st

P Y

Mt
e
= Y
L e] |
—-——-‘Am
E——
ke 4
A

N 4

-

“THE DESIGN OF THE UNIX®
OPERATING SYSTEM

Maurice J. Bach

Prentice/Hall International, Inc.

Copyright © 1986 by Bell Telephone Laboratories, Incorporated.

Published by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

Prentice-Hall Software Series
Brian W. Kernighan, Advisor

This adition may be sold only in those countries to which it is
consigned by Prentice-Hall International, It is not to be re-
exported and it is not for sale in the U.S A., Mexico or Canada,

UNIX® is a registered trademark of AT&T.

DEC, PDF, and VAX are trademarks of Digital Equipment Corp.

Series 32000 is a trademark of National Semiconductor Corp.

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

UNIVAC is a trademark of Sperry Corp.)
This document was set on an AUTOLOGIC, inc. APS-5 phototypesetter driven by the

TROFF formatter operating under the UNIX system on an AT&T 3820 computer.

The author and publisher of this bock have used their best efforts in preparing
this book. These efforts include the development, research, and testing of the
theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.,

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7

ISBN 0-13-201757-1 025

Prentice-Hall International (UK} Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hail Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hal! of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc,, Englewood Cliffs, New Jersey

To my parents, for their patience and devotion,
to my daughters, Sarah and Rachel, for their laughter,
to my son, Joseph, who arrived after the first printing,
and to my wife, Debby, for her love and understanding.

CONTENTS

PREFACE . .

CHAPTER 1 GENERAL OVERVIEW OF THE SYSTEM
1.1 HISTORY . . .
1.2 SYSTEM STRUCTURE
1.3 USER PERSPECTIVE
1.4 OPERATING SYSTEM SERVICES . .
1.5 ASSUMPTIONS ABOUT HARDWARE
16 SUMMARY

14

15

CHAPTER 2 INTRODUCTION TO THE KERNEL

2.1 ARCHITECTURE OF THE UNIX OPERATING
SYSTEM ., .

2.2 INTRODUCTION TO SYSTEM CONCEPTS
2.3 KERNEL DATA STRUCTURES . ., .
2.4 SYSTEM ADMINISTRATION

2.5 SUMMARY AND PREVIEW

26 EXERCISES, .

CHAPTER 3 THE BUFFER CACHE
3.1 BUFFER HEADERS
3.2 STRUCTURE OF THE BUFFER POOL
3.3 SCENARIOS FOR RETRIEVAL OF A BUFFER
3.4 READING AND WRITING DISK BLOCKS
3.5 ADVANTAGES AND DISADVANTAGES OF THE BUFFER
CACHE o
3.6 SUMMARY
3.7 EXERCISES

CHAPTER 4 INTERNAL REPRESENTATION OF FILES ,
4.1 INODES
4.2 STRUCTURE OF A REGULAR FILE .
' 4.3 DIRECTORIES
4.4 CONVERSION OF A PATH NAME TO AN INODE
4.5 SUPER BLOCK .
4.6 INODE ASSIGNMENT TO A NEW FILE .
4.7 ALLOCATION OF DISK BLOCKS
48 OTHER FILE TYPES .
49 SUMMARY
4.10 EXERCISES

vi

19

19
22
34
34
36
37

38
39
40
42
53

56
57
58

60
61
67
73
74
76
77
84
88
88
89

CHAPTER 5§ SYSTEM CALLS FOR THE FILESYSTEM 9l

51 OPEN . v v v v v v v o o o e o e 0 ee 0w 92
52 READ . + « v v o o« & 4 o s+« o« « « o« 2 . 96
53 WRITE . « v v v v v v v v o v v o o« « o 101
54 FILE ANDRECORDLOCKING 103
5.5 ADJUSTING THE POSITION OF FILE 1/0 - LSEEK . . 103
56 CLOSE . + « « « v « v o o s o o o« « » - 103
57 FILECREATION +. « « +« + « « « « « . 105
58 CREATION OF SPECIALFILES 107
59 CHANGE DIRECTORY AND CHANGEROOT 109
5.10 CHANGE OWNER AND CHANGEMODE 110
511 STATANDFSTAT « .« « « « « « . . . 110
512 PIPES . . . « v v v 4 o v s v e e e o«o.o. o 11
503 DUP . & v v v v v v e e e e e e e e e e W 1
5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS . . 119
505 LINK . . . « v v v v v o o @« o v « « « « » 128
516 UNLINK « + + v o « & o« v ¢ o « « o 132
5.17 FILE SYSTEM ABSTRACTIONS 138
5.18 FILE SYSTEM MAINTENANCE 139
519 SUMMARY + + ¢« ¢« + « .+ « . 140
520 EXERCISES ¢« + .+ + « . . . 140
CHAPTER 6 THE STRUCTUREOFPROCESSES 146

6.1 PROCESS STATES AND TRANSITIONS , 147
6.2 LAYOUT OF SYSTEMMEMORY 151
6.3 THE CONTEXTOFAPROCESS 159
6.4 SAVING THE CONTEXT OF APROCESS 162

6.5 MANIPULATION OF THE PROCESS ADDRESS
SPACE ¢+ v

66 SLEEP 4 182

6.7 SUMMARY
6.8 EXERCISES

CHAPTER 7 PROCESS CONTROL ,
7.1 PROCESS CREATION . . ,
7.2 SIGNALS .
7.3 PROCESS TERMINATION
74 AWAITING PROCESS TERMINATION .
7.5 INVOKING OTHER PROGRAMS
7.6 THE USER ID OF A PROCESS
7.7 CHANGING THE SIZE OF A PROCESS .
7.8 THE SHELL

7.9 SYSTEM BOOT AND THE INIT PROCESS .

7.10 SUMMARY .
7.11 EXERCISES

CHAPTER 8 PROCESS SCHEDULING AND TIME .

8.1 PROCESS SCHEDULING
8.2 SYSTEM CALLS FOR TIME
8.3 CLOCK .

8.4 SUMMARY

8.5 EXERCISES

CHAPTER 9 MEMORY MANAGEMENT POLICIES
9.1 SWAPPING
9.2 DEMAND PAGING

9.3 A HYBRID SYSTEM WITH SWAPPING AND DEMAND

PAGING
9.4 SUMMARY
9.5 EXERCISES

viii

188
189

191
192
200
212
213
217
227
229
232
235
238
239

247

248
258
260
268
268

271
272
285

307
307
308

CHAPTER 10 THE 10 SUBSYSTEM .
10.1 DRIVER INTERFACES
10.2 DISK DRIVERS
10.3 TERMINAL DRIVERS
10.4 STREAMS « « .+ +

10.5 SUMMARY .
10.6 EXERCISES

CHAPTER 11 INTERPROCESS COMMUNICATION
11.1 PROCESS TRACING
11.2 SYSTEM V IPC
11.3 NETWORK COMMUNICATIONS .
11.4 SOCKETS
11.5 SUMMARY .
11.6 EXERCISES + . . .

CHAPTER 12 MULTIPROCESSOR SYSTEMS .

12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS

12.2 SOLUTION WITH MASTER AND SLAVE
PROCESSORS

12.3 SOLUTION WITH SEMAPHORES . , . . .
124 THE TUNISSYSTEM

12.5 PERFORMANCE LIMITATIONS ., . . .
126 EXERCISES . .,

CHAPTER 13 DISTRIBUTED UNIX SYSTEMS
13.1 SATELLITEPROCESSORS .,
13.2 THE NEWCASTLE CONNECTION ., . .
13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS

13.4 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB

PROCESSES

ix

-

*

L]

. 312
. 313
. 325
. 329
« 344
. 351
. 352

-

»

-

355
356
359
382
383
388
389

391
392

393
395
410
410
410

412
414
422
426

429

13.5 SUMMARY . .
13.6 EXERCISES

APPENDIX -~ SYSTEM CALLS
BIBLIOGRAPHY .
INDEX .

G s AR b

. 430
. 431

. 434
- 454
. 458

EAURP—————

PREFACE

The UNIX system was first described in a 1974 paper in the Communications of
the ACM [Thompson 74} by Ken Thompson and Dennis Ritchie. Since that time,
it has become increasingly widespread and popular throughout the computer
industry where more and more vendors are offering support for it on their
machines. It is especially popular in universities where it is frequently used for
operating systems research and case studies.

Many books and papers have described parts of the system, among them, two
special issues of the Bell System Technical Journal in 1978 [BSTJ 78] and 1984
{(BLTJ 84]. Many books describe the user level interface, particularly how to use
electronic mail, how to prepare documents, or how to use the command interpreter
called the shell; some books such as The UNIX Programming Environment
[Kernighan 84] and Advanced UNIX Programming [Rochkind 85] describe the
programming interface. This book describes the internal algorithms and structures
that form the basis of the operating system (called the kernel) and their
relationship to the programmer interface. It is thus applicable to several
environments. First, it can be used as a textbook for an operating systems course
at either the advanced undergraduate or first-year graduate level. It is most
beneficial to reference the system source code when using the book, but the book
can be read independently, too. Second, system programmers can use the book as a
reference to gain better understanding of how the kernel works and to compare
algorithms used in the UNIX system to algorithms used in other operating systems.

xi

xii PREFACE
Finally, programmers on UNIX systems can gain a deeper understanding of how
their programs interact with the system and thereby code more-efficient,
sophisticated programs.

The material and organization for the book grew out of a course that | prepared
and taught at AT&T Bell Laboratories during 1983 and 1984. While the course
centered on reading the source code for the system, I found that understanding the
code was easier once the concepts of the algorithms had been mastered., I have
attempted to keep the descriptions of algorithms in this book as simple as possible,
reflecting in a small way the simplicity and elegance of the system it describes.
Thus, the book is not a line-by-line rendition of the system written in English; it is
a description of the general flow of the various algorithms, and most important, a
description of how they interact with each other. Algorithms are presented in a C-
like pseudo-code to aid the reader in understanding the natural language
description, and their names correspond to the procedure names in the kernel.
Figures depict the relationship between various data structures as the system
manipulates them. In later chapters, small C programs illustrate many system
concepts as they manifest themselves to users. In the interests of space and clarity,
these examples do not usually check for error conditions, something that should
always be done when writing programs. I have run them on System V; except for
programs that exercise features specific to System V, they should run on other
versions of the system, too.

Many exercises originally prepared for the course have been included at the end
of each chapter, and they are a key part of the book. Some exercises are
straightforward, designed to illustrate concepts brought out in the text. Others are
more difficult, designed to help the reader understand the system at a deeper level.
Finally, some are exploratory in nature, designed for investigation as a research
problem. Difficult exercises are marked with asterisks.

The system description is based on UNIX System V Release 2 supported by
AT&T, with some new features from Release 3. This is the system with which |
am most familiar, but I have tried to portray interesting contributions of other
variations to the operating system, particularly those of Berkeley Software
Distribution (BSD). I have avoided issues that assume particular hardware
characteristics, trying to cover the kerne -hardware interface in general terms and
ignoring particular machine idiosyncrasies. Where machine-specific issues are
important to understand implementation of the kernel, however, I delve into the
relevant detail, At the very least, examination of these topics will highlight the
parts of the operating system that are the most machine dependent.

The reader must have programming experience with a high-level language and,

PREFACE xiii

in the book, but not a complete reference manual.

The book is organized as follows. Chapter 1 is the introduction, giving a brief,
general description of system features as perceived by the user and describing the
system structure. Chapter 2 describes the general outline of the kernel architecture
and presents some basic concepts. The remainder of the book follows the outline
presented by the system architecture, describing the various components in a
building block fashion. It can be divided into three parts: the file system, process
control, and advanced topics. The file system is presented first, because its concepts
are casier than those for process control. Thus, Chapter 3 describes the system
buffer cache mechanism that is the foundation of the file system. Chapter 4
describes the data structures and algorithms used internally by the file system.
These algorithms use the algorithms explained in Chapter 3 and take care of the
internal bookkeeping needed for managing user files. Chapter 5 describes the
system calls that provide the user interface to the file system; they use the
algorithms in Chapter 4 to access user files.

Chapter 6 turns to the control of processes. It defines the context of a process
and investigates the internal kernel primitives that manipulate the process context.
In particular, it considers the system call interface, interrupt handling, and the
context switch. Chapter 7 presents the system calls that control the process
context. Chapter 8 deals with process scheduling, and Chapter 9 covers memory
management, including swapping and paging systems.

Chapter 10 outlines general driver interfaces, with specific discussion of disk
drivers and terminal drivers. Although devices are logically part of the file system,
their discussion is deferred until here because of issues in process control that arise
in terminal drivers. This chapter also acts as a bridge to the more advanced topics
presented in the rest of the book. Chapter 11 covers interprocess communication
and networking, including System V messages, shared memory and semaphores,
and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX
systems, and Chapter 13 investigates loosely coupled distributed systems.

The material in the first nine chapters could be covered in a one-semester course
on operating systems, and the material in the remaining chapters could be covered
in advanced seminars with various projects being done in parallel.

A few caveats must be made at this time. No attempt has been made to
describe system performance in absolute terms, nor is there any attempt to suggest
configuration parameters for a system installation. Such data is likely to vary
according to machine type, hardware configuration, system version and
implementation, and application mix. Similarly, I have made a conscious effort to
avoid predicting future development of UNIX operating system features.
Discussion of advanced topics does not imply a commitment by AT&T to provide
?articular features, nor should it even imply that particular areas are under
investigation. '

It is my pleasure to acknowledge the assistance of many friends and colleagues
who encouraged me while I wrote this book and provided constructive criticism of
the manuscript. My deepest appreciation goes to lan Johnstone, who suggested

xiv PREFACE

that I write this book, gave me early encouragement, and reviewed the earliest
draft of the first chapters. Ian taught me many tricks of the trade, and I will
always be indebted to him. Doris Ryan also had a hand in encouraging me from
the very beginning, and I will always appreciate her kindness and thoughtfulness.
Dennis Ritchie freely answered numerous questions on the historical and technical
background of the system., Many people gave freely of their time and energy to
review drafts of the manuscript, and this book owes a lot to their detailed
comments. They are Debby Bach, Doug Bayer, Lenny Brandwein, Steve Buroff,
Tom Butler, Ron Gomes, Mesut Gunduc, Laura Israel, Dean Jagels, Keith
Kelleman, Brian Kernighan, Bob Martin, Bob Mitze, Dave Nowitz, Michael
Poppers, Marilyn Safran, Curt Schimmel, Zvi Spitz, Tom Vaden, Bill Weber,
Larry Wehr, and Bob Zarrow. Mary Fruhstuck provided help in preparing the
manuscript for typesetting. I would like to thank my management for their
continued support throughout this project and my colleagues,. for providing such a
stimulating atmosphere and wonderful work environment at AT&T RBell
Laboratories. John Wait and the staff at Prentice-Hall provided much valuable
assitance and advice to get the book into its final form. Last, but not least, my
wife, Debby, gave me lots of emotional support, without which I could never have
succeeded.

ik

GENERAL OVERVIEW
OF THE SYSTEM

The UNIX system has become quite popular since its inception in 1969, running on
machines of varying processing power from microprocessors to mainframes and
providing a common execution environment across them. The system is divided
into two parts. The first-part consists of programs and services that have made the
UNIX system environment so popular; it is the part readily apparent to users,
including such programs as the shell, mail, text processing packages, and source
code control systems. The second part consists of the operating system that
supports these programs and services. This book gives a detailed description of the
operating system. It concentrates on a description of UNIX System V produced by
AT&T but considers interesting features provided by other versions too. It
examines the major data structures and algorithms used in the operating system
that ultimately provide users with the standard user interface.

This chapter provides an introduction to the UNIX system. It reviews its
history and outlines the overall system structure. The next chapter gives a more
detailed introduction to the operating system.

1.1 HISTORY

In 1965, Bell Telephone Laboratories joined an effort with the General Electric
Company and Project MAC of the Massachusetts Institute of Technology to

2 GENERAL OVERVIEW OF THE SYSTEM

develop a new operating system called Multics [Organick 72]. The goals of th
Multics system were to provide simultaneous computer access to a large communit
of users, to supply ample computation power and data storage, and to allow users t.
share their data easily, if desired. Many people who later took part in the earl
development of the UNIX system participated in the Multics work at Bel
Laboratories. Although a primitive version of the Multics system was running on :
GE 645 computer by 1969, it did not provide the general service computing for
which it was intended, nor was it clear when its development goals would be met
Consequently, Bell Laboratories ended its participation in the project.

With the end of their work on the Multics project, members of the Computing
Science Research Center at Bell Laboratories were left without a “convenient
interactive computing service” [Ritchie 84al. In an attempt to improve their
programming environment, Ken Thompson, Dennis Ritchie, and others sketched a
paper design of a file system that later evolved into an early version of the UNIX
file system. Thompson wrote programs that simulated the behavior of the proposed
file system and of programs in a demand-paging environment, and he even encoded
a simple kernel for the GE 645 computer. At the same time, he wrote a game
program, “Space Travel,” in Fortran for a GECOS system (the Honeywell 635),
but the program was unsatisfactory because it was difficult to control the “space
ship” and the program was expensive to run. Thompson later found a little-used
PDP-7 computer that provided good graphic display and cheap executing power.
Programming “Space Travel” for the PDP-7 enabled Thompson to learn about the
machine, but its environment for program development required cross-assembly of
the program on the GECOS machine and carrying paper tape for input to the
PDP-7. To create a better development environment, Thompson and Ritchie
implemented their system design on the PDP-7, including an early version of the
UNIX file system, the process subsystem, and a small set of utility programs.
Eventually, the new system no longer needed the GECOS system as a development
environment but could support itself. The new system was given the name UNIX,
2 pun on the name Multics coined by another member of the Computing Science
Research Center, Brian Kernighan.

Although this early version of the UNIX system held much promise, it could
not realize its potential until it was used in a real project. Thus, while providing a
text processing system for the patent department at Bel] Laboratories, the UNIX
system was moved to a PDP-11 in 1971, The system was characterized by its small
size: 16K bytes for the system, 8K bytes for user programs, a disk of $12K bytes,
and a limit of 64K bytes per file. After its early success, Thompson set out to
implement a Fortran compiler for the new system, but instead came up with the
language B, influenced by BCPL [Richards 69]. B was an interpretive language
with the performance drawbacks implied by such languages, so Ritchie developed it
into one he called C, allowing generation of machine code, declaration of data
types, and definition of data structures. In 1973, the operating system was
rewritten in C, an unheard of Step at the time, but one that was to have tremendous
impact on its acceptance among outside users. The number of installations at Bel]

F

1.1 ' HISTORY 3

Laboratories grew to about 25, and a UNIX Systems Group was formed to provide
internal support.

At this time, AT&T could not market computer products because of a 1956
Consent Decree it had signed with the Federal government, but it provided the
UNIX system to universities who requested it for educational purposes. AT&T
neither advertised, marketed, nor supported the system, in adherence to the terms
of the Consent Decree. Nevertheless, the system’s popularity steadily increased. In
1974, Thompson and Ritchie published a paper describing the UNIX system in the
Communications of the ACM [Thompson 74), giving further impetus to its
acceptance. By 1977, the number of UNIX system sites had grown to about 500,
of which 125 were in universities. UNIX systems became popular in the operating
telephone companies, providing a good environment for program development,
network transaction operations services, and real-time services (via MERT
[Lycklama 78al). Licenses of UNIX systems were provided to commercial
institutions as well as universities. In 1977, Interactive Systems Corporation
became the first Value Added Reseller (VAR)! of a UNIX system, enhancing it
for use in office automation environments. 1977 also marked the year that the
UNIX system was first “ported” to a non-PDP machine (that is, made to run on
another machine with few or no changes), the Interdata 8/32.

With the growing popularity of microprocessors, other companies ported the
UNIX system to new machines, but its simplicity and clarity tempted many
developers to enhance it in their own way, resulting in several variants of the basic
system. In the period from 1977 to 1982, Bell Laboratories combined several
AT&T variants into a single system, known commercially as UNIX System III
Bell Laboratories later added several features to UNIX System TIII, calling the new
product UNIX System V,? and AT&T announced official support for System V in
January 1983. However, people at the University of California at Berkeley had
developed a variant to the UNIX system, the most recent version of which is called
4.3 BSD for VAX machines, providing some new, interesting features. This book
will concentrate on the description of UNIX System V and will occasionally talk
about features provided in the BSD system.

By the beginning of 1984, there were about 100,000 UNIX system installations
in the world, running on machines with a wide range of computing power from
microprocessors to mainframes and on machines across different manufacturers’
product lines. No other operating system can make that claim. Several reasons
have been suggested for the popularity and success of the UNIX system.

1. Value Added Resellers add specific applications to a computer system to satisfy a particular market.
They market the applications rather than the operating system upon which they run.

2. What happened to System IV? An internal version of the system evolved into System V.

Al 4R AP P48 A8 b 1

4 ' GENERAL OVERVIEW OF THE SYSTEM

¢ The system is written in a high-level language, making it easy to read,
understand, change, and move to other machines. Ritchie estimates that the
first system in C was 20 to 40 percent larger and slower because it was not
written in assembly language, but the advantages of using a higher-level
language far outweigh the disadvantages (see page 1965 of [Ritchie 78b]).

® It has a simple user interface that has the power to provide the services that

users want.
¢ It provides primitives that permit complex programs to be built from simpler

programs.
® It uses a hierarchical file system that allows easy maintenance and efficient

implementation.
e It uses a consistent format for files, the byte stream, making application
programs easier to write.
* It provides a simple, consistent interface to peripheral devices.
* It is a multi-user, multiprocess system; each user can execute several processes
simultaneously.
It hides the machine architecture from the user, making it easier to write
programs that run on different hardware implementations.

The philosophy of simplicity and consistency underscores the UNIX system and
accounts for many of the reasons cited above.

Although the operating system and many of the command programs are written
in C, UNIX systems support other languages, including Fortran, Basic, Pascal,
Ada, Cabol, Lisp, and Prolog. The UNIX system can support any language that
has a compiler or interpreter and a system interface that maps user requests for
operating system services to the standard set of requests used on UNIX systems.

L2 SYSTEM STRUCTURE

hardware, providing common services to programs and insulating them from
hardware idiosyncrasies. Viewing the system as a set of layers, the operating
System is commonly called the system kernel, or just the kernel, emphasizing its

system. Such configurations allow installations to run other operating systems and their applications
In parallel to the UNIX system. The classic example of such a configuration is the MERT system
[Lycklama 78a). More recent configurations include implementations for [BM System/370
computers [Felton 84] and for UNIVAC | 100 Series computers [Bodenstab 84].

R S04 kB s 4

1.2 SYSTEM STRUCTURE 5

Other application programs

Hardware

%an

Other application programs

Figure 1.1. Architecture of UNIX Systems

isolation from user programs. Because programs are independent of the underlying
hardware, it is easy to move them between UNIX systems running on different
hardware if the programs do not make assumptions about the underlying hardware.
For instance, programs that assume the size of a machine word are more difficult to
move to other machines than programs that do not make this assumption.

Programs such as the shell and editors (ed and vi) shown in the outer layers
interact with the kernel by invoking a well defined set of system calls. The system
calls instruct the kernel to do various operations for the calling program and
exchange data between the kernel and the program. Several programs shown in the
figure arc in standard system configurations and are known as commands, but
private user programs may also exist in this layer as indicated by the program
whose name is a.out, the standard name for executable files produced by the C
compiler. Other application programs can build on top of lower-level programs,
hence the existence of the outermost layer in the figure. For example, the standard
C compiler, cc, is in the outermost layer of the figure: it invokes a C preprocessor,

e bt s

6 GENERAL OVERVIEW OF THE SYSTEM

two-pass compiler, assembler, and loader (link-editor), all scparate lower-]
programs. Although the figure depicts a two-level hierarchy of applica
programs, users can extend the hierarchy to whatever levels are appropri
Indeed, the style of programming favored by the UNIX system encourages
combination of existing programs to accomplish a task.

Many application subsystems and programs that provide a high-level view of
system such as the shell, editors, SCCS (Source Code Controf System),
document preparation packages, have gradually become synonymous with the na
“UNIX system.” However, they all use lower-level services ultimately provided
the kernel, and they avail themselves of these services via the set of system ca
There are about 64 system calls in System V, of which fewer than 32 are u:
frequently. They have simple options that make them €asy to use but provide 1
user with a lot of power. The set of system calls and the internal algorithms ti
implement them form the body of the kernel, and the study of the UNIX operati
system presented in this book reduces to a detailed study and analysis of the syste
calls and their interaction with one another. In short, the kernel provides t
services upon which all application programs in the UNIX system rely, and
defines those services. This book will frequently use the terms “UNIX system
“kernel,” or “system,” but the intent is to refer to the kernel of the UNI
operating system and should be clear in context.

1.3 USER PERSPECTIVE

This section briefly reviews high-level features of the UNIX system such as the fil
System, the processing environment, and building block primitives (for example
pipes). Later chapters will explore kernel support of these features in detajl.

L3.1 The File System
The UNIX file system is characterized by

* a hierarchical structure,

¢ consistent treatment of file data,

* the ability to create and delete files, -
* dynamic growth of files,

* the protection of file data,

»

st

1.3 USER PERSPECTIVE 7

fs1 bin/eL usr unix dev
mjbmaury sh date who passwd SIC bin tty00 ttyOl
cmd

a

date.c whoc

Figure 1.2. Sample File System Tree

designates a file name that is uniquely contained in the previous (directory)
component. A full path name starts with a slash character and specifies a file that
can be found by starting at the file system root and traversing the file tree,
following the branches that lead to successive component names of the path name.
Thus, the path names “/etc/passwd”, “/bin/who”, and */usr/src/cmd/who.c”
designate files in the tree shown in Figure 1.2, but “/bin/passwd” and
«sust/sre/date.c” do not. A path name does not have to start from root but can be
designated relative to the current directory of an executing process, by omitting the
initial slash in the path name. Thus, starting from directory “/dev”, the path name
“tty01” designates the file whose full path name is “/dev/tty01”.

Programs in the UNIX system have no knowledge of the internal format in
which the kernel stores file data, treating the data as an unformatted stream of
bytes. Programs may interpret the byte stream as they wish, but the interpretation
has no bearing on how the operating system stores the data. Thus, the syntax of
accessing the data in a file is defined by the system and is identical for all
programs, but the semantics of the data are imposed by the program. For example,
the text formatting program troff expects to find “new-line” characters at the end
of each line of text, and the system accounting program acctcom expects to find
fixed length records. Both programs use the same system services to access the
data in the file as a byte stream, and internally, they parse the stream into a
suitable format. If either program discovers that the format is incorrect, it is
responsible for taking the appropriate action.

Directories are like regular files in this respect; the system treats the data in a
directory as a byte stream, but the data contains the names of the files in the
directory in a predictable format so that the operating system and programs such as

8 GENERAL OVERVIEW OF THE SYSTEM

Is (list the names and attributes of files) can discover the files in a directory.

Permission to access a file is controlled by access permissions associated wif
the file. Access permissions can be set independently to control read, write, ar
execute permission for three classes of users: the file owner, a file group, ar
everyone else. Users may create files if directory access permissions allow it. Tt
newly created files are leaf nodes of the file system directory structure.

To the user, the UNIX system treats devices as if they were files. Device
designated by special device files, occupy node positions in the file system director
structure. Programs access devices with the same syntax they use when accessin
regular files; the semantics of reading and writing devices are to a large degree th
same as reading and writing regular files. Devices are protected in the same wa
that regular files are protected: by proper setting of their (file) access permissions
Because device names look like the names of regular files and because the sam
operations work for devices and regular files, most programs do not have to knov
internally the types of files they manipulate.

For example, consider the C program in Figure 1.3, which makes a new copy o
an existing file. Suppose the name of the executable version of the program i
copy. A user at a terminal invokes the program by typing

copy oldfile newfile

where oldfile is the name of the existing file and newfile is the name of the new file.
The system invokes main, supplying arge as the number of parameters in the list
argv, and initializing each member of the array argv to point to a user-supplied
parameter. In the example above, arge is 3, argvl0] points to the character string
copy (the program name is conventionally the Oth parameter), argv/l] points to the
character string oldfile, and argv{2] points to the character string newfile. The
program then checks that it has been invoked with the proper number of
parameters. If so, it invokes the open system call “read-only” for the file oldfile,
and if the system call succeeds, invokes the crear system call to create newfile. The
permission modes on the newly created file will be 0666 {octal), allowing all users
access to the file for reading and writing. All system calls return —| on failure; if

went wrong.

The open and crear System calls return an integer called 2 file descriptor, which
the program uses for subsequent references to the files. The program then calls the
subroutine copy, which goes into a loop, invoking the read system call to read a
buffer’s worth of characters from the existing file, and invoking the write system
call to write the data to the new file. The read system call returns the number of
bytes read, returning O when it reaches the end of file. The program finishes the
loop when it cncounters the end of file, or when there is some error on the read
system call (it does not check for write errors). Then it returns from copy and
exits with return status 0, indicating that the program completed successfully.

T 2

13 USER PERSPECTIVE 9

#include <fentLh>

char buffer[2048];
int version = [; /* Chapter 2 explains this */

mainf(argc, argv)
int argce:
char *argvl];

int fdold, fdnew;

if (arge = 3)
{

printf("need 2 arguments for copy program\n");
exit(1);

j
fdold = open(argvl1], O_RDONLY); /* open source file read only */

if (fdold == —1)
{

printf("cannot open file %s\n", argvi1]);
exit(1);

J
fdnew = creat{argvl2], 0666); /* create target file rw for all */

if (fdnew == —1)
{

printf("cannot create file %s\n", argv(21);
exit(1);
1
copy (fdold, fdnew);
exit(0);
}

copy(old, new)
int old, new;
{

int count;

while ((count = read (old, buffer, sizeof (buffer))) > 0)
write(new, buffer, count);

Figure 1.3. Program to Copy a File

The program copies any files supplied to it as arguments, provided it has
permission to open the existing file and permission to create the new file. The file
can be a file of printable characters, such as the source code for the program, or it
can contain unprintable characters, cven the program itseif. Thus, the two

10 GENERAL OVERVIEW OF THE SYSTEM

invocations

COpY COpY.C NEWCOopY.C
COpy COpY newcopy

both work. The old file can also be a directory. For instance,

copy . dircontents

copies the contents of the current directory, denoted by the name “.”, to a regular
file, “dircontents”; the data in the new file is identical, byte for byte, to the contents
of the directory, but the file is a regular file. (The system call mknod creates a
new directory.) Finally, either file can be a device special file. For example,

copy /dev/tty terminalread

reads the characters typed at the terminal (the special file /devity is the user’s
terminal) and copies them to the file terminairead, terminating only when the user

types the character control-d. Similarly,
copy /dev/tty /dev/tty

reads characters typed at the terminal and copies them back.

1.3.2 Processing Environment

A program is an executable file, and a process is an instance of the program in
execution. Many processes can execute simultaneously on UNIX systems (this
feature is sometimes called multiprogramming or multitasking) with no logical limit
to their number, and many instances of a program (such as copy) can exist
simultaneously in the system. Various system calls allow processes to create new
processes, terminate processes, synchronize stages of process execution, and control
reaction to various events. Subject to their use of system calls, processes execute
independently of each other.

For example, a process executing the program in Figure 1.4 executes the fork
system call to create a new process. The new process, called the child process, gets
a 0 return value from fork and invokes exec! to execute the program copy (the
program in Figure 1.3). The exec! call overlays the address space of the child
process with the file “copy”, assumed to be in the current directory, and runs the
program with the user-supplied parameters. If the exec! call succeeds, it never
returns because the process executes in a new address space, as will be seen in
Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a
non-0 return from the call, calls wait, suspending its execution until copy finishes,
prints the message ‘“‘copy done,” and exirs {every program exits at the end of its
main function, as arranged by standard C program libraries that are linked during
the compilation process). For example, if the name of the executable program is
run, and a user invokes the program by

P R g

- o R

1

s A e

T R S O Y P e

LRI R

EHhE YRR R

1.3 USER PERSPECTIVE 11

main(arge, argyv)
int arge;
char *argvl];

/* assume 2 args: source file and target file */

. if {(fork() === 0)
execl("copy", "copy”, argvl 1], argvi2], 0);
wait{(int *) 0);
printf("copy done\n");

)

Figure 1.4. Program that Creates a New Process to Copy Files

run oldfile newfile

the process copies “oldfile” to “newfile” and prints out the message. Although this
program adds little to the “copy’ program, it exhibits four major system calls used
for process control: fork, exec, wait, and, discreetly, exit.

Generally, the system calls allow users to write programs that do sophisticated
operations, and as a result, the kernel of the UNIX system does not contain many
functions that are part of the “kernel” in other systems. Such functions, including
compilers and editors, are user-level programs in the UNIX system. The prime
example of such a program is the shell, the command interpreter program that
users typically execute after logging into the system. The shell interprets the first
word of a command line as a command name: for many commands, the shell forks
and the child process execs the command associated with the name, treating the
remaining words on the command line as parameters to the command.

The shell allows three types of commands. First, a command can be an
executable file that contains object code produced by compilation of source code (a
C program for example). Second, a command can be an executable file that
contains a sequence of shell command lines. Finally, a command can be an internal
shell command (instead of an executable file). The internal commands make the
shell a programming language in addition to a command interpreter and include
commands for looping (for-in-do-done and while-do-done), commands for
conditional execution (if-then-else-fi), a “case” statement command, a command to
change the current directory of a process (cd), and several others. The shell syntax
allows for pattern matching and parameter processing. Users execute commands
without having to know their types.

The shell searches for commands in a given sequence of directories, changeable
by user request per invocation of the shell. The shell usually executes a command
synchronously, waiting for the command to terminate before reading the next
command line. However, it also allows asynchronous execution, where it reads the
next command line and executes it without waiting for the prior command to
terminate. Commands executed asynchronously are said to execute in the

12 GENERAL OVERVIEW OF THE SYSTEM

background. For example, typing the command

who

causes the system to execute the program stored in the file /bintwho,* which prints a
list of people who are currently logged in to the system. While who executes, the
shell waits for it to finish and then prompts the user for another command. By

typing
who &

the system executes the program who in the background, and the shell is ready to
accept another command immediately.

Every process executing in the UNIX system has an execution environment that
includes a current directory. The current directory of a process is the start
directory used for all path names that do not begin with the slash character. The
user may execute the shell command cd, change directory, to move around the file
system tree and change the current directory. The command line

cd /usr/src/uts
changes the shell’s current directory to the directory “fusr/src/uts”. The command
line

cd ./

changes the shell’s current directory to the directory that is two nodes “closer” to
the root node: the component “.” refers to the parent directory of the current
directory.

Because the shell is a user program and not part of the kernel, it is easy to
modify it and tailor it to a particular environment. For instance, users can use the
C shell to provide a history mechanism and avoid retyping recently used commands,
instead of the Bourne shell (named after its inventor, Steve Bourne), provided as
part of the standard System V release. Or some users may be granted use only of
a restricted shell, providing a scaled down version of the regular shell. The system
can execute the various shells simultaneously. Users have the capability to execute
many processes simultaneously, and processes can create other processes
dynamically and synchronize their execution, if desired. These features provide
users with a powerful execution environment. Although much of the power of the
shell derives from its capabilities as a programming language and from its
capabilities for pattern matching of arguments, this section concentrates on the
process environment provided by the system via the shell. Other important shell

4. "fhc dircctory “/bin” contains many useful commands and is usually included in the sequence of
directories the shell searches.

