify the machine
on the network (or routing addresses to send messages to the destination machine
via intermediate machines) and additional information to identify the particular
socket on the destination machine. If the server wanted to listen to network and
local processes, it would use two sockets and the select call to determine which
client is making a connection.

11.5 SUMMARY

This chapter has presented several forms of interprocess communication. It
considered process tracing, where two processes cooperate to provide a useful
facility for program debugging. However, process tracing via ptrace is expensive
and primitive, because a limited amount of data can be transferred during each
call, many context switches occur, communication is restricted to parent-child
processes, and processes must agree to be traced before execution. UNIX System
V provides an 1PC package that includes messages, semaphores, and shared
memory. Unfortunately, they are special purpose, do not mesh well with other
operating system primitives, and are not extensible over a network. However, they
are useful to many applications and afford better performance compared to other
schemes.
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UNIX systems support a wide variety of networks. Traditional methods for
i mplementing protocol negotiation rely heavily on the ioct/ system call but their
usage is not uniform across network types. The BSD system bas introduced the
socket system calls to provide a more genera' framework for network
communications. In the future, System V will use the streams mechanism
described in Chapter 10 to handle network configurations uniformly.

11.6 EXERCISES

1. What happens if the walt can is omitted by debug (Figure 113)? (Hint: There are
two possibilities.)

2. A debugger using ptrace reads one word of data from a traced process per call. What
modifications should be made in the kernel to read many words with one call? What
modifications would be necessary for ptrace?

3. Extend the ptrace call such that pid need not be the child process of the caller.
Consider the security issues: Under what circumstances should a process be allowed to
read the address space of another, arbitrary process? Under what circumstances
should it be able to write the address space of another process?

4. Implement the set of message system calls as a user-level library, using regular files,
named pipes, and locking primitives. When creating a message queue, create a control
file that records status of the queue; the file should be protected with file locks or other
convenient mechanisms. When sending a message of a given type, ereate a named
pipe for all messages of that type if such a file does not already exist, and write the
data (with a prepended byte count) to the named pipe. The control file should
correlate the type number with the name of the named pipe. When reading messages,
the control file directs the process to the correct named pipe. Compare this seheme to
the implementation described in the chapter for performance, code complexity,
functionality.

5. What is the program in Figure 11.22 trying to do?
* 6. Write a program that attaches shared memory too close to the end of its stack, and let

the stack grow into the shared memory region. When does it incur a memory fault?
7. Rewrite the program in Figure 11.14 and use the IPC NOWA1T flag, so that the

semaphore operations are conditional. Demonstrate how this avoids deadlocks.
8. Show how Dijkstra's P and V semaphore operations could be implemented with named

pipes. How would you implement a conditional P operation?
9. Write programs that lock resources, using (a) named pipes, (b) the creat and unlink

system calls, and (c) the message system calls. Compare their performance.
10. Write programs to compare the performance of the message system calls to read and

write on named pipes.
11. Write programs to compare the data-transfer speed using shared memory and

messages. The programs for shared memory should include semaphores to synchronize
completion of reads and writes.
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#include <sysitypes.h>
#include <sysiipc.h>
#include <sys/msg.h>
#define ALLTYPES 0

main()
(

struct msgform
{

long mtype;
char mtext[1024];

/ msg;
register unsigned int id;

for (id -. 0; ; id++)
while (msgrev(id, &msg, 1024, ALLTYPES, 1PC_NOWAIT) > 0)

;
i

Figure 11.22. An Eavesdropping Program



12
MULTIPROCESSOR
SYSTEMS

The classic design of the UNIX system assumes the use of a uniprocessor
architecture, consisting of one CPU, memory, and peripherals. A multiprocessor
architecture contains two or more CPUs that share common memory and
peripherals (Figure 12.1), potentially providing greater system throughput, because
processes can run concurrently on different processors. Each CPU executes
independently, but all of them execute one copy of the kernel. Processes behave
exactly as they would on a uniprocessor system — the semantics of each system call
remain the same — but they can migrate between processors transparently.
Unfortunately, a process does not consume less CPU time. Some multiprocessor
systems are called attached processor systems, because the peripherals may not be
accessible to all processors. This chapter will not distinguish between attached
processor systems and general multiprocessor systems, unless explicitly stated.

Allowing several processors to execute simultaneously in kernel mode on behalf
of different processes causes integrity problems unless protection mechanisms are
used. This chapter explains why the original design of the UNIX system cannot
run unchanged on multiprocessor systems and considers two designs for running on
a multiprocessor.

391
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Processor

ory Peripherals

Figure 12.1. Multiprocessor Configuration

12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS

Recall from Chapter 2 that the design of the UNIX system protects the integrity of
kernel data structures by two policies: The kernel cannot preempt a process and
switch context to another process while executing in kernel mode, and it masks out
interrupts when executing a critical region of code if an interrupt handler could
corrupt kernel data structures. On a multiprocessor, however, if two or more
processes execute simultaneously in the kernel on separate processors, the kernel
could become corrupt in spite of the protective measures that suffice for
uniprocessor systems.

struct queue {

*bp, *bpl;
bp > forp — bp— > forp;
b 1 — >backp bp;
bp—> forp bpi;
/* consider possible context switch here */
bp 1 — > forp— > backp • bp 1 ; 

Figure 12.2. Placing a Buffer on a Doubly Linked List

For example, reconsider the fragment of code from Chapter 2 (Figure 121)
that places a data structure (pointer bpi) after an existing structure (pointer bp).
Suppose two processes execute the code simultaneously on different processors, such
that processor A wants to place structure bpA after bp and processor B wants toplace structure bpB after bp. No assumptions can be made about the relative
processor execution speed: the worst case is possible, where processor B could
execute the four C statements before processor A can execute another statement.
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For example, handling an interrupt can delay execution of a code sequence on
processor A. Corruption could occur as was illustrated in Chapter 2, even though
interrupts were blocked.

The kernel must make sure that such corruption can never occur, lf it were to
leave a window open in which a corrupt situation could arise, no matter how rare,
the kernel- would be unsafe and its behavior unpredictable. There are three
methods for preventing such corruption (see [Holley 791):

1. Execute all critical activity on one processor, relying on standard uniprocessor
methods for preventing corruption;

2. Serialize access to critical regions of code with locking primitives;
3. Redesign algorithms to avoid contention for data structures.

This chapter describes the first two methods to protect the kernel from corruption,
and an exercise explores the third.

12.2 SOLUTION WITH MASTER AND SLAVE PROCESSORS

Goble implemented a system on a pair of modified VAX 11/780 machines where
one processor, called the master, can execute in kernel mode and the other
processor, called the slave, executes only in user mode (see [Goble 811). Although
Goble's implementation contained two machines, the technique extends to systems
with one master and several slaves. The master processor is responsible for
handling all system calls and interrupts. , Slave processors execute processes in user
mode and inform the master processor when a process makes a system call.

The scheduler algorithm decides which processor should execute a process
(Figure 12.3). A new field in the process table designates the processor ID that a
process must run on; for simplicity, assume it indicates either master or slave.
When a process on a slave processor executes a system call, the slave kernel sets the
processor 1D field in the process table, indicating that the process should run only
on the master processor, and does a context switch to schedule other processes
(Figure 12.4). The master kernel schedules the process of highest priority that
must run on the master processor and executes it. When it finishes the system call,
it sets the processor ID field of the process to slave, allowing the process to run on
slave processors again.

If processes must run on the master processor, it is preferable that the master
processor run them right away and not keep them waiting. This is similar to the
rationale for allowing process preemption on a uniprocessor system when returning
from a system eau, so that more urgent processing gets done sooner. 1f the master
processor were executing a process in user mode when a slave processor requested
service for a system eau, the master process would continue executing until the next
context switch according to this scheme. The master processor could respond more
quickly if the slave processor set a glabal flag that the master processor checked in
the clock interrupt handler; the master processor would do a context switch in at
most one doek tick. Alternatively, the slave processor could interrupt the master
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algorithm schedule ocess(modified)
input: none
output: none

while (no process picked to execute)

if (running on master processor)
for (every process on run queue)

pick highest priority process
that is loaded in memory;

else /* running on a slave processor */
for (every process on run queue that need not run on master)

pick highest priority process that is loaded in memory;
if (no process eligible to execute)

idle the machine;
/* interrupt takes machine out of idle state */

remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

Figure 12.3. Scheduler Algorithm

algorithm syscall /* revised algorithm for invocation of system call */
input: system call number
output: result of system call

if (executing on slave processor)

set processor ID field in process table entry;
do context switch;

do regular algorithm for system call here;
reset processor ID field to "any" (slave);
if (other processes must run on master processor)

do context switch;

Figure 12.4. Algorithm for System Call Handler

394
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processor and force it to do a context switch immediately, but this assumes special
hardware capability.

The clock interrupt handler on a slave processor makes sure that processes are
periodically rescheduled so that no one process monopolizes the processor. Aside
from that, the clock handler "wakes up" a slave processor from an idle state once a
second." The slave processor schedules the highest priority process that need not run
on the master processor.

The only chance for corruption of kernel data structures comes in the scheduler
algorithm, because it does not protect against having a process selected for
execution on two processors. For instance, if a configuration consists of a master
processor and two slaves, it is possible that the two slave processors find one process
in user mode ready for execution. If both processors were to sehedule the process
si multaneously, they would read, write and corrupt its address space.

The system can avoid this problem in two ways. First, the master can specify
the slave processor on which the process should execute, permitting more than one
process to be assigned to a processor. Issues of bad balancing then arise: One
processor may have lots of processes assigned to it, whereas others are idle. The
master kernel would have to distribute the process bad between the processors.
Second, the kernel can allow only one processor to exeeute the scheduling loop at a
time, using mechanisms such as semaphores, described in the next section.

12.3 SOLUTION WITH SEMAPHORES

Another method for supporting UNIX systems on multiprocessor configurations is
to partition the kernel into critical regions such that at most one processor can
execute code in a critical region at a time. Such multiprocessor systems were
designed for use on the AT&T 3B20A computer and IBM 370, using semaphores
to partition the kernel into critical regions (see [Bach 84]). The de,scription here
will follow those implementations. There are two issues: How to implement
semaphores and where to define critical regions.

As pointed out in Chapter 2, various algorithms in uniprocessor UNIX systems
use a sleep-lock to keep other processes out of a critical region in case the first
process later goes to sleep inside the critica! region. The mechanism for setting the
lock is

white (lock is set) /* test operation *1
sleep(condition until lock is free);

set lock;

and the mechanism for unlocking the lock is

free lock;
wake up all processes sleeping on condition lock set;

Sleep-locks delineate some critical regions, but they do not work en multiprocessor
systems, as illustrated in Figure 12.5. Suppose a lock is free and two processes on
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Process A/Processor A Process B/Processor B

Lock NOT Set

Time

Danger of Corruption!

Figure 123. Race Conditions in Sleep-Locks on Multiprocessors

two processors simultaneously attempt to test and set it. They find that the lock is
free at time t, set it, enter the critical region, and may corrupt kernel data
structures. There is leeway in the requirement for simultaneity: the sleep-lock fails
if neither process executes the lock operation before the other process executes the
test operation. For example, if processor A handles an interrupt after finding that
the lock is free and, while handling the interrupt, processor B checks the lock and
sets it, processor A will return from the interrupt and set the lock. To prevent this
situation, the locking primitive must be atomic: The actions of testing the status of
the lock and setting the lock must be done as a single, indivisible operation, such
that only one process can manipulate the lock at a time.

12.3.1 Definition of Semaphores

A semaphore is an integer valued object manipulated by the kernel that has the
following atomic operations defined for it:

• Initialization of the semaphore to a nonnegative value;
• A P operation that decrements the value of the semaphore. If the value of the

semaphore is less than 0 after decrementing its value, the process that did the P
goes to sleep;

• A V operation that increments the value of the semaphore. If the value of the
semaphore becomes greater than or equal to 0 as a result, one process that had
been sleeping as the result of a P operation wakes up;
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• A conditional P operation, abbreviated CP, that decrements the value of the
semaphore and returns an indication of truc, if its value is greater than 0. 1f
the value of the semaphore is less than or equal to 0, the value of the semaphore
is unchanged and the return value is false.

The semaphores defined here are, of course, independent from the user-level
semaphores described in Chapter 11.

12.3.2 Implementation of Semaphores

Dijkstra [Dijkstra 65] shows that it is possible to implement semaphores without
special machine instructions. Figure 12.6 presents C functions to implement
semaphores. The function Pprim locks the semaphore by checking the values of the
array val; each processor in the system controls one entry in the array. When a
processor locks a semaphore, it checks to see if other processors already locked the
semaphore (their entry in val would be 2), or if processors with a lower ID are
currently trying to lock it (their entry in val would be 1). 1f either condition is
truc, the processor resets its entry in val to 1 and tries again. Pprim starts the
outer loop with the loop variable equal to the processor 1D one greater than the one
that most recently used the resource, insuring that no one processor can monopolize
the resource (refer to [Dijkstra 651 or [Coffman 73] for a proof). The function
Vprim frees the semaphore and allows other processors to gain exclusive access to
the resource by clearing the entry of the executing processor in val and resetting
lastid. The following code sequence would protect a resource.

Pprim(semaphore);
use resource here;
Vprim(semaphore);

Most machines have a set of indivisible instructions that do the equivalent
locking operation more cheaply, because the loops in Pprim are slow and would
drain performance. For instance, the IBM 370 series supports an atomic compare
and swap instruction, and the AT&T 3820 computer supports an atomic read and
clear instruction. When executing the read and clear instruction, for example, the
machine reads the value of a memory location, clears its value (sets it to 0), and
sets the condition code according to whether or not the original value was zero. If
another processor uses the read and clear instruction simultaneously on the same
memory locatfon, one processor is guaranteed to read the original value and the
other process reads the value 0: The hardware insures atomicity. Thus, the
function Pprirn can be implemented more simply with the read and clear
instruction (Figure 12.7). A process loops using the read and clear instruction,
until it reads a nonzero value. The semaphore lock component must be initialized
to 1.

This semaphore primitive cannot be used in the kernel as is, because a process
executing it keeps on looping until it succeeds: If the semaphore is being used to
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struct semaphore

int val[NUMPROCS); /* lock---1 entry for each processor *1
int lastid; /* ID of last processor to get semaphore */

int procid; /* processor ID, unique per processor */
int lastid; /* ID of last proc to get the semaphore 'V

INIT(semaphore)
struct semaphore semaphore;

int i;
for (1 — 0; < NUMPROCS; i++)

semaphore.valiil 0;

Pprim(semaphore)
struct semaphore semaphore;

int i, first;

loop:
first a... lastid;
semaphore.val[procidi I;
/* continued next page */

Figure 12.6. Implementation of Semaphore Locking in C

lock a data structure, a process should sleep if it finds the semaphore locked, so
that the kernel can switch context to another process and do useful work. Given
Pprim and Vprim, it is possible to construct a more sophisticated set of kernel
semaphore operations, P and V, that conform to the definitions in Section 12.3.1.

First, let us define a semaphore to be a structure that consists of a lock field to
control access to the semaphore, the value of the semaphore, and a queue ot
processes sleeping on the semaphore. The lock field controls access to the
semaphore, allowing only one process to manipulate the other fields of the structure
during P and V operations. It is reset when the P or V operation completes. The
value field determines whether a process should have access to the critical region
protected by the semaphore. At the beginning of the P algorithm (Figure 12.8).
the kernel does a Pprim operation to ensure exclusive access to the semaphore and
then decrements the semaphore value. If the semaphore value is nonnegative, the
executing process has access to the critical region: It resets the semaphore lock
with the Vprirn operation so that other processes can access the semaphore and
returns an indication of success. If, as a result of decrementing its value, the
semaphore value is negative, the kernel puts the process to sleep, following
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forloop:
for (i — first; i < NUMPROCS; i++)

if (i procid)

semaphore.val[i] 2;
for (i is. 1; i < NUMPROCS; i++)

if (i procid && semaphore.val[i] 2)
goto loop;

lastid procid;
return; /* success! now use resource */

else if (semaphore.valtil)
goto loop;

1
first 1;
goto forloop;

Vprim (semaphore)
struct semaphore semaphore;

lastid (procid+1) % NUMPROCS; /* reset to next processor *1
semaphore.val[procid]

Figure 12.6. Implementation of Semaphore Locking (continued)

semantics similar to those of the regular sleep algorithm (Chapter 6): It checks for
signals according to the priority value, enqueues the executing process on a first-in-
first-out list of sleeping processes, and does a context switch. The V function
(Figure 12.9) gains exclusive access to the semaphore via the Pprim primitive and
increments the semaphore value. If any processes were on the semaphore sleep
queue, the kernel removes the first one and changes its state to "ready to run."

The P and V functions are similar to the sleep and wakeup functions: The
major difference in implementation is that a semaphore is a data structure, whereas
the address used for sleep and wakeup is just a convenient number. A process will
always sleep when doing a P operation on a semaphore if the initial value of the
semaphore is 0, so P can replace the sleep function. However, the V operation
wakes up only one process, whereas the uniprocessor wakeup function wakes up all
processes asleep on an event address.

Semantically, use of the wakeup function indicates that a given system condition
is no langer truc, hence all processes that were asleep on the condition must wake
up. For example, when a buffer is no longer in use, it is incorrect for processes to
sleep on the event the buffer is busy, so the kernel awakens all processes that were
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struct semaphore
int lock;

1;

Init (semaphore)
struct semaphore semaphore;

semaphore.lock I;

Pprim(semaphore)
struct semaphore semaphore;

while (read_and clear(semaphore.lock))

Vprim(semaphore)
struct semaphore semaphore;

semaphore.lock I;

Figure 12.7. Semaphore Operations Using Read and Clear Instruction

asleep on the event. As a second example, if multiple processes write data to a
terminal, the terminal driver may put them to sleep because it cannot handle the
high volume of data. Later, when the driver decides it can accept more data for
output, it wakes up all processes that were asleep, waiting to output data. Use of
the P and V operations is more applicable for locking operations where processes
gain access to a resource one by one and other processes are granted access in the
order they requested the resource. This is usually more efficient than the
uniprocessor sleep-lock, because if all processes wake up on occurrence of an event,
most may find the lock still set and return to sleep immediately. On the other
hand, it is more difficult to use P and V for cases where all processes should beawakened at once.

Given a primitive that returns the value of a semaphore, would the following
operation be the equivalent of the wakeup function?

while (v
alue(semaphore) < 0)

V (semaphore);

Assuming no interference from other processors, the kernel executes the loop untilthe value of the semaphore is greater than or equal to 0, meaning that no processes
are asleep on the semaphore. However, it is possible for process A on processor A



12.3 SOLUT1ON WITH SEMAPHORES 401

algorithm P /* P semaphore operation
input: (I) semaphore

(2) priority
output: 0 for normal return

—1 for abnormal wakeup due to signals catching in kernel
long jumps for signals not catching in kernel

Pprim(semaphore.lock);
decrement (semaphoresalue);
if (semaphoresalue >

Vprim (semaphore.lock);
return (0);

/* must go to sleep */
if (checking signals)

if (there is a signal that interrupts sleep)

increment (semaphore.va I ue);
if (catching signa' in kernel)

Vprim(semaphorelock);
return(-1);

else

Vprim(semaphore.lock);
longjmp;

1
enqueue process at end of sleep list of sernaphore;
Vprim(semaphore.lock);
do context switch;
check signals, as above;
return (0);

Figure 12.8. Algorithm for Implementation of P

to test the semaphore and find its value equal to 0 and for process B on processor B
to do a P, decrementing the value of the semaphore to — 1 (Figure 12.10) just after
the test on A. Process A would continue executing, assuming that it had awakened
every sleeping process on the semaphore. Hence, the loop does not insure that
every sleeping process wakes up, because it is not atomic.
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algorithm V I* V semaphore operation '1
input: address of semaphore
output: none

Pprim (semaphore.lock);
increment (semaphore.value);
if (semaphore.value 0)

remove first process from semaphore sleep list;
make it ready to run (wake it up);

Vprim (semaphore.lock);

Figure 12.9. Algorithm for Implementation of V

Consider another phenomenon in the use of semaphores on a uniprocessor
system. Suppose two processes, A and B, contend for a semaphore: Process A
finds the semaphore free and process B sleeps; the value of the semaphore is —1.
When process A releases the semaphore with a V, it wakes up process B and
increments the semaphore value to 0. Now suppose process A, still executing in
kernel mode, tries to lock the semaphore again: It will sleep in the P function,
because the value of the semaphore is 0, even though the resource is still free! The
system will incur the expense of an extra context switch. On the other hand, if the
lock were implemented by a sleep-lock, process A would gain immediate reuse of
the resource, because no other process could lock it in the meantime. In this case,
the sleep-lock would be more efficient than a semaphore.

When locking several semaphores, the locking order must be consistent to avoid
deadlock. For instance, consider two semaphores, A and B, and consider two kernel
algorithms that must have both semaphores simultaneously locked. If the two
algorithms were to lock the semaphores in reverse order, a deadlock could arise, as
shown in Figure 12.11; process A on processor A locks semaphore SA while process
B on processor B locks semaphore SB. Process A attempts to lock semaphore SB,
but the P operation causes process A to go to sleep, since the value of SB is at most
0. Similarly, process B attempts to lock semaphore SA, but its P puts process B to
sleep. Neither process can proceed.

Deadlocks can be avoided by implementing deadlock detection algorithms that
determine if a deadlock exists and, if so, break the deadlock condition. However,
implementation of deadlock detection algorithms would complicate the kernel code.
Since there are only a finite number of places in the kernel where a process must
simultaneously lock several semaphores, it is easier to implement the kernel
algorithms to avoid deadlock conditions before they occur. For instance, if
particular sets of semaphores were always locked in the same order, the deadlock
condition could never arise. But if it is impossible to avoid locking semaphores in
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Process A/Processor A Process B/Processor 13

Time

Figure 12.10. Failed Simulation of Wakeup with V

reversed order, the CP operation prevents the deadlock, as shown in Figure 12.12:
1f the CP fails, process B releases its resources to avoid the deadlock and reenters
the algorithm at a later time, presumably when process A completes use of the
resource.

An interrupt handler may have to lock a semaphore to prevent processes from
using a resource simultaneously, but it cannot go to sleep, as explained in Chapter
6, and therefore cannot use a P operation. Instead, it can execute a spin lock to
avoid going to sleep as in the following:

while (! CP(semaphore))

The operation loops as long as the semaphore value is less than or equal to 0; the
handler does not sleep, and the loop terminates only when the semaphore value
becomes positive, at which time CP decrements the semaphore value.

To avoid a deadlock, the kernel must block out interrupts that execute a spin
lock. Otherwise, a process could lock a semaphore and be interrupted before it
unlocks the semaphore; if the interrupt handler attempts to lock the same
semaphore using a spin lock, the kernel deadlocks itself. In Figure 12.13, for
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Process A/Processor A Process B/Processor B

P(semaphore SA);

P(semapiiore SB);

P(semaphore SA);
sleeps

P(semaphore SB);
sleeps

Time
Deadlock !!

Figure 12.11. Deadlock because of Reversed Order of Locking

example, the value of the semaphore is at most 0 when the interrupt occurs, so the
CP in the interrupt handler will always be false. The situation is avoided by
blocking out interrupts while the process has the semaphore locked.

12.3.3 Some Algorithms

This section reviews four kernel algorithms as implemented with semaphores. The
buffer allocation algorithm illustrates a complicated locking scenario, the wait
algorithm illustrates process synchronization, a driver-locking scheme illustrates an
elegant approach for locking device drivers, and finally, the method for processor
idling shows how an algorithm was changed to avoid contention.

12.3.3.1 Buffer Allocation

Recall the algorithm getblic for buffer allocation in Chapter 3. The three major
data structures for buffer allocation are the buffer header, the hash queue of
buffers, and the free list of buffers. The kernel associates a semaphore with each
instance of every data structure. In other words, if the kernel contains 200 buffers,
each buffer header contains a semaphore for locking the buffer; when a process
does a P on the buffer header semaphore, other processes that do a P sleep until the
first process does a V. Each hash queue of buffers also has a semaphore that locks
access to the hash queue. The uniprocessor system did not require a lock for the
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Process A/Processor A Process B/Processor B

P(semaphore SA);

P(semapliore SB);

if ( CP(sem'aphore SA))

V(semaphore SB);
reenter algorithm

P (semaphore SB);
sleeps

Time

Figure 12.12. Use of Conditional P to Avoid Deadlock

hash queue, because a process would never go to sleep and leave the hash queue in
an inconsistent state. In a multiprocessor system, however, two processes could
manipulate the linked list of the hash queue; the semaphore for the hash queue
permits only one process at a time to manipulate the linked list. Similarly, the free
list requires a semaphore because several processes could otherwise corrupt it.

Figure 12.14 depicts the first part of the getblk algorithm as implemented with
semaphores on a multiprocessor system (recall Figure 3.4). To search the buffer
cache for a given block, the kernel locks the hash queue semaphore with a P
operation. If another process had already done a P operation on the semaphore, the
executing process sleeps until the original process does a V. When it gains
exclusive control of the hash queue, it searches for the appropriate buffer. Assume
that the buffer is on the hash queue. The kernel (process A) attempts to lock the
buffer, bul if it were to use a P operation and if the buffer was already locked, it
would sleep with the hash queue locked, preventing other processes from accessing
the hash queue, even though they were searching for other buffers. Instead, process
A attempts to lock the buffer using the CP operation; if the CP succeeds, it can use
the buffer. Process A locks the free list semaphore using CP in a spin loop, because
the expected time the lock is held is short, and hence, it does not pay to sleep with
a P operation. The kernel then removes the buffer from the free list, unlocks the
free list, unlocks the hash queue, and returns the locked buffer.
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P(semaphore);
(Semaphore value now 0)

Interrupt

CP(semaphore) fails---
semaphore locked.

Semaphore not unlocked until return from interrupt.

Cannot return from interrupt, without servicing it.

Deadlocked

Ti

Figure 12.13. Deadlock in Interrupt Handler

Suppose the CP operation on the buffer fails because another process had locked
the buffer semaphore. Process A releases the hash queue semaphore and then
sleeps on the buffer semaphore with a P operation. The P operates on the
semaphore that just caused the CF to fail! It does not matter whether process A
sleeps on the semaphore: After completion of the P operation, process A controls
the buffer. Because the rest of the algorithm assumes that the buffer and the hash
queue are locked, process A now attempts to lock the hash queue) Because the
locking order here (buffer semaphore, then hash queue semaphore) is the opposite
of the locking order explained above (hash queue semaphore, then buffer
semaphore), the CF semaphore operation is used. The obvious processing happens
if the lock fails. But if the lock succeeds, the kernel cannot be sure that it has the
correct buffer, because another process may have found the buffer on the free list
and changed the contents to those of another block before relinquishing control of
the buffer semaphore. Process A, waiting for the semaphore to become free, had no
idea that the buffer it was waiting for was no longer the one in which it was
interested and must therefore check that the buffer is still valid; if not, it restarts
the algorithm. If the buffer contains valid data, process A completes the algorithm.

1. The algorithm could avoid locking the hash queue here by setting a flag and testing it before the V
later on, but this method illustrates the technique for locking semaphores in reversed order.
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algorithm getblk /* multiprocessor version */
input: file system number

block number
output: locked buffer that can now be used for block

while (buffer not found)

P(hash queue semaphore);
if (block in hash queue)

if (CP(buffer sernaphore) fails) /* buffer busy */

V(hash queue semaphore);
P(buffer semaphore); /* sleep until free */
if (CP(hash queue semaphore) fails)

V(buffer sernaphore);
continue; /* to while loop */

else if (dev or block num ehanged)

V(buffer sernaphore);
V(hash queue semaphore);

while (CP(free list semaphore) fails)
/* spin loop 'V

mark buffer busy;
remove buffer from free list;
V(free list semaphore);
V(hash queue semaphore);
return buffer;

else 1* buffer not in hash queue */
I* remainder of algorithm continues here */

Figure 12.14. Buffer Allocation with Semaphores
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multiprocessor algorithm wait

for (;;) /* loop */

search all child processes:
if (status of child is zombie)

return;
P(zombiesemaphore); /* initialized to 0 */

Figure 12.15. Multiprocessor Algorithm for Wait/Exit

The remainder of the algorithm is left as an exercise.

12.3.3.2 Wait

Recall from Chapter 7 that a process sleeps in the wait system call until a child
exits. The problem on a multiprocessor system is to make sure that a parent does
not miss a zombie child as it executes the wait algorithm; for example, if a child
exits on one processor as the parent executes wait on another processor, the parent
must not sleep waiting for a second child to exit. Each process table entry contains
a semaphore zombie semaphore, initialized to 0, where a process sleeps in wait
until a child exits (Figure 12.15). When a process exits, it does a V on the parent
semaphore, awakening the parent if it was sleeping in wait. If the child process
exits before the parent executes wait, the parent finds the child in the zombie state
and returns. If the two processes execute exit and wait simultaneously but the
child exits after the parent already checked its status, the child V will prevent the
parent from sleeping. At worst, the parent will make an extra iteration through the
loop.

12.3.3.3 Drivers

The multiprocessor i
mplementation for the AT&T 3B20A computer avoided

inserting semaphores into driver code by doing P and V operations at the driver
entry points (see [Bach 84]). Recall from Chapter 10 that the interface to device
drivers is well defined with only a few entry points (about 20, in practice). Drivers
are protected by bracketing the entry points, as in;

P(driver _semaphore);
open (driver) ;
V (driver_semaphore);
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By using the same semaphore for all entry points to a driver and using different
semaphores for each driver, at most one process can execute critical code in the
driver at a time. The semaphores can be configured per device unit or for classes of
devices. For example, a semaphore may be associated with each physical terminal,
or one semaphore may be associated with all terminals. The former case is
potentially faster, because processes accessing one terminal do not lock the
semaphore for other terminals, as in the latter case. However, some device drivers
interact internally with other device drivers; in such cases, specifying one
semaphore for a class of devices is easier to understand. Alternatively, the 3B20A

i mplementation allows particular devices to be configured such that the driver code
runs on specified processors.

Problems could occur when a device interrupts the system when its semaphore is
locked: the interrupt handler cannot be invoked, because otherwise there would be
danger of corruption. On the other hand, the kernel must make sure that it does
not lose an interrupt. The 3B20A queues interrupts until the semaphore is
unlocked and it is safe to execute the interrupt handler, and it calls the interrupt
handler from the code that unlocks drivers, if necessary.

12.3.3.4 Dummy Processes

When the kernel does a context switch on a uniprocessor, it executes in the context
of the process relinquishing control, as explained in Chapter 6. If no processes are
ready to run, the kernel idles in the context of the process that last ran. When
interrupted by the doek or by other peripherals, it handles the interrupt in the
context of the process it had been idling in.

In a multiprocessor system, the kernel cannot idle in the context of the process
executed most recently on the processor. For if a process goes to sleep on processor
A, consider what happens when the process wakes up: It is ready to run, but it
does not execute immediately even though its context is already available on
processor A. If processor B now chooses the process for execution, it would do a
context switch and resume execution. When processor A emerges from its idle loop
as the result of another interrupt, it executes in the context of process A again until
it switches context. Thus, for a short period of time, the two processors could be
writing the identical address space, particularly, the kernel stack.

The solution to this problem is to create a dummy process per processor; when a
processor has no work to do, the kernel does a context switch to the dummy process
and the processor idles in the context of its dummy process. The dummy process
consists of a kernel stack oniy; it cannot be scheduled. Since only one processor
can idle in its dummy process, processors cannot corrupt each other.
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12.4 THE TUNIS SYSTEM

The Tunis system has a user interface that is compatible to that of the U jx
system, but its nucleus, written in the language Concurrent Euclid, consists of
kernel processes that control each part of the system. The Tunis system solves the
mutual exclusion problem because only one instance of a kernel process can run at
a time, and because kernel processes do not manipulate the data structures of other
processes. Kernel processes are activated by queuing messages for input, and
Concurrent Euclid implements monitors to prevent corruption of the queues. A
monitor is a procedure that enforces mutual exclusion by allowing only one process
at a time to execute the body of the procedure. They differ from semaphores
because they force modularity (the P and V are at the entry and exit points of the
monitor routine) and because the compiler generates the synchronization primitives.
Holt notes that such systems are easier to construct using a language that supports
the notion of concurrency and monitors (see page 190 of [Holt 831). However, the
internal structure of the Tunis system differs radically from traditional
implementations of the UNIX system.

12.5 PERFORMANCE LIMITATIONS

This chapter has presented two methods that have been used to implement
multiprocessor UNIX systems: the master-slave configuration, where only one
processor can execute in kernel mode, and a semaphore method that allows all
processors to execute in kernel mode simultaneously. The implementations of
multiprocessor UNIX systems described in this chapter generalize to any number
of processors, but system throughput will not increase at a linear rate with the
number of processors. First, there is degradation because of increased memory
contention in the hardware, meaning that memory accesses takes longer. Second,
in the semaphore scheme, there is increased contention for semaphores; processes
find semaphores locked more frequently, more processes queue waiting for
semaphores to become free, and therefore processes have to wait a longer period oftime to gain access to the semaphore. Similarly, in the master-slave scheme, themaster processor becomes a system bottleneck as the number of processors in the
system grows, because it is the only processor that can execute kernel code.
Although careful hardware design can reduce contention and provide nearly linear
increase in system throughput with additional processors for some loads (see [Beck
85), for example), all multiprocessor systems built with current technology reach a
limit beyond which the addition of more processors does not increase system
throughput.

12.6 EXERCISES

1. Implement a solution to the multiprocessor problem such that any processor in amultiprocessor configuration can execute the kernel but only one processor can do so at
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a time. This differs from the first solution discussed in the text, where one processor is
designated the master to handle all kernel services. How could such a system rnake
sure that only one processor is in the kernel? What is a reasonable strategy for
handling interrupts and still make sure that only one processor is in the kernel?

2. Use the shared memory system calls to test the C code for implementation of
semaphores, shown in Figure 12.6. Several independent processes should execute P-V
sequences on a semaphore. How would you demonstrate a bug in the code?

3. Design an algorithm for CP (conditional P) along the lines of the algorithm for P.
4. Explain why the algorithms for P and V in Figure 12.8 and 12.9 must block interrupts.

At what points should they be blocked?
5. 1f a semaphore is used in a spin-lock, as in

while CP(semaphore));

why can the kernel never use an unconditional P operation on it? (Hint: If a process
sleeps on the P operation, what happens in the spin-lock?)

6. Refer to the algorithm getblk in Chapter 3 and describe a multiprocessor
implementation for the case that the block is not in the buffer cache.

* 7. In the buffer allocation algorithrn, suppose there is too much contention for the buffer
free list semaphore. Implement a scheme to cut down the contention by partitioning
the free list into two free lists.

* 8. Suppose a terminal driver bas a semaphore, initialized to 0, where processes sleep if
they fiood the terminal with output. When the terminal can accept more data, it
wakes up every process sleeping on the semaphore. Design a scheme to wake up all
processes using P and V. Define other fiags and driver locking semaphores, as
necessary. If the wakeup results from an interrupt and a processor cannot block
interrupts on other processors, how safe can the scheme be?

* 9. When protecting driver entry points with semaphores, provision must be made to
release the semaphore when a process sleeps in the driver. Describe an
implementation. Similarly, how should the driver handle interrupts that occur when
the driver semaphore is locked?

10. Recall the system calls in Chapter 8 for setting and accessing system time. A system
cannot assurne identical doek rates for different multiprocessors. How should the time
system calls work?
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DISTRIBUTED UNIX
SYSTEMS

The previous chapter examined tightly coupled multiprocessor systems that share
common memory and kernel data structures and schedule processes from a common
pool. However, it is frequently desirable to pool computers to allow resource
sharing such that each computer retains autonomy over its environment. For
example, a user of a personal computer wants to access files that are stored on a
larger machine but wants to retain control of the personal computer. Although
several programs such as uucp allow file transfer and other applications across a
network, their use is not transparent because the user is aware of the network.
Furthermore, programs such as text editors do not work on remote files as they do
for local files. Users would like to do the normal set of UNIX system calls and,
except for a possible degradation in performance, not be aware that they cross a
machine boundary. Specifically, system calls such as open and read should work
for files on remote machines just as they do for files on local systems.

Figure 13.1 shows the architecture of a distributed system. Each computer,
shown in a circle, is an autonomous unit, consisting of a CPU, memory and
peripherals. A computer can fit the model even though it does not have local file
storage: It must have peripherals to communicate with other machines, but all its
regular files can be on another machine. Most critically, the physical memory
available to each machine is independent of activity on other machines. This
feature distinguishes distributed systems from the tightly coupled multiprocessor
systems described in the last chapter. Consequently, the kernels on each machine

412
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Figure 13.1. Model of Distributed Architectures

are independent, subject to the external constraints of running in a distributed
environment.

Many implementations of distributed systems have been described in the
literature, falling into the following categories.

• Satellite systems are tightly clustered groups of machines that center on one
(usually larger) machine. The satellite processors share the process bomt with
the central processor and refer all system calls to it. The purpose of a satellite
system is to increase system throughput and, possibly, to allow dedicated use of
a processor for one process in a UNIX system environment. The system runs as
a unit; unlike other models of distributed systems, satellites do not have real
autonomy except, sometimes, in process scheduling and in local memory
allocation.

• "Newcastle" distributed systems allow access to remote systems by recognizing
names of remote files in the C library. (The name comes from a paper entitled
"The Newcastle Connection" — see [Brownbridge 821.) The remote files are
designated by special characters embedded in the path name or by special path
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component sequences that precede the file system root. This method can be
implemented without making changes to the kernel and is therefore easier to
implement than the other implementations described in this chapter, but it is
less flexible.

• Fully transparent distributed systems allow standard path names to refer to files
on other machines; the kernel recognizes that they are remote. Path names
cross machine boundaries at mount points, much as they cross file system mount
points on disks.

This chapter examines the architecture of each model; the descriptions here are
not based on particular implementations but on information published in various
technical papers. They assume that low-level protocol modules and device drivers
take care of addressing, routing, flow control, and error detection and correction
and, thus, assume that each model is independent of the underlying network. The
system call examples given in the next section for the satellite processor systems
work in similar fashion for the Newcastle and transparent models presented in later
sections; hence, they will be explained in detail once, and the sections on the other
models will concentrate on particular features that most distinguish them.

13.1 SATELLITE PROCESSORS

Figure 13.2 shows the architecture for a satellite processor configuration. The
purpose of such a configuration is to improve system throughput by offloading
processes from the central processor and executing them on the satellite processors.
Each satellite processor has no local peripherals except for those it needs to
communicate with the central processor: The file system and all devices are on the
central processor. Without loss of generality, assume that all user processes run on
a satellite processor and that processes do not migrate between satellite processors;
once a process is assigned to a processor, it stays there until it exits. The satellite
processor contains a simplified operating system to handle local system calls,
interrupts, memory management, network protocols, and a driver for the device it
uses to communicate with the central processor.

When the system is initialized, the kernel on the central processor downloads a
local operating system into each satellite processor, which continues to run there
until the system is taken down. Each process on a satellite processor has an
associated stub process on the central processor (see [Birrell 841); when a process
on a satellite processor makes a system call that requires services provided only by
the central processor, the satellite process communicates with its stub on the central
processor to satisfy the request. The stub executes the system call and sends the
results back to the satellite processor. The satellite process and its stub enjoy a
client-server relationship similar to those described in Chapter 11: The satellite is
the client of the stub, which provides file system services. The term stub
emphasizes that the remote server process serves only one client process. Section
13.4 considers server processes that serve several client processes. For convenience,



13.1 SATELLITE PROCESSORS 415

the term satellite process will refer to a process running on a satellite processor.
When a sa tellite process makes a system call that can be handled locally, the

kernel does not have to send a request to the stub process. For example, it can
execute the sbrk system call locally to obtain more memory for a process. But if it
needs to obtain service from the central processor, such as when opening a fik, it
encodes the parameters of the system call and the process environment into a
message that it sends to the stub process (Figure 133). The message consists of a
taken that specifies the system cal the stub should make on behalf of the client,
parameters to the system call, and environmental data such as user 1D and group
1 D, which may vary per system call. The remainder of the message contains
variable length data, such as a file path name or data for a write system call.

The stub waits for requests from the satellite process; when it receives a request,
it decades the message, determines what system call it should invoke, executes the
system call, and encodes the results of the system call into a response for the
satellite process. The response contains the return values to be returned to the
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Message Format
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Syscall

Syscall
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Data Stream
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Signal ..............
Data Stream ............

Figure 13.3. Message Formats

calling process as the result of the system call, an error code to report errors in the
stub, a signal number, and a variable length data array to contain data read from a
file, for example. The satellite process sleeps in the system call until it receives the
response, decodes it, and returns the results to the user. This is the general scheme
for handling system calls; the remainder of this section examines particular system
calls in greater detail.

To explain how the satellite system works, consider the following system calls:
getppid, open, write, fork, exit and signal. The getppid system call is simple,
because it requires a simple request and response between the satellite and central
processors. The kernel on the satellite processor forms a message with a token that
indicates that the system call was getppid, and sends the request to the central
processor. The stub on the central processor reads the message from the satellite
processor, decodes the system call type, executes the getppid system call, and finds
its parent process ID. It then forms a response and writes it to the satellite process,which had been waiting, reading the communication link. When the satellite
receives the answer from the stub, it returns the result to the process that had
originally invoked the getppid system call. Alternatively, if the satellite process
retains data such as the parent process ID locally, it need not communicate with its
stub at all.

For the open system call, the satellite process sends an open message to the stub
process, including the file name and other parameters. Assuming the stub does the
open 

call successfully, it allocates an mode and file table entry on the central
processor, assigns an entry in the user file descriptor table in its u area, and returns
the file descriptor to the satellite process. Meanwhile, the satellite process had been
reading the communications link, waiting for the response from the stub process.
The satellite process has no kernel data structures that record information about
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Central Processor Satellite 

Figure 13.4. Open Cali from a Satellite Process

the open file; the file descriptor returned by the open is the index into the user file
descriptor table of the stub process. Figure 13,4 depicts the results of an open
system call.

For the write system eau, the satellite processor formulates a message,
containing a write token, file descriptor and data count. Afterwards, it copies the
data from the satellite process user space and writes it to the communications link.
The stub process decodes the write message, reads the data from the
communications link, and writes it to the appropriate file, following the file
descriptor to the file table entry and mode, all on the centra' processor. When
done, the stub writes an acknowledgment message to the satellite process, including
the number of bytes successfully written. The read eau is similar: The stub
informs the satellite process if it does not return the requested number of bytes,
such as when reading a terminal or a pipe. Both read and write may require the
transmission of multiple data messages across the network, depending on the
amount of data and network packet sizes.

The only system call that needs internal modification on the central processor is
the fork system call. When a process on the central processor executes the fork
system call, the kernel selects a satellite to execute the process and sends a message
to a special server process on the satellite, informing it that it is about to download
a process. Assuming the server accepts the fork request, it does a fork to create a
new satellite process, initializing a process table entry and a u area. The central
processor downloads a copy of the forking process to the satellite processor,
overwriting the address space of the process just created there, forks a local stub
process to communicate with the new satellite process, and sends a message to the
satellite processor to initialize the program counter of the new process. The stub
process (on the centra' processor) is the child of the forking process; the satellite
process is technically a child of the server process, but it is logically a child of the
process that forked. The server has no logical relationship with the child process
after the for* completes; the only purpose of the server process is to assist in
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Central Processor Satellite

Figure 13.5. Fork on the Central Processor

downloading the child. Because of the tight coupling of the system (the satellite
processors have no autonomy), the satellite and stub processes have the same
process ID. Figure 13.5 illustrates the relationship between the processes: the solid
line shows parent-child relationships and dotted lines depict peer-to-peer
communication lines, either parent process to satellite server or child process to itsstub.

When a process on a satellite processor forks, it sends a message to its stub on
the central processor, which then goes through a similar sequence of operations.
The stub finds a new satellite processor and arranges to download the old process
i mage: It sends a message to the parent satellite process requesting to read the
process image, and the satellite responds by writing its process image to the
communications link. The stub reads the process image and writes it to the child
satellite. When the satellite is completely downloaded, the stub forks, creating a
child stub on the central processor, and writes the program counter to the child
satellite so that it knows where to start execution. Obvious optimizations can occur
if the child process is assigned to the same satellite as its parent, but this design
allows processes to run on other satellite processors besides the one on which they
were forked. Figure 13.6 depicts the process relationships after the fork. When asatellite process exits, it sends an exit message to the stub, and the stub exits. Thestub cannot initiate an exit .sequence.
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Central Processor       

Figure 13.6. Fork on a Satellite Processor

A process must react to signals in the same way that it would react on a
uniprocessor: Either it finishes the system call before it checks for the signal or it
awakens immediately from its sleep and abruptly terminates the system eau,
depending on the priority at which it sleeps. Because a stub process handles system
calls for a satellite, it must react to signals in concert with the satellite process. 1f
a signal causes a process on a uniprocessor to finish a system call abnormally, the
stub process should behave the same way. Similarly, if a signal causes a process to
exit, the satellite exits and sends an exit message to the stub process, which exitsnaturally.

When a satellite process executes the signal system call, it stores the usual
information in local tables and sends a message to the stub process, informing it
whether it should ignore the particular signal or not. As will be seen, it makes no
difference to the stub whether a process catches a signa' or does the default
operation. A process reacts to signals based on the combination of three factors
(see Figure 13.7): whether the signa' occurs when the process is in the middle of a
system call, whether the process had called the signa] system call to ignore the
signal, or whether the signal originates en the satellite processor or on another
processor. Let us consider the various possibilities.

Suppose a satellite process is asleep as the stub process executes a system cal'
on its behaif. lf a signal originates on another processor, the stub sees the signal



send signal message to satellite process;

else 1* satellite process */

1* whether in middle of system call or not */
send signal to clone process;

if (system call interrupted)
send message to satellite telling about interrupt, signal;

else /* system call not interrupted */
send system call reply: include flag indicating arrival

of signal;
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Figure 13.7. Handling Signals on Satellite System

before the satellite process. There are three cases.

1. If the stub does not sleep on an event where it would wake up on occurrence
of a signal, it completes the system call, sends the appropriate results in a
message to the satellite process, and indicates which signal it had received.

2. If the process was ignoring the signal, the stub continues the system callalgorithm without doing a longimp out of an interruptible sleep — the usual
behavior for ignored signals. When the stub replies to the satellite process, it
does not indicate that it had received a signal.

3. If the stub process had done a longjmp out of the system call because of
receipt of a signal, it informs the satellite process that the system call was
interrupted and indicates the signal number.
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The satellite process checks the response to see if signals have occurred and, if they
have, handles them in the usual fashion before returning from the system eau.
Thus, a process behaves exactly as it would on a uniprocessor: It exits without
returning from the kernel, or it calls a user signa' handEng function, or it ignores
the signal and returns from the system eau.

Make read system call

Send read message to stub

Sleep until stub reply

Wake up

Analyze reply

Take care of signa]

Receive read message

read terminal

sleep waiting for input

signal (user hit break key)

wake up

long jump from system call

send reply to satellite:

interrupted system call

Figure 13.8. Interrupt in Middle of a System Cali

For example, suppose a satellite process reads a terminal, which is connected to
the centra] processor, and sleeps 'while the stub process executes the system cal'
(Figure 13.8). If a user hits the break key, the stub kernel sends an interrupt
signa] to the stub process. If the stub was sleeping, waiting for input, it
immediately wakes up and terminates the read call. In its response to the satellite
process, the stub sets an error code (interrupted from the system call) and the
signa] number for interrupt. The satellite process examines the response and,
because the message shows that an interrupt signa l was sent, posts the signal to
itself. Before returning from the read call, the satellite kernel checks for signals,
finds the interrupt signal returned by the stub process, and handles it in the usual
way. If the satellite process exits as a result of the interrupt signal, the exit system
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call takes care of killing the stub process. If it is catching interrupt signals, it calls
the user signal catcher function and later returns from the read call, giving the user
an error return. On the other hand, if the stub process was executing a stat system
call on behalf of the satellite process, it does not terminate the system call on
receipt of a signal (stat is guaranteed to wake up from all sleeps because it never
has to wait indefinitely for a resource). The stub completes the system call and
returns the signal number to the satellite process. The satellite process posts the
signal to itself and discovers the signal when it returns from the system call.

If the process had been in the middle of a system call and a signal originates on
the satellite processor, the satellite process has no idea whether the stub will return
soon or sleep indefinitely. The satellite process sends a special message to the stub,
informing it of the occurrence of the signal. The kernel on the central processor
reads the message and sends the signal to the stub, which now reacts as described
in the previous paragraphs: Either it interrupts the system call or it completes it.
The satellite process cannot send the message to the stub directly, because the stub
is in the middle of a system call and is not reading the communications line. The
central processor kernel recognizes the special message and posts the signal to the
appropriate stub.

Repeating the read example explained above, the satellite process has no idea
whether the stub process is waiting for input from a terminal or whether it is doing
other processing. It sends the stub process a signal message: If the stub was asleep
at an interruptible priority, it wakes up immediately and terminates the system call;
otherwise, it completes the system call normally.

Finally, consider the cases where a signal arrives when a process is not in the
middle of a system call. If the signal originates on another processor, the stub
receives the signal first and sends a special signal message to the satellite process,
regardless of how the satellite process wishes to dispose of the signal. The satellite
kernel deciphers the message and sends the signal to the process, which reacts to it
in the usual manner. If the signal had originated on the satellite processor, the
satellite process does the usual processing and does not require special
communication to the stub process.

When a satellite process sends a signal to other processes, it encodes a message
for the kill system call and sends it to the stub, which executes the kill system call
locally. If some processes that should receive the signal are on other satellite
processors, their stubs receive the signal and react as described above.

13.2 THE NEWCASTLE CONNECTION

The previous section explored a tightly coupled system configuration where all file
subsystem calls on a satellite processor are trapped and forwarded to a remote
(central) processor. This view extends to more loosely coupled systems, where each
machine wants to access files on the other machines. In a network of personal
computers and work stations, for example, users may want to access files stored on
a mainframe. The next two sections consider system configurations where local
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systems execute all system calls but where calls to the file subsystem may access
files on other machines.

These systems use one of two ways to identify remote files. Some systems insert
a special character into the path name: The component name preceding the special
character identifies a machine, and the remainder of the path name identifies a file
on that machine. For example, the path name

"sftiglifslimjb/rje"

identifies the file "ifsl/mjbirje" on the machine "sftig". This file naming scheme
follows the convention established by the uucp program for transferring files
between UNIX systems. Other naming schemes identify remote files by prepending
a special prefix such as

/../sftig/fs 1 imjb/rje

where the "/.." informs the parser that the file reference is remote, and the second
component name gives the remote machine name. The 'atter naming scheme uses
the syntax of conventional file names on the UNIX system, so user software need
not be converted to cope with "irregularly constructed names" as in the farmer
scheme (see [Pike 85D.

Client Server

Open
C Library File Stub Read

Table Process Message
(User Level) Request

local

ote

Network

Figure 13.9. Formulation of File Service Requests

The remainder of this section deseribes a system modeled after the Newcastle
connection, where the kernel does not participate in determining that a file is
remote; instead, the C library functions that provide the kernel interface detect that
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Ile access is remote and take the appropriate action. For both naming
entions, the C library parses the first components of a path name to determine

...iat a file is remote. This departs from usual implementations where the library
does not parse path names. Figure 13.9 depicts how requests for file service are
formulated. If a file name is local, the local kernel handles the request in the usual
way. But consider execution of the system call

open (l../sftigifs 1 /nip/de/file", ORDONLY);

The C library routine for open parses the first two components of the path name
and recognizes that the file should be on the remote machine "sftig". It maintains
a data structure to keep track of whether the process had previously established
communication to machine "sftig" and, if not, establishes a communications link to
a file server process on the remote machine. When a process makes its first remote
request, the remote server validates the request, mapping user and group ID fields
as necessary, and creates a stub process to act as the agent for the client process.

The stub, executing requests for the client process, should have the same access
rights to files that the client user would have on the remote machine. That is, user
"mjb" should access remote files according to the same permissions that govern
access to local files. Unfortunately, the client user ID for "mjb" may be that of a
different user on the remote machine. Either the system administrators of the
various machines must assign unique identifiers to all users across the network, or
they must assign a transformation of user IDs at the time of request for network
service. Failing the above, the stub process should execute with "other"
permissions on the remote machine.

Allowing superuser access permission on remote files is a more ticklish situation.
On the one hand, a client superuser should not have superuser rights on the remote
system, because a user could thereby circumvent security measures on the remote
system. On the other hand, various programs would not work without remote
superuser capabilities. For instance, recall from Chapter 7 that the program
mkdir, which creates a new directory, runs as a setuid program with superuser
permissions. The remote system would not allow a client to create a new directory,
because it would not recognize remote superuser permissions. The problem of
creating a remote directory provides a strong rationale for implementing a mkdir
system call, which would automatically establish all necessary directory links.
Nevertheless, execution of setuid programs that access remote files as superuser is
still a general problem that must be dealt with. Perhaps this problem could best be
solved by providing files with a separate set of access permissions for remote
superuser access; unfortunately, this would require changes to the structure of the
disk mode to save the new permission fields and would thus cause too much turmoil
in existing systems.

When an open call returns successfully, the local library makes an appropriate
notation in a user-level library data structure, including a network address, stub
process ID, stub file descriptor, and other appropriate information. The library
routines for the read and write system calls examine the file descriptor to see if the
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original file reference was remote and, if it was, send a message to the stub. The
client process communicates with its stub for all system calls that need service on
that machine. If a process accesses two files on a remote machine, it uses one stub,
but if it accesses files on two remote machines, it uses two stubs: one on each
machine. Similarly, if two processes access a file on a remote machine, they use
two stubs. When executing a system call via a stub, the process formulates a
message including the system call nurnber, path name, and other relevant
information, similar to the type of message described for satellite processors.

Manipulation of the current directory is more complicated. When a process
changes directory to a remote directory, the library sends a message to the stub,
which changes its current directory, and the library remembers that the current
directory is remote. For all path names not beginning with a slash character, the
library sends the path name to the remote machine, where the stub process resolves
the path name from the current directory. If the current directory is local, the
library simply passes the path name to the Iocal kernel. Handling a chroot system
call to a remote directory is similar, but the local kernel does not find out that the
process had done a chroot; strictly speaking, a process can ignore a chroot to a
remote directory, because only the library has a record of it. Exercise 13.9
considers the case of ".." over a mount point.

When a process fbrks, the fork library routine sends each stub a fork message.
The stub processes fork and send their child process IDs to the client parent
process. The client process then invokes the (kernel) fork system call, and on its
return to the child process, the library routine stores the appropriate address
information about the child stub process; the local child process carries on its
dialogue with the remote child stub. This treatment of the fork system call makes
it easy for the stubs to keep track of open files and current directories. When a
process with remote files exits, the library routine sends a message to the remote
stubs, which exit in response. The exercises explore the exec system call and the
exit system call in greater detail.

The advantage of the Newcastle design is that processes can access remote files
transparently, and no changes need be made to the kernel. However, there are
several disadvantages with this design. System performance may be degraded.
Because of the larger C library, each process takes up more memory even though it
makes no remote references; the library duplicates kernel functions and takes up
more space. Larger processes take longer to start up in exec and may cause greater
contention for memory, inducing a higher degree of paging and swapping on a
system. Local requests may execute more slowly because they take longer to get
into the kernel, and remote requests may also be slow because they have to do more
processing at user level to send requests across a network. The extra user-level
processing provides more opportunities for context switches, paging, and swapping.
Finally, programs must be recompiled with the new libraries to access remote files;
old programs and vender supplied object modules do not work for remote fiks
unless recompiled. The scheme described in the next section does not have these
disadvantages.
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a file access is remote and take the appropriate action. For both naming
conventions, the C library parses the first components of a path name to determine
that a file is remote. This departs from usual implementations where the library
does not parse path names. Figure 13.9 depicts how requests for file service are
formulated. If a file name is local, the local kernel handles the request in the usual
way. But consider execution of the system call

open("Lisftigifslimjb/rjeffile", O_RDONLY);

The C library routine for open parses the first two components of the path name
and recognizes that the file should be on the remote machine "sftig". It maintains
a data structure to keep track of whether the process had previously established
communication to machine "sftig" and, if not, establishes a communications link to
a file server process on the remote machine. When a process makes its first remote
request, the remote server validates the request, mapping user and group ID fields
as necessary, and creates a stub process to act as the agent for the client process.

The stub, executing requests for the client process, should have the same access
rights to files that the client user would have on the remote machine. That is, user
"mjb" should access remote files according to the same permissions that govern
access to local files. Unfortunately, the client user ID for "mjb" may be that of a
different user on the remote machine. Either the system administrators of the
various machines must assign unique identifiers to all users across the network, or
they must assign a transformation of user IDs at the time of request for network
service. Failing the above, the stub process should execute with "other"
permissions on the remote machine.

Allowing superuser access permission on remote files is a more ticklish situation.
On the one hand, a client superuser should not have superuser rights on the remote
system, because a user could thereby circumvent security measures on the remote
system. On the other hand, various programs would not work without remote
superuser capabilities. For instance, recall from Chapter 7 that the program
mkdir, which creates a new directory, runs as a set uid program with superuser
permissions. The remote system would not allow a client to create a new directory,
because it would not recognize remote superuser permissions. The problem of
creating a remote directory provides a strong rationale for implementing a mkdir
system call, which would automatically establish all necessary directory links.
Nevertheless, execution of setuid programs that access remote files as superuser is
still a general problem that must be dealt with. Perhaps this problem could best be
solved by providing files with a separate set of access permissions for remote
superuser access; unfortunately, this would require changes to the structure of the
disk mode to save the new permission fields and would thus cause too much turmoil
in existing systems.

When an open call returns successfully, the local library makes an appropriate
notation in a user-level library data structure, including a network address, stub
process ID, stub file descriptor, and other appropriate information. The library
routines for the read and write system calls examine the file descriptor to see if the
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13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS

The term transparent distribution means that users on one machine can access files
on another machine without realizing that they cross a machine boundary, similar
to crossing a mount point from one file system to another on one machine. Path
names that access files on the remote machine look like path names that access
local files: They contain no distinguishing symbols. Figure 13.10 shows a
configuration where directory "iusr/src" on machine 13 is mounted on the directory
"/usr/src" on machine A. This configuration is convenient for systems that wish to
share one copy of system source code, conventionally found in "/usr/src". Users on
machine A can access files on machine 13 with the regular file name syntax, such as
"iusr/src/cmd/login.c", and the kernel decides internally whether a file is remote
or local. Users on machine B access local files without being aware that users on
machine A can access them, too, but they cannot access files on machine A. Of
course, other scenarios are possible where all remote systems are mounted at root of
the local system, giving users access to all files on all systems.

Figure 13.10. File Systems after Remote Mount

Because of the analogy between mounting local file systems and providing
access to remote file systems, the mount system call is adapted for remote file
systems. The kernel contains an expanded mount table: When executing a remote
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mount system call, the kernel establishes a network connection to the remote
machine and stores the connection information in the mount table.

An interesting problem arises for path names that include ".." (dot-dot): If a
process changes directory to a remote file system, subsequent use of ".." should
return the process to the local file system rather than allow it to access files above
the remotely mounted directory. Referring to Figure 13.10 again, if a process on
machine A, whose current directory is in the (remote) directory "iusr/sre/cmd",
executes

cd

its new current directory should be root on machine A, not root on machine B.
Algorithm namei in the remote kernel therefore checks all ".." sequences to see if
the calling process is an agent for a client process, and if so, checks the current
working directory to see if that client treats the directory as the root of a remotely
mounted file system.

Communication with a remote machine takes on one of two forms: remote
procedure call or remote system call. In a remote procedure call design, each
kernel procedure that deals with modes recognizes whether a particular mode refers
to a remote file and, if it does, sends a message to the remote machine to perform a
specific mode operation. This scheme fits in naturally to the abstract file system
types presented at the end of Chapter 5. Thus, a system call that accesses a remote
file may cause several messages across the network, depending on how many
internal mode operations are involved, with correspondingly higher response time
due to network latency. Carried to an extreme, the remote operations include
manipulation of the mode lock, reference count, and so on. Various optimizations
to the pure model have been implemented to combine several logical mode
operations into a single message and to cache important data (see [Sandberg 851).

Server Client Process/Processor

Figure 13.11. Opening a Remote File
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Consider a process that opens the remote file "iusr/src/cmd/login.c", where
"src" is the mount point. As the kernel parses the path name in namei-iget, it
detects that the file is remote and sends a request to the remote machine to return a
locked mode. On receipt of a successful response, the local kernel allocates an in-
core mode that corresponds to the remote file. It then checks file modes for
necessary permissions (permission to read, for instance), by sending another
message to the remote machine. It continues executing the open algorithm as
presented in Chapter 5, sending messages to the remote machine when necessary,
until it completes the algorithm and unlocks the inode. Figure 13.11 illustrates the
relationship of the kernel data structures at conclusion of the open.

For a read system call, the client kernel locks the local mode, sends a message
to lock the remote mode, sends a message to read data, copies the data into local
memory, sends a message to unlock the remote mode, and unlocks the remote
m ode. This scheme conforms to the semantics of existing, uniprocessor kernel code,
but the frequency of network use (potentially several times per system eau) hurts
performance. Several operations can be combined into one message to reduce
network traffic, however. In the read example, the client can send one "read"
message to the server, which knows that it has to lock and unlock its mode while
doing the read operation. Implementation of remote caches can further reduce
network traffic, as mentioned above, but care must be taken to maintain the
semantics of file system calls.

In a remote system call design, the local kernel recognizes that a system call
refers to a remote file, as above, and sends the parameters of the system call to the
remote system, which executes the system call and returns the results to the client.
The client machine receives the results of the remote system call and longjmps out
of the system call. Most system calls can be executed with only one network
message, resulting in reasonably good system response, but several kernel operations
do not fit the model. For instance, the kernel creates a "core" file for a process en
receipt of various signals (Chapter 7). Creation of a core file does not correspond
to one system call but entails several mode operations, such as creation of a file,
checking acc•ss permissions, and doing several write operations.

For an open system call, the remote system call message consists of the
remainder of the path name (the path name string after the component where the
remote path name was detected) and the various fiags. Repeating the earlier
example for a process that opens the file "usr/src/cmd/login.c", the kernel sends
the path name "cmd/login.c" to the remote machine. The message also contains
identifying information, such as user 1D and group ID, needed to determine file
access capabilities on the remote machine. When the remote machine responds
that the open cal succeeded, the local kernel allocates a free, local, in-core mode,
marks it "remote," saves the information needed to identify the remote machine
and the remote mode, and allocates a new fik table entry in the usual manner. The
m ode on the local machine is a dummy for the real mode on the remote machine,
resulting in the same configuration as the remote procedure call model (Figure
13.11). When a process issues a system call that accesses a remote file by its file
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descriptor, the local kernel recognizes that the file is remote by examining its
(local) inode, formulates a message encapsulating the system call, and sends the
message to the remote machine. The message contains the remote mode index so
that the stub can identify the remote file.

For all system calls, the local kernel may execute special code to take care of
the response and may eventually Iongjmp out of the system call, because
subsequent local processing, designed for a uniprocessor system, may be irrelevant.
Therefore, the semantics of kernel algorithms may change to support a remote
system call model. However, network traffic is kept to a minimum, allowing system
response to be as fast as possible.

13.4 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB
PROCESSES

Use of stub processes in the transparent distributed system model makes it easy for
the remote system to keep track of remote files, but the process table on the remote
system becomes cluttered with stubs that are idle most of the time. Other schemes
use special server processes on the remote machine to handle remote requests (see
[Sandberg 85] and [Cole 85]). The remote system has a pool of server processes
and assigns them temporarily to handle each remote request as it arrives. After
handling a request, the server process reenters the pool and is available for
reassignment to other requests: The server does not remember the user context
(such as user ID) between system calls, because it may handle system calls for
several processes. Consequently, each message from a client process must include
data about its environment, such as UIDs, current directory, disposition of signals,
and so on. Stub processes acquire this data at setup time or during the normal
course of system call execution.

When a process opens a remote file, the remote kernel allocates an mode for
later reference to the file. The local machine has the usual entries in the user file
descriptor table, file table, and mode table, and the mode entry identifies the remote
machine and inode. For system calls that use a file descriptor, like read, the kernel
sends a message that identifies the previously allocated remote mode and passes
over process-specific information, such as the user ID, the maximum allowed file
size, and so on. When the remote machine dispatches a server, communication
with the client process is similar to what was described previously, but the
connection between the client and server exists only for the duration of the system
call.

Handling flow control, signals, and remote devices is more difficult using server
processes instead of stubs. If a remote machine is flooded with requests from many
machines, it must queue the requests if it does not have enough server processes.
This requires a higher-level protocol than the one already provided with the
underlying network. In the stub model, on the other hand, a stub cannot be flooded
with requests, because all transactions with a client are synchronous: A client can
have at most one outstanding request.
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Handling signals that interrupt a system call is also more complicated with
server processes, because the remote machine must find the correct server process
that is executing the system call. It is even possible that the system cal request is
still waiting for service if all server processes were busy. Similarly, race conditions
are possible if the server returns the result of the system call to the calling process,
and the response passes the signal message en route through the network. Each
message must be tagged so that the remote system can locate it and interrupt
server processes, if necessary. Using stub processes, the process servicing the dient
system call is automatically identified, and it is easy to determine if it already
finished handling a system call when a signal arrives.

Finally, if a process issues a system call that causes the server process to sleep
indefinitely (reading a remote terminal, for example), the server process cannot
handle other requests, effectively removing it from the server process pool. 1f many
processes access remote devices and if there is an upper bound on the number of
server processes, this can be a severe bottleneck. This cannot happen when using
stub processes, because the stubs are allocated per client process. Exercise 13.14
explores another problem in using server processes for remote devices.

In spite of the advantages for using process stubs, the need for process table
slots is so critical in practice that most schemes use a pool of service processes to
handle remote requests.

System Cali Library

Newcastle Layer

System Cali Handler

User

A

Kernel 

Figure 13.12. Conceptual Kernel Layer for Remote File Access

13.5 SUMMARY

This chapter has described three schemes for allowing processes to access files
stored on remote machines, treating the remote file systems as an extension of the
local file system. Figure 13.12 illustrates the architectural difference between them.
These systems are distinguished from the multiprocessor systems described in the
previous chapter, because processors do not share physical memory. The satellite
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processor scheme consists of a tightly coupled set of processors that share the file
resources of a central processor. The Newcastle connection gives the appearance of
transparent, remote file access, but remote access is provided by a special
implementation of the C library, not by the kernel. Consequently, programs must
be recompiled to use the Newcastle connection, sometimes a serious drawback.
Remote files are designated by special character sequences that identify the
machine that stores the file, another factor that can limit portability.

A transparent distributed system uses a variation of the mount system call to
give access to a remote file system, much as the usual mount system call extends
the local file system to newly mounted disk units. bodes on the local system
indicate that they refer to remote files, and the local kernel sends messages to the
remote kernel, describing the kernel algorithm (system call), its parameters, and
the remote mode. Two designs support the remote transparent, distributed
operations: a remote procedure call model, where the messages instruct the remote
machine to execute mode operations, and a remote system call model, where the
messages instruct the remote machine to execute system calls. Finally, the chapter
examined the issues involved with serving remote requests with stub processes or
with server processes from a general pool.

13.6 EXERCISES

* 1. Describe an implementation of the exit system call on a satellite processor system.
How is this different from the case where a process exits as a result of receipt of an
uncaught signal? How should the kernel dump the "core" file?

2. Processes cannot ignore the SIGKILL signal; describe what happens on a satellite
system when a process receives this signal.

* 3. Describe an implementation of the exec system call on a satellite processor system.
* 4. How should a central processor assign processes to satellite processors to balance the

execution load?
* 5. What happens if a satellite processor does not contain enough memory for the

processes downloaded to it? How should it handle swapping or paging across a
network?

6. Consider a system that allows access to remote file server machines by recognizing
path names by special prefaces. Suppose a process executes

execl(7../sftigibinish", "sh", 0);

The executable image is on the remote machine but should execute on the local
machine. Describe how the local system brings the remote executable file to the local
system to do the exec.

7. If an administrator wishes to add new machines to a Newcastle system, what is the
best way to inform the C library modules?

* 8. The kernel overwrites the address space of a process during exec, including the library
tables used by a Newcastle-style implementation to keep track of remote file
references. The process must still be able to access these files by their old file
descriptors after the exec. Describe an implementation.
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* 9. As described in Section 13.2, execution of the exit system call on Neweastle syst
results in a message being sent to the stub process that causes it to exit. This is
at the library level. What happens if the local process receives a signa' that ca
to exit from the kernel?

* 10. In a Newcastle-style system, where remote files are designated by special prefa"
how should the system allow a user to use the ".." (parent directory) componen

t to
back up over a remote mount point?

11. Recall from Chapter 7 that various signals cause a process to dump a core file in iu
current directory. What should happen if the current directory is in a remote fik
system? What happens on a Newcastle system?

* 12. 1f someone on a remote processor kills all stub or server processes, how should the local
processes hear the good news?

* 13. In the transparent distribution system, discuss implementations of link, which has twn
possibly remote path names, and exec, which bas several internal read operations.
Consider the two designs: remote procedure call and remote system call.

* 14. When a (nonstub) server process accesses a device, it may have to sleep until the
device driver wakes it up. Given a fixed number of servers, it is conceivable that a
system would be unable to satisfy any more requests from a loc& machine, because all
servers are sleeping in a device driver. Devise a scheme that is safe, in that not all
servers can sleep, waiting for device I/O. A system call should not fail because all
servers are currently busy.

Figure 13.13. A Terminal Server Configuration

* 15. When a user logs into a system, the terminal line discipline saves information that the
terminal is a control terminal, noting the process group. In this way, processes receive
interrupt signals when a user hits the break key at the terminal. Consider a system
configuration where all terminals are physically eonnected to one machine, but users
log in logically on other machines (Figure 13.13). Specifically, a system spawns a
getty process for a remote terminal. 1f a pool of server processes handle remote system
calls, a server sleeps in the driver open procedure, waiting for a connection. When the
server cornpletes the open system cal!, it goes back into the process pool, severing its
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connection to the terminal. If a user hits the break key, how is the interrupt signal
sent to processes in the process group executing on the client machine?

* 16. The shared memory feature is inherently a local-machine operation. Logically, it
would be possible for processes on different machines to access a common piece of
physical memory, whether the memory is local

Describe animplementation,
* 17. The demand paging and swapping algorithms

of a local swap device. What modifications
support remote swap devices?

* 18. Suppose a remote machine crashes (or the network goes down) and the local network
protocol can recognize this fact. Design recovery schemes for a local system that
makes requests of a remote, server system. Conversely, design recovery schemes for a
server system that loses its connection with client machines.

* 19. When a process accesses a remote file, the path name may stretch across several
machines until it is completely resolved.  Following the path name"/usr

/srciuts/3b2/os" for example, "iusr" may be on machine A, the root of machine
B may be mounted on "iusr/src", and the root of machine C may be mounted on
"/

usr/srchits/3b2". Moving through several machines to get to the final destination is
called multihop. If a direct network connection exists between A and C, however, it is
inefficient to transfer data between the machines via machine B. Describe a design for
multi-hop in the Newcastle and transparent distribution models.

or remote.

examined in Chapter 9 assume the use
must be made to these algorithms to



APPENDIX
SYSTEM CALLS

This appendix contains a brief synopsis of the UNIX system calls. Refer to the
UNIX System V User Programmer's Manual for a complete specification of these
calls. The specification here is sufficient for reference when reading the various
program examples in the book.

The specified file names are null terminated character strings, whose individual
components are separated by slash characters. All system calls return —1 on error,
and the external variable errno indicates the specific error. Unless specified
otherwise, system calls return 0 on success. Some system calls are the entry point
for several functions: this means that the assembly language interface for the
functions is the same. The list here follows the usual conventions for UNIX system
manuals, but the programmer should not care whether a system call entry point
handles one or many system calls.

access

access(filename, mode)
char *filename;
int mode;

Access checks if the calling process has read, write, or execute permission for the
file, according to the value of mode. The value of mode is a combination of the bit

434
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patterns 4 (for read), 2 (for write), and I (for execute). The real-user ID is
checked instead of the effective user ID.

acct

acct (filename)
char *filename;

Acct enables system accounting if filename is non-null, and disables it otherwise.

alarm

unsigned alarm (seconds)
unsigned seconds;

Alarm schedules the occurrence of an alarm signal for the calling process in the
indicated number of seconds. It returns the amount of time remaining until the
alarm signal at the time of the call.

brk

int brk(end data seg)
char *end data seg;

Brk sets the highest address of a process's data region to end data seg. Another
function, sbrk, uses this system call entry point and changes the highest address of
a process's data region according to a specified increment.

chdir

chdir (filename)
char *filename;

Chdir changes the current directory of the calling process to filename.

chmod

chmod(filename, mode)
char *filename;

Chmod changes the access permissions of the indicated file to the specified mode,
which is a combination of the following bits (in octal):

04000 setuid bit
02000 set group ID bit
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01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

sticky bit
read for owner
write for owner
execute for owner
read for group
write for group
execute for group
read for others
write for others
execute for others

chown

chown(filename, owner, group)
char *filename;
int owner, group;

Chown changes the owner and group of the indicated file to the specified owner and
group IDs.

chroot

chroot(filename)
char *filename;

Chroot sets the private, changed-root of the calling process to filename.

close

close(fildes)
int fildes;

Close closes a file descriptor obtained from a prior open, creat, dup, pipe, or fentl
system call, or a file descriptor inherited from a fork eau.

creat

creat (filename, mode)
char *filename;
int mode;

Creat creates a new file with the indicated file name and access permission modes.
Mode is as specified in access, except that the sticky-bit is cleared and bits set via
umask are cleared. If the file already exists, creat truncates the file. Creat returns
a file descriptor for use in other system calls.
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dup

dup(fildes)
int fildes;

Dup duplicates the specified file descriptor, returning the lowest available file
descriptor. The old and new file descriptors use the same file pointer and share
other attributes.

exec

execve(filename, argv, envp)
char *filename;
char *asp[];
char *envp[];

Execve executes the program file filename, overlaying the address space of the
executing process. Argv is an array of character strings parameters to the execed

program, and envp is an array of character strings that are the environment of the
new process.

exit

exit (status)
int status;

Exit causes the calling process to terminate, reporting the 8 low-order bits of status
to its waiting parent. The kernel may call exit internally, in response to certain
signals.

fcnti

fcntl(fildes, cmd, arg)
int fildes, cmd, arg;

Fent/ supports a set of miscellaneous operations for open files, identified via the file
descriptor fildes. The interpretation of cmd and arg is as follows (manifest
constants are defined in file "/usaincludeifentl.h"):

F_DUPFD return lowest numbered file descriptor > arg
F SETFD set close-on-exec flag to low order bit of arg

(if 1, file is closed in exec)
F GETFD return value of close-on-exec flag
F SETFL set file status flags (0 NDELAY do not sleep for I/O and
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O_APPEND append written data to end of file)
F_GETFL get file status fiags

struct flock
/* F_RDLCK for read lock, F_WRLCK for write

F_UNLCK for unlock operations */
short I_whence; /* lock offset is from beginning of file (0), current position of file

pointer (1), or end of file (2) */
long l_start; /* byte offset, interpreted according to l_whence */
long 1 jen; /* number of bytes to lock. If 0, lock from l_start to end of file */
long l_pid; /41 ID of process that locked file */
long l_sysid; /* sys ID of process that locked file */

short l_type; lock,

F_GETLK

F_SETLK
F_SETLKW

get first lock that would prevent application of the lock specified by arg
and overvvrite arg If no such lock exists, change l_type in arg to
F_UNLCK
lock or unlock the file as specified by arg. Return -1 if unable to lock.
lock or unlock data in a file as specified by arg. Sleep if unable to lock.

Several read locks can overlap in a file. No locks can overlap a write lock.

fork

fork0

Fork creates a new process. The child process is a logica! copy of the parent
process, except that the parent's return value from the /ark is the process ID of the
child, and the child's return value is 0.

getuid

getuid()

Getuid returns the real user 1D of the calling process. Other calls that use this
system call entry point are geteuid, which returns the effective user ID, getgid,
which returns the group ID, and getegid, which returns the effective group ID of
the calling process.
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ioct1

ioctl(fildes, cmd, arg)
int fildes, cmd;

loctl does device-specific operations on the open device whose file descriptor is
fl/des. Cmd specifies the command to be done on the device, and arg is a
parameter whose type depends on the command.

kill

kill (pid, sig)
int pid, sig;

Kill sends the signal sig to the processes identified by pid.

pid positive
pid 0
pid —I

pid < —1

send signal to process whose PID is pid.
send signal to processes whose process group ID is ND of sender.
if effective UID of sender is super user, send signal to all processes
otherwise, send signal to all processes whose real UID equals
effective UID of sender.
send signal to processes whose process group ID is pid.

The effective UID of the sender must be superuser, or the sender's real or effective
UID must equal the real or effective UID of the receiving processes.

link

link(filenamel, filename2)
char *filenamel, *filename2;

Link gives another name, filename2, to the file fl/enamel. The file becomes
accessible through either name.

Iseek

lseek(fildes, offset, origin)
int fildes, origin;
long offset;

Lseek changes the position of the read-write pointer for the file descriptor fildes
and returns the new value. The value of the pointer depends on origin:

0 set the pointer to offset bytes from the beginning of the file.
I increment the current value of the pointer by offset.
2 set the pointer to the size of the file plus offset bytes.



440 APPENDIX — SYSTEM CALLS

mknod

mknod(filename, modes, dev)
char *filename;
int mode, dev;

Mknod creates a special file, directory, or FIFO according to the type of modes:

010000 FIFO (named pipe)
020000 character special device file
040000 directory
060000 block special device file

The 12 low order bits of modes have the same meaning as described above for
chmod. If the file is block special or character special, dev gives the major and
minor numbers of the device.

mount(specialfile, dir, rwflag)
char *specialfile, *dir;
int rwflag;

Mount mounts the file system specified by specialfile onto the directory dir. 1f the
low-order bit of rwflag is 1, the file system is mounted read-only.

msget1

#include <systtypes.h>
#include <sysiipc.h>
#include <sysfrnsg.h>

msgctl(id, cmd, bun
int id, cmd;
struct msgid_ds *buf;

Msgctl allows processes to set or query the status of the message queue id, or to
remove the queue, according to the value of and. The structure msgid ds is
defined as follows:

struct ipc_perm (
ushort uid; /* current user id */
ushort gid; /* current group id *I
ushort cuid; is creator user id V
ushort cgid; /* creator group id */
ushort mode; /* access modes */
short pad1; /* used by system */
long pad2; /* used by system */
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struct msqid ds
struct ipc_perm
short
ushort
ushort
ushort
ushort
time_t
time_t
time_t

1;

msg_perm;
pad1171;
msg qnum;
msg_qbytes;
msg_Ispid;
msg jrpid;
msg_stime;
msg_rtime;
msg_ctime;

/* permission struet */
/* used by system */
/* number of messages on q */

max number of bytes on q *1
1* pid of last msgsnd operation */
/* pid of last msgrcv operation *1
I* last msgsnd time */
/* last msgrcv time */
/* last change time */

The commands and their meaning are as follows:

IPC_STAT Read the message queue header associated with id into buf.
IPC_SET Set the values of msg_perm.uid, msg_perm.gid, msg_perm.mode (9

low-order bits), and msg_qbytes from the corresponding values in buf.
IPC RMID Remove the message queue for id.

msgget

#include <sysitypes.h>
#include <sysiipc.h>
#include <sysimsg.h>

msgget(key, flag)
key_t key;
int flag;

Msgget returns an identifier to a message queue whose name is key. Key can
specify that the returned queue identifier should refer to a private queue
(IPC PRIVATE), in which case a new message queue is created. Flag specifies if
the queue should be created (IPC_CREAT), and if creation of the queue should be
exclusive (IPC EXCL). In the latter case, msgget fails if the queue already exists.

magand and ninny

#include <sysitypes.h>
#include <sysiipc.h>
#include <sysimsg.h>

msgsnd (id, msgp, size, flag)
int id, size, flag;
struct msgbuf *msgp;
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msgrcv(id, msgp, size, type, fiag)
int id, size, type, fiag;
struct msgbuf *msgmp;

Msgsnd sends a message of size bytes in the buffer msgp to the message queue id.
Msgbuf is defined as

struct msgbuf
long mtype;
char mtext[];

1f the IPC NOWAIT bit is off in flag, msgsnd sleeps if the number of bytes on the
message queue exceeds the maximum, or if the number of messages system-wide
exceeds a maximum value. 1f IPC NOWAIT is set, msgsnd returns immediately in
these cases.

Msgrcv receives messages from the queue identified by id. If type is 0, the first
message on the queue is received; if positive, the first message of that type is
received; if negative, the first message of the lowest type less than or equal to type
is received. Size indicates the maximum size of message text the user wants to
receive. 1f MSG NOERROR is set in flag, the kernel truncates the received
message if its size is larger than size. Otherwise it returns an error. If
IPC NOWAIT is not set in flag, msgrcv sleeps until a message that satisfies type is
sent. If IPC NOWAIT is set, it returns immediately. Msgrcv returns the number
of bytes in the message text.

niee

nice(increment)
int increment;

Nice adds increment to the process nice value. A higher nice value gives the
process lower scheduling priorities.

open

#include <fcritl.h>

open(filename, flag, mode)
char *filename;
int flag, mode;

Open opens the specified file according to the value of flag. The value of flag is a
combination of the following bits (exactly one of the first three bits must be used).
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O RDONLY
O WRONLY
O RDWR
O NDELAY

O APPEND
O CREAT

O_TRUNC
O_EXCL

open for reading only.
open for writing only.
open for reading and writing.
For special devices, open returns without waiting for carrier,
if set. For named pipes, open will return immediately (with an
error if 0 WRONLY set), instead of waiting for another process to
open the named pipe.
causes all writes to append data to the end of the file.
create the file if it does not exist. Mode specifies permissions
as in creat system call. The flag has no meaning if the file
already exists.
Truncate length of file to 0.
Fail the open call if this bit and O_CREAT are set and file exists.
This is a so-called exclusive open.

Open returns a file descriptor for use in other system calls.

pause

pause()

Pause suspends the execution of the calling process until it receives a signal.

pit*

pipe(fildes)
int fildes[2];

Pipe returns a read and write file descriptor (fildes[0] and fildesin, respectively).
Data is transmitted through a pipe in first-in-first-out order; data cannot be read
twice.

pluck

#include <sysilock.h>

plock(op)
int op;

Plock locks and unlocks process regions in memory according to the value of op:

PROCLOCK lock text and data regions in memory.
TXTLOCK lock text region in memory.
DATLOCK lock data region in memory.
UNLOCK remove locks for all regions.
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profil

profil(buf, size, offset, scale)
char *buf;
int size, offset, scale;

Prof! requests that the kernel give an execution profile of the process. Buf is an
array in the process that accumulates frequency counts of execution in different
addresses of the process. Size is the size of the buf array, offset is the starting
address in the process that should be proffied, and scale is a scaling factor.

ptrace

ptrace(cmd, pid, addr, data)
int cmd, pid, addr, data;

Ptrace allows a process to trace the execution of another process, pid, according to
the value of cmd.

0 enable child for tracing (called by child).
1,2 return word at focation addr in traced process pid.
3 return word from offset addr in traced process u area.
4,5 write value of data into location addr in traced process.
6 write value of data into offset addr in u area.
7 cause traced process to resume execution,
8 cause traced process to exit.
9 machine dependent — set bit in PSW for single-stepping execution.
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semctl(id, num, cmd, arg)

int id, num, cmd;

union semun

int val;

struct semid ds *buf;

ushort *array;
arg;

Sernal does the specified cmd on the semaphore queue indicated by id.

GET VAL return the value of the semaphore whose index is num.
SET VAL set the value of the semaphore whose index is num to arg.val.
GETPID return value of last PID that did a semop on the semaphore

whose index is num.
GETNCNT return number of processes waiting for semaphore value to

become positive.
GETZCNT return number of processes waiting for semaphore value to become 0.
GETALL return values of all semaphores into array arg.array.
SETALL set values of all semaphores according to array arg.array.
IPC STAT read structure of semaphore header for id into arg.buf.
IPC_SET set sem_perm.uid, sem_per.gid, and sem_perm.mode (low-order 9 bits)

according to arg.buf.
IPC RMID remove the semaphores associated with id.

Num gives the number of semaphores in the set to be processed. The structure
semidis is defined by:

The structure ipefierm is the same as defined in msgctl.

semget

#include <sysitypes.h>
#include <sysiipc.h>
#include <sysisem.b>

semget(key, nsems, flag)
key_t key;
int nsems, flag;
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Semget creates an array of semaphores, corresponding to key. Key and flag take
on the same meaning as they do in msgget.

semop

semop(id, ops, num)
int id, num;
struct sembuf **ops;

Semop does the set of semaphore operations in the array of structures ops, to the
set of semaphores identified by id. Num is the number of entries in ops. The
structure of sembuf is:

struct sembuf {
short sem_num; /* semapbore number */
short sem op; /* semaphore operation */
short sem flg; /* flag */

1;

Sem_num specifies the index in the semaphore array for the particular operation,
and semjig specifies fiags for the operation. The operations sem op for
semaphores are:

negative if sum of semaphore value and sem op 0, add sem_op to
to semaphore value. Otherwise, sleep, as per flag.

positive add sem_op to sernaphore value.
zero continue, if semaphore value is 0. Otherwise, sleep as per flag.

1f IPC NOWAIT is set in sem_flg for a particular operation, semop returns
immediately for those occasions it would have slept. 1f the SEM_UNDO flag is set,
the operation is subtracted from a running sum of such values. When the process
exits, this sum is added to the value of the semaphore. Semop returns the value of
the last semaphore operation in ops at the time of the call,

setpgrp

setpgrp()

Setpgrp sets the process group ID of the calling process to its process 1D and
returns the new value,

setuid

setuid (uid)
int uid;
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setgid (gid)
int gid;

Set uid sets the real and effective user ID of the calling process. If the effective
user ID of the caller is superuser, setuid resets the real and effective user IDs.
Otherwise, if its real user ID equals uid, setuid resets the effective user ID to uid.
Finally, if its saved user ID (set by executing a setuid program in exec) equals uid,
setuid resets the effective user ID to uid. Setgid works the same way for real and
effective group IDs.

slimed

#include <sysitypes.h>
#include <sysiipc.h>
#include <sysishm.h>

shmetl(id, cmd, buf)
int id, cmd;
struct shmid ds *buf;

Shmcti does various control operations on the shared memory region identified by
Id. The structure shmid ds is defined by:

struct shmid_ds
struct ipc_perm shm_perm; /* permission struct */
int shm segsz; /* size of segment */
int • pad 1; /* used by system */
ushort shm jpid; /* pid of last operation */
ushort shm_cpid; 1* pid of creator */
ushort shm_nattch; /* number currently attached */
short pad2; /* used by system */
time_t shm_atime; /* last attach time *1
time_t shm dtime; /* last detach time */

.1;
time_t shm ctirne; /* last change time */

The operations are:

1PC STAT
1PC_SET

IPC RM1D

read values of shared memory header for id into buf.
set shm_perm.uid, shm_perm.gid, and shm_perm.mode (9 low-order
bits) in shared memory header according to values in buf.
remove shared memory region for id.

shmget

#include <sysitypes.1.>
#include <sysiipc.h>
#include <sysishm.h>



448 APPENDIX — SYSTEM CALLS

shmget(key, size, fiag)
key_t key;
int size, fiag;

Shrrtget accesses or creates a shared memory region of size bytes. The parameters
key and flag have the same meaning as they do for msgget.

shmop

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

shmat(id, addr, fiag)
int id, fiag;
char *addr;

shmdt (addr)
char *addr;

Shmat attaches the shared memory region identified by id to the address space of a
process. 1f addr is 0, the kernel chooses an appropriate address to attach the
region. Otherwise, it attempts to attach the region at the specified address. 1f the
SHM RND bit is on in flag, the kerne rounds off the address, if necessary. Shmat
returns the address where the region is attached.

Shrndt detaches the shared memory region previously attached at addr.

signa!

#include <signal.h>

signal(sig, function)
int sig;
void (*func)();

Signal allows the calling process

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL

to control signa] processing. The values of sig are:

hangup
interrupt
guit
illegal instruction
trace trap
IOT instruetion
EMT instruction
floating point exception
kin
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SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

bus error
segmentation violation
bad argument in system call
write on a pipe with no reader
alarm
software termination
user-defined signal
second user-defined signal
death of child
power failure

The interpretation of function is as follows:

SIG DFL default operation. For all signals except SIGPWR and SIGCLD,
process terminates. It creates a core image for signals SIGQUIT,
SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV, and
SIGSYS.

SIG_IGN ignore the occurrence of the signal.
function an address of a procedure in the process. The kernel

arranges to call the function with the signal number as argument
when it returns to user mode. The kernel automatically resets
the value of the signal handler to SIG_DFL for all signals
except SIGILL, SIGTRAP, and SIGPWR. A process cannot catch
SIGKILL signals.

stat

stat (filename, statbuf)
char *filename;
struct stat *statbuf;

fstat(fd, statbuO
int fd;
struct stat *statbuf;

Stat returns status information about the specified file. Fstat does the same for the
open file whose descriptor is fd. The structure of statbuf is:

struct stat
dev t
ino_t
ushort
short
ushort
ushort
dev_t
off t

st_dev;
st jno;
st_mode;
st_nlink;
st_uid;
stigid;
stidev;
st_size;

/* device number for dev containing file 'V
/* Mode number */
/* file type (see mknod) and perms (see chmod) */
/* number of links for file */
/* user ID of file's owner */
/* group ID of file's group 'V
/* major and minor device numbers *I
/* size in bytes •/
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timet st_atime; /* time of last access */
timet st_mtime; /* time of last modification
timet st_ctime; /* time of last status change *I

stirne

stime(tptr)
long *tptr;

Stime sets the system time and date, according to the value pointed to by tptr.
Times are specified in seconds since 00:00:00 January, 1, 1970, GMT.

syne

sync0

Syne fiushes file system data in system buffers onto disk.

time

time(tloc)
long *tloc;

Time returns the number of seconds since 00:00:00 January 1, 1970, GMT. 1f doe
is not 0, it will contain the return value, too.

times

#include <sysitypes.h>
#include <sysitimes.h>

ti mes(tbuf)
struct tms *tbuf;

Times returns the elapsed real time in clock ticks from an arbitrary fixed time in
the recent past, and fills tbuf with accounting information:

struct tms
timet tms_utime; I* CPU time spent in user mode */
timet tms_stime; I* CPU time spent in kernel mode */
timet tms_cutime; /* Sum of tms_utime and tms_cutime of children */
timet tms_sutime; /* Sum of trns_stime and tms_sutime of children *1
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ulimit

ulimit(cmd,
int cmd;
long limit;

Ulimit allows a process to set various limits according to the value of cmd:

1 return maximum file size (in 512 byte blocks) the process can write
2 set maximum file site to limit.
3 return maximum possible break value (highest possible address in data region).

umask

urnask(mask)
int mask;

Set the file mode creation mask and return the old value. When creating a file,
permissions are turned off if the corresponding bits in mask are set.

umount

umount(specialfile)
char *specialfile;

Unmount the file system in the block special device specialfile,

miame

#include <sysiutsname.h>

uname(name)
struct utsname *name;

Uname returns system-specific information according to the following structure:
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unlink

unlink(filename)
char *filename;

Remove the directory entry for the indicated file.

ustat

#include <sysitypes.h>
#include <ustat.h>

ustat(dev, ubuf)
int dev;
struct ustat *ubuf;

Ustat returns statistics about the file system identified by dev (the major and minor
number). The structure ustat is defined by:

utime

#include <sysitypes.h>

utime(filename, times)
char *filename;
struct utimbuf *times;

Utime sets the access and modification times of the specified file according to the
value of times. If 0, the current time is used. Otherwise, times points to the
following structure:

struct utimbuf
timet axtime; /* access time */
timet modtime; /* modification time */

All times are measured from 00:00:00 January 1, 1970 GMT.
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wait

wait (wait stat)
int *wait_stat;

Wait causes the process to sleep until it discovers a child process that had exited or
a process asleep in trace mode. If wait slat is not 0, it points to an address that
contains status information on return from the call. Only the 16 low order bits are
written. If wait returns because it found a child process that had exited, the low
order 8 bits are 0, and the high order 8 bits contain the low order 8 bits the child
process had passed as a parameter to exit. If the child exited because of a signal,
the high order 8 bits are 0, and the low order 8 bits contain the signal number. In
addition, bit 0200 is set if core was dumped. If wait returns because it found a
traced process, the high order 8 bits (of the 16 bits) contain the signal number that
caused it to stop, and the low order 8 bits contain octal 0177.

write

write(fd, buf, count)
int fd, count;
char *buf;

Write writes count bytes of data from user address buf to the file whose descriptor
is fd.
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