Computer Systems, 3(4), Oct., 1990, pp. 551--579.

A Comparison of basic CPU Scheduling Algorithmsfor
Multiprocessor Unix

Sephen Curran
Michael Summ

Department of Electrical and Computer Engineering
University of Toronto
Toronto, Canada M5S 1A4

ABSTRACT

In this paper, we present the results of a simulation study comparing three basic
algorithms that schedule independent tasks in multiprocessor versions of Unix. Two of
these algorithms, namely Central Queue and Initial Placement, are obvious extensions to
the standard uniprocessor scheduling algorithm and are in use in a number of multipro-
cessor systems. A third algorithm, Take, is a variation on Initial Placement, where pro-
cessors are allowed to raid the task queues of the other processors. Our simulation
results show the difference between the performance of the three algorithms to be small
when scheduling a typical Unix workload running on a small, bus-based, shared memory
multiprocessor. They also show that the Take algorithm performs best for those mul-
tiprocessors on which tasks incur overhead each time they migrate. In particular, the
Take algorithm appears to be more stable than the other two algorithms under extreme
conditions.

1. Introduction

In this paper, we consider ways to organize and manage the ready tasks in a shared memory multiproces-
sor. The uniprocessor Unix kernel uses a single priority queue for this purpose: A task is added to the
ready queue behind all tasks of higher or equal priority, and the CPU is allocated to the task with the
highest priority which is at the head of the queue. For the shared memory multiprocessor case, we consider
three basic scheduling algorithms in a simulation study, and compare their behavior and performance in
scheduling a Unix workload of tasks. We focus on bus-based multiprocessors that incur extra overhead
each time a task is migrated from one processor to another. Many existing multiprocessors belong to this
class, including the Encore Multimax [MNO86], the Sequent Symmetry [LT88], and the DEC Firefly
[TSS88]. Two of the scheduling algorithms we study are obvious extensions of the method used in the
uni processor case:

° Central Queue (CQ): All processors of the multiprocessor share a single ready queue. (This
requires that accesses to the queue be synchronized.)

° Initial Placement (IP): Each processor has its own separate ready queue and only executes
tasks from its own queue. When atask isfirst created, it is permanently assigned to one of the
processors.

The problem with Initial Placement is that a load imbalance may occur, where some processors are idle
with nothing to execute, while other processors are busy and have tasks in their ready queues. Any load
imbalance will result in poorer task response times. With Central Queue, the load is always perfectly bal-
anced, since an idle processor will execute any available task. However, the probability is high that a task

T Appeared in Computer Systems, 3(4), Oct., 1990, pp. 551--579.

will execute on a different processor each time it is dispatched; that is, it will be migrated. For many mul-
tiprocessors, each task migration incurs overhead both for the task being migrated and the rest of the sys-
tem, increasing average task response times if the Central Queue algorithmis used.

These two algorithms represent opposite ends of a spectrum, where Initial Placement has no migra-
tion overhead and unbalanced loads, and Central Queue has migration overhead but a perfectly balanced
load. A third algorithm, which isavariation of Initial Placement, lies between these two extremes:

° Take (TK): Each processor has its own separate ready queue, and tasks are initially assigned
to the queue of one of the processors. Each processor executes tasks from its own queue
whenever possible, but raids the queues of the other processors when its own queue is empty.

Of these algorithms, Central Queue will perform best if there is no migration overhead, but we show that
the Take algorithm performs better than both the Initial Placement and Central Queue agorithms under
most operating conditions on those systems that have migration overhead. Although the difference
between the three algorithms is relatively small, the behavior of the Take algorithm is much more stable
than the other two algorithms under extreme conditions. Initial placement performs worse than the other
two algorithms because of load imbalances. Central Queue performs poorly when the load is high, due to
the overhead of the large number of migrations that occur. In addition, Central Queue gives poor response
to low priority tasks under high loads. The Take agorithm performs well, because it resorts to task migra-
tion (with its associated overhead) only when load imbalances occur and does not migrate tasks when there
islittle benefit in doing so.

This paper is theoretical in the sense that the results are obtained from simulation studies instead of
from measurements of real systems. Nevertheless, we believe that the results we present are of practical
value. All three algorithms we study are practical in that they are simple and have been implemented; two
of them are used in most of the existing multiprocessors today. Moreover, we use measurements obtained
from a real Unix system to derive the simulator’s input parameters. Finally, although we don’t derive
absolute performance predictions for specific systems and workloads, we study the relative performance of
the three algorithms across a broad range of architectures and workloads and analyze how changes in the
system or workload affect performance. This allows us to study the behavior of the algorithms under dif-
ferent circumstances.

The following section describes the different sources of migration overhead in order to assess the
cost they inflict. In Section 3, we describe in detail the simulation model, the input parameters, the
scheduling algorithms, and the performance metric used. Section 4 presents the results of simulating a
baseline system, and Section 5 extends these results by considering other workloads and system parame-
ters.

Related Work

A number of papers exist that describe how scheduling is performed in existing multiprocessor operating
system implementations [Bla90, Kel89, LT88, TSS88, RW87]. All of these systems implement variants of
the Central Queue agorithm.

Two additional studies are concerned with the overhead of the scheduling algorithms themselves.
Wendorf [Wen87] concludes that scheduling decisions should only be made on a (small) subset of the pro-
cessors in a multiprocessor. Ni and Wu [NW89] analytically studied several scheduling algorithms to
show the effects of contention to the ready queue on the performance of the algorithms. In this paper, we
assume that the overhead for the scheduling algorithms is negligible and that there is no contention for the
ready queue(s). These are reasonable assumptions, given the ssimplicity of the algorithms and the small
number of processors being considered here.

Much of the early multiprocessor scheduling research focused on scheduling parallel programs on
systems dedicated to the particular application; see Gonzalez [Gon77] for asurvey. It is till an open ques-
tion how to schedule parallel programs in general multiprogramming environments. This is an area of
active research [ZM90, LV 90, BlIa90, TG89, MEB88, Ous82]. In this paper, we do not consider parallel
programs, but only consider the scheduling of independent tasks.

Considerable effort has aso been spent studying network-wide scheduling issues [Stu88, Zho88,
LM82]. For example, Leland and Ott [LO86] show that for the Unix workload they investigated, the use of
migration can improve the performance of large tasks by up to 25%. In contrast, Eager et.al. [ELZ88] use
an analytical model to show that there is no major performance gain in using migration if a good initial
placement load balancing agorithm is aready being used. These results are not directly applicable to
shared memory multiprocessors, however. In a multiprocessor, state information can be kept in shared
memory and is quickly accessible by all processors. Also, the overhead of task migration is on the order of
milliseconds on a multiprocessor but on the order of seconds in a distributed system.

2. Task Migration Costs
Migration costs can come from three sources in a modern shared memory multiprocessor:

1. theloss of cache context when atask moves from one processor to another,

2. theoverhead required to keep data consistent across multiple caches, and

3. theprocessing overhead that affects the performance of the system as awhole.
In this section, we consider each of these cost sourcesin more detail.

Cache Context L oss

Many of today’s multiprocessors have a per-processor memory cache both to reduce bus traffic and to
improve the average memory accesstime. A task, executing on a processor with a cache, can accumulate a
considerable amount of context close to the processor in the form of cache entries. When a task restarts
after a pause, some of its cached data may (depending on the type of cache) still be present at the cache of
the processor it last ran on, and therefore, will execute faster if it is run on that processor. If it is migrated
to a new processor, it will have little or no cache context and must build up its context through cache
misses. This causes a decrease in the execution speed of the task itself and causes an increase in bus traffic
which slows down the system as awhole.

How much cache context is lost when a task migrates depends on many factors, including the archi-
tecture of the cache subsystem, its structure and size, the degree of associativity, the characteristics of the
transients (the building and decaying of the context), the number of other tasks executing on the processor,
the length of time since the task last ran, and the time the task executed on the processor from which it is
migrating. The amount of cache context lost is limited by the task’s working set. It should also be noted
that for some systems there may be no extra overhead for migrating atask. Thisisthe case for all systems,
for example, where the cache must be invalidated on each context switch.

Cache Consistency Over head

After atask migrates from one processor to another, its data may be present in two caches at the same time.
If thisisthe case then data that islocal to atask will appear to be shared to the system, requiring a mechan-
ism to ensure that the caches stay consistent. Cache consistency comes with a cost, whether it is performed
in hardware or software. In systems without hardware cache consistency support, the operating system can
invalidate the cache when a task is migrated. The cache of either the destination processor or the processor
on which the task last executed can be invalidated, depending on how the caches operate. If a cache
write-back protocol is used, the cache of the old processor must be flushed and invalidated to ensure that all
of the tasks' data modifications are reflected in main memory before it is loaded into the new cache. If, on
the other hand, a cache write-through protocol is used, invaidating either processor’s cache is acceptable.
A cache flush can take hundreds of cyclesin real systems.

Even if caches are kept consistent by hardware, cache consistency overhead is still possible. On
some systems, the consistency mechanism may cause additional bus traffic. Thisis the case, for example,
on the DEC Firefly multiprocessor [TSS88]. The Firefly uses an update scheme, where each modification
to data present in more than one cache is broadcast (across the bus) to all caches so that they can update
their cache entries. (In contrast, when a data item is present in only one cache, a write-back scheme is used
with no extra bus traffic.) On other systems, the consistency mechanism may slow down cache access on
other processors. For example, in some multiprocessors, the processor may be prevented from accessing

the cache while a snoopy invalidation or update is occurring.

System Migration Over head

System Migration Overhead refers to the overhead of migration that affects the performance of the entire
system. As described above, System Migration Overhead generally occurs in two forms. First, migration
may increase contention for the system bus, because of increased bus traffic due to more frequent cache
misses when a task starts executing on a new processor. This causes an increase in the average memory
access time for all tasks, reducing the execution speeds of al tasks in execution. Secondly, additional bus
traffic may be necessary to keep the caches consistent. For example, we have observed the bus on the
Firefly multiprocessor to saturate at 100% utilization when running four small independent programs on the
Firefly; the bus was being used entirely for cache updates that would not have occurred if the tasks had not
migrated.

In addition to these two forms of System Migration Overhead, a more subtle, third form can occur on
some architectures, where certain operations can be optimized if it is known that task migrations will not
take place. For example, consider a system where all memory is globally accessible over the bus, but is
partitioned across the processor boards such that local memory can be accessed faster than memory located
on other processor boards. If migration is not permitted on such a system, then the operating system will
always try to alocate faster, local memory to a task so that the vast mgjority of accesses will be handled
locally. On the other hand, if migration is permitted on this type of system then the number of accesses to
local memory decreases since it is no longer possible to keep a migrating task’s memory local without
copying it. The number of remote memory accesses therefore increases, as does the bus traffic and the
average memory access time, with the attendant system-wide processor performance degradation.

3. The Simulator

Our event-driven simulator models a workload of Unix-like tasks executing on a small, bus-based, shared-
memory multiprocessor. The system model consists of four components: the hardware, the workload, the
scheduling algorithms and the task priority models. Figure 3.1 depicts the queueing network model imple-
mented by the simulator. The figure shows both the hardware of the system (processors and the 1/0 subsys-
tem) and the path tasks take as they pass through the system.
_Exiting
Task Number of CPUs Tasks

Arrival —] /\ /O

Rate CPUs -
> Number of 1/O Bursts Devices
CPU Burst Lengths I/O Pause Lengths

Figure 3.1: The queueing network model implemented in the simulator.
The labels on the figure show some of the key input parameters to the simulator.

This simulator is initially used to simulate a Baseline System, defined by two sets of input parame-
ters. The first set describes the hardware model and includes, for example, the cost of task migration and
the speed of the processors. The other set defines the workload that is executed on the system. The param-
eters used in the Baseline System tests define a particular system running a particular workload and the
simulator makes numerous simplifying assumptions, so it is natural to question the parameters and the
results of the simulation. For this reason, we analyzed the sensitivity of the results of our Baseline System
tests by independently varying the input parameters to determine if and how each affects the performance
of the scheduling algorithms. Most often, we found that changes in the input parameters do not change the

results in a significant way. For example, when simulating slower processors, the behavior of the algo-
rithms remains similar to that of the Baseline tests, although the relative differences become more pro-
nounced. Similarly, changes in the number of processors, the size of the CPU quantum, or the length of the
1/O pauses did not have much effect on our results. (See [Cur89] for details) We therefore believe that the
results of the Baseline System tests are valid across a large range of architectures and workloads, including
workloads typically found in software development, text processing and computer aided design. Those
cases where changes in input parameters produce interesting results are described in Section 5.

In the rest of this section, we describe in detail the assumptions made in the simulation model, the
input parameters, the scheduling algorithms, and the performance metrics used in this study. The casua
reader may want to skip to Section 4.

3.1. Assumptions

In our hardware model, al processors are homogeneous, and each can schedule and execute tasks. Tasks
can execute on any processor and can move from one processor to another whenever they are dispatched
(subject to a migration cost Penalty). For simplicity, the I/O subsystem is assumed to be merely a delay;
thereis no queueing for 1/0.

The ssimulator workload is represented by a set of tasks executing an alternating series of CPU bursts
and I/0O pauses. New tasks arrive in the system at agiven arrival rate. A task’s characteristics, including its
priority, the number of CPU bursts it will execute, and the length of each CPU burst and 1/0O pause, are
generated based on a set of configurable workload model parameters. A task executing on a processor
proceeds until its current CPU burst has completed or until one CPU quantum of 100 ms. completes. The
distribution of CPU bursts and /O pauses are taken from measurements of existing Unix systems (as
described in Section 3.2).

For the initial simulations, a simplified priority model is used, where all tasks are of the same prior-
ity. Later, in Section 5, we consider a more realistic task priority model and determine how the scheduling
algorithms are affected by the use of tasks running at multiple priority levels.

Migration costs are controlled by two parameters, the Task Migration Costs (TMC) and the System
Migration Costs (SMC). The TMC parameter represents the migration cost to the task itself, and is there-
fore a penalty applied to the task being migrated. The penalty is a fixed amount of time added to the first
CPU burst following a migration. The System Migration Cost parameter controls the magnitude of the
system-wide processor performance penalty that results from the use and support of migration. The SMC
represents a reduction in the speed of all of the processors in the system, and is implemented by increasing
the length of all CPU bursts by afixed percentage when a migration-based algorithm isused. This distriBu-
tion of migration costs models the bulk of the migration costs from the sources described in Section 2.1.

3.2. Input Parameters

A number of input parameters are used to define the Baseline System and come from severa sources.
First, the hardware characteristics and migration costs are based on a multiprocessor we our currently
building and is representative of many existing systems. In this system, we assume there are four 20 MIPS
processors. Initially, we assume a TMC of 1 ms, which is added to the length of a task’s next CPU burst
each time it is migrated, and we assume a SMC of 5%, which is added to all CPU bursts when a
migration-based scheduling algorithm isused. Later, we vary these parameters to study their effects.

The workload parameters are based on measurements we performed on a (single processor, 3 MIPS)
CVAX-based Unix system to obtain CPU burst and 1/O pause distributions, using a clock with a
microsecond resolution. As an example of the data obtained from these measurements, Figure 2.1 depicts
the CPU burst length distribution for all processes that executed on the system for a period of 90 minutes,
during which one user was active developing software (mainly editing) using the X window system, while

T The queueing delays are modeled in the length of the 1/0 pauses.

[JSome of the System Migration Overhead costs (such as contention for the system bus) are dependent on the rate at which
tasks migrate. In our model, the SMC parameter is a fixed value that is applied if the scheduling algorithm supports migra-
tion, regardless of whether migration is actually occurring or not.

23433
15734
11972
10000
6153 5200
3692 o866
L 2100
1306
lOOO* 667
CPU 323 g1
bursts
m
100 -
46
24
10
64 | 128 | 256 [512us| 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 [512mg 1s | 2s
to to to to to to to to to to to to to to to to to
127|256 | 512 1 | 2 | 4| 8 | 16 | 32 | 64 | 128|256 | 512 | 1 4
us us us ms ms ms ms ms ms ms ms ms ms S S S S

Length of CPU burst

Figure 2.1: Distribution JPf CPU burst lengths
aBSD 4.2 Unix kernel was remade in the background. ' (Note that both axes in the figure have logarithmic
scales.) One can observe that most of the CPU bursts are relatively short, i.e. between 2 and 4 mil-
liseconds. A few CPU bursts are longer (in the 8-16 second range); they occur at the beginning of the ker-
nel make and when vmunix is linked.

During other periods, we ran more computationally intensive applications, including several
instances of formatting this paper (with grap, pic, egn, thl and troff), a PGA routing application, and Spice,
a circuit simulator (the last two belonging to CAD packages). The distribution of CPU bursts for these
applications was found to be very similar. For example, troff had a dightly higher proportion of longer
bursts, and Spice had an additional single large (60 min.) CPU burst. The PGA router did not have a higher
proportion of long CPU bursts (as we initially expected it would) because of high paging activing due to
the high memory demands of that application.

We also ran our simulator with workload numbers obtained in earlier studies by Mullender [Mul85]
(for CPU burst lengths) and Zﬁmou [Zho88] (for 1/O pause lengths), with results that supported the ones we
obtained in our baseline tests.

3.3. Simulator Performance Metrics

The selection of a meaningful performance metric for comparing the simulation runs is a difficult issue.
Two metrics commonly used in similar studies are processor utilization and response time [ELZ88,
LO86]. We decided not to base performance quality on processor utilization, because utilization may not
accurately reflect the performance of migration-based scheduling algorithms; processor utilization may
increase due to the extra processing time inherent in migration and not because of an increase in the
amount of useful work being achieved. The task response ratio appears to be a more appropriate metric for
our purposes. We therefore present our result in terms of the Global Response Ratio (GRR) [LO86]. GRR
is calculated as the ratio between the tasks' actual response times and the time they would need to execute

T More precisely, a CPU burst of atask is measured as the total time it is executing on a processor (in either user or kernel
mode) from the time it is added to the ready queue after an 1/0 pause, until it executes sleep in the kernel to begin another
1/0 pause.

0 Since these studies are based on older, VAX-based systems, we also adapted the workload parameters to match more
modern, faster technology by scaling processor speed appropriately.

if there were no overhead:
> Elapsed Time
> Task Time
The Task Time isthe sum of the length of all 1/0O pauses and CPU bursts of a task (before migration costs
and queueing time are added). The Elapsed Time isthe Task Time plus overhead, consisting of migration

costs and time spent queueing for access to the CPU. The summations are over N tasks, the number of
tasksin the smulation run.

GRR =

GRR effectively weighs the performance of each task by the size of the task and hence is less sensi-
tive to the performance of individual small tasks. Thisis appropriate, because of the large number of small
tasks relative to large tasks in most workloads, and because the performance of larger tasks is more notice-
able to the user than that of smaller tasks; i.e., the difference between having the response time go from 0.5
seconds to 1 second and having the response time go from 1 hour to 2 hours. Moreover, to ensure that
improvements in the performance of larger tasks do not hurt the smaller, tasks, a second response ratio
measure (also from [LO86]), the Average Per-Task Response Ratio (APRT), where all tasks are weighted
equally, was also calculated for all simulations.

3.4. Scheduling Algorithm Details

We consider three CPU scheduling algorithms: the Initial Placement, the Central Queue, and the Take
algorithms. We describe the three algorithms and some of the details of our implementations. Later, we
consider several variations of our implementations.

Initial Placement

Under the Initial Placement (1P) agorithm, tasks arriving in the system are placed on the least-loaded pro-
cessor in the system (according to some implementation dependent metric), where they remain until they
complete. Each processor maintains its own run queue in priority order, with tasks of the same priority
scheduled in a round-robin fashion. In our implementation, the least-loaded processor is the one with the
fewest tasks that are ready to run or blocked on 1/0.

Central Queue

Under Central Queue (CQ), all tasks are scheduled in strict priority order using a single, system-wide task
gueue. Tasks of equal priority are scheduled in round-robin order. A task migration occurs each time an
idle processor retrieves a task from the queue that last executed on a different processor.

In our implementation of the CQ algorithm, an optimization is performed to reduce the number of
migrations in a lightly loaded system. If the processor that last executed a task when the task becomes
ready is idle, then the processor is selected to continue executing the task. (This optimization is imple-
mented in the Topaz operating system [TSS88].)

Take

Under the Take (TK) algorithm, tasks arriving in the system are initialy assigned to the least-loaded pro-
cessor (according to some implementation dependent metric). As with IP, each processor maintains its
own run queue in priority order, with tasks of the same priority scheduled in round-robin fashion. If a pro-
cessor becomes idle (its run queue is empty), it checks the run queues of all other processors and migrates a
task from the heaviest-loaded processor (according to some implementation dependent metric) to its own
run queue and executes it.

The least-loaded and heaviest-loaded processor in our TK implementation are the processors with the
fewest and most ready tasks, respectively. In a practical implementation, a counter per processor keeps a

T APRis calculated asfollows:

1 5 Elapsedtime
N TaskTime

count of the number of tasks in the queue, eliminating the need to lock the queues while their lengths are
compared.

4, TheBasdline Tests

In this section we analyze the performance and behavior of the Baseline System. The first issue we con-
sider is how load affects the performance of the algorithms. Figure 4.1 (left) depicts the results of the Base-
line System tests for al three scheduling agorithms, as the Offered Load is varied from 0.3 to 0.95. The
Offered Load parameter controls the task load on the system. It can be thought of as the expected utiliza-
tion of the processors, and is set by appropriately setting the arrival rate of tasks into the system. [

Three significant results arise from these tests. First, the difference between the three algorithms is
small under most load conditions, aways less than 10%. Second, for the most part, the migration based
algorithms outperform the non-migration based IP algorithm. Third, the performance of the CQ algorithm
ispoor at very high loads. We discuss the latter two results in the following sections.

1154 14 w » I—I—I—/ﬁ—.—l
//
114 098 «_ |
GRR NGRR T /
~ . /
1.05- 0.96 - el
1 0944 e
0.4 0.6 0.8 0.4 0.6 0.8
Offered Load P Offered Load
,,,,, CQ
........... TK

Figure 4.1: GRR and normalized GRR of Baseline system versus Offered Load

4.1. ComparingIP and the Migration-Based Algorithms

To clarify the magnitude of the performance difference between the algorithms, the second graph of Figure
4.1 shows the GRR results for the same tests normalized by the GRR results for the |P algorithm (NGRR).
From the graphs, we see that there is little benefit in using migration at low loads, because of the limited
performance improvement. As the load increases, the difference between IP and the migration-based algo-
rithms first becomes larger, but then levels off or even decreases at high loads. Based on the GRR, the
largest migration benefit — about 6% — is achieved under the TK algorithm.

The differences in performance are primarily due to load imbalances that occur under IP. To verify
this, we monitored Idle Waste, which is defined as the aggregate time processors are idle while there are
ready tasks waiting in other queues. ldle Waste is relatively small (less than 15%) at both low and high
loads. At low loads the load imbalance is small, because there are few tasks in the system, and at high
loadsit is low, because there are usually enough tasks to keep all of the processors busy. At medium loads,
however, more than 25% of the processing power of the system iswasted as aresult of load imbalances. It
is for this reason that the migration-based schemes perform better than IP at that load level. (A similar

OMoreformally, the Offered Load is defined as

Mean-CPU -Burst-Length x Bursts—per —Task x Mean-Task—Arrival —Rate
Number —of —Processors

result was found in a distributed systems study by Livny and Melman [LM82].)

. cQ
e
0.3 I
/
o/
Migration 0.25+ P
Rate S
0.2 RO _
L Tk
0.15 /_/'

T T
0.4 0.6 0.8 1
Offered Load

Figure 4.2: The number of migrations per task dispatch versus Offered L oad

4.2. Central Queueat High L oads

The Baseline System tests also expose the poor performance exhibited by the CQ algorithm at high loads.
In Figure 4.1, the CQ data points at Offered Loads of 0.9 and 0.95 are missing, because the system
saturated at those loads (i.e. the task load exceeded the system’s processing capabilities). The reason for
this behavior can be found by monitoring the number of migrations performed under CQ as the load
increases. Figure 4.2 shows the migration rate (i.e. the proportion of task dispatches that result in migra-
tions) as the Offered Load increases. The migration rate increases for both TK and CQ while the Offered
Load isincreased to 0.7. As the Offered Load moves beyond 0.7, however, the migration rate under CQ
continues to increase, but it levels off and begins to decrease for TK. The migration rate under TK
decreases at very high loads, because tasks are only migrated when a processor is idle and processors are
idle less often as the load increases. At these loads, TK will tend to behave more like Initial Placement:
tasks are placed on a processor on entry into the system and typically remain there because processors are
rarely idle. This is a positive attribute of TK, since migrations that occur when all processors are busy are
of little use.

When CQ scheduling is used, processors always take the task at the head of the global run queue. For
a migration to be avoided, the task to be selected must have last executed on the processor that selects it.
The probability that a processor looking for work is the same processor that last executed the head-of-
gueue task is relatively smal, resulting in many migrations. The migration rate is reduced at low loads,
because tasks are returned (without migrating) to the same processor they last ran on, if that processor is
idle when the task becomes ready. At higher loads, however, the processors are busy much of the time, and
tasks are therefore assigned to processors more or less at random. Since migration increases the length of
the task’s next CPU burst (by 1 ms. in the Baseline System), the load is increased by the aggregate migra-
tion overhead.

To verify that migration overhead causes the poor performance of the CQ algorithm at high loads,
the tests were repeated with the Task Migration Cost parameter reduced to zero. This models an environ-
ment where tasks can move from processor to processor with no overhead. The simulation results confirm
that the performance of the CQ agorithm is much improved over the original results at high loads (see Fig-
ure 5.1), although the migration rate remains essentially the same.

In an attempt to correct the inferior performance of CQ at high loads, severa variations on the algo-
rithm were implemented. Instead of always selecting the task at the head of the run queue, some number of
tasks on the queue are scanned in the hope of finding a candidate for execution that does not require migra-
tion. The number of tasks searched is controlled by a Search Length parameter, the value of which ranges
from one (equivalent to the original CQ algorithm) to infinity, where the entire queue is scanned (essen-
tially equivalent to the TK agorithm). The new versions of CQ demonstrate better high load characteristics

-10-

than the original CQ agorithm, and the improvement increases as the Search Length parameter increases.
However, since the modified CQ algorithm tends toward the TK algorithm as the Search Length increases,
CQ's performance never exceeds that of TK at high loads. Moreover, the overhead of the modified CQ
algorithm itself will become significant with a large search length, as the load and, hence, queue size
increase. Since access to the queue must be synchronized, the modified CQ requires that the processor
hold the queue while a search of the queued tasks is performed. (In the original CG, a task could be
retrieved from the queue in a very short, fixed time.)

5. The Deviations from the Baseline System

In this section, we consider how changes to the input parameters of the Baseline System affect the results.
For a more detailed analysis and discussion, see [Cur89].

5.1. Varying Task and System Migration Costs

We simulated the system with the Offered Load set at 0.7, while varying the Task Migration Cost from 0 to
4 ms. The System Migration Cost parameter was held at 5%, as in the Baseline System tests. The results of
the tests, shown in Figure 5.1, show again that the CQ algorithm is severely affected by the magnitude of
the migration penalty. While the TK algorithm is only minimally affected by the change in the TMC
parameter, the system saturates under CQ, when the migration cost rises above 2 ms. Observe that TK is
better than | P even when migration costs are quite high.

1.2+
/
/
/
115 /
/
/
GRR 1.1 /
| L I/ L a
1.05 - e
P — = ulP
T cQ
14 ; ; ; ; — e TK

Task Migration Cost (ms.)
Offered Load: 0.7

Figure 5.1 The Affect of Task Migration Costs

We now consider the effect of varying the magnitude of the System Migration Cost. Figure 5.2
shows the GRR results of the TK and CQ algorithms compared to the IP GRR, as the system migration
costs are increased from 0 to 20% for varying levels of Offered Load. As the system migration overhead
increases, the benefit of using a migration-based strategy over Initial Placement decreases. From the
graphs, it is also obvious that the impact of the migration penalty on the performance of the algorithm
increases with the load. The migration costs affect both the time tasks spend at the CPU and the time they
gueue for the CPU waiting for other tasks to execute. The extra time at the CPU is insignificant (in our
case, about 3% of the average task time). However, the extra time tasks wait in run queues can be
significant and, since queueing time increases with load, the penalty of the reduced system performance
also increases with load.

5.2. TheEffects Varying the Workload

The workload of the Baseline System was derived by extrapolating results of uniprocessor studies to the
expected environment of a modern multiprocessor. Inevitably, there will be differences between the work-
load of uniprocessors and that of the multiprocessors we are studying (and in fact, between one

-11-

1.15 20%
1.1 :
114
GRR - 10%
105 - 5%
1.05 T 0%
14 14
T T T T T T
04 0.6 0.8 04 0.6 0.8
Offered Load Offered Load
Central Queue Algorithm Take Algorithm

Figure 5.2: The Effects of System Migration Cost on CG and TK

uniprocessor and the next). For example, intuitively, we expect more processor-intensive tasks to run on
multiprocessor systems. To simulate these types of tasks we added a processor-intensive workload to the
origina Baseline System workload. Most of the parameters of the new processor-intensive workload are
identical to those of the Baseline System workload with the exception of the average CPU burst length
which isroughly three orders of magnitude larger for the Processor-Intensive workload.

In simulating the combined Baseline and processor-intensive job classes, a fixed Offered Load of 0.7
was applied to the system, and the proportion of the load on the CPU coming from the processor-intensive
tasks was varied from 0 to 75%. This represents a range of how a system might be used: from running only
interactive tasks (the original Baseline Workload), to a system where most of the load comes from
processor-intensive jobs. Figure 5.3 shows the GRR results of the simulations, as a function of the fraction
of the Offered Load that comes processor-intensive tasks. As can be seen, processor intensive tasks pri-
marily affect the performance of IP and only to a much lesser extent the other algorithms.

1.3+

124
—a—ulP
GRR | ~ e ——- cQ
........... TK

114

T T T T 1
-0 0.2 0.4 0.6 0.8
Proportion of Load from the Processor-Intensive Job Class
Offered Load: 0.7

Figure 5.3: The Effects of large tasks

The poor performance of the IP algorithm with processor intensive tasks is due to the way our imple-
mentation of the algorithm bases its placement decisions on task counts (as opposed to the load tasks place
on the system). While this policy is acceptable if al of the tasks are of similar size, a problem develops
when the task size variance islarge. A single processor-intensive task in our simulation utilizes virtually all
of the resources of a processor, while the average Baseline System task utilizes only a small fraction.
Obviously, a processor executing a single processor-intensive task will usualy have a significantly higher

-12 -

load than the other processors. When the task placements are based on task counts, the over-loaded pro-
cessor will also have to execute its share of the smaller tasks, further accentuating the load imbalance.

To verify this, we modified the implementation of IP to count the processor intensive tasks as being
25 times as large as the tasks from the Baseline workload (assuming it is possible to identify such tasks on
arrival into the system) when deciding where to place a task. This has the effect that processor-intensive
tasks are given virtually exclusive use of a processor for their execution. Once they are assigned to a pro-
cessor, new tasks are assigned to other processors (unless all of the other processors have task counts of 25
or more). The only Baseline System tasks that compete with processor-intensive tasks are the ones present
on the processor when the processor-intensive tasks began executing, but they are small so the conflict time
is typically short. The results simulations (not shown) indicate that the modifications improve the perfor-
mance of the IP algorithm to the range expected from previous studies, where |P performs slightly worse
than the migration-based algorithms: a difference of from 5 to 10%.

The modified |P agorithm is, however, not without problems. The additional functionality introduces
a considerable degree of complexity to an otherwise simple algorithm. The cost of implementing a job
class detection scheme is not insignificant, since the mechanism requires additional processing on every
context switch.

The Central Queue algorithm is not subject to the same imbalance as IP, since by using a single
gueue, the load is always balanced among the processors, regardless of how the load is distributed among
the tasks. Under TK, if a processor-intensive task is executing on one processor, the tasks queued behind it
will be migrated to other processors as they become idle. (Since the Offered Load is far from 100% in
these simulations, there should be plenty of processing power available to execute all of the tasks.)

5.3. TheEffects of Supporting Task Priorities on Scheduling

In the simulations presented so far, all of the tasks had the same priority and task queueing was on a first
come, first serve (FCFS) basis. In the majority of real systems, however, tasks are assigned priorities and,
when multiple tasks are queued for execution, the task with the highest priority is selected. In this section,
we how introduction of task priorities affects performance.

For this purpose, we introduced a simple task priority model to the smulation model. The scheme
uses four priority levels, roughly analogous to System high and low priority and User high and low priority
tasks. Each task is assigned a priority on arrival in the system, with a given proportion of tasks assigned to
each priority level. No effort is made to differentiate between the characteristics of tasks running at dif-
ferent priorities.

The scheduling algorithms are changed to support priorities as follows. In the IP algorithm, the pro-
cessor selected to execute a new task now is the processor with the least number of tasks (ready or
blocked) of equal or higher priority than the new task. Thisis a greedy algorithm in that the task is placed
on the processor where it has the fewest number of tasks to compete with, regardless of the number of
lower priority tasksit will interfere with.

The TK agorithm was modified such that when a new task arrives in the system, it is placed on the
processor with the fewest waiting tasks of equal or higher priority. Again, the task is placed on the proces-
sor where it should get the fastest service, regardless of how many lower priority tasks exist. Also, when a
processor becomes idle, it searches for the processor that has the most waiting tasks of the current highest
priority in its run queue and migrates one of those tasks.

The CQ agorithm need not be changed, since it already supports true priority scheduling on a
system-wide basis. (By definition, it is the only algorithm to provide such support. The other algorithms
only implement priority scheduling within separate queues and not on a system-wide basis.)

To test the performance of the three algorithms in handling a workload of prioritized tasks, a series
of tests were run using the Baseline System parameters with 10% of the tasks assigned to Priority Level 1
(the highest priority), 20% to Level 2, 50% to Level 3 and the remaining 20% assigned to the lowest prior-
ity, Level 4. Thismeansthat half the tasksare‘‘normal’’ user tasks, afew are low priority user background
tasks (Level 4), while the remainder are higher priority system tasks.

-13-

Of primary interest in these tests is how close the separate queue algorithms (IP and TK) perform
relative to the true priority scheduling of the CQ algorithm. To see what direct effects priorities may have
on IP and TK, they were first compared to CQ under the assumption that migration was free (i.e. both the
cost per migration and the processor performance degradation were removed). Perhaps surprisingly, TK
performed comparably to the CQ algorithm within each priority class. The GRR for TK was at most 1%
worse than that of CQ. As expected from our earlier tests, IP performed significantly worse than the migra-
tion based algorithms. The relative performance of all of the scheduling algorithms is therefore unaffected

by the use of task priorities.

12 1.2
115 1.15
GRR 1.1 GRR 1.1

1 T HHA.‘.T‘A.A.AUT'; N 1 1 T T T T 1
04 0.5 0.6 0.7 0.8 04 0.5 0.6 0.7 0.8
fo(_ered Load P fogred Load
PriorityLevel1 | __ _ __ co Priority Level 2
........... TK
124 1.2
1.15 1.15 1
GRR GRR 114
1.05
1 g—wwquﬁﬁ—h; T 1 1 T T T 1
04 05 0.6 0.7 0.8 04 0.5 0.6 0.7
Offered Load Offered Load
Priority Level 3 Priority Level 4

Figure 5.4: The performance of the scheduling algorithms
at different priority levels

In the second set of priority tests, the Baseline migration costs (1 ms. TMC and 5% SMC) are
included and the same tests are repeated. The results are depicted in Figure 5.4. For the high priority tasks,
the results are similar to the case where migration is free. However, the GRR of the low priority tasks
under CQ isfar higher than that of TK and, in fact, worse than that of 1P under very high loads.

Why do the low priority tasks under CQ incur so much overhead? These tasks are at the end of the
ready queue, and their execution is delayed not only by the execution time of all tasks ahead of them, but
also by the aggregate migration overhead caused by all tasks ahead of them. At high loads, the higher
migration rate with its attendant overhead further increases the load on the system, causing an increase in
the average number of tasks waiting in the queue, as discussed in Section 4.1. The fact that the poor per-
formance of the low priority tasks under CQ does not occur when migrations are free verifies that migra-
tion costs combined with the increased migration rate are the chief performance difficulties.

-14 -

To reduce the migration rate under CQ, the algorithm was modified to allow a processor looking for
work to scan all of the top priority tasks in the ready queue to find one that could be executed without a
migration. (If no such task can be found, then the task at the head of the queue is selected for execution).
With this modification, a task of the current highest priority is still always selected (i.e. true priority
scheduling is retained), but tasks are no longer scheduled in strictly FCFS fashion. The simulation results,
(not shown) indicate that the modifications have the desired effect — the response ratio of the low priority
tasks improve, to a level only dlightly worse than those under TK. With this modification, CQ again per-
forms up to 1% better than TK for the high priorities, and the migration rate is reduced from 30% to 24%.

Of course, in systems with many priority levels (such as Unix), such a change is not realistic while
retaining true priority scheduling, since it is unlikely there will be multiple tasks to choose from at any one
priority level. However, by deviating dightly from true priority scheduling and grouping priority levels
together and employing the same strategy on a group level, similar results can be achieved.

6. Concluding Remarks

A number of factors were found that affect the performance of the scheduling algorithms. First, the pro-
cessor load impacts the performance of the scheduling algorithms studied. Under low loads (less than
50% utilization), al of the algorithms perform comparably. At higher loads, the migration-based algo-
rithms perform better than the non-migrating Initial Placement algorithm, because of a more equally bal-
anced load.

Second, the cost of migration affects scheduling algorithm performance when the load on the pro-
cessors is high. When the task migration cost is high, the performance of the Central Queue algorithm
deteriorates because of its tendency to frequently migrate tasks at high loads. The Take algorithm migrates
tasks less frequently at high loads and, as a result, is less sensitive to changes in task migration costs. Sys-
tem migration costs also affects performance. At low or medium loads, the effect of system migration
costs is negligible, because the tasks' CPU times are dwarfed by their 1/0 time. However, at high loads,
gueuing becomes a significant factor in the time it takes a task to complete, making the system migration
costs much more significant.

Finaly, changes in the workload affect performance. The Initial Placement algorithm is sensitive to
the introduction of processor-intensive tasks to the job mix, while the migration-based agorithms, Central
Queue and Take, are not. With the introduction of prioritized tasks, the Central Queue algorithm gives
low-priority tasks a poor response, while priorities have little impact on the IP and Take algorithms.

Overadl, we found the difference in performance between algorithms to be relatively small, usually
less than 10%. Although the Initial Placement algorithm performs consistently worse than the migration-
based algorithms, it performs adequately at loads below 0.5. It deteriorates faster than the migration-based
algorithms as the load increases (up to a load of 0.8). Initial Placement also performs poorly when thereis
a large variance in the size of the tasks. For example, two very large tasks that happen to have been
assigned to the same processor will compete with each other for the processor’s cycles, even though other
processors may have become idle in the mean time. This problem can be avoided by using load measures
that are more closely tied with the actual utilization of the processors by each task. However, such schemes
are slower (require more processing overhead) and more complicated to implement.

The primary benefit of using Central Queue scheduling is its adherence to pure priority scheduling,
a feature unique to the algorithm. Although in most situations CQ’s performance is comparable to that of
the TK agorithm, the algorithm performs much worse in some circumstances. In particular, CQ performs
poorly under high loads and when the cost per migration is high. This is a direct result of the algorithm’'s
high migration rate when the load is high. It is not surprising that the algorithm provides the best service
for high priority tasks, since the Central Queue agorithm is the only algorithm that employs system-wide
priority scheduling. However, its handling of low priority tasks can be poor under high loads, when most
of the migration overhead is passed on to the low priority tasks.

The performance of the Take algorithm is as good or better than the other algorithms under all con-
ditions studied. Perhaps the key attribute of the algorithm is that at high loads, its migration rate decreases.

-15-

Somewhat surprisingly, Take schedules high priority tasks aimost as well as CQ (within 1 or 2% in the
simulations), even under conditions favorable to CQ (i.e. when migrations are free). Therefore, although
the Take algorithm does not provide true system-wide priority scheduling, it appears to provide perfor-
mance very close to that of CQ for the scheduling of prioritized tasks, in practice.

In conclusion, of the algorithms we studied, we found the Take algorithm to be the most suitable for
scheduling a Unix workload on small-scale, shared-memory multiprocessors. It iseasy to implement and it
performs best under most operating conditions. Although the difference between the performance of the
three algorithms is relatively small, the behavior of the Take algorithm appears much more stable than the
other two algorithms under extreme conditions.

References

[Bla90] D.L. Black, "Scheduling support for concurrency and paralelism in the Mach Operating Sys-
tem", |IEEE Computer, 23(5), 1990, pp. 35-43.

[Cur89] SW. Curran, A Smulation Sudy of Shared-Memory Multiprocessor CPU Scheduling Algo-
rithms, Masters Thesis, University of Toronto, 1989.

[ELZ88] D.L. Eager, E.D. Lazowska, and J. Zahorjan, "The limited performance benefits of migrating
active processes for load sharing”, Proc. 1988 ACM Sgmetrics Conf. on Measurement and
Analysis of Computer Systems, 1988, pp. 63—72.

[Gon77] M.J. Gonzalez, "Deterministic processor scheduling”, Computing Surveys, 14(3) 1977, pp.
173-204.

[Kel89] M.H. Kelley, "Multiprocessor aspects of the DG/UX kernel”, Proc. 1990 Winter Usenix Conf.,
1990, pp. 85-99.

[LO86] W.E. Leland and T.J. Ott, "L oad-balancing heuristics and process behavior", Proc. Performance
'86, 1986, pp. 54-69.

[LVO0] ST. Leutenegger and M.K. Vernon, "The performance of multiprogrammed multiprocessor

scheduling algorithms', Proc. ACM Sgmetrics 1990 Conf. on Measurement and Modeling of
Computer Systems, 1990, pp. 226—236.

[LM82] M. Livny and M. Melman, "Load balancing and homogeneous broadcast distributed systems”,
Proc. ACM Computer Network Performance Symposium, 1982, pp. 47-55.

[LT88] T. Lovett and S.Thakkar, "The Symmetry Multiprocessor System”, Proc. 1988 Intl. Conf. on
Parallel Processing, 1988.

[MEB88] S. Majumdar, D. Eager, and R. Bunt, "Scheduling in multiprogrammed parallel systems', Proc.
ACM Sgmetrics 1988 Conf. on Measurement and Modeling of Computer Systems, 1988, pp.
104-113.

[MNOS86]R. Maore, I. Nassi, J. O'Neil and D.P. Siewiorek, The Encore Multimax: A multiprocessor com-
puting environment., Technical Report ETR 86-004, Encore Computer Corporation, 1986.

[Mul85] S.J. Mullender, Principles of Distributed Operating System Design, Habilitation Thesis, Vrije
Universiteit te Amsterdam, 1985.

[NW89] L.M. Ni and C.F.E. Wu, "Design tradeoffs for process scheduling in shared memory multiproces-
sor systems', |EEE Trans. on Software Eng., 15(3), 1989, pp. 327-334.

[Ous82] J. Ousterhout, " Scheduling techniques for concurrent systems', Proc. Distributed Computing Sys-
tems Conf., 1982, pp. 22-30.

[RW87] C.H. Russel and P.J. Waterman, "V ariations on Unix for parallel-processing computers', Comm.
of the ACM, Dec. 1987, pp. 1048-1055.

[Stu88] M. Stumm, "The design and implementation of a decentralized scheduling facility”, 2nd IEEE
Conf. on Workstations, 1988, pp. 12-22.

[TSS88] C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite, Jr., "Firefly: A multiprocessor workstation",
IEEE Trans. on Computers, 37(8), 1988, pp. 909-920.

-16 -

[TG89] A. Tucker and A. Gupta, "Process control and scheduling issues for multiprogrammed shared-
memory multiprocessors’, Proc. 12th ACM Symp. on Operating System Principles, 1989.

[Wen87] JW. Wendorf, Operating system/application concurrency in tightly-coupled multiple-processor
systems, PhD Thesis, Carnegie-Médllon University, Aug. 1987.

[ZM90] J. Zahorjan and C. McCann, "Processor scheduling in shared memory multiprocessors', Proc.
ACM Sgmetrics 1990 Conf. on Measurement and Modeling of Computer Systems, 1990, pp.
214-225.

[Zho88] S. Zhou, "A trace-driven simulation study of dynamic load balancing”, IEEE Trans. on Software
Eng., 11(9), 1988, pp. 1327-1341.

