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The objective of this book is to provide the techniques
necessary to study the motion of machines. A focus is placed on
the application of kinematic theories to real-world machinery.
It is intended to bridge the gap between a theoretical study of
kinematics and the application to practical mechanisms.
Students completing a course of study using this book should
be able to determine the motion characteristics of a machine.
The topics presented in this book are critical in machine design
process as such analyses should be performed on design con-
cepts to optimize the motion of a machine arrangement.

This fourth edition incorporates much of the feedback
received from instructors and students who used the first three
editions. Some enhancements include a section introducing
special-purpose mechanisms; expanding the descriptions of
kinematic properties to more precisely define the property;
clearly identifying vector quantities through standard boldface
notation; including timing charts; presenting analytical
synthesis methods; clarifying the tables describing cam fol-
lower motion; and adding a standard table used for selection of
chain pitch. The end-of-chapter problems have been reviewed.
In addition, many new problems have been included.

It is expected that students using this book will have a
good background in technical drawing, college algebra, and
trigonometry. Concepts from elementary calculus are
mentioned, but a background in calculus is not required.
Also, knowledge of vectors, mechanics, and computer
application software, such as spreadsheets, will be useful.
However, these concepts are also introduced in the book.

The approach of applying theoretical developments to
practical problems is consistent with the philosophy of
engineering technology programs. This book is primarily
oriented toward mechanical- and manufacturing-related
engineering technology programs. It can be used in either
associate or baccalaureate degree programs.

Following are some distinctive features of this book:

1. Pictures and sketches of machinery that contain
mechanisms are incorporated throughout the text.

2. The focus is on the application of kinematic theories to
common and practical mechanisms.

3. Both graphical techniques and analytical methods are
used in the analysis of mechanisms.

4. An examination copy of Working Model®, a commer-
cially available dynamic software package (see Section 2.3
on page 32 for ordering information), is extensively used
in this book. Tutorials and problems that utilize this
software are integrated into the book.

5. Suggestions for implementing the graphical techniques
on computer-aided design (CAD) systems are included
and illustrated throughout the book.

6. Every chapter concludes with at least one case study.
Each case illustrates a mechanism that is used on
industrial equipment and challenges the student to
discuss the rationale behind the design and suggest
improvements.

7. Both static and dynamic mechanism force analysis
methods are introduced.

8. Every major concept is followed by an example
problem to illustrate the application of the 
concept.

9. Every Example Problem begins with an introduction 
of a real machine that relies on the mechanism being
analyzed.

10. Numerous end-of-chapter problems are consistent
with the application approach of the text. Every
concept introduced in the chapter has at least one
associated problem. Most of these problems include
the machine that relies on the mechanism being
analyzed.

11. Where applicable, end-of-chapter problems are
provided that utilize the analytical methods and are
best suited for programmable devices (calculators,
spreadsheets, math software, etc.).

Initially, I developed this textbook after teaching mech-
anisms for several semesters and noticing that students did
not always see the practical applications of the material. To
this end, I have grown quite fond of the case study problems
and begin each class with one. The students refer to this as
the “mechanism of the day.” I find this to be an excellent
opportunity to focus attention on operating machinery.
Additionally, it promotes dialogue and creates a learning
community in the classroom.

Finally, the purpose of any textbook is to guide the
students through a learning experience in an effective
manner. I sincerely hope that this book will fulfill this inten-
tion. I welcome all suggestions and comments and can be
reached at dmyszka@udayton.edu.
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of different drivers. This information sets guidelines for the
required movement of the wipers. Fundamental decisions
must be made on whether a tandem or opposed wipe pat-
tern better fits the vehicle. Other decisions include the
amount of driver- and passenger-side wipe angles and the
location of pivots. Figure 1.1 illustrates a design concept,
incorporating an opposed wiper movement pattern.

Once the desired movement has been established, an
assembly of components must be configured to move the
wipers along that pattern. Subsequent tasks include analyz-
ing other motion issues such as timing of the wipers and
whipping tendencies. For this wiper system, like most
machines, understanding and analyzing the motion is neces-
sary for proper operation. These types of movement and
motion analyses are the focus of this textbook.

Another major task in designing machinery is deter-
mining the effect of the forces acting in the machine. These
forces dictate the type of power source that is required to
operate the machine. The forces also dictate the required
strength of the components. For instance, the wiper system
must withstand the friction created when the windshield is
coated with sap after the car has been parked under a tree.
This type of force analysis is a major topic in the latter
portion of this text.

1.2 MACHINES AND MECHANISMS

Machines are devices used to alter, transmit, and direct forces
to accomplish a specific objective. A chain saw is a familiar
machine that directs forces to the chain with the objective of
cutting wood. A mechanism is the mechanical portion of a

O B J E C T I V E S

Upon completion of this chapter, the student will 
be able to:

1. Explain the need for kinematic analysis of
mechanisms.

2. Define the basic components that comprise a
mechanism.

3. Draw a kinematic diagram from a view of a complex
machine.

4. Compute the number of degrees of freedom of a
mechanism.

5. Identify a four-bar mechanism and classify it according
to its possible motion.

6. Identify a slider-crank mechanism.

C H A P T E R

O N E

INTRODUCTION TO MECHANISMS 
AND KINEMATICS

1.1 INTRODUCTION

Imagine being on a design and development team. The team
is responsible for the design of an automotive windshield
wiper system. The proposed vehicle is a sports model with
an aerodynamic look and a sloped windshield. Of course, the
purpose of this wiper system is to clean water and debris
from the windshield, giving clear vision to the driver.
Typically, this is accomplished by sweeping a pair of wipers
across the glass.

One of the first design tasks is determining appropriate
movements of the wipers. The movements must be suffi-
cient to ensure that critical portions of the windshield are
cleared. Exhaustive statistical studies reveal the view ranges

FIGURE 1.1 Proposed windshield wiper movements.
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machine that has the function of transferring motion and
forces from a power source to an output. It is the heart of a
machine. For the chain saw, the mechanism takes power from
a small engine and delivers it to the cutting edge of the chain.

Figure 1.2 illustrates an adjustable height platform that
is driven by hydraulic cylinders. Although the entire device
could be called a machine, the parts that take the power from
the cylinders and drive the raising and lowering of the plat-
form comprise the mechanism.

A mechanism can be considered rigid parts that are
arranged and connected so that they produce the desired
motion of the machine. The purpose of the mechanism in
Figure 1.2 is to lift the platform and any objects that are
placed upon it. Synthesis is the process of developing a mech-
anism to satisfy a set of performance requirements for the
machine. Analysis ensures that the mechanism will exhibit
motion that will accomplish the set of requirements.

1.3 KINEMATICS

Kinematics deals with the way things move. It is the study of
the geometry of motion. Kinematic analysis involves deter-
mination of position, displacement, rotation, speed, velocity,
and acceleration of a mechanism.

To illustrate the importance of such analysis, refer to the
lift platform in Figure 1.2. Kinematic analysis provides
insight into significant design questions, such as:

� What is the significance of the length of the legs that
support the platform?

� Is it necessary for the support legs to cross and be con-
nected at their midspan, or is it better to arrange the so
that they cross closer to the platform?

� How far must the cylinder extend to raise the 
platform 8 in.?

As a second step, dynamic force analysis of the platform
could provide insight into another set of important design
questions:

� What capacity (maximum force) is required of the
hydraulic cylinder?

2 CHAPTER ONE

� Is the platform free of any tendency to tip over?

� What cross-sectional size and material are required of
the support legs so they don’t fail?

A majority of mechanisms exhibit motion such that the
parts move in parallel planes. For the device in Figure 1.2, two
identical mechanisms are used on opposite sides of the plat-
form for stability. However, the motion of these mechanisms
is strictly in the vertical plane. Therefore, these mechanisms
are called planar mechanisms because their motion is limited
to two-dimensional space. Most commercially produced
mechanisms are planar and are the focus of this book.

1.4 MECHANISM TERMINOLOGY

As stated, mechanisms consist of connected parts with the
objective of transferring motion and force from a power
source to an output. A linkage is a mechanism where rigid
parts are connected together to form a chain. One part is
designated the frame because it serves as the frame of refer-
ence for the motion of all other parts. The frame is typically
a part that exhibits no motion. A popular elliptical trainer
exercise machine is shown in Figure 1.3. In this machine, two
planar linkages are configured to operate out-of-phase to
simulate walking motion, including the movement of arms.
Since the base sits on the ground and remains stationary
during operation, the base is considered the frame.

Links are the individual parts of the mechanism. They
are considered rigid bodies and are connected with other
links to transmit motion and forces. Theoretically, a true
rigid body does not change shape during motion. Although
a true rigid body does not exist, mechanism links are
designed to minimally deform and are considered rigid. The
footrests and arm handles on the exercise machine comprise
different links and, along with connecting links, are inter-
connected to produce constrained motion.

Elastic parts, such as springs, are not rigid and, there-
fore, are not considered links. They have no effect on the
kinematics of a mechanism and are usually ignored during

FIGURE 1.2 Adjustable height platform (Courtesy 
Advance Lifts).

FIGURE 1.3 Elliptical trainer exercise machine (photo from
www.precor.com).

www.precor.com
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Link 1

Link 2

(a) Cam joint (b) Gear joint

Link 2

Link 1

(a) Pin (b) Sliding

Link 1
Link 2

FIGURE 1.4 Primary joints: (a) Pin and (b) Sliding.

FIGURE 1.5 Higher-order joints: (a) Cam joint and (b) Gear joint.

kinematic analysis. They do supply forces and must be
included during the dynamic force portion of analysis.

A joint is a movable connection between links and allows
relative motion between the links. The two primary joints, also
called full joints, are the revolute and sliding joints. The
revolute joint is also called a pin or hinge joint. It allows pure
rotation between the two links that it connects. The sliding
joint is also called a piston or prismatic joint. It allows linear
sliding between the links that it connects. Figure 1.4 illustrates
these two primary joints.

A cam joint is shown in Figure 1.5a. It allows for both
rotation and sliding between the two links that it connects.
Because of the complex motion permitted, the cam connec-
tion is called a higher-order joint, also called half joint. A gear
connection also allows rotation and sliding between two
gears as their teeth mesh. This arrangement is shown in
Figure 1.5b. The gear connection is also a higher-order joint.

A simple link is a rigid body that contains only two
joints, which connect it to other links. Figure 1.6a illustrates
a simple link. A crank is a simple link that is able to complete

(a) Simple link (b) Complex link

FIGURE 1.6 Links: (a) Simple link and (b) Complex link.
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FIGURE 1.7 Articulated robot (Courtesy of Motoman Inc.).

FIGURE 1.8 Two-armed synchro loader (Courtesy PickOmatic Systems,
Ferguson Machine Co.).

a full rotation about a fixed center. A rocker is a simple link
that oscillates through an angle, reversing its direction at cer-
tain intervals.

A complex link is a rigid body that contains more than
two joints. Figure 1.6b illustrates a complex link. A rocker
arm is a complex link, containing three joints, that is pivoted
near its center. A bellcrank is similar to a rocker arm, but is
bent in the center. The complex link shown in Figure 1.6b is
a bellcrank.

A point of interest is a point on a link where the motion
is of special interest. The end of the windshield wiper, previ-
ously discussed, would be considered a point of interest.
Once kinematic analysis is performed, the displacement,
velocity, and accelerations of that point are determined.

The last general component of a mechanism is the
actuator. An actuator is the component that drives the
mechanism. Common actuators include motors (electric
and hydraulic), engines, cylinders (hydraulic and pneu-
matic), ball-screw motors, and solenoids. Manually oper-
ated machines utilize human motion, such as turning a
crank, as the actuator. Actuators will be discussed further in
Section 1.7.

Linkages can be either open or closed chains. Each link in
a closed-loop kinematic chain is connected to two or more
other links. The lift in Figure 1.2 and the elliptical trainer of
Figure 1.3 are closed-loop chains. An open-loop chain will
have at least one link that is connected to only one other
link. Common open-loop linkages are robotic arms as
shown in Figure 1.7 and other “reaching” machines such as
backhoes and cranes.

1.5 KINEMATIC DIAGRAMS

In analyzing the motion of a machine, it is often difficult to
visualize the movement of the components in a full assembly
drawing. Figure 1.8 shows a machine that is used to handle

parts on an assembly line. A motor produces rotational power,
which drives a mechanism that moves the arms back and forth
in a synchronous fashion. As can be seen in Figure 1.8, a picto-
rial of the entire machine becomes complex, and it is difficult
to focus on the motion of the mechanism under consideration.

(This item omitted from WebBook edition)
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TABLE 1.1 Symbols Used in Kinematic Diagrams

Component Typical Form Kinematic Representation

Simple Link

Simple Link
(with point
of interest)

Complex Link

Pin Joint

It is easier to represent the parts in skeleton form so that
only the dimensions that influence the motion of the
mechanism are shown. These “stripped-down” sketches of
mechanisms are often referred to as kinematic diagrams. The
purpose of these diagrams is similar to electrical circuit
schematic or piping diagrams in that they represent vari-
ables that affect the primary function of the mechanism.

Table 1.1 shows typical conventions used in creating kine-
matic diagrams.

A kinematic diagram should be drawn to a scale pro-
portional to the actual mechanism. For convenient refer-
ence, the links are numbered, starting with the frame as
link number 1. To avoid confusion, the joints should be
lettered.

(continued)



FIGURE 1.9 Shear press for Example Problem 1.1.
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EXAMPLE PROBLEM 1.1

Figure 1.9 shows a shear that is used to cut and trim electronic circuit board laminates. Draw a kinematic 

diagram.

TABLE 1.1 (Continued)

Component Typical Form Kinematic Representation

Slider Joint

Cam Joint

Gear Joint

SOLUTION: 1. Identify the Frame

The first step in constructing a kinematic diagram is to decide the part that will be designated as the frame.

The motion of all other links will be determined relative to the frame. In some cases, its selection is obvious as

the frame is firmly attached to the ground.

In this problem, the large base that is bolted to the table is designated as the frame. The motion of all other

links is determined relative to the base. The base is numbered as link 1.

Link 1

Link 2



FIGURE 1.11 Vise grips for Example Problem 1.2.

FIGURE 1.10 Kinematic diagram for Example Problem 1.1.
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2. Identify All Other Links

Careful observation reveals three other moving parts:

Link 2: Handle

Link 3: Cutting blade

Link 4: Bar that connects the cutter with the handle

3. Identify the Joints

Pin joints are used to connect link 1 to 2, link 2 to 3, and link 3 to 4. These joints are lettered A through C. In

addition, the cutter slides up and down, along the base. This sliding joint connects link 4 to 1, and is lettered D.

4. Identify Any Points of Interest

Finally, the motion of the end of the handle is desired. This is designated as point of interest X.

5. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.10.

EXAMPLE PROBLEM 1.2

Figure 1.11 shows a pair of vise grips. Draw a kinematic diagram.

SOLUTION: 1. Identify the Frame

The first step is to decide the part that will be designated as the frame. In this problem, no parts are attached to

the ground. Therefore, the selection of the frame is rather arbitrary.

The top handle is designated as the frame. The motion of all other links is determined relative to the top

handle. The top handle is numbered as link 1.

2. Identify All Other Links

Careful observation reveals three other moving parts:

Link 2: Bottom handle

Link 3: Bottom jaw

Link 4: Bar that connects the top and bottom handle

3. Identify the Joints

Four pin joints are used to connect these different links (link 1 to 2, 2 to 3, 3 to 4, and 4 to 1). These joints are

lettered A through D.

4. Identify Any Points of Interest

The motion of the end of the bottom jaw is desired. This is designated as point of interest X. Finally, the motion

of the end of the lower handle is also desired. This is designated as point of interest Y.
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(a) Single degree-of-freedom (M = 1) (b) Locked mechanism (M = 0) (c) Multi-degree-of-freedom (M = 2)

FIGURE 1.13 Mechanisms and structures with varying mobility.

5. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.12.

1.6 KINEMATIC INVERSION

Absolute motion is measured with respect to a stationary
frame. Relative motion is measured for one point or link
with respect to another link. As seen in the previous exam-
ples, the first step in drawing a kinematic diagram is
selecting a member to serve as the frame. In some cases,
the selection of a frame is arbitrary, as in the vise grips
from Example Problem 1.2. As different links are chosen as
a frame, the relative motion of the links is not altered, but
the absolute motion can be drastically different. For
machines without a stationary link, relative motion is
often the desired result of kinematic analysis.

In Example Problem 1.2, an important result of kine-
matic analysis is the distance that the handle must be moved
in order to open the jaw. This is a question of relative posi-
tion of the links: the handle and jaw. Because the relative
motion of the links does not change with the selection of a
frame, the choice of a frame link is often not important.
Utilizing alternate links to serve as the fixed link is termed
kinematic inversion.

1.7 MOBILITY

An important property in mechanism analysis is the number of
degrees of freedom of the linkage. The degree of freedom is the
number of independent inputs required to precisely position
all links of the mechanism with respect to the ground. It can
also be defined as the number of actuators needed to operate
the mechanism. A mechanism actuator could be manually
moving one link to another position, connecting a motor to the
shaft of one link, or pushing a piston of a hydraulic cylinder.

The number of degrees of freedom of a mechanism is
also called the mobility, and it is given the symbol . WhenM

the configuration of a mechanism is completely defined by
positioning one link, that system has one degree of freedom.
Most commercially produced mechanisms have one degree
of freedom. In constrast, robotic arms can have three, or
more, degrees of freedom.

1.7.1 Gruebler’s Equation

Degrees of freedom for planar linkages joined with common
joints can be calculated through Gruebler’s equation:

where:

jh total number of higher-order joints (cam or gear joints)

As mentioned, most linkages used in machines have one
degree of freedom. A single degree-of-freedom linkage is
shown in Figure 1.13a.

Linkages with zero, or negative, degrees of freedom are
termed locked mechanisms. These mechanisms are unable
to move and form a structure. A truss is a structure com-
posed of simple links and connected with pin joints and
zero degrees of freedom. A locked mechanism is shown in
Figure 1.13b.

Linkages with multiple degrees of freedom need more
than one driver to precisely operate them. Common
multi-degree-of-freedom mechanisms are open-loop
kinematic chains used for reaching and positioning, such
as robotic arms and backhoes. In general, multi-degree-of-
freedom linkages offer greater ability to precisely position
a link. A multi-degree-of-freedom mechanism is shown in
Figure 1.13c.

=

jp =  total number of primary joints (pins or sliding joints)

n = total number of links in the mechanism

M = degrees of freedom = 3(n - 1) - 2jp - jh

FIGURE 1.12 Kinematic diagram for Example Problem 1.2.
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FIGURE 1.14 Toggle clamp for Example Problem 1.3.

EXAMPLE PROBLEM 1.3

Figure 1.14 shows a toggle clamp. Draw a kinematic diagram, using the clamping jaw and the handle as points of

interest. Also compute the degrees of freedom for the clamp.

SOLUTION: 1. Identify the Frame

The component that is bolted to the table is designated as the frame. The motion of all other links is determined

relative to this frame. The frame is numbered as link 1.

2. Identify All Other Links

Careful observation reveals three other moving parts:

Link 2: Handle

Link 3: Arm that serves as the clamping jaw

Link 4: Bar that connects the clamping arm and handle

3. Identify the Joints

Four pin joints are used to connect these different links (link 1 to 2, 2 to 3, 3 to 4, and 4 to 1). These joints are

lettered A through D.

4. Identify Any Points of Interest

The motion of the clamping jaw is desired. This is designated as point of interest X. Finally, the motion of the

end of the handle is also desired. This is designated as point of interest Y.

5. Draw the Kinematic Diagram

The kinematic diagram is detailed in Figure 1.15.

1

4

3

X

A

B
C

D

Y

2

FIGURE 1.15 Kinematic diagram for Example Problem 1.3.

6. Calculate Mobility

Having four links and four pin joints,

n = 4, jp = 4 pins, jh = 0
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FIGURE 1.17 Kinematic diagram for Example Problem 1.4.

FIGURE 1.16 Can crusher for Example Problem 1.4.

and

With one degree of freedom, the clamp mechanism is constrained. Moving only one link, the handle, precisely

positions all other links in the clamp.

M = 3(n - 1) - 2jp - j h = 3(4 - 1) - 2(4) - 0 = 1

EXAMPLE PROBLEM 1.4

Figure 1.16 shows a beverage can crusher used to reduce the size of cans for easier storage prior to recycling. Draw a

kinematic diagram, using the end of the handle as a point of interest. Also compute the degrees of freedom for 

the device.

SOLUTION: 1. Identify the Frame

The back portion of the device serves as a base and can be attached to a wall. This component is designated

as the frame. The motion of all other links is determined relative to this frame. The frame is numbered as 

link 1.

2. Identify All Other Links

Careful observation shows a planar mechanism with three other moving parts:

Link 2: Handle

Link 3: Block that serves as the crushing surface

Link 4: Bar that connects the crushing block and handle

3. Identify the Joints

Three pin joints are used to connect these different parts. One pin connects the handle to the base. This joint is

labeled as A. A second pin is used to connect link 4 to the handle. This joint is labeled B. The third pin connects

the crushing block and link 4. This joint is labeled C.

The crushing block slides vertically during operation; therefore, a sliding joint connects the crushing block

to the base. This joint is labeled D.

4. Identify Any Points of Interest

The motion of the handle end is desired. This is designated as point of interest X.

5. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.17.
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FIGURE 1.18 Shear press for Example Problem 1.5.

6. Calculate Mobility

It was determined that there are four links in this mechanism. There are also three pin joints and one slider joint.

Therefore,

and

With one degree of freedom, the can crusher mechanism is constrained. Moving only one link, the handle, precisely

positions all other links and crushes a beverage can placed under the crushing block.

M = 3(n - 1) - 2jp - j h = 3(4 - 1) - 2(4) - 0 = 1

n = 4, jp = (3 pins + 1 slider) = 4, jh = 0

EXAMPLE PROBLEM 1.5

Figure 1.18 shows another device that can be used to shear material. Draw a kinematic diagram, using the 

end of the handle and the cutting edge as points of interest. Also, compute the degrees of freedom for the 

shear press.

SOLUTION: 1. Identify the Frame

The base is bolted to a working surface and can be designated as the frame. The motion of all other links is de-

termined relative to this frame. The frame is numbered as link 1.

2. Identify All Other Links

Careful observation reveals two other moving parts:

Link 2: Gear/handle

Link 3: Cutting lever

3. Identify the Joints

Two pin joints are used to connect these different parts. One pin connects the cutting lever to the frame.

This joint is labeled as A. A second pin is used to connect the gear/handle to the cutting lever. This joint is

labeled B.

The gear/handle is also connected to the frame with a gear joint. This higher-order joint is 

labeled C.

4. Identify Any Points of Interest

The motion of the handle end is desired and is designated as point of interest X. The motion of the cutting surface is

also desired and is designated as point of interest Y.

5. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.19.
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FIGURE 1.19 Kinematic diagram for Example Problem 1.5.

6. Calculate Mobility

To calculate the mobility, it was determined that there are three links in this mechanism. There are also two pin

joints and one gear joint. Therefore,

and

With one degree of freedom, the shear press mechanism is constrained. Moving only one link, the handle,

precisely positions all other links and brings the cutting edge onto the work piece.

M = 3(n - 1) - 2jp - jh = 3(3 - 1) - 2(2) - 1 = 1

n = 3 jp = (2 pins) = 2 jh = (1 gear connection) = 1

1.7.2 Actuators and Drivers

In order to operate a mechanism, an actuator, or driver
device, is required to provide the input motion and energy.
To precisely operate a mechanism, one driver is required for
each degree of freedom exhibited. Many different actuators
are used in industrial and commercial machines and mecha-
nisms. Some of the more common ones are given below:

Electric motors (AC) provide the least expensive way
to generate continuous rotary motion. However,
they are limited to a few standard speeds that are a
function of the electric line frequency. In North
America the line frequency is 60 Hz, which corre-
sponds to achievable speeds of 3600, 1800, 900, 720,
and 600 rpm. Single-phase motors are used in resi-
dential applications and are available from 1/50 to
2 hp. Three-phase motors are more efficient, but
mostly limited to industrial applications because
they require three-phase power service. They are
available from 1/4 to 500 hp.

Electric motors (DC) also produce continuous rotary
motion. The speed and direction of the motion can
be readily altered, but they require power from a gen-
erator or a battery. DC motors can achieve extremely
high speeds––up to 30,000 rpm. These motors are
most often used in vehicles, cordless devices, or in
applications where multiple speeds and directional
control are required, such as a sewing machine.

Engines also generate continuous rotary motion. The
speed of an engine can be throttled within a range
of approximately 1000 to 8000 rpm. They are a
popular and highly portable driver for high-power
applications. Because they rely on the combustion
of fuel, engines are used to drive machines that
operate outdoors.

Servomotors are motors that are coupled with a con-
troller to produce a programmed motion or hold a
fixed position. The controller requires sensors on the
link being moved to provide feedback information on
its position, velocity, and acceleration. These motors
have lower power capacity than nonservomotors and
are significantly more expensive, but they can be used
for machines demanding precisely guided motion,
such as robots.

Air or hydraulic motors also produce continuous
rotary motion and are similar to electric motors, but
have more limited applications. This is due to the
need for compressed air or a hydraulic source. These
drive devices are mostly used within machines, such
as construction equipment and aircraft, where high-
pressure hydraulic fluid is available.

Hydraulic or pneumatic cylinders are common com-
ponents used to drive a mechanism with a limited
linear stroke. Figure 1.20a illustrates a hydraulic
cylinder. Figure 1.20b shows the common kinematic
representation for the cylinder unit.
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Pin joint
Link A
(cylinder)

Pin joint

Sliding
joint

Link B
(piston/rod)

Cylinder

(a) (b)

RodPiston

FIGURE 1.21 Outrigger for Example Problem 1.6.

FIGURE 1.20 Hydraulic cylinder.

The cylinder unit contains a rod and piston assembly
that slides relative to a cylinder. For kinematic pur-
poses, these are two links (piston/rod and cylinder),
connected with a sliding joint. In addition, the
cylinder and rod end usually have provisions for pin
joints.

Screw actuators also produce a limited linear stroke.
These actuators consist of a motor, rotating a screw. A
mating nut provides the linear motion. Screw actua-
tors can be accurately controlled and can directly
replace cylinders. However, they are considerably

more expensive than cylinders if air or hydraulic
sources are available. Similar to cylinders, screw actu-
ators also have provisions for pin joints at the two
ends. Therefore, the kinematic diagram is identical to
Figure 1.20b.

Manual, or hand-operated, mechanisms comprise a large
number of machines, or hand tools. The motions
expected from human “actuators” can be quite com-
plex. However, if the expected motions are repetitive,
caution should be taken against possible fatigue and
stain injuries.

EXAMPLE PROBLEM 1.6

Figure 1.21 shows an outrigger foot to stabilize a utility truck. Draw a kinematic diagram, using the bottom of the sta-

bilizing foot as a point of interest. Also compute the degrees of freedom.

SOLUTION: 1. Identify the Frame

During operation of the outriggers, the utility truck is stationary. Therefore, the truck is designated 

as the frame. The motion of all other links is determined relative to the truck. The frame is numbered as 

link 1.

2. Identify All Other Links

Careful observation reveals three other moving parts:

Link 2: Outrigger leg

Link 3: Cylinder

Link 4: Piston/rod

3. Identify the Joints

Three pin joints are used to connect these different parts. One connects the outrigger leg with the truck frame.

This is labeled as joint A. Another connects the outrigger leg with the cylinder rod and is labeled as joint B. The

last pin joint connects the cylinder to the truck frame and is labeled as joint C.

One sliding joint is present in the cylinder unit. This connects the piston/rod with the cylinder. It is labeled

as joint D.
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(b) Eccentric crank(a) Eccentric crankshaft
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(c) Eccentric crank model
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FIGURE 1.22 Kinematic diagram for Example Problem 1.6.

FIGURE 1.23 Eccentric crank.

4. Identify Any Points of Interest

The stabilizer foot is part of link 2, and a point of interest located on the bottom of the foot is labeled as point of

interest X.

5. Draw the Kinematic Diagram

The resulting kinematic diagram is given in Figure 1.22.

6. Calculate Mobility

To calculate the mobility, it was determined that there are four links in this mechanism, as well as three pin joints

and one slider joint. Therefore,

and

With one degree of freedom, the outrigger mechanism is constrained. Moving only one link, the piston,

precisely positions all other links in the outrigger, placing the stabilizing foot on the ground.

M = 3(n - 1) - 2jp - jh = 3(4 - 1) - 2(4) - 0 = 1

n = 4, jp = (3 pins + 1 slider) = 4, jh = 0

1.8 COMMONLY USED LINKS 
AND JOINTS

1.8.1 Eccentric Crank

On many mechanisms, the required length of a crank is so
short that it is not feasible to fit suitably sized bearings at the
two pin joints. A common solution is to design the link as an
eccentric crankshaft, as shown in Figure 1.23a. This is the
design used in most engines and compressors.

The pin, on the moving end of the link, is enlarged
such that it contains the entire link. The outside circumfer-
ence of the circular lobe on the crankshaft becomes the
moving pin joint, as shown in Figure 1.23b. The location of
the fixed bearing, or bearings, is offset from the eccentric
lobe. This eccentricity of the crankshaft, , is the effective
length of the crank. Figure 1.23c illustrates a kinematic

e

model of the eccentric crank. The advantage of the eccen-
tric crank is the large surface area of the moving pin, which
reduces wear.

1.8.2 Pin-in-a-Slot Joint

A common connection between links is a pin-in-a-slot
joint, as shown in Figure 1.24a. This is a higher-order joint
because it permits the two links to rotate and slide relative
to each other. To simplify the kinematic analysis, primary
joints can be used to model this higher-order joint. The
pin-in-a-slot joint becomes a combination of a pin joint
and a sliding joint, as in Figure 1.24b. Note that this
involves adding an extra link to the mechanism. In both
cases, the relative motion between the links is the same.
However, using a kinematic model with primary joints
facilitates the analysis.
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(b) Pin-in-a-slot model(a) Actual pin-in-a-slot joint

(b) Screw modeled as a slider(a) Actual screw joint

FIGURE 1.26 Lift table for Example Problem 1.7.

FIGURE 1.24 Pin-in-a-slot joint.

FIGURE 1.25 Screw joint.

1.8.3 Screw Joint

A screw joint, as shown in Figure 1.25a, is another common
connection between links. Screw mechanisms are discussed
in detail in Chapter 12. To start with, a screw joint permits
two relative, but dependent, motions between the links being
joined. A specific rotation of one link will cause an associ-
ated relative translation between the two links. For example,
turning the screw one revolution may move the nut along
the screw threads a distance of 0.1 in. Thus, only one inde-
pendent motion is introduced.

A screw joint is typically modeled with a sliding joint, as
shown in Figure 1.25b. It must be understood that out-of-
plane rotation occurs. However, only the relative translation
between the screw and nut is considered in planar kinematic
analysis.

An actuator, such as a hand crank, typically produces
the out-of-plane rotation. A certain amount of rotation will
cause a corresponding relative translation between the links
being joined by the screw joint. This relative translation is
used as the “driver” in subsequent kinematic analyses.

EXAMPLE PROBLEM 1.7

Figure 1.26 presents a lift table used to adjust the working height of different objects. Draw a kinematic diagram and

compute the degrees of freedom.

SOLUTION: 1. Identify the Frame

The bottom base plate rests on a fixed surface. Thus, the base plate will be designated as the frame. The bearing

at the bottom right of Figure 1.26 is bolted to the base plate. Likewise, the two bearings that support the screw on

the left are bolted to the base plate.

From the discussion in the previous section, the out-of-plane rotation of the screw will not be considered.

Only the relative translation of the nut will be included in the kinematic model. Therefore, the screw will also

be considered as part of the frame. The motion of all other links will be determined relative to this bottom base

plate, which will be numbered as link 1.



16 CHAPTER ONE

(b) Two rotating and one sliding link(a) Three rotating links

FIGURE 1.28 Three links connected at a common pin joint.
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FIGURE 1.27 Kinematic diagram for Example Problem 1.7.

2. Identify All Other Links

Careful observation reveals five other moving parts:

Link 2: Nut

Link 3: Support arm that ties the nut to the table

Link 4: Support arm that ties the fixed bearing to the slot in the table

Link 5: Table

Link 6: Extra link used to model the pin in slot joint with separate pin and slider joints

3. Identify the Joints

A sliding joint is used to model the motion between the screw and the nut. A pin joint, designated as point A,

connects the nut to the support arm identified as link 3. A pin joint, designated as point B, connects the two sup-

port arms––link 3 and link 4. Another pin joint, designated as point C, connects link 3 to link 6. A sliding joint

joins link 6 to the table, link 5. A pin, designated as point D, connects the table to the support arm, link 3. Lastly,

a pin joint, designated as point E, is used to connect the base to the support arm, link 4.

4. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.27.

5. Calculate Mobility

To calculate the mobility, it was determined that there are six links in this mechanism. There are also five pin

joints and two slider joints. Therefore

and

With one degree of freedom, the lift table has constrained motion. Moving one link, the handle that rotates

the screw, will precisely position all other links in the device, raising or lowering the table.

M = 3(n - 1) - 2jp - j h = 3(6 - 1) - 2(7) - 0 = 15 - 14 = 1

n = 6 jp = (5 pins +  2 sliders) = 7 j h = 0

1.9 SPECIAL CASES OF THE MOBILITY
EQUATION

Mobility is an extremely important property of a mecha-
nism. Among other facets, it gives insight into the number of
actuators required to operate a mechanism. However, to
obtain correct results, special care must be taken in using the
Gruebler’s equation. Some special conditions are presented
next.

1.9.1 Coincident Joints

Some mechanisms have three links that are all connected at a
common pin joint, as shown in Figure 1.28. This situation
brings some confusion to kinematic modeling. Physically,

one pin may be used to connect all three links. However, by
definition, a pin joint connects two links.

For kinematic analysis, this configuration must be mathe-
matically modeled as two separate joints. One joint will
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FIGURE 1.29 Mechanical press for Example Problem 1.8.

connect the first and second links. The second joint will then
connect the second and third links. Therefore, when three links

come together at a common pin, the joint must be modeled as
two pins. This scenario is illustrated in Example Problem 1.8.

EXAMPLE PROBLEM 1.8

Figure 1.29 shows a mechanical press used to exert large forces to insert a small part into a larger one.

Draw a kinematic diagram, using the end of the handle as a point of interest. Also compute the degrees of

freedom.

SOLUTION: 1. Identify the Frame

The bottom base for the mechanical press sits on a workbench and remains stationary during operation.

Therefore, this bottom base is designated as the frame. The motion of all other links is determined relative to the

bottom base. The frame is numbered as link 1.

2. Identify All Other Links

Careful observation reveals five other moving parts:

Link 2: Handle

Link 3: Arm that connects the handle to the other arms

Link 4: Arm that connects the base to the other arms

Link 5: Press head

Link 6: Arm that connects the head to the other arms

3. Identify the Joints

Pin joints are used to connect the several different parts. One connects the handle to the base and is labeled

as joint A. Another connects link 3 to the handle and is labeled as joint B. Another connects link 4 to the

base and is labeled as C. Another connects link 6 to the press head and is labeled as D.

It appears that a pin is used to connect the three arms—links 3, 4, and 6—together. Because three

separate links are joined at a common point, this must be modeled as two separate joints. They are labeled as

E and F.

A sliding joint connects the press head with the base. This joint is labeled as G.

4. Identify Any Points of Interest

Motion of the end of the handle is desired and is labeled as point of interest X.

5. Draw the Kinematic Diagram

The kinematic diagram is given in Figure 1.30.

6. Calculate Mobility

To calculate the mobility, it was determined that there are six links in this mechanism, as well as six pin joints and

one slider joint. Therefore,

n = 6, jp = (6 pins + 1 slider) = 7, jh = 0
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FIGURE 1.32 A cam with a roller follower.
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FIGURE 1.30 Kinematic diagram for Example Problem 1.8.

FIGURE 1.31 Mechanism that violates the Gruebler’s equation.

and

With one degree of freedom, the mechanical press mechanism is constrained. Moving only one link,

the handle, precisely positions all other links in the press, sliding the press head onto the work piece.

M = 3(n - 1) - 2jp - j h = 3(6 - 1) - 2(7) - 0 = 15 - 14 = 1

1.9.2 Exceptions to the Gruebler’s
Equation

Another special mobility situation must be mentioned.
Because the Gruebler’s equation does not account for link
geometry, in rare instances it can lead to misleading results.
One such instance is shown in Figure 1.31.

redundant, and because it is identical in length to the other
two links attached to the frame, it does not alter the action of
the linkage.

There are other examples of mechanisms that violate
the Gruebler’s equation because of unique geometry. A
designer must be aware that the mobility equation can, at
times, lead to inconsistencies.

1.9.3 Idle Degrees of Freedom

In some mechanisms, links exhibit motion which does not
influence the input and output relationship of the mecha-
nism. These idle degrees of freedom present another situa-
tion where Gruebler’s equation gives misleading results.
An example is a cam with a roller follower as shown in
Figure 1.32. Gruebler’s equation specifies two degrees of
freedom (4 links, 3 pins, 1 higher-order joint). With an
actuated cam rotation, the pivoted link oscillates while the
roller follower rotates about its center. Yet, only the motion
of the pivoted link serves as the output of the mechanism.

The roller rotation is an idle degree of freedom and not
intended to affect the output motion of the mechanism.
It is a design feature which reduces friction and wear on the
surface of the cam. While Gruebler’s equation specifies that
a cam mechanism with a roller follower has a mobility of
two, the designer is typically only interested in a single
degree of freedom. Several other mechanisms contain
similar idle degrees of freedom.

Notice that this linkage contains five links and six pin
joints. Using Gruebler’s equation, this linkage has zero
degrees of freedom. Of course, this suggests that the mecha-
nism is locked. However, if all pivoted links were the same
size, and the distance between the joints on the frame and
coupler were identical, this mechanism would be capable of
motion, with one degree of freedom. The center link is
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FIGURE 1.33 Rear-window wiper mechanism.

1.10 THE FOUR-BAR MECHANISM

The simplest and most common linkage is the four-bar
linkage. It is a combination of four links, one being desig-
nated as the frame and connected by four pin joints.

Because it is encountered so often, further exploration is
in order.

The mechanism for an automotive rear-window wiper
system is shown in Figure 1.33a. The kinematic diagram is
shown in Figure 1.33b. Notice that this is a four-bar mechanism

because it is comprised of four links connected by four pin
joints and one link is unable to move.

The mobility of a four-bar mechanism consists of the
following:

and

Because the four-bar mechanism has one degree of
freedom, it is constrained or fully operated with one driver.
The wiper system in Figure 1.33 is activated by a single DC
electric motor.

Of course, the link that is unable to move is referred
to as the frame. Typically, the pivoted link that is con-
nected to the driver or power source is called the input
link. The other pivoted link that is attached to the frame is
designated the output link or follower. The coupler or
connecting arm “couples” the motion of the input link to
the output link.

1.10.1 Grashof ’s Criterion

The following nomenclature is used to describe the length of
the four links.

M = 3(n - 1) - 2jp - jh = 3(4 - 1) - 2(4) - 0 = 1

n = 4, jp = 4 pins, jh = 0 Grashof ’s theorem states that a four-bar mechanism has at
least one revolving link if:

Conversely, the three nonfixed links will merely rock if:

All four-bar mechanisms fall into one of the five categories
listed in Table 1.2.

s + l 7 p + q

s + l … p + q

 q = length of the other intermediate length links

 p = length of one of the intermediate length links

 l = length of the longest link

 s = length of the shortest link

TABLE 1.2 Categories of Four-Bar Mechanisms

Case Criteria Shortest Link Category

1 s + l 6 p + q Frame Double crank

2 s + l 6 p + q Side Crank-rocker

3 s + l 6 p + q Coupler Double rocker

4 s + l = p + q Any Change point

5 s + l 7 p + q Any Triple rocker



20 CHAPTER ONE

(a) Double crank

(c) Double rocker

(d) Change point
(e) Triple rocker

(b) Crank-rocker

FIGURE 1.34 Categories of four-bar mechanisms.

The different categories are illustrated in Figure 1.34
and described in the following sections.

1.10.2 Double Crank

A double crank, or crank-crank, is shown in Figure 1.34a. As
specified in the criteria of Case 1 of Table 1.2, it has the shortest
link of the four-bar mechanism configured as the frame. If one
of the pivoted links is rotated continuously, the other pivoted
link will also rotate continuously. Thus, the two pivoted links, 2
and 4, are both able to rotate through a full revolution. The
double crank mechanism is also called a drag link mechanism.

1.10.3 Crank-Rocker

A crank-rocker is shown in Figure 1.34b. As specified in the
criteria of Case 2 of Table 1.2, it has the shortest link of the
four-bar mechanism configured adjacent to the frame. If this
shortest link is continuously rotated, the output link will
oscillate between limits. Thus, the shortest link is called the
crank, and the output link is called the rocker. The wiper system
in Figure 1.33 is designed to be a crank-rocker. As the motor
continuously rotates the input link, the output link oscillates,
or “rocks.” The wiper arm and blade are firmly attached to the
output link, oscillating the wiper across a windshield.

1.10.4 Double Rocker

The double rocker, or rocker-rocker, is shown in Figure
1.34c. As specified in the criteria of Case 3 of Table 1.2, it

has the link opposite the shortest link of the four-bar mech-
anism configured as the frame. In this configuration,
neither link connected to the frame will be able to complete
a full revolution. Thus, both input and output links are con-
strained to oscillate between limits, and are called rockers.
However, the coupler is able to complete a full revolution.

1.10.5 Change Point Mechanism

A change point mechanism is shown in Figure 1.34d. As
specified in the criteria of Case 4 of Table 1.2, the sum of two
sides is the same as the sum of the other two. Having this
equality, the change point mechanism can be positioned
such that all the links become collinear. The most familiar
type of change point mechanism is a parallelogram linkage.
The frame and coupler are the same length, and so are the
two pivoting links. Thus, the four links will overlap each
other. In that collinear configuration, the motion becomes
indeterminate. The motion may remain in a parallelogram
arrangement, or cross into an antiparallelogram, or butter-
fly, arrangement. For this reason, the change point is called a
singularity configuration.

1.10.6 Triple Rocker

A triple rocker linkage is shown in Figure 1.34e. Exhibiting
the criteria in Case 5 of Table 1.2, the triple rocker has no
links that are able to complete a full revolution. Thus, all
three moving links rock.

EXAMPLE PROBLEM 1.9

A nosewheel assembly for a small aircraft is shown in Figure 1.35. Classify the motion of this four-bar mechanism

based on the configuration of the links.
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FIGURE 1.35 Nosewheel assembly for Example Problem 1.9.
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FIGURE 1.36 Kinematic diagram for Example Problem 1.9.

SOLUTION: 1. Distinguish the Links Based on Length

In an analysis that focuses on the landing gear, the motion of the wheel assembly would be determined relative

to the body of the aircraft. Therefore, the aircraft body will be designated as the frame. Figure 1.36 shows the

kinematic diagram for the wheel assembly, numbering and labeling the links. The tip of the wheel was desig-

nated as point of interest X.

The lengths of the links are:

2. Compare to Criteria

The shortest link is a side, or adjacent to the frame. According to the criteria in Table 1.2, this mechanism can be ei-

ther a crank-rocker, change point, or a triple rocker. The criteria for the different categories of four-bar mechanisms

should be reviewed.

3. Check the Crank-Rocker (Case 2) Criteria

Is:

Because the criteria for a crank-rocker are valid, the nosewheel assembly is a crank-rocker mechanism.

44 6 56 :  {yes}

(12 + 32) 6 (30 + 26)

s + l 6 p + q

s = 12 in.; l = 32 in.; p = 30 in.; q = 26 in.
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FIGURE 1.37 Pump mechanism for a manual water pump: (a) Mechanism and 
(b) Kinematic diagram.

(a) (b)

FIGURE 1.38 Straight-line mechanisms

1.11 SLIDER-CRANK 
MECHANISM

Another mechanism that is commonly encountered is a
slider-crank. This mechanism also consists of a combination
of four links, with one being designated as the frame. This

mechanism, however, is connected by three pin joints and
one sliding joint.

A mechanism that drives a manual water pump is
shown in Figure 1.37a. The corresponding kinematic dia-
gram is given in Figure 1.37b.

The mobility of a slider-crank mechanism is repre-
sented by the following:

and

Because the slider-crank mechanism has one degree of
freedom, it is constrained or fully operated with one driver.
The pump in Figure 1.37 is activated manually by pushing
on the handle (link 3).

In general, the pivoted link connected to the frame is
called the crank. This link is not always capable of complet-
ing a full revolution. The link that translates is called the
slider. This link is the piston/rod of the pump in Figure 1.37.

M = 3(n - 1) - 2jp - jh = 3(4 - 1) - 2(4) - 0 = 1.

n = 4, jp = (3 pins + 1 sliding) = 4, jh = 0

The coupler or connecting rod “couples” the motion of the
crank to the slider.

1.12 SPECIAL PURPOSE 
MECHANISMS

1.12.1 Straight-Line Mechanisms

Straight-line mechanisms cause a point to travel in a straight
line without being guided by a flat surface. Historically, qual-
ity prismatic joints that permit straight, smooth motion
without backlash have been difficult to manufacture. Several
mechanisms have been conceived that create straight-line
(or nearly straight-line) motion with revolute joints and
rotational actuation. Figure 1.38a shows a Watt linkage and
Figure. 1.38b shows a Peaucellier-Lipkin linkage.

1.12.2 Parallelogram Mechanisms

Mechanisms are often comprised of links that form parallel-
ograms to move an object without altering its pitch. These
mechanisms create parallel motion for applications such as

balance scales, glider swings, and jalousie windows. Two
types of parallelogram linkages are given in Figure 1.39a
which shows a scissor linkage and Figure1.39b which shows
a drafting machine linkage.
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FIGURE 1.39 Parallelogram mechanisms.

FIGURE 1.40 Quick-return mechanisms.

1.12.3 Quick-Return Mechanisms

Quick-return mechanisms exhibit a faster stroke in one direc-
tion than the other when driven at constant speed with a rota-
tional actuator. They are commonly used on machine tools

that require a slow cutting stroke and a fast return stroke. The
kinematic diagrams of two different quick-return mechanisms
are given in Figure 1.40a which shows an offset slider-crank
linkage and Figure 1.40b which shows a crank-shaper linkage.

1.12.4 Scotch Yoke Mechanism

A scotch yoke mechanism is a common mechanism that
converts rotational motion to linear sliding motion, or vice
versa. As shown in Figure 1.41, a pin on a rotating link is
engaged in the slot of a sliding yoke. With regards to the

input and output motion, the scotch yoke is similar to a
slider-crank, but the linear sliding motion is pure sinusoidal.
In comparison to the slider-crank, the scotch yoke has the
advantage of smaller size and fewer moving parts, but can
experience rapid wear in the slot.

1.13 TECHNIQUES OF MECHANISM
ANALYSIS

Most of the analysis of mechanisms involves geometry. Often,
graphical methods are employed so that the motion of the
mechanism can be clearly visualized. Graphical solutions

involve drawing “scaled” lines at specific angles. One example
is the drawing of a kinematic diagram. A graphical solution
involves preparing a drawing where all links are shown at a
proportional scale to the actual mechanism. The orientation of
the links must also be shown at the same angles as on the actual
mechanism.

(a) Actual mechanism(a) Actual mechanism (b) Kinematic diagram

FIGURE 1.41 Scotch yoke mechanism.
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This graphical approach has the merits of ease and solu-
tion visualization. However, accuracy must be a serious con-
cern to achieve results that are consistent with analytical
techniques. For several decades, mechanism analysis was pri-
marily completed using graphical approaches. Despite its
popularity, many scorned graphical techniques as being
imprecise. However, the development of computer-aided
design (CAD) systems has allowed the graphical approach to
be applied with precision. This text attempts to illustrate the
most common methods used in the practical analysis of
mechanisms. Each of these methods is briefly introduced in
the following sections.

1.13.1 Traditional Drafting Techniques

Over the past decades, all graphical analysis was performed
using traditional drawing techniques. Drafting equipment
was used to draw the needed scaled lines at specific angles.
The equipment used to perform these analyses included
triangles, parallel straight edges, compasses, protractors,
and engineering scales. As mentioned, this method was
often criticized as being imprecise. However, with proper
attention to detail, accurate solutions can be obtained.

It was the rapid adoption of CAD software over the past
several years that limited the use of traditional graphical
techniques. Even with the lack of industrial application,
many believe that traditional drafting techniques can still be
used by students to illustrate the concepts behind graphical
mechanism analysis. Of course, these concepts are identical
to those used in graphical analysis using a CAD system. But
by using traditional drawing techniques, the student can
concentrate on the kinematic theories and will not be
“bogged down” with learning CAD commands.

1.13.2 CAD Systems

As mentioned, graphical analysis may be performed using
traditional drawing procedures or a CAD system, as is com-
monly practiced in industry. Any one of the numerous com-
mercially available CAD systems can be used for mechanism
analysis. The most common two-dimensional CAD system
is AutoCAD. Although the commands differ between CAD
systems, all have the capability to draw highly accurate lines
at designated lengths and angles. This is exactly the capabil-
ity required for graphical mechanism analysis. Besides
increased accuracy, another benefit of CAD is that the lines
do not need to be scaled to fit on a piece of drawing paper.
On the computer, lines are drawn on “virtual” paper that is
of infinite size.

Additionally, the constraint-based sketching mode in
solid modeling systems, such as Inventor, SolidWorks, and
ProEngineer, can be extremely useful for planar kinematic
analysis. Geometric constraints, such as length, perpendicu-
larity, and parallelism, need to be enforced when performing
kinematic analysis. These constraints are automatically exe-
cuted in the solid modeler’s sketching mode.

This text does not attempt to thoroughly discuss the
system-specific commands used to draw the lines, but

several of the example problems are solved using a CAD
system. The main goal of this text is to instill an understand-
ing of the concepts of mechanism analysis. This goal can be
realized regardless of the specific CAD system incorporated.
Therefore, the student should not be overly concerned with
the CAD system used for accomplishing graphical analysis.
For that matter, the student should not be concerned
whether manual or computer graphics are used to learn
mechanism analysis.

1.13.3 Analytical Techniques

Analytical methods can also be used to achieve precise
results. Advanced analytical techniques often involve
intense mathematical functions, which are beyond the
scope of this text and of routine mechanism analysis. In
addition, the significance of the calculations is often diffi-
cult to visualize.

The analytical techniques incorporated in this text couple
the theories of geometry, trigonometry, and graphical mecha-
nism analysis. This approach will achieve accurate solutions,
yet the graphical theories allow the solutions to be visualized.
This approach does have the pitfall of laborious calculations
for more complex mechanisms. Still, a significant portion of
this text is dedicated to these analytical techniques.

1.13.4 Computer Methods

As more accurate analytical solutions are desired for several
positions of a mechanism, the number of calculations can
become unwieldy. In these situations, the use of computer
solutions is appropriate. Computer solutions are also valu-
able when several design iterations must be analyzed.

A computer approach to mechanism analysis can take
several forms:

� Spreadsheets are very popular for routine mechanism
problems. An important feature of the spreadsheet is that
as a cell containing input data is changed, all other results
are updated. This allows design iterations to be completed
with ease. As problems become more complex, they can be
difficult to manage on a spreadsheet. Nonetheless, spread-
sheets are used in problem solution throughout the text.

� Commercially available dynamic analysis programs, such
as Working Model, ADAMS (Automatic Dynamic
Analysis of Mechanical Systems), or Dynamic Designer,
are available. Dynamic models of systems can be created
from menus of general components. Limited versions of
dynamic analysis programs are solid modeling systems.
Full software packages are available and best suited
when kinematic and dynamic analysis is a large compo-
nent of the job. Chapter 2 is dedicated to dynamic
analysis programs.

� User-written computer programs in a high-level language,
such as Matlab, Mathematica, VisualBasic, or , can
be created. The programming language selected must
have direct availability to trigonometric and inverse

C+ +
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FIGURE P1.3 Problems 3 and 28.

FIGURE P1.1 Problems 1 and 26.

FIGURE P1.2 Problems 2 and 27.

FIGURE P1.4 Problems 4 and 29.

FIGURE P1.5 Problems 5 and 30.

FIGURE P1.6 Problems 6 and 31.

Frame
attachment

Window
support

FIGURE P1.7 Problems 7 and 32.

trigonometric functions. Due to the time and effort
required to write special programs, they are most effec-
tive when a complex, yet not commonly encountered,
problem needs to be solved. Some simple algorithms are
provided for elementary kinematic analysis in Chapter 8.

PROBLEMS

Problems in Sketching Kinematic Diagrams

1–1. A mechanism is used to open the door of a heat-
treating furnace and is shown in Figure P1.1. Draw a
kinematic diagram of the mechanism. The end of
the handle should be identified as a point of interest.

1–2. A pair of bolt cutters is shown in Figure P1.2. Draw
a kinematic diagram of the mechanism, selecting
the lower handle as the frame. The end of the upper
handle and the cutting surface of the jaws should be
identified as points of interest.

1–7. A mechanism for a window is shown in Figure P1.7.
Draw a kinematic diagram of the mechanism.

1–3. A folding chair that is commonly used in stadiums is
shown in Figure P1.3. Draw a kinematic diagram of
the folding mechanism.

1–4. A foot pump that can be used to fill bike tires, toys,
and so forth is shown in Figure P1.4. Draw a kine-
matic diagram of the pump mechanism. The foot
pad should be identified as a point of interest.

1–5. A pair of pliers is shown in Figure P1.5. Draw a
kinematic diagram of the mechanism.

1–6. Another configuration for a pair of pliers is shown
in Figure P1.6. Draw a kinematic diagram of the
mechanism.

1–8. Another mechanism for a window is shown in
Figure P1.8. Draw a kinematic diagram of the
mechanism.
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FIGURE P1.8 Problems 8 and 33.

FIGURE P1.9 Problems 9 and 34.

FIGURE P1.10 Problems 10 and 35.

FIGURE P1.11 Problems 11 and 36.

FIGURE P1.12 Problems 12 and 37.

FIGURE P1.13 Problems 13 and 38.

1–14. A sketch of a truck used to deliver supplies to passen-
ger jets is shown in Figure P1.14. Draw a kinematic
diagram of the mechanism.

1–9. A toggle clamp used for holding a work piece while
it is being machined is shown in Figure P1.9. Draw a
kinematic diagram of the mechanism.

1–10. A child’s digging toy that is common at many
municipal sandboxes is shown in Figure P1.10. Draw a
kinematic diagram of the mechanism.

1–11. A reciprocating saw, or saws all, is shown in
Figure P1.11. Draw a kinematic diagram of the
mechanism that produces the reciprocating
motion.

1–12. A small front loader is shown in Figure P1.12. Draw
a kinematic diagram of the mechanism.

1–13. A sketch of a microwave oven carrier used to assist
people in wheelchairs is shown in Figure P1.13.
Draw a kinematic diagram of the mechanism.
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FIGURE P1.14 Problems 14 and 39.

FIGURE P1.16 Problems 16 and 41.

FIGURE P1.15 Problems 15 and 40.

FIGURE P1.17 Problems 17 and 42.

FIGURE P1.18 Problems 18 and 43.

FIGURE P1.19 Problems 19 and 44.

FIGURE P1.20 Problems 20 and 45.

1–21. A sketch of a kitchen appliance carrier, used for
undercounter storage, is shown in Figure P1.21.
Draw a kinematic diagram of the mechanism.

1–15. A sketch of a device to move packages from an assem-
bly bench to a conveyor is shown in Figure P1.15.
Draw a kinematic diagram of the mechanism.

1–16. A sketch of a lift platform is shown in Figure P1.16.
Draw a kinematic diagram of the mechanism.

1–17. A sketch of a lift platform is shown in Figure P1.17.
Draw a kinematic diagram of the mechanism.

1–18. A sketch of a backhoe is shown in Figure P1.18.
Draw a kinematic diagram of the mechanism.

1–19. A sketch of a front loader is shown in Figure P1.19.
Draw a kinematic diagram of the mechanism.

1–20. A sketch of an adjustable-height platform used
to load and unload freight trucks is shown in
Figure P1.20. Draw a kinematic diagram of the
mechanism.
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FIGURE P1.24 Problems 24 and 49.

Test
specimen

FIGURE P1.22 Problems 22 and 47.

FIGURE P1.23 Problems 23 and 48. FIGURE P1.25 Problems 25 and 50.

1–23. A sketch of a device to close the top flaps of boxes is
shown in Figure P1.23. Draw a kinematic diagram
of the mechanism.

1–24. A sketch of a sewing machine is shown in Figure P1.24.
Draw a kinematic diagram of the mechanism.

Counter

Microwave
oven

FIGURE P1.21 Problems 21 and 46.

1–22. An automotive power window mechanism is shown
in Figure P1.22. Draw a kinematic diagram of the
mechanism.

1–25. A sketch of a wear test fixture is shown in Figure P1.25.
Draw a kinematic diagram of the mechanism.
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FIGURE P1.51 Problems 51 to 54.

FIGURE C1.1 (Courtesy Industrial Press, Inc.).

Problems in Calculating Mobility
Specify the number of links and the number of joints and calculate
the mobility for the mechanism shown in the figure.

1–26. Use Figure P1.1
1–27. Use Figure P1.2
1–28. Use Figure P1.3
1–29. Use Figure P1.4
1–30. Use Figure P1.5
1–31. Use Figure P1.6
1–32. Use Figure P1.7
1–33. Use Figure P1.8
1–34. Use Figure P1.9
1–35. Use Figure P1.10
1–36. Use Figure P1.11
1–37. Use Figure P1.12
1–38. Use Figure P1.13
1–39. Use Figure P1.14
1–40. Use Figure P1.15
1–41. Use Figure P1.16
1–42. Use Figure P1.17
1–43. Use Figure P1.18
1–44. Use Figure P1.19
1–45. Use Figure P1.20
1–46. Use Figure P1.21
1–47. Use Figure P1.22
1–48. Use Figure P1.23
1–49. Use Figure P1.24
1–50. Use Figure P1.25

Problems in Classifying Four-Bar 

Mechanisms

1–51. A mechanism to spray water onto vehicles at an
automated car wash is shown in Figure P1.51.

1. As link A rotates clockwise 90°, what will happen to
slide C?

2. What happens to the ball trapped in slide C when it
is at this position?

3. As link A continues another 90° clockwise, what
action occurs?

4. What is the purpose of this device?
5. Why are there chamfers at the entry of slide C?
6. Why do you suppose there is a need for such a

device?

1–2. Figure C1.2 shows a mechanism that is typical in the
tank of a water closet. Note that flapper C is hollow
and filled with trapped air. Carefully examine the
configuration of the components in the mechanism.
Then answer the following leading questions to gain
insight into the operation of the mechanism.

1. As the handle A is rotated counterclockwise, what is
the motion of flapper C?

2. When flapper C is raised, what effect is seen?
3. When flapper C is lifted, it tends to remain in an

upward position for a period of time. What causes
this tendency to keep the flapper lifted?

4. When will this tendency (to keep flapper C lifted)
cease?

Classify the four-bar mechanism, based on its possi-
ble motion, when the lengths of the links are

, , , and 

1–52. For the water spray mechanism in Figure P1.51, clas-
sify the four-bar mechanism, based on its possible

d = 4 in.c = 14 in.b = 1.5 in.a = 12 in.

motion, when the lengths of the links are ,
, , and 

1–53. For the water spray mechanism in Figure P1.51, clas-
sify the four-bar mechanism, based on its possible
motion, when the lengths of the links are ,

, , and 

1–54. For the water spray mechanism in Figure P1.51, clas-
sify the four-bar mechanism, based on its possible
motion, when the lengths of the links are ,

, , and 

CASE STUDIES

1–1. The mechanism shown in Figure C1.1 has been
taken from a feed device for an automated ball bear-
ing assembly machine. An electric motor is attached
to link A as shown. Carefully examine the configura-
tion of the components in the mechanism. Then
answer the following leading questions to gain
insight into the operation of the mechanism.

d = 5 in.c = 12 in.b = 3 in.
a = 12 in.

d = 4 in.c = 8 in.b = 3 in.
a = 12 in.

d = 4 in.c = 12 in.b = 5 in.
a = 12 in.
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FIGURE C1.3 (Courtesy Industrial Press, Inc.).

5. What effect will cause item D to move?
6. As item D is moved in a counterclockwise direction,

what happens to item F?
7. What does item F control?
8. What is the overall operation of these mechanisms?
9. Why is there a need for this mechanism and a need

to store water in this tank?

1–3. Figure C1.3 shows a mechanism that guides newly
formed steel rods to a device that rolls them
into reels. The rods are hot when formed, and
water is used to assist in the cooling process. The
rods can be up to several thousand feet long and
slide at rates up to 25 miles per hour through
channel S.

Once the reel is full, the reel with the coiled rod is then
removed. In order to obtain high efficiency, the rods follow
one another very closely. It is impossible to remove the reel

in a short time interval; therefore, it is desirable to use two
reels in alternation. This mechanism has been designed to
feed the rods to the reels.

Buckets B1 and B2 have holes in the bottom. The water
flow from the supply is greater than the amount that can
escape from the holes. Carefully examine the configuration
of the components in the mechanism, then answer the fol-
lowing leading questions to gain insight into the operation
of the mechanism.

1. In the shown configuration, what is happening to
the level of water in bucket B1?

2. In the shown configuration, what is happening to
the level of water in bucket B2?

3. What would happen to rocker arm C if bucket B2

were forced upward?
4. What would happen to rocker arm R if bucket B2

were forced upward?
5. What does rocker arm R control?
6. What is the continual motion of this device?
7. How does this device allow two separate reels to be

used for the situation described?
8. Why do you suppose that water is used as the power

source for the operation of this mechanism?

F

C

A
D

FIGURE C1.2 (Courtesy Industrial Press, Inc.).



2.2 COMPUTER SIMULATION
OF MECHANISMS

Along with Working Model®, other dynamic analysis
programs are available. These include ADAMS® (Automatic
Dynamic Analysis of Mechanical Systems), Dynamic
Designer®, LMS Virtual.Lab, and Analytix®. All these com-
puter programs allow creation of a mechanism from menus,
or icons, of general components. The general components
include those presented in Chapter 1, such as simple links,
complex links, pin joints, sliding joints, and gear joints. The
mechanism is operated by selecting actuator components,
such as motors or cylinders, from menus.

In machine design, one of the reasons for the widespread
adoption of solid modeling is that it sets the stage for many
ancillary uses: Working drawings can be nearly automatically
created, renderings that closely resemble the real machine are
generated, and prototypes can be readily fabricated. Many
products that work with the solid modeling software are
available to analyze the structural integrity of machine com-
ponents. Similarly, studying the motion and forces of moving
mechanisms and assemblies is becoming almost an automatic
side effect of solid modeling. Figure 2.1 illustrates a solid
model design being analyzed with Dynamic Designer within
the Autodesk Inventor® Environment.

Regardless of software, the general strategy for performing
the dynamic analysis can be summarized as follows:

1. Define a set of rigid bodies (sizes, weights, and inertial
properties). These could be constructed in the solid
modeling design package.

2. Place constraints on the rigid bodies (connecting the
rigid bodies with joints).

3. Specify the input motion (define the properties of the
driving motor, cylinder, etc.) or input forces.

4. Run the analysis.

5. Review the motion of the links and forces through the
mechanism.

Of course, the specific commands will vary among the
different packages. The following sections of this chapter will
focus on the details of mechanism analysis using Working
Model 2D®. As with any software, knowledge is gained by
experimenting and performing other analyses beyond the
tutorials. Thus, the student is encouraged to explore the soft-
ware by “inventing” assorted virtual machines.

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Understand the use of commercially available software
for mechanism analysis.

2. Use Working Model® to build kinematic models of
mechanisms.

3. Use Working Model® to animate the motion of
mechanisms.

4. Use Working Model® to determine the kinematic values
of a mechanism.

C H A P T E R

T W O

BUILDING COMPUTER MODELS
OF MECHANISMS USING WORKING 
MODEL® SOFTWARE

2.1 INTRODUCTION

The rapid development of computers and software has
altered the manner in which many engineering tasks are
completed. In the study of mechanisms, software packages
have been developed that allow a designer to construct
virtual models of a mechanism. These virtual models allow
the designer to fully simulate a machine. Simulation enables
engineers to create and test product prototypes on their own
desktop computers. Design flaws can be quickly isolated and
eliminated, reducing prototyping expenses and speeding the
cycle of product development.

Software packages can solve kinematic and dynamic
equations, determine the motion, and force values of the
mechanism during operation. In addition to numerical
analysis, the software can animate the computer model of
the mechanism, allowing visualization of the design in
action.

This chapter primarily serves as a tutorial for simulating
machines and mechanisms using Working Model® simu-
lation software. Although the kinematic values generated
during the analysis may not be fully understood, the visual-
ization of the mechanism can be extremely insightful. The
material presented in the next several chapters will allow the
student to understand the numerical solutions of the
dynamic software. Proficiency in this type of mechanism-
analysis software, coupled with a solid understanding of
kinematic and dynamic analysis, will provide a strong basis
for machine design.

31
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2.3 OBTAINING WORKING MODEL
SOFTWARE

Working Model 2D is created and distributed by Design
Simulation Technologies. Copies of the software can be
purchased, at substantial educational discounts, online at
http://www.workingmodel.com or http://www.design-
simulation.com. A free demonstration version of Working
Model 2D is also available for download. This demo ver-
sion enables students to create fully functioning “virtual
prototypes” of complex mechanical designs. However,
some features are disabled, most notably the Save and
Print functions. Regardless, this version can provide an
excellent introduction to building computer models of
mechanisms. Design Simulation Technologies, Inc. can be
contacted at 43311 Joy Road, #237, Canton, MI 48187,
(714) 446–6935.

As Working Model 2D is updated, the menus and icons
may appear slightly different from the tutorials in this text.
However, using some intuition, the student will be able to
adapt and successfully complete mechanism simulations.

2.4 USING WORKING MODEL 
TO MODEL A FOUR-BAR MECHANISM

As mentioned, Working Model is a popular, commercially
available motion simulation package. It rapidly creates a
model on a desktop computer that represents a mechanical
system and performs dynamic analysis. This section uses
Working Model to build a model of a four-bar linkage and
run a simulation [Ref. 16]. It is intended to be a tutorial; that
is, it should be followed while actually using Working Model.
The student is then encouraged to experiment with the soft-
ware to perform other analyses.

Step 1: Open Working Model

1. Click on the Working Model program icon to start the
program.

2. Create a new Working Model document by selecting
“New” from the “File” menu.
Working Model displays the user interface. Toolbars used to
create links, joints, and mechanism actuators appear along
the sides of the screen. Tape controls, which are used to run
and view simulations, appear at the bottom of the screen.

3. Specify the units to be used in the simulation. Select
“Numbers and Units” in the “View” menu. Change the
“Unit System” to English (pounds).
The units for linear measurements will be inches, angles
will be measured in degrees, and forces will be specified in
pounds.

Step 2: Create the Links

This step creates the three moving links in a four-bar
mechanism. The background serves as the fixed, fourth link.

1. Construct the linkage by creating the three nonfixed
links. Double-click on the rectangle tool on the toolbar.
The tool is highlighted, indicating that it can be used
multiple times.

2. Using the rectangle tool, sketch out three bodies as
shown in Figure 2.2.
Rectangles are drawn by positioning the mouse at the first
corner, clicking once, then moving the mouse to the
location of the opposite corner and clicking again.
Rectangles are parametrically defined and their precise
sizes will be specified later.

3. Open the “Properties” box and “Geometry” box in the
“Window” menu.

FIGURE 2.1 Dynamic analysis of a solid model.

http://www.workingmodel.com
http://www.designsimulation.com
http://www.designsimulation.com
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FIGURE 2.2 Three links sketched using the rectangle tool.

This displays information about the links and allows
editing of this information.

4. Use the “Properties” box to change the center of the
horizontal link to , , .
The location of the rectangle should change upon data
entry.

5. Use the “Geometry” box to change the width of the
horizontal rectangle to 8.5 and the height to 0.5 in.
The shape of the rectangle will change.

6. Likewise, use the “Properties” box and “Geometry” box to
change the long vertical link to be centered at ,

and have a width of 0.5 and a height of 3. Also
change the short vertical link to be centered at ,

and have a width of 0.5 and a height of 1.5.
Again, the shape and location of the rectangle should
change upon data entry.

7. Close both the “Properties” box and “Geometry” box
windows.

8. The zoom icon (magnifying glass) can be used to
properly view the links.

Step 3: Place Points of Interest on the Links

This step teaches the usage of the “Object Snap” tool to
place points precisely. The “Object Snap” tool highlights
commonly used positions, like the center of a side, with an
“X .” When a point is placed using “Object Snap,” the
point’s position is automatically defined with parametric
equations. These equations ensure that the point main-
tains its relative location even after resizing or other
adjustments.

y = -3
x = 5

y = -3
x = -5

f = 0y = 0x = 0

1. Double-click on the point tool. The icon is a small circle.
The point tool is highlighted, indicating that it can be
used multiple times without needing to be reselected be-
fore each new point is sketched.

2. Move the cursor over one of the links.
Notice that an “X” appears around the pointer when it is
centered on a side, over a corner, or over the center of a
rectangle. This feature is called “Object Snap” and high-
lights the commonly used parts of a link.

3. Place the cursor over the upper portion of one of the
vertical links. When an “X ” appears around the pointer
(Figure 2.3), click the mouse button.

4. Place additional points as shown in Figure 2.3.
Make sure that each of these points is placed at a “snap
point” as evidenced by the “X” appearing at the pointer.

5. Select the pointer tool. The icon is an arrow pointed up
and to the left.

6. Double-click on one of the points that were sketched in
steps 3 or 4 to open the “Properties” window.

7. Notice that the points “snapped” to a distance of half
the body width from the three edges. This will result in
effective link length of 8.0, 2.5, and 1.0 in.

Step 4: Connect the Points to Form Pin Joints

This step joins the points to create pin joints. A pin joint acts
as a hinge between two bodies. The SmartEditor prevents
joints from breaking during a drag operation.

1. Select the anchor tool.

2. Click on the horizontal link to anchor the link down.
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FIGURE 2.4 Select two points to join as a pin joint.

An anchor is used to tell the SmartEditor not to move this
body during construction. After the pin joints have been
created, the anchor will be deleted.

3. Select the pointer tool.

4. With the pointer tool selected, click and drag on the
background to make a selection box that surrounds the
two left points as shown in Figure 2.4. Release the

mouse button, and the two points should now be high-
lighted (darkened).
This method of selecting objects is called “box select.” Any
object that is contained completely within the box when
the mouse is released is highlighted.

5. Click on the “Join” button in the toolbar, merging the
two points into a pin joint.

FIGURE 2.3 Point locations.
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FIGURE 2.5 Adding the final pin joint and motor to the linkage.

The SmartEditor creates a pin joint between the two points
selected, moving the unanchored link into place. The moved
link may no longer be vertical. This is fixed in a moment.

6. Perform steps 4 and 5 for the two right points to create
another pin joint.
Once again, the horizontal link remains in this original
position, and the SmartEditor moves the vertical link to
create the pin joint.

7. Select the left vertical link by clicking on it with the
point tool.
Four black boxes appear around the link, indicating that
it has been selected. The boxes are called handles and can
be dragged to resize an object.

8. Using the coordinates bar at the bottom of the screen,
enter a “0” in the (rotation) field.
The coordinates fields at the bottom of the screen are
useful to obtain information on Working Model objects.
These fields can also be used to edit object information.
Changing the rotation to 0° adjusts the bar back to its
original, vertical position.

9. If needed, complete steps 7 and 8 on the right vertical link.

10. Select the anchor used to keep the horizontal link in posi-
tion during building, and press the delete key to remove it.
The anchor is no longer needed and should be removed.

11. Select the “Pin Joint” tool and place a pin joint, using
the snap point, at the lower end of the left, vertical link
as indicated in Figure 2.5. The “Pin Joint” tool appears
as two links joined by a circle.
The “Pin Joint” tool is similar to the point tool used to
create the last two pin joints. The pin tool automatically
creates two points, attaches them to the bodies beneath
the cursor (or the body and the background, as in this

f

case), and creates a joint in one seamless step. This pin
joint joins the rectangle to the background.

12. Double-click on the pin joint to open the “Properties”
window. Verify that the pin was placed half the body
width from the lower edge. This gives an effective link
length of 2.5 in.

Step 5: Add a Motor to the Linkage

This step adds the motor to one of the links, actuating the
linkage.

1. Click on the motor tool in the toolbox. This tool appears
as a circle, sitting on a base and with a point in its center.
The motor tool becomes shaded, indicating that it has been
selected. The cursor should now look like a small motor.

2. Place the cursor over the “snap point” on the lower end
of the right, vertical link. Click the mouse.
A motor appears on the four-bar linkage, as shown in
Figure 2.5. Similar to a pin joint, a motor has two attach-
ment points. A motor automatically connects the top two
bodies. If only one body were to lay beneath the motor, it
would join the body to the background. A motor would
then apply a torque between the two bodies to which it is
pinned.

3. Double-click on the motor to open the “Properties” box.
Verify that the pin was placed half the body width from
the lower edge. This gives an effective link length of 1.0 in.

4. Specify the motor velocity to be 360 deg/s. This equates
to 60 rpm.

5. Click on “Run” in the toolbar.
The four-bar linkage begins slowly cranking through its
range of motion.
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6. Click on “Reset” in the toolbar.
The simulation will reset to frame 0.

7. Double-click on the motor to open the “Properties” box.
This can also be accomplished by selecting the motor and
choosing “Properties” from the “Window” menu to open
the “Properties” box.

8. Increase the velocity of the motor to 600 deg/s by
typing this value in the “Properties” box.
Users can define a motor to apply a certain torque, to
move to a given rotational position, or to turn at a given
velocity or acceleration. Rotation, velocity, and accelera-
tion motors have built-in control systems that automati-
cally calculate the torque needed.

9. Click on “Run” in the toolbar.
The four-bar linkage once again begins to crank, this time
at a much higher velocity.

Step 6: Resize the Links

This step uses the Coordinates Bar on the bottom of the
screen to adjust the size and angle of the links. This section
highlights Working Model’s parametric features. Notice that
when a link is resized, all points stay in their proper positions
and all joints stay intact. Because they were located with the
“Object Snap,” these points are positioned with equations
and automatically adjust during design changes.

1. If not already selected, click on the pointer tool.

2. Click once on the vertical left-hand link to select it.

3. Enter a slightly larger number in the “h” (height) box of
the selected link in the Coordinates Bar at the bottom
of the screen.

The link resizes on the screen. Notice how the
SmartEditor automatically resizes, repositions, and
rebuilds the model based on the parametric equations
entered for each joint location.

4. Similarly, resize the other links and move the position
of the joints. Watch the SmartEditor rebuild the model.
Different configurations of a model can be investigated
using Working Model’s parametric features.

Step 7: Measure a Point’s Position

1. Click on “Reset” in the toolbar.
The simulation stops and resets to frame 0.

2. Select the point tool from the toolbar. It appears as a
small, hollow circle.

3. Place the cursor over the horizontal link of the four-bar
linkage and press the mouse button.
A point is attached to the bar. This is a single point and
does not attach the bar to the background. It is simply a
“point of interest.”

4. When a point is not already selected (darkened), select
it by clicking on it.

5. Create a meter to measure the position of this point by
choosing “Position” from the “Measure” menu.
A new meter appears. Position meters default to display
digital (numeric) information. A digital meter can be
changed to a graph by clicking once on the arrow in the
upper left-hand corner.

6. Click on “Run” in the toolbar.
The simulation immediately begins running and
measurement information appears in the meter, as shown
in Figure 2.6. Meter data can be “exported” as an ASCII

FIGURE 2.6 Running a simulation with a meter.
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FIGURE 2.7 Tracing the path of a point.

file, copied onto the clipboard, and pasted into a
spreadsheet program for further analysis. In this case,
the spreadsheet would receive four columns of
information: Time, X, Y, and Rotation. One row would
appear for each integration time step calculated.

7. Modify the simulation and rerun it.
Working Model’s seamless integration between the
editing and running of the dynamics engine allows 
the user to quickly investigate many different simula-
tion configurations. As an example, modify the mass 
of the horizontal bar using the “Properties” box,
and rerun the simulation. The pin locations can be
modified and links resized; then the velocities and 
forces can be measured. This four-bar linkage can even
be investigated in zero gravity by turning off gravity 
under the “World” menu.

Step 8: Trace the Path of a Point of Interest

This step creates a trace of the movement of a selected point.

1. Select all objects using the box select method described
earlier.
All elements appear black.

2. Select the “Appearance” option in the “Window” menu.

3. In the “Appearance” window, turn off “Track Center of
Mass,”“Track Connect,” and “Track Outline.”
These features can be turned off by clicking over the
appropriate check mark.

4. Click on the background to deselect all objects.

5. Select only the point of interest created in step 7.
Only this point should appear black.

6. Select the “Appearance” option in the “Window” menu.

7. In the “Appearance” window, turn on “Track Connect.”
Make sure only the one point is selected.
This feature can be turned on by clicking over the
appropriate check mark.

Run the simulation. The screen should look like Figure 2.7.

Step 9: Apply What has been Learned

This demonstration illustrates how to create and run simple
simulations in Working Model. The student is encouraged to
experiment with this simulation or to create an original
mechanism. Working Model has an incredible array of
features that allows the creation of models to analyze the
most complex mechanical devices.

2.5 USING WORKING MODEL 
TO MODEL A SLIDER-CRANK
MECHANISM

This section serves as a tutorial to create a slider-crank
mechanism. It should be followed while actually using
Working Model. Again, the student is encouraged to experi-
ment with the software to perform other analyses.

Step 1: Open Working Model as in Step 1 
of the Previous Section

Step 2: Create the Links

This step creates the three moving links in the slider-crank
mechanism. Again, the background serves as the fixed,
fourth link.
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FIGURE 2.8 Three links sketched using the rectangle tool.

1. Create a new Working Model document by selecting
“New” from the “File” menu.

2. Specify the units to be used in the simulation. Select
“Numbers and Units” in the “View” menu. Change the
“Unit System” to SI (degrees).
The units for linear measurement will be meters, angles
will be measured in degrees, and forces will be measured
in Newtons.

3. Construct the linkage by creating the three nonfixed
links. Double-click on the rectangle tool in the toolbar.
The tool is highlighted, indicating that it can be used
multiple times.

4. Using the rectangle tool, sketch out three bodies as
shown in Figure 2.8.
Position the mouse at the first corner, click once, then
move the mouse to the location of the opposite corner and
click again. Rectangles are parametrically defined and
their precise sizes are specified later.

Step 3: Use the Slot Joint to Join the Sliding
Link to the Background

1. Select the “keyed slot” joint icon. The icon appears as a
rectangle riding over a horizontal slot.

2. Move the cursor over the snap point at the center of the
rectangular sliding link. Click the mouse button. The
screen should look like Figure 2.9.

3. Select the pointer tool.

4. Double-click on the slot.
This opens the “Properties” window for the slot.

5. Change the angle to –45°.
The incline of the slot changes.

Drag the other links until the screen appears similar to
Figure 2.10.

Step 4: Connect the Other Links to Form 
Pin Joints

This step creates points and joins them to create pin joints. A
pin joint acts as a hinge between two bodies.

1. Select the anchor tool.

2. Click on the vertical link to anchor the link down.
An anchor tells the SmartEditor not to move this body
during construction. After the pin joints have been
created, the anchor will be deleted.

3. Double-click on the point tool. The icon is a small circle.
The point tool is highlighted, indicating that it can be
used multiple times without needing to be reselected
before each new point is sketched.

4. Place the cursor over the upper portion of one of the
vertical links. When an “X” appears around the pointer
(Figure 2.11), click the mouse button.

5. Place additional points at the ends of the horizontal
link, as shown in Figure 2.11.
Make sure that each of these points is placed at a “snap
point” as evidenced by the “X” appearing at the
pointer.

6. Place another point at the center of the sliding rectangle.
This point is used to create a pin joint to the coupler.
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FIGURE 2.9 Point and slot location.

FIGURE 2.10 Sliding joint.

7. Select the pointer tool.

8. With the pointer tool selected, click on one point that
will be connected with a pin joint. Then, holding down
the shift key, click on the second point that will form a
pin joint. Notice that the two points should now be
highlighted (darkened).

9. Click on the “Join” button in the toolbar, merging the
two points into a pin joint.
The SmartEditor creates a pin joint between the two
selected points, moving the unanchored link into place.
The moved link may no longer be vertical. This will be
fixed in a moment.
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FIGURE 2.12 Adding the pin joints and motor to the linkage.

FIGURE 2.11 Placing points on the other links.

10. Perform steps 8 and 9 for the other two points that will
create another pin joint. The screen will appear similar
to Figure 2.12.

Once again, the vertical link remains in this original
position, and the SmartEditor moves the vertical link to
create the pin joint.

11. Click on the vertical link.
Four black boxes appear around the link, indicating that
it has been selected.

12. Select the “Move to front” option in the “Object” menu.
This places the vertical link in front of the connecting
link, making the anchor visible.
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13. Select the anchor, which is used to keep the vertical link
in position during building, and press the delete key to
remove it.
The anchor is no longer needed and should be
removed.

Step 5: Add a Motor to the Linkage

This step adds the motor to one of the links to drive the 
linkage.

1. Click on the motor tool in the toolbox. This tool
appears as a circle, sitting on a base with a point in its
center.
The motor tool becomes shaded, indicating that it has
been selected. The cursor should now look like a small
motor.

2. Place the cursor over the “snap point” on the vertical
link. Click the mouse.
A motor appears on the slider-crank linkage, as
shown in Figure 2.12. Similar to a pin joint, a motor
has two attachment points. A motor automatically
connects the top two bodies. If only one body were 
to lay beneath the motor, the motor would join 
the body to the background. The motor then applies 
a torque between the two bodies to which it is 
pinned.

3. Click on “Run” in the toolbar.
The slider-crank linkage begins slowly cranking through
its range of motion.

4. Click on “Reset” in the toolbar.
The simulation resets to frame 0.

5. Double-click on the motor to open the “Properties”
box.
This can also be accomplished by selecting the motor and
choosing “Properties” from the “Window” menu to open
the “Properties” box.

6. Increase the velocity of the motor to –300 deg/s by
typing this value in the “Properties” box.
Users can define a motor to apply a certain torque, to
move to a given rotational position, or to turn at a given
velocity or acceleration. Rotation, velocity, and
acceleration motors have built-in control systems that
automatically calculate the torque needed. In this demo,
we use the velocity motor.

7. Click on “Run” in the toolbar.
The slider-crank linkage once again begins cranking, this
time at a much higher velocity.

Step 6: Apply What Has Been Learned

The student is encouraged to experiment with this simula-
tion or to create an original mechanism. Working Model
has an incredible array of features that allows for the
creation of a model to analyze most complex mechanical
devices.

PROBLEMS

Use Working Model software to generate a model of a four-
bar mechanism. Use the following values:

2–1. ; ; ;
;

2–2. ; ; coupler =
95mm ; ;

2–3. ; ; ;
;

Use the Working Model software to generate a model of a
slider-crank mechanism. Use the following values:

2–4. ; ; ;

2–5. ; ; coupler = 350 mm;

2–6. ; ; coupler =
350 mm;

2–7. Figure P2.7 shows a mechanism that operates the land-
ing gear in a small airplane. Use the Working Model
software to generate a model of this linkage. The motor
operates clockwise at a constant rate of 20 rpm.

crank speed = 200 rad/s
crank = 95mmoffset = 50 mm

crank speed = 200 rad/s
crank = 95 mmoffset = 0mm

crank speed = 200 rad/s
coupler = 4.5 in.crank = 1.45 in.offset = 0 in.

crank speed = 25 rpmfollower = 0.75 ft
coupler = 2.1 ftcrank = 0.5 ftframe = 2 ft

crank speed = 30rad/sfollower = 24mm
crank = 12 mmframe = 100mm

crank speed = 200 rad/sfollower = 3.5 in.
coupler = 10 in.crank = 1 in.frame = 9 in.

26"

30"

30"

32"
15°

12"

5"

FIGURE P2.7 Problem 7.

2–8. Figure P2.8 shows a mechanism that operates a
coin-operated child’s amusement ride. Use the
Working Model software to generate a model of this

4" 10"

6"

27"

30"

FIGURE P2.8 Problem 8.
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FIGURE P2.9 Problem 9.
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FIGURE P2.10 Problem 10.
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FIGURE P2.11 Problem 11.

linkage. The motor operates counterclockwise at a
constant rate of 60 rpm.

2–9. Figure P2.9 shows a transfer mechanism that lifts
crates from one conveyor to another. Use the
Working Model software to generate a model of this
linkage. The motor operates counterclockwise at a
constant rate of 20 rpm.

this linkage. The cylinder extends at a constant rate of
1 fpm.

2–12. Figure P2.12 shows a mechanism that applies labels
to packages. Use the Working Model software to
generate a model of this linkage. The motor oper-
ates counterclockwise at a constant rate of 300 rpm.

3.25"

X
Ink pad

Stamp

Box

8"

60°

11.25"

9.38"

6.75"

6.0"

4.32"

FIGURE P2.12 Problem 12.
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FIGURE C2.1 Mechanism for Case Study 2.1.

CASE STUDY

2–1. The mechanism shown in Figure C2.1 is a top view
of a fixture in a machining operation. Carefully
examine the configuration of the components in the
mechanism. Then answer the following leading
questions to gain insight into the operation of the
mechanism.

1. As the handle A is turned, moving the threaded
rod B to the left, describe the motion of grip C.

2. As the handle A is turned, moving the threaded
rod B to the left, describe the motion of grip D.

3. What is the purpose of this mechanism?
4. What action would cause link D to move upward?
5. What is the purpose of spring G?
6. Discuss the reason for the odd shape to links E and F.
7. What would you call such a device?
8. Describe the rationale behind using a rounded end

for the threaded rod B.

2–10. Figure P2.10 shows another transfer mechanism
that pushes crates from one conveyor to another.
Use the Working Model software to generate a
model of this linkage. The motor operates clockwise
at a constant rate of 40 rpm.

2–11. Figure P2.11 shows yet another transfer mechanism
that lowers crates from one conveyor to another. Use
the Working Model software to generate a model of



amount of donuts in the box, the amount is a scalar
quantity. The following are some more examples of scalar
quantities: a board is 8 ft long, a class meets for 50 min, or
the temperature is 78°F—length, time, and temperature are
all scalar quantities.

In contrast, a vector is not fully defined by stating only a
magnitude. Indicating the direction of the quantity is also
required. Stating that a golf ball traveled 200 yards does not
fully describe its path. Neglecting to express the direction of
travel hides the fact that the ball has landed in a lake. Thus,
the direction must be included to fully describe such a quan-
tity. Examples of properly stated vectors include “the crate is
being pulled to the right with 5 lb” or “the train is traveling at
a speed of 50 mph in a northerly direction.” Displacement,
force, and velocity are vector quantities.

Vectors are distinguished from scalar quantities
through the use of boldface type (v). The common nota-
tion used to graphically represent a vector is a line
segment having an arrowhead placed at one end. With a
graphical approach to analysis, the length of the line
segment is drawn proportional to the magnitude of the
quantity that the vector describes. The direction is defined
by the arrowhead and the incline of the line with respect to
some reference axis. The direction is always measured at
its root, not at its head. Figure 3.1 shows a fully defined
velocity vector.

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Differentiate between a scalar quantity and a 
vector.

2. Apply the appropriate trigonometry principles to
a right triangle.

3. Apply the appropriate trigonometry principles to
a general triangle.

4. Determine the resultant of two vectors, using both
graphical and analytical methods.

5. Resolve vector quantities into components in the
horizontal and vertical directions.

6. Subtract two vectors, using both graphical and
analytical methods.

7. Manipulate vector equations.

8. Utilize a vector equation to determine the 
magnitude of two vectors.

C H A P T E R

T H R E E

VECTORS

3.1 INTRODUCTION

Mechanism analysis involves manipulating vector quantities.
Displacement, velocity, acceleration, and force are the
primary performance characteristics of a mechanism, and
are all vectors. Prior to working with mechanisms, a
thorough introduction to vectors and vector manipulation is
in order. In this chapter, both graphical and analytical
solution techniques are presented. Students who have
completed a mechanics course may omit this chapter or use
it as a reference to review vector manipulation.

3.2 SCALARS AND VECTORS

In the analysis of mechanisms, two types of quantities need
to be distinguished. A scalar is a quantity that is sufficiently
defined by simply stating a magnitude. For example, by
saying “a dozen donuts,” one describes the quantity of
donuts in a box. Because the number “12” fully defines the
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FIGURE 3.1 A 45 mph velocity vector.

3.3 GRAPHICAL VECTOR ANALYSIS

Much of the work involved in the study of mechanisms and
analysis of vectors involves geometry. Often, graphical
methods are employed in such analyses because the motion
of a mechanism can be clearly visualized. For more complex
mechanisms, analytical calculations involving vectors also
become laborious.
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FIGURE 3.2 The right triangle.

A graphical approach to analysis involves drawing
scaled lines at specific angles. To achieve results that are
consistent with analytical techniques, accuracy must be a
major objective. For several decades, accuracy in mecha-
nism analyses was obtained with attention to precision and
proper drafting equipment. Even though they were popular,
many scorned graphical techniques as being imprecise.
However, the development of computer-aided design
(CAD) with its accurate geometric constructions has
allowed graphical techniques to be applied with precision.

3.4 DRAFTING TECHNIQUES 
REQUIRED IN GRAPHICAL 
VECTOR ANALYSIS

The methods of graphical mechanism and vector analysis
are identical, whether using drafting equipment or a CAD
package. Although it may be an outdated mode in industrial
analyses, drafting can be successfully employed to learn and
understand the techniques.

For those using drafting equipment, fine lines and cir-
cular arcs are required to produce accurate results. Precise
linework is needed to accurately determine intersection
points. Thus, care must be taken in maintaining sharp draw-
ing equipment.

Accurate measurement is as important as line quality.
The length of the lines must be drawn to a precise scale, and
linear measurements should be made as accurately as possi-
ble. Therefore, using a proper engineering scale with inches
divided into 50 parts is desired. Angular measurements must
be equally precise.

Lastly, a wise choice of a drawing scale is also a very
important factor. Typically, the larger the construction, the
more accurate the measured results are. Drawing precision
to 0.05 in. produces less error when the line is 10 in. long as
opposed to 1 in. Limits in size do exist in that very large
constructions require special equipment. However, an
attempt should be made to create constructions as large as
possible.

A drawing textbook should be consulted for the details
of general drafting techniques and geometric constructions.

3.5 CAD KNOWLEDGE REQUIRED IN
GRAPHICAL VECTOR ANALYSIS

As stated, the methods of graphical mechanism and vector
analysis are identical, whether using drafting equipment or a
CAD package. CAD allows for greater precision. Fortunately,
only a limited level of proficiency on a CAD system is
required to properly complete graphical vector analysis.
Therefore, utilization of a CAD system is preferred and
should not require a large investment on a “learning curve.”

As mentioned, the graphical approach of vector analysis
involves drawing lines at precise lengths and specific angles.
The following list outlines the CAD abilities required for
vector analysis. The user should be able to

� Draw lines at a specified length and angle;

� Insert lines, perpendicular to existing lines;

� Extend existing lines to the intersection of another line;

� Trim lines at the intersection of another line;

� Draw arcs, centered at a specified point, with a specified
radius;

� Locate the intersection of two arcs;

� Measure the length of existing lines;

� Measure the included angle between two lines.

Of course, proficiency beyond these items facilitates more
efficient analysis. However, familiarity with CAD commands
that accomplish these actions is sufficient to accurately
complete vector analysis.

3.6 TRIGONOMETRY REQUIRED
IN ANALYTICAL VECTOR 
ANALYSIS

In the analytical analysis of vectors, knowledge of basic
trigonometry concepts is required. Trigonometry is the
study of the properties of triangles. The first type of triangle
examined is the right triangle.

3.6.1 Right Triangle

In performing vector analysis, the use of the basic trigonomet-
ric functions is vitally important. The basic trigonometric
functions apply only to right triangles. Figure 3.2 illustrates a
right triangle with sides denoted as , and and interior
angles as , and . Note that angle is a 90° right angle.
Therefore, the triangle is called a right triangle.

The basic trigonometric relationships are defined as:

(3.1)

(3.2)

(3.3)

These definitions can also be applied to angle :

 tan ∠ B =
b
a

 cos ∠ B =
a
c

 sin ∠ B =
b
c

B

tangent∠ A = tan∠ A =
side opposite

side adjacent
=

a

b

cosine∠ A = cos∠ A =
side adjacent

hypotenuse
=

b
c

sine∠ A = sin∠ A =
side opposite

hypotenuse
=

a
c

CCA, B
ca, b



Vectors 45

CA

B

35

96"

FIGURE 3.3 Front loader for Example Problem 3.1.

The Pythagorean theorem gives the relationship of the
three sides of a right triangle. For the triangle shown in
Figure 3.2, it is defined as

(3.4)a2 + b2 = c2

Finally, the sum of all angles in a triangle is 180°.
Knowing that angle is 90°, the sum of the other two angles
must be

(3.5)∠A + ∠B = 90°

C

EXAMPLE PROBLEM 3.1

Figure 3.3 shows a front loader with cylinder BC in a vertical position. Use trigonometry to determine the required

length of the cylinder to orient arm AB in the configuration shown.

EXAMPLE PROBLEM 3.2

Figure 3.4 shows a tow truck with an 8-ft boom, which is inclined at a 25° angle. Use trigonometry to determine

the horizontal distance that the boom extends from the truck.

SOLUTION: 1. Determine the Horizontal Projection of the Boom

The horizontal projection of the boom can be determined from equation (3.2):

horizontal projection = (8 ft)cos 25° = 7.25 ft

cos 25° =
horizontal projection

(8 ft)

SOLUTION: 1. Determine Length BC

Focus on the triangle formed by points , and Figure 3.3. The triangle side BC can be found using

equation (3.1).

solving:

2. Determine Length AC

Although not required, notice that the distance between and can similarly be determined using

equation (3.2). Thus

solving:

AC = (96 in.) cos 35° = 78.64 in.

 cos 35° =
AC

(96 in.)

 cos ∠ A =
adjacent side

hypotenuse

CA

BC = (96 in.) sin 35° = 55.06 in.

  sin 35° =
BC

(96 in.)

  sin ∠ A =
opposite side

hypotenuse

C  inA, B
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Overhang

8'

25

11'

6'

FIGURE 3.4 Tow truck for Example Problem 3.2.

A

B
Ca

b

c

FIGURE 3.5 The oblique triangle.

2. Determine Horizontal Projection of Truck and Boom

The horizontal distance from the front end of the truck to the end of the boom is

3. Determine the Overhang

Because the overall length of the truck is 11 ft, the horizontal distance that the boom extends from the 

truck is

13.25 ft - 11 ft = 2.25 ft

6 ft + 7.25 ft = 13.25 ft

3.6.2 Oblique Triangle

In the previous discussion, the analysis was restricted to
right triangles. An approach to general, or oblique, triangles
is also important in the study of mechanisms. Figure 3.5
shows a general triangle. Again, , and denote the length
of the sides and , , and represent the interior
angles.

For this general case, the basic trigonometric functions
described in the previous section are not applicable. To ana-
lyze the general triangle, the law of sines and the law of
cosines have been developed.

The law of sines can be stated as

(3.6)

The law of cosines can be stated as:

(3.7)

In addition, the sum of all interior angles in a general
triangle must total 180°. Stated in terms of Figure 3.4 the
equation would be

(3.8)∠ A + ∠ B + ∠ C = 180°

c2 = a2 + b2 - 2ab cos∠C

a

sin∠A
=

b

 sin ∠B
=

c

 sin ∠C

∠C∠B∠A
ca, b

Problems involving the solution of a general triangle fall
into one of four cases:

Case 1: Given one side and two angles and .

To solve a problem of this nature, equation (3.8) can be
used to find the third angle:

The law of sines can be rewritten to find the remaining
sides.

Case 2: Given two sides and and the angle opposite to
one of the sides .

To solve a Case 2 problem, the law of sines can be used
to find the second angle. Equation (3.6) is rewritten as

Equation (3.8) can be used to find the third angle:

The law of cosines can be used to find the third side.
Equation (3.7) is rewritten as:

c = 3{a2 + b2 - 2ab  cos ∠C}

∠C = 180° - ∠A - ∠B

∠B =  sin -1e a b
a
b  sin ∠A f

(∠A)
b)(a

c = ae  sin ∠C

 sin ∠A
f

b = ae  sin ∠B

 sin ∠A
f

∠C = 180° - ∠A - ∠B

∠B)(∠A(a)
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A C

B

96"

25°

78"

FIGURE 3.6 Front loader for Example Problem 3.3.

Case 3 Given two sides and and the included angle
.

To solve a Case 3 problem, the law of cosines can be
used to find the third side:

The law of sines can be used to find a second angle.
Equation (3.6) is rewritten as

Equation (3.8) can be used to find the third angle:

∠B = 180° - ∠A - ∠C

∠A =  sin -1e aa
c
b  sin ∠Cf

c = 2a2 + b2 - 2ab cos ∠C

(∠C)
b)(a Case 4 Given three sides.

To solve a Case 4 problem, the law of cosines can be
used to find an angle. Equation (3.7) is rewritten as

The law of sines can be used to find a second angle.
Equation (3.6) is rewritten as

Equation (3.8) can be used to find the third angle:

Once familiarity in solving problems involving general
triangles is gained, referring to the specific cases will be
unnecessary.

∠B = 180° - ∠A - ∠C

∠A =  sin-1e aa
c
b  sin ∠C f

∠C =  cos -1 aa2 + b2 - c2

2ab
b

EXAMPLE PROBLEM 3.3

Figure 3.6 shows a front loader. Use trigonometry to determine the required length of the cylinder to orient arm AB

in the configuration shown.

EXAMPLE PROBLEM 3.4

Figure 3.7 shows the drive mechanism for an engine system. Use trigonometry to determine the crank angle as shown

in the figure.

SOLUTION: 1. Determine Angle BAC

By focusing on the triangle created by points , and , it is apparent that this is a Case 4 problem.

Angle BAC can be determined by redefining the variables in the law of cosines:

= cos-1e (5.3 in.)2 + (1 in.)2 - (5 in.)2

2(5.3 in.)(1 in.)
f = 67.3°

∠BAC = cos-1e AC 2 + AB2 - BC 2

2(AC)(AB)
f

CA, B

SOLUTION: 1. Determine Length BC

By focusing on the triangle created by points A, B, and , it is apparent that this is a Case 3 problem. The third

side can be found by using the law of cosines:

Because determining the remaining angles was not required, the procedure described for Case 3 problems

will not be completed.

= 41.55 in.

= 3(78 in.)2 + (96 in.)2 - 2(78 in. )(96 in.) cos 25°

BC = 3AC 2 + AB 2 - 2(AC)(AB) cos∠BAC

C
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A

B

C

5.3"

5"

Crank
angle

1"

FIGURE 3.7 Engine linkage for Example Problem 3.4.

2. Determine the Crank Angle

Angle BAC is defined between side AC (the vertical side) and leg AB. Because the crank angle is defined from a

horizontal axis, the crank angle can be determined by the following:

3. Determine the Other Interior Angles

Although not required in this problem, angle ACB can be determined by

Finally, angle ABC can be found by

∠ABC = 180° - 67.3° - 10.6° = 102.1°

= sin-1e a 1 in.

5 in.
b  sin 67.3°f = 10.6°

∠ACB = sin-1e aAB

BC
b sin∠BAC f

Crank angle = 90° - 67.3° = 22.7°

3.7 VECTOR MANIPULATION

Throughout the analysis of mechanisms, vector quantities
(e.g., displacement or velocity) must be manipulated in dif-
ferent ways. In a similar manner to scalar quantities, vectors
can be added and subtracted. However, unlike scalar quanti-
ties, these are not simply algebraic operations. Because it is
also required to define a vector, direction must be accounted
for during mathematical operations. Vector addition and
subtraction are explored separately in the following sections.

Adding vectors is equivalent to determining the com-
bined, or net, effect of two quantities as they act together.
For example, in playing a round of golf, the first shot off the
tee travels 200 yards but veers off to the right. A second shot
then travels 120 yards but to the left of the hole. A third shot
of 70 yards places the golfer on the green. As this golfer
looks on the score sheet, she notices that the hole is 
labeled as 310 yards; however, her ball traveled 390 yards

yards).
As repeatedly stated, the direction of a vector is just as

important as the magnitude. During vector addition,
does not always equal 2; it depends on the direction of the
individual vectors.

1 + 1

(200 + 120 + 70

3.8 GRAPHICAL VECTOR 
ADDITION

Graphical addition is an operation that determines the net
effect of vectors. A graphical approach to vector addition
involves drawing the vectors to scale and at the proper
orientation. These vectors are then relocated, maintaining
the scale and orientation. The tail of the first vector is
designated as the origin (point . The second vector is
relocated so that its tail is placed on the tip of the first
vector. The process then is repeated for all remaining
vectors. This technique is known as the tip-to-tail method
of vector addition. This name is derived from viewing a
completed vector polygon. The tip of one vector runs into
the tail of the next.

The combined effect is the vector that extends from
the tail of the first vector in the series to the tip of the
last vector in the series. Mathematically, an equation
can be written that represents the combined effect of
vectors:

R = A +7 B +7 C +7 D +7 .  . .

O)

(+ 7)
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FIGURE 3.8 Vectors for Example Problem 3.5.

Vector R is a common notation used to represent the resultant
of a series of vectors. A resultant is a term used to describe the
combined effect of vectors. Also note that the symbol is
used to identify vector addition and to differentiate it from
algebraic addition [Ref. 5].

It should be noted that vectors follow the commutative
law of addition; that is, the order in which the vectors are
added does not alter the result. Thus,

+>
The process of combining vectors can be completed graphi-
cally, using either manual drawing techniques or CAD soft-
ware. Whatever method is used, the underlying concepts are
identical. The following example problems illustrate this
concept.

1B +> A +> C2 = .  .  .

R = 1A +> B +> C2 = 1C +> B +> A2 =

EXAMPLE PROBLEM 3.5

Graphically determine the combined effect of velocity vectors A and B, as shown in Figure 3.8.

SOLUTION: 1. Construct Vector Diagrams

To determine the resultant, the vectors must be relocated so that the tail of B is located at the tip of A. To verify

the commutative law, the vectors were redrawn so that the tail of A is placed at the tip of B. The resultant is

the vector drawn from the tail of the first vector, the origin, to the tip of the second vector. Both vector diagrams

are shown in Figure 3.9.

2. Measure the Resultant

The length vector R is measured as 66 in./s. The direction is also required to fully define vector R. The angle

from the horizontal to vector R is measured as 57°. Therefore, the proper manner of presenting the solution is

as follows:

R = 66 in./s      57°

FIGURE 3.9 The combined effect of vectors A and B for Example Problem 3.5.

0

30° 60°

25

in./s

Scale:

50

A = 59 in./s B = 30 in./s

Q 
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A = 200 lb
B = 226 lb C = 176 lb

D = 300 lb

15° 45° 20°

0 100

lb

Scale:

200

FIGURE 3.10 Vectors for Example Problem 3.6.

SOLUTION: 1. Construct Vector Diagrams

To determine the resultant, the vectors must be relocated so that the tail of B is located at the tip of A. Then the

tail of C is placed on the tip of B. Finally, the tail of D is placed on the tip of C. Again, the ordering of vectors is

not important, and any combination could be used. As an illustration, another arbitrary combination is used in

this example. The resultant is the vector drawn from the tail of the first vector, at the origin, to the tip of the

fourth vector. The vector diagrams are shown in Figure 3.11.

2. Measure the Resultant

The length vector R is measured as 521 lb. The direction is also required to fully define the vector R. The angle

from the horizontal to vector R is measured as 68°. Therefore, the proper manner of presenting the solution is as

follows:

R = 521 in./s    68°

3.9 ANALYTICAL VECTOR 
ADDITION : TRIANGLE 
METHOD

Two analytical methods can be used to determine the net
effect of vectors. The first method is best suited when 
the resultant of only two vectors is required. As with the

(+ 7)
graphical method, the two vectors to be combined are
placed tip-to-tail. The resultant is found by connecting
the tail of the first vector to the tip of the second vector.
Thus, the resultant forms the third side of a triangle. In
general, this is an oblique triangle, and the laws des-
cribed in Section 3.6.2 can be applied. The length of the
third side and a reference angle must be determined

FIGURE 3.11 The combined effect of vectors A, B, C, and D for Example Problem 3.6.

EXAMPLE PROBLEM 3.6

Graphically determine the combined effect of force vectors A, B, C, and D, as shown in Figure 3.10.

Q 
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A = 46 ft/s2

B = 23 ft/s2

20°
75°

FIGURE 3.12 Vectors for Example Problem 3.7.

R

B

R = A +> B

A

75°

20°
β

θ

FIGURE 3.13 Combined effect of vectors A and B for
Example Problem 3.7.

EXAMPLE PROBLEM 3.7

Analytically determine the resultant of two acceleration vectors as shown in Figure 3.12.

SOLUTION: 1. Sketch a Rough Vector Diagram

The vectors are placed tip-to-tail as shown in Figure 3.13. Note that only a rough sketch is required because the

resultant is analytically determined.

2. Determine an Internal Angle

The angle between A and the horizontal is 20°. By examining Figure 3.13, the angle between vectors 

A and B is:

Therefore, the problem of determining the resultant of two vectors is actually a general triangle situation as

described in Section 3.6.2 (Case 3).

3. Determine Resultant Magnitude

By following the procedure outlined for a Case 3 problem, the law of cosines is used to find the magnitude of the

resultant:

4. Determine Magnitude Direction

The law of sines can be used to find the angle between vectors A and R:

5. Fully Specify Resultant

The angle from the horizontal is . The resultant can be properly written as:

or

R = 53.19 ft./s2 134.5°

R = 53.19 ft. /s2 45.5°

20° + 25.5° = 45.5°

=  sin-1e (23 ft/s2)

(53.19 ft/s2) sin 95°
f = 25.5°

b = sin-1e aB

R
b  sin u f

= 3(46 ft/s2)2 +  (23 ft/s2)2 - 2(46 ft/s2)(23 ft/s2){cos9°} = 53.19 ft/s2

R = 2A2 + B 2 - 2ABcosu

u = 20° + 75° = 95°

through the laws of sines and cosines to fully define
the resultant vector. This method can be illustrated
through an example problem. To clearly distinguish

quantities, vectors are shown in boldface type (D) while
the magnitude of the vector is shown as non-bold, italic
type .(D)

a 

Q 



52 CHAPTER THREE

3.10 COMPONENTS 
OF A VECTOR

The second method for analytically determining the
resultant of vectors is best suited for problems where more
than two vectors are to be combined. This method involves
resolving vectors into perpendicular components.

Resolution of a vector is the reverse of combining
vectors. A single vector can be broken into two separate
vectors, along convenient directions. The two vector com-
ponents have the same effect as the original vector.

In most applications, it is desirable to concentrate on a
set of vectors directed vertically and horizontally; therefore,
a typical problem involves determining the horizontal and
vertical components of a vector. This problem can be solved
by using the tip-to-tail approach, but in reverse. To explain
the method, a general vector, A, is shown in Figure 3.14.

important. Therefore, it is irrelevant whether the horizontal
or vertical vector is drawn first. Figure 3.14c illustrates the
components of a general vector in the opposite order.

Notice that the magnitude of the components can be
found from determining the sides of the triangles shown in
Figure 3.14. These triangles are always right triangles, and
the methods described in Section 3.3 can be used. The
directions of the components are taken from sketching the
vectors as in Figure 3.14b or 3.14c. Standard notation con-
sists of defining horizontal vectors directed toward the right
as positive. All vertical vectors directed upward are also
defined as positive. In this fashion, the direction of the
components can be determined from the algebraic sign asso-
ciated with the component.

An alternative method to determine the rectangular
components of a vector is to identify the vector’s angle with
the positive -axis of a conventional Cartesian coordinate
system. This angle is designated as . The magnitude of the
two components can be computed from the basic trigono-
metric relations as

(3.9)

(3.10)

The importance of this method lies in the fact that the
directions of the components are evident from the sign that
results from the trigonometric function. That is, a vector
that points into the second quadrant of a conventional
Cartesian coordinate system has an angle, , between 90°
and 180°. The cosine of such an angle results in a negative
value, and the sine results in a positive value. Equations (3.9)
and (3.10) imply that the horizontal component is negative
(i.e., toward the left in a conventional coordinate system)
and the vertical component is positive (i.e., upward in a
conventional system).

ux

Av = A sin ux

Ah = A cos ux

u

x

A

A

Ah

Ah

Av
Av

A

(a) (b) (c)

FIGURE 3.14 Components of a vector.

EXAMPLE PROBLEM 3.8

A force, F, of 3.5 kN is shown in Figure 3.15. Using the analytical triangle method, determine the horizontal and

vertical components of this force.

F = 3.5 kN

35°

FIGURE 3.15 Force vector for Example Problem 3.8.

F = 3.5 kN

Fh

Fv

35°

FIGURE 3.16 Force components for Example Problem 3.8.

Two vectors can be drawn tip-to-tail along the hori-
zontal and vertical that have the net effect of the original. The
tail of the horizontal vector is placed at the tail of the original,
and the tip of the vertical vector is placed at the tip of the
original vector. This vector resolution into a horizontal
component, , and the vertical component, , is shown in
Figure 3.14b. Recall that the order of vector addition is not

AvAh

SOLUTION: 1. Sketch the Vector Components

The horizontal vector (component) is drawn from the tail of vector F. A vertical vector (component) is

drawn from the horizontal vector to the tip of the original force vector. These two components are shown in

Figure 3.16.
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2. Use Triangle Method

Working with the right triangle, an expression for both components can be written using trigonometric func-

tions:

Both these expressions can be solved in terms of the magnitude of the desired components:

3. Use x-axis, Angle Method

An alternative solution is obtained by using equations (3.9) and (3.10). The angle from the positive -axis to

the vector F is 215°. The  components are computed as follows:

= 2.0 kNT
Fv = F  sin ux = (3.5 kN) sin 215° = -2.0 kN

= 2.87kN;
Fh = F  cos ux = (3.5 kN)  cos 215° = -2.87 kN

xux

= -2.00 kN

Fv = (3.5kN) sin 35° = 2.00 kNT
= -2.87 kN

Fh = (3.5kN) cos 35° = 2.87kN;

cos 35° =
adjacent side

hypotenuse
=

Fh

3.5 kN

sin 35° =
opposite side

hypotenuse
=

Fv

3.5 kN

3.11 ANALYTICAL VECTOR
ADDITION :
COMPONENT METHOD

The components of a series of vectors can be used to deter-
mine the net effect of the vectors. As mentioned, this method
is best suited when more than two vectors need to be com-
bined. This method involves resolving each individual vector
into horizontal and vertical components. It is standard to
use the algebraic sign convention for the components as
described previously.

All horizontal components may then be added into a
single vector component. This component represents the net
horizontal effect of the series of vectors. It is worth noting
that the component magnitudes can be simply added
together because they all lay in the same direction. These
components are treated as scalar quantities. A positive or
negative sign is used to denote the sense of the component.
This concept can be summarized in the following equation:

(3.11)Rh = Ah + Bh + Ch + Dh + Á

(+ 7)
Similarly, all vertical components may be added

together into a single vector component. This component
represents the net vertical effect of the series of vectors:

(3.12)

The two net components may then be added vectorally
into a resultant. Trigonometric relationships can be used to
produce the following equations:

(3.13)

(3.14)

This resultant is the combined effect of the entire series of
vectors. This procedure can be conducted most efficiently
when the computations are arranged in a table, as demon-
strated in the following example problem.

ux = tan-1 a Rv

Rh
b

R = 3Rh
2 + Rv

2

Rv = Av + Bv + Cv + Dv + Á

EXAMPLE PROBLEM 3.9

Three forces act on a hook as shown in Figure 3.17. Using the analytical component method, determine the net effect

of these forces.

SOLUTION: 1. Use x-axis, Angle Method to Determine Resultant Components

The horizontal and vertical components of each force are determined by trigonometry and shown in

Figure 3.18. Also shown are the vectors rearranged in a tip-to-tail fashion. The components are organized in

Table 3.1.
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C = 50 lb
Bv

Bh Ch

B

A

C
R

Cv

A = 30 lb

B = 20 lb

60°45°

FIGURE 3.18 Components of vectors in Example Problem 3.9.

Rh = 19.14 lb

Rv = 57.44 lbR

θx

FIGURE 3.19 Resultant vector for Example Problem 3.9.

TABLE 3.1 Vector Components for Example Problem 3.9.

Vector
Reference 

Angle ux

h component (lb)
Fh = F  cos  ux

v component (lb)
Fv = F  sin  ux

A 0° Ah = (30)cos  0° = + 30 lb Av = (30)sin  0° = 0

B 45° Bh = (20)cos  45° = +14.14  lb Bv = (20)sin  45° = +14.14  lb

C 120° Ch = (50)cos  120° = -25  lb Cv = (50)sin  120° = +43.30  lb

Rh = 19.14 Rv = 57.44

Notice in Figure 3.18 that adding the magnitudes of the horizontal components is tracking the total

“distance” navigated by the vectors in the horizontal direction. The same holds true for adding the magni-

tudes of the vertical components. This is the logic behind the component method of combining vectors. For

this problem, adding the individual horizontal and vertical components gives the components of the resul-

tant as follows:

and

2. Combine the Resultant Components

The resultant is the vector sum of two perpendicular vectors, as shown in Figure 3.19.

Rv = 57.44  lb. 

Rh = 19.14  lb. 

C = 50 lb
B = 20 lb

A = 30 lb

60° 45°

FIGURE 3.17 Forces for Example Problem 3.9.

The magnitude of the resultant can be found from equation (2.13):

= 3(19.14 lb)2 + (57.44 lb)2 = 60.54 lb

R = 3Rh
2 + Rv

2



Vectors 55

The angle of the resultant can be found:

Thus the resultant of the three forces can be formally stated as

R = 60.54 lb. 71.6°

ux = tan-1 aRv

Rh
b = tan-1 a 57.44 lb

19.14 lb
b = 71.6°

3.12 VECTOR SUBTRACTION 

In certain cases, the difference between vector quantities
is desired. In these situations, the vectors need to be sub-
tracted. The symbol denotes vector subtraction,
which differentiates it from algebraic subtraction [Ref. 5].
Subtracting vectors is accomplished in a manner similar
to adding them. In effect, subtraction adds the negative,
or opposite, of the vector to be subtracted. The negative
of a vector is equal in magnitude, but opposite in direc-
tion. Figure 3.20 illustrates a vector A and its negative,

A.-7

-7

(- 7)

A −>A

FIGURE 3.20 Negative vector.

Whether a graphical or analytical method is used, a
vector diagram should be drawn to understand the pro-
cedure. Consider a general problem where vector B must be
subtracted from A, as shown in Figure 3.21a.

This subtraction can be accomplished by first drawing
the negative of vector B, . This is shown in Figure
3.21b. Then, vector can be added to vector A, as shown
in Figure 3.21c. This subtraction can be stated mathe-
matically as

Notice that this expression is identical to the subtraction of
scalar quantities through basic algebraic methods. Also, the
outcome of the vector subtraction has been designated J.
The notation R is typically reserved to represent the result of
vector addition.

Figure 3.21d shows that the same vector subtraction
result by placing the vector B onto vector A, but opposite to
the tip-to-tail orientation. This method is usually preferred,
after some confidence has been established, because it elimi-
nates the need to redraw a negative vector. Generally stated,
vectors are added in a tip-to-tail format whereas they are
subtracted in a tip-to-tip format. This concept is further
explored as the individual solution methods are reviewed in
the following example problems.

3.13 GRAPHICAL VECTOR 
SUBTRACTION 

As discussed, vector subtraction closely parallels vector
addition. To graphically subtract vectors, they are relocated
to scale to form a tip-to-tip vector diagram. The vector to be
subtracted must be treated in the manner discussed in
Section 3.12.

Again, the process of subtracting vectors can be completed
graphically, using either manual drawing techniques or CAD
software. Whatever method is used, the underlying concepts
are identical. The specifics of the process are shown in the
following examples.

(-7)

J = A -7  B = A +7 (-7B)

-7B
-7B

A B B

J

A

0

(a) (b) (c) (d)

−>B −>B

J

A

0

FIGURE 3.21 Vector subtraction.

EXAMPLE PROBLEM 3.10

Graphically determine the result of subtracting the velocity vector B from , as shown in

Figure 3.22.

A, J = A -7 B

A = 32 in./s

B = 56 in./s

0 20

in./s

Scale:

4066°

9°

FIGURE 3.22 Vectors for Example Problem 3.10.

Q 
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FIGURE 3.23 for Example Problem 3.10.J = A - 7  B

A = 200 lb

B = 226 lb

D = 300 lb

C = 176 lb

0 100

lb

Scale:

200

65°

60°15°

FIGURE 3.24 Vectors for Example Problem 3.11.

EXAMPLE PROBLEM 3.11

Graphically determine the result, , of the force vectors as shown in Figure 3.24.J = A -7 B -7 C +7 D

SOLUTION: 1. Construct the Vector Diagram

To determine the result, the vectors are located in the tip-to-tail form, but vector B points toward vector A. Again,

this occurs because B is being subtracted (opposite to addition). The vector diagram is shown in Figure 3.23.

2. Measure the Result

The resultant extends from the tail of A, the origin, to the tail of B. The length vector J is measured as 

56.8 in./s.

The direction is also required to fully define the vector J. The angle from the horizontal to vector J is

measured as 99°. Therefore, the proper manner of presenting the solution is as follows:

or

J = 56.8 in./s 99°

J = 56.8 in./s     81°Q 

a 
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SOLUTION: 1. Construct the Vector Diagram

To determine the result, , the vectors must be relocated tip-to-tail or tip-to-tip,

depending on whether they are added or subtracted. Vector B must be drawn pointing toward vector A because B
is being subtracted. A similar approach is taken with vector C. The tail of vector D is then placed on the tail of

C because D is to be added to the series of previously assembled vectors. The completed vector diagram is shown

in Figure 3.25.

J = A -7  B -7  C +7  D

FIGURE 3.25 Result for Example Problem 3.11.

From viewing the vector polygon in Figure 3.25, it appears that vectors B and C were placed in backward,

which occurs with vector subtraction.

2. Measure the Result

The length of vector J is measured as 365 lb. The angle from the horizontal to vector J is measured as 81°.

Therefore, the proper manner of presenting the solution is as follows:

J = 365 lb     81°

3.14 ANALYTICAL VECTOR
SUBTRACTION : TRIANGLE
METHOD

As in analytically adding vectors, the triangle method is
best suited for manipulation of only two vectors. A vector
diagram should be sketched using the logic as described in

(-7 )
the previous section. Then the triangle laws can be used to
determine the result of vector subtraction. This general
method is illustrated through the following example
problem.

Q 
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EXAMPLE PROBLEM 3.12

Analytically determine the result of the vectors shown in Figure 3.26.J = A -7  B

15°
A = 15 ft/s2 B = 10 ft/s2

FIGURE 3.26 Vectors for Example Problem 3.12.

βθ 0

J

J = A −> B

B

A 15°15°

FIGURE 3.27 The result for Example Problem 3.12.

2. Determine an Internal Angle

Because the angle between A and the horizontal is 15°, the angle between A and the vertical is 75°. Notice that the

angle between the vertical and A is the same as the angle labeled ; thus, .

The problem of determining the result of is actually a general triangle situation as described in

Section 3.6.2 (Case 3).

3. Determine the Magnitude of the Result

Following the procedure outlined for a Case 3 problem, the law of cosines is used to find the magnitude of the

resultant:

4. Determine the Direction of the Result

The law of sines can be used to find the angle between vectors A and J:

5. Fully Specify the Result

From examining Figure 3.27, the angle that J makes with the horizontal is . The solution

can be properly written as

J = 15.73 ft/s2 22.9°

37.9° - 15° = 22.9°

=  sin -1e 10 ft /s2

15.73 ft /s2  sin 75 f = 37.9°

b =  sin -1e aB

J
b  sin u f

= 3(15 ft/s2)2 + (10 ft/s2)2 - 2(15 ft/s2) (10 ft/s2) cos 75° = 15.73 ft/s2

J = 2A2 + B2 - 2AB cos u

A -7 B

u = 75°u

SOLUTION: 1. Sketch a Rough Vector Diagram

The vectors are placed into a vector polygon, as shown in Figure 3.27. Again, vector B is placed pointing toward

vector A because it is to be subtracted. Also note that only a rough sketch is required because the resultant is

analytically determined.

b 



Vectors 59

3.15 ANALYTICAL VECTOR
SUBTRACTION :
COMPONENT METHOD

The component method can be best used to analytically
determine the result of the subtraction of a series of vectors.
This is done in the same manner as vector addition.
Consider the general problem of vector subtraction defined
by the following equation:

The horizontal and vertical components of each vector can
be determined (as in Section 3.10). Also, a sign convention
to denote the sense of the component is required. The con-
vention that was used in Section 3.10 designated compo-
nents that point either to the right or upward with a positive
algebraic sign.

J = A +7  B -7 C +7  D +7 Á

(-7)
Because they are scalar quantities, the individual

components can be algebraically combined by addition or
subtraction. For the general problem stated here, the hori-
zontal and vertical components of the result can be written
as follows:

Notice the components of C are subtracted from all the
other components. This is consistent with the desired vector
subtraction. Using equations (3.13) and (3.14), the two
result components may then be combined vectorally into a
resultant. This resultant is the result of the vector manipu-
lation of the entire series of vectors. Again, the procedure
can be conducted most efficiently when the computations
are arranged in a table.

Jv = Av + Bv - Cv + Dv + Á
Jh = Ah + Bh - Ch + Dh + Á

EXAMPLE PROBLEM 3.13

Analytically determine the result for the velocity vectors shown in Figure 3.28.J = A -7  B +7  C +7  D

A = 6 ft/s
B = 12 ft/s

C = 8 ft/s

D = 10 ft/s
30°

15°

45°

30°

FIGURE 3.28 Forces for Example Problem 3.13.

SOLUTION: 1. Sketch a Rough Vector Diagram

The horizontal and vertical components of each velocity are determined by trigonometry using equations (3.9)

and (3.10) and shown in Figure 3.29. Also shown are the vectors rearranged in a series: tip-to-tail for addition

and tail-to-tip for subtraction.

O

Av
A B

J

Bh

Bv
Ch

Cv

C
D

Dh

Dv

Ah

FIGURE 3.29 Result for Example Problem 3.13.

TABLE 3.2 Component Values for Example Problem 3.13.

Vector
Reference 

Angle ux

h component (ft/s)
Vh = V  cos ux

v component (ft /s)
Vv = V sin ux

A 300° +3.00 -5.19

B 195° -11.59 -3.11

C 45° +5.66 +5.66

D 330° +8.66 -5.00

2. Use x-axis, Angle Method to Determine Components

The values of the component are listed in Table 3.2.
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3. Determine the Components of the Solution

Algebraic manipulation of the individual horizontal and vertical components gives the components of the

resultant:

4. Combine the Components of the Solution

The magnitude and direction of the resultant may be determined by vectorally adding the components

(Figure 3.30).

= (-5.19) - (-3.11) + (+5.66) + (-5.00) = -1.42 ft /s

Jv = Av - Bv + Cv + Dv

= (+3.0) - (-11.59) + (+5.66) + (+8.66) = + 28.91 ft/s

Jh = Ah - Bh + Ch + Dh

Jh

θx

JvJ

FIGURE 3.30 Resultant vector for Example Problem 3.13.

3.16 VECTOR EQUATIONS

As already shown in Section 3.8, vector operations can
be expressed in equation form. The expression for sub-
tracting two vectors, , is actually a vector
equation. Vector equations can be manipulated in a man-
ner similar to algebraic equations. The terms can be
transposed by changing their signs. For example, the
equation

A +7  B -7  C = D

J = A -7  B

can be rearranged as:

The significance of vector equations has been seen with
vector addition and subtraction operations. In vector
addition, vectors are placed tip-to-tail, and the resultant is a
vector that extends from the origin of the first vector to the
end of the final vector. Figure 3.31a illustrates the vector
diagram for the following:

R = A +7  B +7  C

A +7  B = C +7  D

C

B

A

A +> B +> C = R B +> C = R −> A A +> C = −> B +> R

O

(a)

R

C

C

BB

A

O

(b) (c)

RR

A

O

FIGURE 3.31 Vector equations.

The magnitude of the solution can be determined from equation (3.13):

The angle of the solution can be found from the tangent function:

Thus, the solution can be formally stated as

J = 28.94 ft/s   2.8°

ux =  tan -1aJv

Jh
b = tan-1a-1.42 ft /s

28.91 ft /s
b = -2.8°

= 3(28.91 ft /s)2 + (-1.42 ft/s)2 = 28.94 ft /s

J = 3Jh
2 + J v

2

R 
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EXAMPLE PROBLEM 3.14

Write a vector equation for the arrangement of vectors shown in Figure 3.32.

The upper path states: A +7B +7  C +7  D

The lower path states: E +7  F

The equation can be rewritten as

The vector diagram shown in Figure 3.31b illustrates this
form of the equation. Notice that because vector A is
subtracted from R, vector A must point toward R. Recall that
this is the opposite of the tip-to-tail method because
subtraction is the opposite of addition.

Notice that as the diagram forms a closed polygon, the
magnitude and directions for all vectors are maintained.

B +7  C = R -7  A

This verifies that vector equations can be manipulated
without altering their meaning. The equation can be rewritten
once again as (Figure 3.31c):

As illustrated in Figure 3.31, a vector equation can be
rewritten into several different forms. Although the vector
polygons created by the equations have different shapes, the
individual vectors remain unaltered. By using this principle, a
vector equation can be written to describe a vector diagram.

-7 B +7  R = A +7  C

C

F
E

B

A

O1

O2

D

P1

FIGURE 3.32 Vector diagram for Example Problem 3.14.

SOLUTION: 1. Write an Equation to Follow the Two Paths from to 

Use point as the origin for the vector equation and follow the paths to point :P1O1

P1O1

The upper path states: C +7  D

The lower path states: -7  B -7  A +7  E -7  F

Thus, the equation can be written as follows:

Notice that these are two forms of the same equation.

O2P1 = C +7  D = -7 A -7   B +7   E +7  F

Because they start at a common point and end at a common point, both paths must be vectorally equal.

Thus, the following equation can be written as:

2. Write an Equation to Follow the Two Paths from to 

Another equation can be written by using point as the origin and following the paths to 

point :P1

O2

P1O2

O1P1 = A +7   B +7   C +7   D = E +7   F
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EXAMPLE PROBLEM 3.15

Write a vector equation for the arrangement of vectors shown in Figure 3.33. Then rewrite the equation to eliminate

the negative terms and draw the associated vector diagram.

D

O

E

B

A

C

F

P

FIGURE 3.33 Vector diagram for Example Problem 3.15.

The upper path states: A -7  B +7  C -7  D

The lower path states: -7 E +7  F

D

E

B

A

C

F

P

O

FIGURE 3.34 Rearranged diagram for Example Problem 3.15.

3.17 APPLICATION OF VECTOR
EQUATIONS

Each vector in an equation represents two quantities: a
magnitude and a direction. Therefore, a vector equation
actually represents two constraints: The combination of
the vector magnitudes and the directions must be equi-
valent. Therefore, a vector equation can be used to solve for

two unknowns. In the addition and subtraction problems
previously discussed, the magnitude and direction of the
resultant were determined.

A common situation in mechanism analysis involves
determining the magnitude of two vectors when the direc-
tion of all vectors is known. Like the addition of vectors, this
problem also involves two unknowns. Therefore, one vector
equation is sufficient to complete the analysis.

SOLUTION: 1. Write an Equation to Follow the Two Paths from to 

Use point as the origin for the vector equation and follow the paths to the point :P1O1

P1O1

Thus, the following equation can be written as

2. Rewrite the Equation

To eliminate the negative terms, vectors B, D, and E all must be transposed to their respective opposite sides of

the equation. This yields the following equation:

Note that the order of addition is not significant. Rearranging the vectors into a new diagram is shown in

Figure 3.34.

Familiarity with vector equations should be gained, as they are used extensively in mechanism analysis.

For example, determining the acceleration of even simple mechanisms involves vector equations with six or more

vectors.

A +7   C +7  E = B +7   D +7  F

O1P1 = A -7   B +7   C -7   D = -7  E +7  F
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EXAMPLE PROBLEM 3.16

A vector equation can be written as

The directions for vectors A, B, C, D, and E are known, and the magnitudes of vectors B, C, and D are also known

(Figure 3.35). Graphically determine the magnitudes of vectors A and E.

A +7  B +7  C = D +7  E

B = 100 in./s2

E
30°

60° 0

Scale:

50

in./s2

100

A C = 124 in./s2

D = 150 in./s2

FIGURE 3.35 Vectors for Example Problem 3.16.

3.18 GRAPHICAL DETERMINATION OF
VECTOR MAGNITUDES

For problems where the magnitude of two vectors in an
equation must be determined, the equation should be
rearranged so that one unknown vector is the last term on
each side of the equation. To illustrate this point, consider
the case where the magnitudes of vectors A and B are to be
found. The vector equation consists of the following:

and should be rearranged as

Notice that both vectors with unknown magnitudes, A and
B, are the last terms on both sides of the equation.

C +7  B = D +7  E +7  A

A +7   B +7   C = D +7   E

To graphically solve this problem, the known vectors
on each side of the equation are placed tip-to-tail (or tip-
to-tip if the vectors are subtracted) starting from a com-
mon origin. Of course, both sides of the equation must end
at the same point. Therefore, lines at the proper direction
should be inserted into the vector polygon. The inter-
section of these two lines represents the equality of the
governing equation and solves the problem. The lines can
be measured and scaled to determine the magnitudes of the
unknown vectors. The sense of the unknown vector is also
discovered.

This process of determining vector magnitudes can be
completed graphically, using either manual drawing
techniques or CAD software. Whatever method is used, the
underlying strategy is identical. The solution strategy can be
explained through example problems.

SOLUTION: 1. Rewrite Vector Equations

First, the equation is rewritten so that the unknown magnitudes appear as the last term on each side of the

equation:

2. Place All Fully Known Vectors into the Diagram

Using point as the common origin, vectors B and C can be drawn tip-to-tail. Because it is on the other side of

the equation, vector D should be drawn from the origin (Figure 3.36a).

O

B +7  C +7  A = D +7  E

C

D

(a)

B O

C

Direction of A

Direction
of E

D

(b)

B O

FIGURE 3.36 Vector diagrams for Example Problem 3.16.
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3. Place Directional Lines for Unknown Vectors

Obviously, vectors A and E close the gap between the end of vectors C and D. A line that represents the direction

of vector A can be placed at the tip of C. This is dictated by the left side of the vector equation. Likewise, a line

that represents the direction of vector E can be placed at the tip of D (Figure 3.36b).

4. Trim Unknown Vectors at the Intersection and Measure

The point of intersection of the two lines defines both the magnitude and sense of vectors A and E.

A complete vector polygon can be drawn as prescribed by a vector equation (Figure 3.36c).

The following results are obtained by measuring vectors A and E:

E = 306  in./s2c

A = 160  in./s2:

EXAMPLE PROBLEM 3.17

A vector equation can be written as follows:

The directions for vectors A, B, C, D, E, and F are known, and the magnitudes of vectors B, C, E, and F are also known,

as shown in Figure 3.37. Graphically solve for the magnitudes of vectors A and D.

A +7  B -7  C +7  D = E +7  F

D

B = 130 in./s2
E = 200 in./s2

F = 100 in./s2

C = 60 in./s2

30°45°60°

60°A
0

Scale:

50

in./s2

100

FIGURE 3.37 Vectors for Example Problem 3.17.

(c)

FIGURE 3.36 Continued
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B

F

C

E

(a)
O

B

F

D

C

E

A

(b)
O

FIGURE 3.38 Vector diagrams for Example Problem 3.17.

4. Trim the Unknown Vectors at the Intersection and Measure

The point of intersection of the two lines defines both the magnitude and sense of vectors A and D. The sense of D
is chosen in a direction that is consistent with its being subtracted from the right side of the equation. The complete

vector polygon can be drawn as prescribed by the vector equation (Figure 3.38c).

The following results are obtained by measuring vectors A and D:

D = 68  in./s2 60°

A = 30 in./s2T

SOLUTION: 1. Rewrite the Vector Equation

The equation is first rewritten so that the unknown magnitudes appear as the last term on each side of the

equation:

2. Place All Fully Known Vectors into the Diagram

Using point as the common origin, vectors B and C can be drawn tip-to-tip (because C is being subtracted).

Because they are on the other side of the equation, vectors E and F are placed tip-to-tail starting at the origin

(Figure 3.38a).

O

B -7  C +7  A = E +7  F -7  D

3. Place Directional Lines for the Unknown Vectors

As in Example Problem 3.16, vectors A and D must close the gap between the end of vectors C and D. A line that

represents the direction of vector A can be placed at the tip of C. This is dictated by the left side of the vector

equation. Likewise, a line that represents the direction of vector D can be placed at the tip of F (Figure 3.38b).

(c)

a 
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3.19 ANALYTICAL DETERMINATION OF
VECTOR MAGNITUDES

An analytical method can also be used to determine the
magnitude of two vectors in an equation. In these cases,
the horizontal and vertical components of all vectors
should be determined as in Section 3.10. Components of
the vectors with unknown magnitudes can be written in
terms of the unknown quantity. As in the previous com-
ponent methods, an algebraic sign convention must be
followed while computing components. Therefore, at
this point, a sense must be arbitrarily assumed for the
unknown vectors.

The horizontal components of the vectors must adhere to
the original vector equation. Likewise, the vertical components
must adhere to the vector equation. Thus, two algebraic equa-
tions are formed and two unknown magnitudes must be
determined. Solving the two equations simultaneously yields
the desired results. When either of the magnitudes determined
has a negative sign, the result indicates that the assumed sense
of the vector was incorrect. Therefore, the magnitude deter-
mined and the opposite sense fully define the unknown vector.

This method is illustrated in the example problem below.

EXAMPLE PROBLEM 3.18

A vector equation can be written as follows:

The directions for vectors A, B, C, D, E, and F are known, and the magnitudes of vectors B, C, E, and F are also known,

as shown in Figure 3.39. Analytically solve for the magnitudes of vectors A and D.

A +7  B -7  C +7  D = E +7  F

D

B = 130 in./s2
E = 200 in./s2

F = 100 in./s2
C = 60 in./s2

30°45°60°

60°A

FIGURE 3.39 Vectors for Example Problem 3.18.

SOLUTION: 1. Use x-axis, Angle Method to Determine Vector Components

The horizontal and vertical components of each force are determined by trigonometry. For the unknown

vectors, the sense is assumed and the components are found in terms of the unknown quantities. For this

example, assume vector A points upward and vector D points down and to the right. The components are given

in Table 3.3.

TABLE 3.3 Vector Components for Example Problem 3.18.

Vector
Reference 

Angle ux

h component (in./s2)
ah = a  cos ux

v component (in./s2)
av = a  sin ux

A 90° 0 +A

B 60° +65.0 +112.6

C 135° -42.4 +42.4

D 300° + .500D - .866D

E 30° +173.2 +100

F 180° -100 0

2. Use the Vector Equations to Solve for Unknown Magnitudes

The components can be used to generate algebraic equations that are derived from the original vector 

equation:

horizontal components:

(0) + (+65.0) - (-42.4) + (+0.500 D) = (+173.2) + (-100.0)

Ah + Bh - Ch + Dh = Eh + Fh

A +7  B -7  C +7  D = E +7  F
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PROBLEMS

Although manual drafting techniques are instructive for
problems that require graphical solution, use of a CAD
system is highly recommended.

Working with Triangles

3–1. Analytically determine the angle in Figure P3.1.u

A

18"
5"

θ

FIGURE P3.1 Problems 1 and 2.

X

R

6"
60

θ

FIGURE P3.3 Problems 3 and 4.

(a) (b)

(c)

4"

6"

R

R

30

5'

8 m

5 m

θ
θ

θ

R

FIGURE P3.5 Problem 5.

s

β

y

xs

FIGURE P3.6 Problems 6 to 9.

3–6. Determine the angle, , and the length, , of the
two identical support links in Figure P3.6 when

and .y = 275mmx = 150mm

sb

vertical components:

In this case, the horizontal component equation can be solved independently for . In general, both

equations are coupled and need to be solved simultaneously. In this example, the horizontal component equa-

tion can be solved to obtain the following:

Substitute this value of into the vertical component equation to obtain:

3. Fully Specify the Solved Vectors

Because both values are negative, the original directions assumed for the unknown vectors were incorrect.

Therefore, the corrected results are

p
D = 68.4 in./s2 60°

A = 29.4 in./s2

A = -29.4 in./s2

D

D = -68.4 in./s2

D

(+A) + (+112.6) - (42.4) + (-0.866D) = (+100.0) + (0)

Av + Bv - Cv + Dv = Ev + Fv

3–2. Analytically determine the length of side 
Figure P3.1.

3–3. Analytically determine the length of side 
Figure P3.3.

3–4. Calculate the angle and the hypotenuse 
Figure P3.3.

3–5. Calculate the angle and the hypotenuse for all
triangles in Figure P3.5.

Ru

R  inu

X  in

A  in

3–7. Determine the distance, , and the length, , of the
two identical support links in Figure P3.6 when

and .y = 16 inb = 35°

sx

a 



68 CHAPTER THREE

3–17. For the farm conveyor shown in Figure P3.16, deter-
mine the angle when a vertical height of 8 m is
required at the end of the conveyor and ,

, and .

3–18. Determine the vertical height of the basket in 
Figure P3.18 when ., ., .,

., , and .f = 10fte = 6ftd = 60 in
c = 30 inb = 36 ina = 24 in

L = 13md = 10 m
x = 8m

b

b

c

f

e

d

a

FIGURE P3.18 Problems 18 and 19.

β
x

s

d

s

FIGURE P3.10 Problems 10 and 11.

3–13. For the ramp shown in Figure P3.12, determine the
angle with the ground, . The trailer height is 1.5 m
and the ramp is 4 m long.

3–14. The length of the ladder shown in Figure P3.14 is 12
ft and the angle with the ground, , is 70°.
Determine the vertical distance on the wall where
the ladder is resting.

b

b

h

β

FIGURE P3.12 Problems 12 and 13.

3–8. For the folding shelf in Figure P3.6, with 
and ., determine the distances and .

3–9. A roof that has an 8-on-12 pitch slopes upward 8
vertical in. for every 12 in. of horizontal distance.
Determine the angle with the horizontal of such a roof.

3–10. For the swing-out window in Figure P3.10, deter-
mine the length, , of the two identical support links
when , , and .b = 35°d = 500 mmx = 850 mm

s

yxs = 10 in
b = 35°

3–11. For the swing-out window in Figure P3.10, deter-
mine the angle when ., ., and

.

3–12. If the height, , of the trailer shown in Figure P3.12
is 52 in., determine the length of ramp needed to
maintain an angle, , of 30°.b

h

s = 7 in
d = 16 inx = 24 inb

L

β

FIGURE P3.14 Problems 14 and 15.

3–15. For the ladder shown in Figure P3.14, determine the
angle with the ground. The ladder is 7 m long and
rests on the ground 2 m from the wall.

3–16. For the farm conveyor shown in Figure P3.16, deter-
mine the required length of the support rod. The
angle is and the distances are and

. Also determine the vertical height of the
end of the conveyor when .L = 25 ft
d = 16ft

x = 20ftb = 28°

x

β

d

L

FIGURE P3.16 Problems 16 and 17.



Vectors 69

0

30°

B = 15

A = 10

5

Scale:

10

FIGURE P3.20 Problems 20, 26, 32, 33, 38, 39.

0

30°45°

B = 3
A = 4

1

Scale:

2

FIGURE P3.21 Problems 21, 27, 34, 35, 40, 41.

0

20°

B = 150A = 150

50

Scale:

100
70°

FIGURE P3.22 Problems 22, 28, 36, 37, 42, 43.

3–23. For the vectors shown in Figure P3.23, graphically
determine the resultant, .R = A +7 B +7 C

0
30°

B = 15
A = 12.5

5

Scale:

10

60°

C = 7.5
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FIGURE P3.23 Problems 23, 29, 44, 45, 52, 53.

0
20°

C = 100

A = 50

B = 75
Scale:

50

70°
D = 40

40°

FIGURE P3.24 Problems 24, 30, 46, 47, 54, 55.
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FIGURE P3.25 Problems 25, 31, 48, 49, 56, 57.

3–19. For the lift described in Problem 3–18, determine
the vertical height of the basket when the hydraulic
cylinder is shortened to 50 in.

Graphical Vector Addition

3–20. For the vectors shown in Figure P3.20, graphically
determine the resultant, .R = A +7 B

3–21. For the vectors shown in Figure P3.21, graphically
determine the resultant, .R = A +7 B

3–22. For the vectors shown in Figure P3.22, graphically
determine the resultant, .R = A +7 B

3–24. For the vectors shown in Figure P3.24, graphically
determine the resultant, .R = A +7 B +7 C +7 D

3–25. For the vectors shown in Figure P3.25, graphically
determine the resultant,

sD +7 E
R = A +7 B+7 C+7

Analytical Vector Addition

3–26. For the vectors shown in Figure P3.20, analytically
determine the resultant, .

3–27. For the vectors shown in Figure P3.21, analytically
determine the resultant, .

3–28. For the vectors shown in Figure P3.22, analytically
determine the resultant, .

3–29. For the vectors shown in Figure P3.23, analytically
determine the resultant, .

3–30. For the vectors shown in Figure P3.24, analytically
determine the resultant, .

3–31. For the vectors shown in Figure P3.25, analytically
determine the resultant,

.

Graphical Vector Subtraction

3–32. For the vectors shown in Figure P3.20, graphically
determine the vector, .

3–33. For the vectors shown in Figure P3.20, graphically
determine the vector, .

3–34. For the vectors shown in Figure P3.21, graphically
determine the vector, .

3–35. For the vectors shown in Figure P3.21, graphically
determine the vector, .

3–36. For the vectors shown in Figure P3.22, graphically
determine the vector, .

3–37. For the vectors shown in Figure P3.22, graphically
determine the vector, .K = B -7 A

J = A-7 B

K = B-7A

J = A -7  B

K = B -7 A

J = A -7 B

C +7 D +7 E
R = A +7 B +7

R = A +7 B +7 C +7 D

R = A +7 B +7 C

R = A +7 B

R = A +7 B

R = A +7 B
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FIGURE P3.58 Problems 58 and 61.

0

70°

B = 100

A = 125

C = 50

D

Scale:

50

30° 60°

E = 75
45°

F
30°

FIGURE P3.59 Problems 59 and 62.

Analytical Vector Subtraction

3–38. For the vectors shown in Figure P3.20, analytically
determine the vector, .

3–39. For the vectors shown in Figure P3.20, analytically
determine the vector, .

3–40. For the vectors shown in Figure P3.21, analytically
determine the vector, .

3–41. For the vectors shown in Figure P3.21, analytically
determine the vector, .

3–42. For the vectors shown in Figure P3.22, analytically
determine the vector, .

3–43. For the vectors shown in Figure P3.22, analytically
determine the vector, .

General Vector Equations (Graphical)

3–44. For the vectors shown in Figure P3.23, graphically
determine the vector, .

3–45. For the vectors shown in Figure P3.23, graphically
determine the vector, .

3–46. For the vectors shown in Figure P3.24, graphically
determine the vector, .

3–47. For the vectors shown in Figure P3.24, graphically
determine the vector, .

3–48. For the vectors shown in Figure P3.25, graphically det-
ermine the vector, .

3–49. For the vectors shown in Figure P3.25, graphically det-
ermine the vector, .

3–50. Using the vector diagram in Figure P3.50:

a. Generate an equation that describes the vector
diagram.

b. Rewrite the equations to eliminate the negative
terms.

c. Roughly scale the vectors and rearrange them
according to the equation generated in part b.

K = B -7 D +7 A -7 C +7 E

J = C +7 A -7 B +7  D-7 E

K = B-7  D+7A-7C

J = C +7 A -7 B +7 D

K = B -7 A -7 C

J = C +7 A -7 B

K = B -7 A

J = A -7  B

K = B -7 A

J = A -7  B

K = B -7 A

J = A -7  B

B

E
C

D

A

FIGURE P3.50 Problem 50.

3–51. Using the vector diagram in Figure P3.51:

a. Generate an equation that describes the vector
diagram.

b. Rewrite the equations to eliminate the negative
terms.

c. Roughly scale the vectors and rearrange them
according to the equation generated in part b.

3–52. For the vectors shown in Figure P3.23, analytically
determine the vector, .J = C +7 A -7 B

B E C

D

A

FIGURE P3.51 Problem 51.

3–53. For the vectors shown in Figure P3.23, analytically
determine the vector, .

3–54. For the vectors shown in Figure P3.24, analytically
determine the vector, .

3–55. For the vectors shown in Figure P3.24, analytically
determine the vector, .

3–56. For the vectors shown in Figure P3.25, analytically det-
ermine the vector, .

3–57. For the vectors shown in Figure P3.25, analytically det-
ermine the vector, .

Solving for Vector Magnitudes (Graphical)

3–58. A vector equation can be written as
. The directions of all

vectors and magnitudes of A, B, and D are shown in
Figure P3.58. Graphically (using either manual
drawing techniques or CAD) determine the magni-
tudes of vectors C and E.

A +7B -7C = D -7E

K = B-7 D +7 A -7 C +7 E

J = C +7 A -7 B +7 D -7 E

K = B -7 D +7 A -7 C

J = C + 7  A -7 B +7 D

K = B -7 A -7 C

3–59. A vector equation can be written as 
. The directions of all vectors and magni-

tudes of A, B, C, and E are shown in Figure P3.59.
Graphically (using either manual drawing techniques
or CAD) determine the magnitudes of vectors D and F.

D = E +  F
A +7 B +  C-7
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3–60. A vector equation can be written as
. The directions of all vec-

tors and magnitudes of A, D, E, and F are shown in
Figure P3.60. Graphically (using either manual
drawing techniques or CAD) determine the magni-
tudes of vectors B and C.

A +7 B +  C -7 D+7E
7. In what direction must the force applied to plate 

by spring act?
8. List other machines, other than an adding machine,

that could use this device.
9. What is the function of pin ?

3–2. An automatic machine that forms steel wire
occasionally jams when the raw material is over-
sized. To prevent serious damage to the machine, it
was necessary for the operator to cut off power
immediately when the machine became jammed.
However, the operator is unable to maintain a close
watch over the machine to prevent damage.
Therefore, the following mechanism has been
suggested to solve the problem.

3. Figure C3.2 shows that gear drives a mating
gear (not shown) that operates the wire-forming
machine. Driveshaft carries collar , which is
keyed to it. Gear has a slip fit onto shaft . Two
pins, and , attach links and , respectively,
to gear . An additional pin on gear is used to
hold the end of spring . Carefully examine the
configuration of the components in the mecha-
nism. Then, answer the following leading ques-
tions to gain insight into the operation of the
mechanism.

1. As driveshaft turns clockwise, what is the motion
of collar ?B

A

H
CC

DFEG
AC

BA

C

D

C
A

G
H

F

D
A

C

B

E

FIGURE C3.2 (Courtesy, Industrial Press)
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FIGURE P3.60 Problems 60 and 63.
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FIGURE C3.1 (Courtesy, Industrial Press)

Solving for Vector Magnitudes (Analytical)

3–61. Analytically determine vectors C and E from
Problem 3–58.

3–62. Analytically determine vectors D and F from
Problem 3–59.

3–63. Analytically determine vectors B and C from
Problem 3–60.

CASE STUDIES

3–1. Figure C3.1 shows two of many keys from an adding
machine that was popular several years ago. End
views are also shown to illustrate the configuration at
keys 1 and 2. Carefully examine the configuration of
the components in the mechanism. Then, answer the
following leading questions to gain insight into the
operation of the mechanism.

1. As key 2 is pressed, what happens to rocker plate ?
2. What is the purpose of spring ?
3. What is the purpose of spring ?
4. As button 2 is pressed, what happens to button 1?
5. What is the purpose of this device?
6. Because force is a vector, its direction is important.

In what direction must the force applied to button 1
by the spring act?B

B
C

A

2. If gear is not fixed to collar , how can the clock-
wise motion from the shaft rotate the gear?

3. What happens to the motion of gear if link is
forced upward?

4. What action would cause link to move upward?
5. What resistance would link have to move upward?
6. What is the purpose of this device?
7. What would you call such a device?
8. How does this device aid the automatic wire-forming

machine described here?
9. This device must be occasionally “reset.” Why and

how will that be accomplished?
10. Because force is a vector, its direction is important.

In what direction must the forces applied by the
spring act?

11. List other machines, other than the wire-forming
one, that could use this device.

H

D
D

DC

BC
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C H A P T E R

F O U R

POSITION AND DISPLACEMENT 
ANALYSIS

Another investigation might be to understand the path
of the different components during the clamping process.
Proper clearances with other machine components must be
ensured. Position analysis is commonly repeated at several
intervals of mechanism movement to determine the location
of all links at various phases of the operation cycle. The focus
of this chapter is on these types of position and displace-
ment analyses.

4.2 POSITION

Position refers to the location of an object. The following
sections will address the position of points and links.

4.2.1 Position of a Point

The position of a point on a mechanism is the spatial location
of that point. It can be defined with a position vector, R, from
a reference origin to the location of the point. Figure 4.2
illustrates a position vector, , defining the planar position
of point . As with all vectors, the planar position of a point
can be specified with a distance from the origin (vector
magnitude) and angle from a reference axis (orientation).

An alternative practice used to identify the position of a
point is with rectangular components of the position vector
in a reference coordinate system. Notice that the position
of point in Figure 4.2 can be defined with its and 
components, and , respectively.

4.2.2 Angular Position of a Link

The angular position of a link is also an important quantity.
An angular position, , is defined as the angle a line betweenu

Ry
PRx

P

yxP

P
RP

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Define position and displacement of a point.

2. Graphically and analytically determine the position of
all links in a mechanism as the driver links are
displaced.

3. Graphically and analytically determine the limiting
positions of a mechanism.

4. Graphically and analytically determine the position 
of all links for an entire cycle of mechanism 
motion.

5. Plot a displacement diagram for various points on a
mechanism as a function of the motion of other points
on the mechanism.

4.1 INTRODUCTION

For many mechanisms, the sole purpose of analysis is to
determine the location of all links as the driving link(s) of the
mechanism is moved into another position. Consider a
machining clamp, as shown in Figure 4.1. If such a clamp is
integrated into a machine, it is essential to understand the
motion of the various links. One investigation might be to
determine the motion of the handle that is required to close
the jaw. This is a repeated motion that will be required from
machine operators. Access, the effort required to operate, and
other “human factors” criteria must be considered in using
the clamp. Position analysis often involves repositioning the
links of a mechanism between two alternate arrangements.

FIGURE 4.1 Machining clamp. (Courtesy of Carr Lane Mfg.)
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FIGURE 4.3 Displacement vector for point .P

two points on that link forms with a reference axis.
Referring to Figure 4.2, line MN lies on link 4. The angular
position of link 4 is defined by , which is the angle
between the -axis and line MN. For consistency, angular
position is defined as positive if the angle is measured coun-
terclockwise from the reference axis and negative if it is
measured clockwise.

4.2.3 Position of a Mechanism

The primary purpose in analyzing a mechanism is to study
its motion. Motion occurs when the position of the links and
the reference points that comprise the mechanism are
changed. As the position of the links is altered, the mecha-
nism is forced into a different configuration, and motion
proceeds.

Recall from Chapter 1 that an important property of
a mechanism is the mobility or degrees of freedom. For
linkages with one degree of freedom, the position of one
link or point can precisely determine the position of all
other links or points. Likewise, for linkages with two degrees
of freedom, the position of two links can precisely deter-
mine the position of all other links.

Therefore, the position of all points and links in a
mechanism is not arbitrary and independent. The inde-
pendent parameters are the positions of certain “driver”
links or “driver” points. The primary goal of position
analysis is to determine the resulting positions of the
points on a mechanism as a function of the position of
these “driver” links or points.

4.3 DISPLACEMENT

Displacement is the end product of motion. It is a vector that
represents the distance between the starting and ending
positions of a point or link. There are two types of displace-
ments that will be considered: linear and angular.

4.3.1 Linear Displacement

Linear displacement, , is the straight line distance between
the starting and ending position of a point during a time
interval under consideration. Figure 4.3 illustrates a point 
on a mechanism that is displaced to position Pœ.

P

¢R

x
u4

The linear displacement of point is denoted as 
and is calculated as the vectoral difference between the initial
position and the final position. Given in equation form:

(4.1)

Notice that linear displacement is not the distance
traveled by the point during motion.

The magnitude of the displacement vector is the
distance between the initial and final position during an
interval. This magnitude will be in linear units (inches, feet,
millimeters, etc.). The direction can be identified by an angle
from a reference axis to the line that connects the two posi-
tions. The sense of the vector is from the initial position and
pointing toward the final position.

4.3.2 Angular Displacement

Angular displacement, , is the angular distance between
two configurations of a rotating link. It is the difference
between the starting and ending angular positions of a link,
as shown in Figure 4.4. While possessing a magnitude
and direction (clockwise or counterclockwise), angular dis-
placement is not technically a vector since it does not adhere
to commutative and associative laws of vector addition.

The angular displacement of a link, say link 3, is
denoted as and determined with equation (4.2).

(4.2)

The magnitude of the angular displacement is the angle
between the initial and final configuration of a link during
an interval. This magnitude will be in rotational units (e.g.,
degrees, radians, and revolutions), and denoting either
clockwise or counterclockwise specifies the direction.

¢u3 = u3œ - u3

¢u3

¢u

¢RP = RP œ - 7 RP

¢RPP

Ry
P

Rx
P

RP
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x
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θ

FIGURE 4.2 Position vector for point .P
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FIGURE 4.4 Angular displacement.
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FIGURE 4.5 Typical position analysis.

FIGURE 4.6 Two geometric inversions of a four-bar mechanism.

4.4 DISPLACEMENT ANALYSIS

A common kinematic investigation is locating the position
of all links in a mechanism as the driver link(s) is displaced.
As stated in Section 4.2, the degrees of freedom of a mecha-
nism determine the number of independent driver links. For
the most common mechanisms, those with one degree of
freedom, displacement analysis consists of determining the
position of all links as one link is displaced. The positions of
all links are called the configuration of the mechanism.

Figure 4.5 illustrates this investigation. The mechanism
shown has four links, as numbered. Recall that the fixed link,
or frame, must always be included as a link. The mechanism
also has four revolute, or pin, joints.

From equation (1.1), the degrees of freedom can be
calculated as follows:

With one degree of freedom, moving one link precisely posi-
tions all other links in the mechanism. Therefore, a typical
displacement analysis problem involves determining the
position of links 3 and 4 in Figure 4.5 as link 2 moves to
a specified displacement. In this example, the driving
displacement is angular, clockwise.¢u2 = 15°

M = 3(4 - 1) - 2(4) = 1

disassembling the mechanism or traveling through dead
points. Thus, when conducting a displacement analysis,
inspecting the original configuration of the mechanism is
necessary to determine the geometric inversion of interest.

4.5 DISPLACEMENT: GRAPHICAL 
ANALYSIS

4.5.1 Displacement of a Single 
Driving Link

In placing a mechanism in a new configuration, it is neces-
sary to relocate the links in their respective new positions.
Simple links that rotate about fixed centers can be relocated
by drawing arcs, centered at the fixed pivot, through the
moving pivot, at the specified angular displacement. This was
illustrated in Figure 4.5 as link 2 was rotated 15° clockwise.

In some analyses, complex links that are attached to the
frame also must be rotated. This can be done using several
methods. In most cases, the simplest method begins by
relocating only one line of the link. The other geometry that
describes the link can then be reconstructed, based on the
position of the line that has already been relocated.

Figure 4.7 illustrates the process of rotating a complex
link. In Figure 4.7a, line AB of the link is displaced to its
desired position, clockwise. Notice that the
relocated position of point is designated as .BœB

¢u2 = 80°

Nearly all linkages exhibit alternate configurations for a
given position of the driver link(s). Two configurations for
the same crank position of a four-bar mechanism are shown
in Figure 4.6. These alternate configurations are called
geometric inversions. It is a rare instance when a linkage can
move from one geometric inversion to a second without

80°
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A

B'
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rBC
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C' B'
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FIGURE 4.7 Rotating a complex link.
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FIGURE 4.8 Constrained paths of points on a link pinned to the frame.
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FIGURE 4.9 Constructing the constrained path of .C

The next step is to determine the position of the
relocated point , which is designated as . Because the
complex link is rigid and does not change shape during
movement, the lengths of lines AC and BC do not change.
Therefore, point can be located by measuring the lengths
of AC and BC and striking arcs from points and , respec-
tively (Figure 4.7b).

A second approach can be employed on a CAD system.
The lines that comprise the link can be duplicated and
rotated to yield the relocated link. All CAD systems have a
command that can easily rotate and copy geometric entities.
This command can be used to rotate all lines of a link about
a designated point, a specified angular displacement. It is
convenient to display the rotated link in another color and
place it on a different layer.

4.5.2 Displacement of the Remaining 
Slave Links

Once a driver link is repositioned, the position of all other
links must be determined. To accomplish this, the possible
paths of all links that are connected to the frame should be
constructed. For links that are pinned to the frame, all points
on the link can only rotate relative to the frame. Thus, the
possible paths of those points are circular arcs, centered at
the pin connecting the link to the frame.

Figure 4.8 illustrates a kinematic diagram of a mecha-
nism. Links 2, 4, and 6 are all pinned to the frame. Because
points , and are located on links 2, 4, and 6, respec-
tively, their constrained paths can be readily constructed.
The constrained path of point is a circular arc, centered at
point , which is the pin that connects link 2 to the frame.
The constrained paths of and can be determined in a
similar manner.

The constrained path of a point on a link that is
connected to the frame with a slider joint can also be easily
determined. All points on this link move in a straight line,
parallel to the direction of the sliding surface.

After the constrained paths of all links joined to the
frame are constructed, the positions of the connecting links
can be determined. This is a logical process that stems from
the fact that all links are rigid. Rigidity means that the links
do not change length or shape during motion.

In Figure 4.5, the positions of links 3 and 4 are desired as
link 2 rotates 15° clockwise. Using the procedures described

EC
A

B

EB,C

BœA
C œ

C œC
in Section 4.5.1, Figure 4.9 shows link 2 relocated to its
displaced location, which defines the position of point .
The constrained path of point has also been constructed
and shown in Figure 4.9.

Because of its rigidity, the length of link 3 does not
change during motion. Although link 2 has been reposi-
tioned, the length between points and does not
change. To summarize the facts of this displacement analy-
sis, the following is known:

1. Point has been moved to 

2. Point must always lay on its constrained path (length
from and

3. The length between and must stay constant (C�
must be a length from .

From these facts, the new position of link 3 can be
constructed. The length of line BC should be measured.
Because point has been moved to , an arc of length is
constructed with its center at . By sweeping this arc, the
feasible path of point has been determined. However,
point must also lay on its constrained path, as shown in
Figure 4.9. Therefore, point must be located at the
intersection of the two arcs. This process is illustrated in
Figure 4.10. Note that the two arcs will also intersect at a
second point. This second point of intersection is a consider-
able distance from and represents a second geometric
inversion for this linkage. The linkage must be disassembled
and reassembled to achieve this alternate configuration, so
that intersection can be ignored.

It is possible that the two arcs do not intersect at all.
Cases where the constrained path and feasible path do not
intersect indicate that length of the individual links
prevents the driver link from achieving the specified
displacement.

C

C œ
C

C œ
Bœ

rBCBœB

Bœ)rBC
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FIGURE 4.11 Kinematic diagram for Example Problem 4.1.

FIGURE 4.10 Locating the position of .C œ

Once has been located, the position of links 3 and 4
can be drawn. Thus, the configuration of the mechanism as
the driver link was repositioned has been determined

This section presents the logic behind graphical posi-
tion analysis—that is, locating a displaced point as the
intersection of the constrained and feasible paths. This
logic is merely repeated as the mechanisms become more
complex. The actual solution can be completed using

C œ manual drawing techniques (using a protractor and
compass) or can be completed on a CAD system (using a
rotate and copy command). The logic is identical; however,
the CAD solution is not susceptible to the limitations of
drafting accuracy. Regardless of the method used, the
underlying concepts of graphical position analysis can be
further illustrated and expanded through the following
example problems.

EXAMPLE PROBLEM 4.1

Figure 4.11 shows a kinematic diagram of a mechanism that is driven by moving link 2. Graphically reposition the

links of the mechanism as link 2 is displaced 30° counterclockwise. Determine the resulting angular displacement of

link 4 and the linear displacement of point .

SOLUTION: 1. Calculate Mobility

To verify that the mechanism is uniquely positioned by moving one link, its mobility can be calculated. Six links

are labeled. Notice that three of these links are connected at point . Recall from Chapter 1 that this arrangement

must be counted as two pin joints. Therefore, a total of six pin joints are tallied. One sliding joint connects links

1 and 6. No gear or cam joints exist:

and

With one degree of freedom, moving one link uniquely positions all other links of the mechanism.

M = 3(n - 1) - 2jp - jh = 3(6 - 1) - 2(7) - 0 = 15- 14= 1

n = 6 jp = (6 pins + 1 sliding) = 7 jh = 0

C

E
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FIGURE 4.12 Displacement constructions for Example Problem 4.1.

2. Reposition the Driving Link

Link 2 is graphically rotated 30° counterclockwise, locating the position of point This is shown in

Figure 4.12a

Bœ.

3. Determine the Paths of All Links Directly Connected to the Frame

To reposition the mechanism, the constrained paths of all the points on links that are connected to the frame

, and are drawn. This is also shown in Figure 4.12a.

4. Determine the Precise Position of Point

Being rigid, the shape of link 3 cannot change, and the distance between points and remains

constant. Because point has been moved to , an arc can be drawn of length , centered at . This arcBœrBCBœB

(rBC)CB

C œ
E)(B,C
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FIGURE 4.13 Cutting snips for Example Problem 4.2.

EXAMPLE PROBLEM 4.2

Compound-lever snips, as shown in Figure 4.13, are often used in place of regular tinner snips when large cutting

forces are required. Using the top handle as the frame, graphically reposition the components of the snips when the

jaw is opened 15°. Determine the resulting displacement of the lower handle.

represents the feasible path of point . The intersection of this arc with the constrained path of yields the

position of . This is shown in Figure 4.12b.

5. Determine the Precise Position of Point

This same logic can be used to locate the position of point . The shape of link 5 cannot change, and the dis-

tance between points and remains constant. Because point has been moved to , an arc can be

drawn of length , centered at . This arc represents the feasible path of point . The intersection of this arc

with the constrained path of yields the position of (Figure 4.12b).

6. Measure the Displacement of Link 4 and Point

Finally, with the position of and determined, links 3 through 6 can be drawn. This is shown in

Figure 4.12c. The displacement of link 4 is the angular distance between the new and original position and

measured as

The displacement of point is the linear distance between the new and original position of point .

The distance between and is measured and adjusted for the drawing scale.

¢RE = .9544 in.;
E œE

EE

¢u4 =  26�, counterclockwise

E œC œ
E œ

E œE

E œC œrCE

C œC(rCE)EC

E œ
E œ

C œ
CC œ

SOLUTION: 1. Draw the Kinematic Diagram and Calculate Mobility

The kinematic diagram for the snips is given in Figure 4.14a. The top handle has been designated as the frame,

and points of interest were identified at the tip of the upper cutting jaw and at the end of the bottom handle

. Notice that this is the familiar four-bar mechanism, with one degree of freedom. Moving one link, namely

the jaw, uniquely positions all other links of the mechanism.

2. Reposition the Driving Link

To reposition the mechanism, the top cutting jaw, link 2, is rotated 15° counterclockwise. This movement corre-

sponds to an open position. The point of interest, , also needs to be rotated with link 2.

3. Determine the Precise Position of Point

Because this is a four-bar mechanism, the position of point is the intersection of its constrained path and

feasible path. Figure 4.14b shows the constructions necessary to determine the position of .

4. Determine the Precise Position of Point

Finally, the location of point of interest must be determined. Link 4 is rigid and its shape is not altered. Because

the side has been located, point can be readily found.

Similar to the procedure described in Figure 4.7b, the length of side DY does not change. Therefore, the

path of point can be constructed from point . Also, the length of side CY will not change. However, point 

has been relocated to . Another feasible path for can be constructed from . The intersection of these two

paths gives the final location of . This construction is shown in Figure 4.14c.Y œ
C œY œC œ

CDY

Y œC œD

Y

Y œ
C œ

C œ
C œ

X

(Y)

(X)
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D

Y

(a)

C

A

B

X4

3

1
2

D

Y

(b)

C

A

Constrained
path of C

Feasible path
of C′

B

B′

15°

C′
X

X′

rBC

rCD

(c)

FIGURE 4.14 Constructions for Example Problem 4.2.

5. Measure the Displacement of Link 4

The displacement required from the bottom handle in order to open the jaw 15° can be measured. From

Figure 4.14c, the bottom handle, link 4, must be displaced:

¢u4 = 35°, counterclockwise

4.6 POSITION: ANALYTICAL 
ANALYSIS

Generally speaking, analytical methods can be used in posi-
tion analysis to yield results with a high degree of accuracy.
This accuracy comes with a price in that the methods often
become numerically intensive. Methods using complex

notation, involving higher-order math, have been developed
for position analysis [Refs. 4, 9, 11, 12].

For design situations, where kinematic analysis is not a
daily task, these complex methods can be difficult to under-
stand and implement. A more straightforward method
of position analysis involves using the trigonometric laws
for triangles. Admittedly, this “brute-force” technique is not
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30°

40
Dimensions are in millimeters

50

FIGURE 4.15 Toggle clamp for Example Problem 4.3.

EXAMPLE PROBLEM 4.3

Figure 4.15 shows a toggle clamp used to securely hold parts. Analytically determine the displacement of the clamp

surface as the handle rotates downward, 15°.

efficient for those involved in kinematic research. However,
for the typical design engineer, the simplicity far outweighs
all inefficiencies. Thus, this triangle method of position
analysis will be used in this text.

In general, this method involves inserting reference lines
within a mechanism and analyzing the triangles. Laws of gen-
eral and right triangles are then used to determine the lengths
of the triangle sides and the magnitude of the interior angles.
As details about the geometry of the triangles are determined,
this information is assembled to analyze the entire mechanism.

A substantial benefit of analytical analysis is the ability
to alter dimensions and quickly recalculate a solution.
During the design stages, many machine configurations and
dimensions are evaluated. Graphical analysis must be com-
pletely repeated for each evaluation. Analytical methods,
specifically when implemented with spreadsheets or other
computer-based tools, can update solutions quickly.

The analytical method of position analysis can best be
seen through the following examples.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram is given in Figure 4.16a. The end of the handle was labeled as point of interest .X

A

B

(a)

(b)

X

C

A

B

40

30°

50

C

3

4

1

2

(c)

A

B′
40 15°50

C

FIGURE 4.16 Mechanism for Example Problem 4.3.
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γ

θ2 θ3

L2
L3

L4

FIGURE 4.17 In-line slider-crank mechanism.

2. Analyze the Geometry in the Original Configuration

For this slider-crank mechanism, a triangle is naturally formed between pin joints , , and . This triangle is

shown in Figure 4.16b.

Prior to observing the mechanism in a displaced configuration, all properties of the original configuration

must be determined. The internal angle at joint , , can be determined from the law of sines,

equation (3.6):

The interior angle at joint , , can be found because the sum of all interior angles in any triangle

must total 180°:

The length side AC represents the original position of the slider and can be determined from the law of

cosines, equation (3.7):

3. Analyze the Geometry in the Displaced Configuration

The displaced configuration is shown in Figure 4.16c when the handle is rotated downward 15°. Note that this

displacement yields an interior angle at joint , , of 15°. The law of sines can be used to find the interior

angle at joint , :

Again, the interior angle at joint , , can be found because the sum of all interior angles in any

triangle must total 180°:

The length side represents the displaced position of the slider. As before, it can be determined from the

law of cosines:

4. Calculate the Desired Displacement

The displacement of point during this motion can be found as the difference of the triangle sides and AC:

¢RC = AC œ - AC = 86.14 - 74.52 = 11.62 mm ;
ACœC

= 86.14 mm

= 3(50 mm)2 + (40 mm)2 - 2(50 mm)(40 mm)cos(146.12 �) = 86.14 mm

AC œ = 3ABœ2 + B œCœ2 - 2(ABœ) (BœCœ) cos∠ABœC œ

AC œ

∠AB œC œ = 180° - (15° + 18.88°) = 146.12°

∠AB œC œB œ

∠BœC œA = sin-1 c a ABœ

B œC œ b sin∠C œABœ d = sin-1 c a 50 mm

40 mm
b sin 15°d = 18.88°

∠B œC œAC œ
∠C œABœA

= 74.52 mm

= 3(50 mm)2 + (40 mm)2 - 2(50 mm)(40 mm){cos 111.32°}

AC = 3AB2 + BC2 - 2(AB ) (BC )cos∠ABC

∠ABC = 180° - (30° + 38.68°) = 111.32°

∠ABCB

∠BCA = sin-1 c a AB

BC
b sin∠B AC d = sin-1 c a 50 mm

40 mm
b sin 30°d = 38.68°

sin∠BAC

(BC)
=

sin∠BCA

(AB)

∠BCAC

CBA

4.6.1 Closed-Form Position Analysis
Equations for an In-Line Slider-Crank

The clamp mechanism in Example Problem 4.3 is a slider-
crank linkage. Specifically, it is termed an in-line slider-crank
mechanism because the constrained path of the pin joint on
the slider extends through the center of the crank rotation.
Figure 4.17 illustrates the basic configuration of an in-line
slider-crank linkage.
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EXAMPLE PROBLEM 4.4

Figure 4.18 shows a concept for a hand pump used for increasing oil pressure in a hydraulic line. Analytically

determine the displacement of the piston as the handle rotates 15° counterclockwise.

5''

4''

1''

10°

FIGURE 4.18 Toggle clamp for Example Problem 4.4.

(4.4)

(4.5)

These equations can be used to determine the position of
the links in any configuration of an in-line slider-crank
mechanism.

L4 = 3L2
2 + L3

2 - 2(L2) (L3)cos g

g = 180° -  (u2 + u3)Because this is a common mechanism, the results from
the previous problem can be generalized [Ref. 12]. A typical
analysis involves locating the position of the links, given
their lengths and and the crank angle .
Specifically, the position of the slider and the interior
joint angles and must be determined.

The equations used in Example Problem 4.3 are
summarized in terms of , , and :

(4.3)u3 = sin-1 c L2

L3
 sin u2 d
u2L3L2

u)(u3

(L4)
(u2)L3)(L2

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram is given in Figure 4.19a. The end of the handle was labeled as point of interest .X

E

D
F

A A
F

B B′

E′
C′

D′

LC

A

(a) (b) (c)

2

B

C C4

3

10°
10°

80°
Offset 65°

25°
LC′

FIGURE 4.19 Mechanism diagrams for Example Problem 4.4.

2. Analyze the Geometry in the Original Configuration

In contrast to the previous problem, this mechanism is an offset slider-crank mechanism. For this type of mech-

anism, it is convenient to focus on two right triangles. These triangles are shown in Figure 4.19b. Notice that the

10° angle and its 80° complement are shown.
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Prior to observing the mechanism in a displaced configuration, all properties of the original configuration

must be determined. Focusing on the lower right triangle, the sides AD and BD can be determined from the fol-

lowing trigonometric functions:

By focusing on the top triangle, the length of side CE can be found as the sum of the offset distance and the

length of side AD from the lower triangle:

Use the Pythagorean theorem, equation (3.4), to determine side BE:

The original position of the piston, point , can be determined by summing BD and BE:

Although not required in this problem, the angle that defines the orientation of link 3 is often desired. The

angle can be determined with the inverse cosine function:

3. Analyze the Geometry in the Displaced Configuration

The displaced configuration is shown in Figure 4.19c with the handle rotated downward 15°. Note that this dis-

placement yields an angle at joint of 25°, and its complement, 65°, is also shown. Focusing on the lower right

triangle, the sides and can be determined from the following trigonometric functions:

Focusing on the top triangle, the length of side can be found as the sum of the offset distance (AF) and

the length of side from the lower triangle:

Side can then be determined:

The displaced position of the piston can be determined by summing and :

4. Calculate the Resulting Displacement

The displacement of the piston, point , during this motion can be found by subtracting the length 

from :

¢RC = 8.46 - 7.05 = 1.41 in. T

LC

LC
œC

L œ
C = B œD œ + B œE œ = 4.53 + 2.52 = 7.05 in.

B œE œB œD œ

B œE œ = 3(B œC œ )2 - (CœEœ )2 = 3(4 in.)2 - (3.11 in.)2 = 2.52 in.

B œE œ

= 1.0 + 2.11 = 3.11 in.

C œE œ = AF + AD œ

AD œ
C œE œ

B œD œ = (ABœ) sin∠B œAD œ = (5 in.) {sin 65°} = 4.53 in.

AD œ = (AB œ)cos∠B œAD œ = (5 in.)  {cos 65°  } = 2.11 in.

B œD œAD œ
A

∠BCE = cos-1aCE

BC
b = cos-1 a 1.87 in.

4 in.
b = 62.13°

∠BCE

LC = BD + BE = 4.92 + 3.54 = 8.46 in.

C

= 3(4)2 - (1.87)2 = 3.54 in.

BE = 3BC
2 - CE 2

CE = offset + AD = 1.0 + 0.87 = 1.87 in.

BD = (AB) sin∠BAD = (5 in.) {sin 80°} = 4.92 in.

sin∠BAD =
BD

AB

AD = (AB)cos∠BAD = (5 in.)  {cos 80°} = 0.87 in.

cos∠BAD =
AD

AB
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4.6.2 Closed-Form Position Analysis
Equations for an Offset Slider-Crank

The mechanism in Example Problem 4.4 is an offset slider-
crank mechanism because the constrained path of the pin
joint on the slider does not extend through the center of the
crank rotation. Figure 4.20 illustrates the basic configuration
of an offset slider-crank linkage.

A typical analysis involves locating the position of the links,
given the lengths , , and and a crank angle .
Specifically, the position of the slider and the interior
joint angles and must be determined.

The generalized equations are given as

(4.6)

(4.7)

(4.8)

These equations can be used to determine the position
of the links in any mechanism configuration. Recall, how-
ever, that these equations are only applicable to an offset
slider-crank mechanism. The equations also apply when the
offset distance is in the opposite direction as shown in
Figure 4.20. For these cases, L1 in equation (4.6) should be
substituted as a negative value.

g = 180�  -  (u2 + u3)

L4 = L2 cos u2 + L3 cos u3

u3 = sin-1 c L1 + L2 sin u2

L3
d

u)(u3

(L4)
(u2)L3)L2(L1

EXAMPLE PROBLEM 4.5

Figure 4.21 shows a toggle clamp used for securing a workpiece during a machining operation. Analytically determine

the angle that the handle must be displaced in order to lift the clamp arm 30° clockwise.

γ
2θ

θ3

L2

L1

L3

L4

FIGURE 4.20 Offset slider-crank mechanism.

Clamp arm

25 mm

15 mm

12 mm

90°

20 mm
Handle

FIGURE 4.21 Clamp for Example Problem 4.5.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram for the clamp is given in Figure 4.22a. The end of the handle was labeled as point of

interest . The clamp nose was identified as point of interest .

2. Analyze the Geometry in the Original Configuration

This mechanism is the common four-bar linkage. In order to more closely analyze the geometry, Figure 4.22b

focuses on the kinematic chain ABCD. A diagonal is created by connecting and , forming two triangles.

Prior to observing the mechanism in a displaced configuration, all properties of the original configuration

must be determined. Notice that the lower triangle, ABD, is a right triangle. The length of BD can be found using

the Pythagorean theorem introduced in equation (3.4).

The internal angles, and , can be determined from the following basic trigonometric

functions:

∠BDA = cos-1 a 25 mm

27.73 mm
b = 25.6°

∠ABD = sin-1 a 25 mm

27.73 mm
b = 64.4°

∠BDA∠ABD

BD = 3(AB)2 + (AD) 2 = 3(12)2 + (25)2 = 27.73 mm

DB

YX

Because this is also a common mechanism, the results
from the previous problem can be generalized [Ref. 12].
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(a) Kinematic diagram

(b) Original configuration

2

B′

B′

C′

DA
25

20

12

60°

90°

90°

90°
96.1°

6.1°

15

(d) Interior angel at B

A

13.3°

133.3°

120°

60°

(c) Displaced configuration

FIGURE 4.22 Mechanism for Example Problem 4.5.

Focusing on the top triangle, the internal angle can be found from the law of cosines, introduced in

equation (3.7):

The internal angle can be determined from the law of sines:

= sin-1 c a 15 mm

27.73 mm
b sin 103.9°d = 31.7°

∠CBD = sin-1 c a CD

BD
b sin ∠BCD d

∠CBD

= cos-1 a (20 mm)2 + (15 mm)2 - (27.73 mm)2

2(20 mm) (15 mm)
b = 103.9°

∠BCD = cos-1 aBC2 + CD2 - BD2

2(BC) (CD)
b

∠BCD
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The interior angle at can be found because the sum of all interior angles in any triangle must total

180°. Thus

The total mechanism angles at joint (between links 2 and 3) and at joint (between links 1 and 4) can be

determined.

At joint B:

At joint D:

3. Analyze the Geometry in the Displaced Configuration

The displaced configuration is shown in Figure 4.22c with the clamp nose, link 2, rotated clockwise 30°. Notice

that this leaves the interior angle at joint , , as 60°. Also, the lower triangle is no longer a right triangle.

The length of diagonal can be found by using the lower triangle, , and the law of cosines:

The internal angle can also be determined from the law of cosines:

The total of the interior angles of any triangle must be 180°. Therefore, angle can be readily

determined:

Focusing on the top triangle, the internal angle can be found from the law of cosines:

The internal angle can be determined from the law of sines:

The final interior angle, , of the upper triangle can be found by the following:

The total mechanism angles at joint (between links 2 and 3) and at joint (between links 1 and 4) can be

determined by the following:

At joint B’:

At joint D:

∠C œDA = ∠B œDC œ + ∠B œDA = 63.1°   + 28.7°= 91.8°

∠AB œC œ = ∠AB œD + ∠C œB œD = 91.3° + 42.0° = 133.3°

DB

∠B œDC œ = 180° - (∠C œB œD + ∠B œC œD) = 180° - (42.0° + 74.9°) = 63.1°

∠B œDC œ

= sin-1 c a 15 mm

21.66 mm
b sin 74.9� d = 42.0�

∠C œB œD = sin-1 c a C œD

B œD
b sin∠B œC œD d

∠C œB œD

= cos-1 c (20 mm)2 + (15 mm)2 - (21.66 mm)2

2(20 mm)(15 mm)
d = 74.9�

∠B œC œD = cos-1 c (B œC œ)2 +  (C œD)2 -  (B œD)2

2(B œC œ)(C œD)
d

∠B œC œD

= 180° - (60° + 91.3°) = 28.7°

∠B œDA = 180° -  (∠DAB œ + ∠AB œD)

∠B œDA

= cos-1 c (12)2 + (21.66)2 - (25)2

2(12) (21.66)
d = 91.3°

∠ABœD = cos-1 (AB)2 + (BœD)2 - (AD)2

2(AB œ) (B œD)

∠ABœD

B œD = 3(12 mm)2 + (25 mm)2 - 2(12 mm)(25 mm) cos 60° = 21.66 mm

¢ABDB œD

∠DABœA

∠CDA = ∠BDC + ∠BDA = 44.4°  +  25.6° = 70.0°

∠ABC = ∠ABD + ∠CBD = 64.4°  +  31.7°  =  96.1°

DB

∠BDC = 180°   -  1103.9° + 31.7°2 = 44.4°

∠BDC
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θ θ4
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FIGURE 4.23 The four-bar mechanism.

4.6.3 Closed-Form Position Equations 
for a Four-Bar Linkage

The four-bar mechanism is another very common linkage.
Figure 4.23 illustrates a general four-bar linkage.

disassembled. The mechanism shown in Figure 4.23
operates in the first circuit (Figure 4.24a).

Circuit 1

(a)

Circuit 2

(b)

FIGURE 4.24 Circuits of a four-bar mechanism.

The specific equations used in Example Problem 4.5 can
be generalized [Ref. 12]. A typical analysis involves determi-
ning the interior joint angles , , and for known links

, , , and at a certain crank angle . Specifically,
the interior joint angles , , and must be determined.

(4.9)

(4.10)

(4.11)

(4.12)

These equations can be used to determine the position
of the links in any mechanism configuration. The equations
are applicable to any four-bar mechanism assembled as
shown in Figure 4.23.

4.6.4 Circuits of a Four-Bar Linkage

For four-bar mechanisms classified as crank-rockers (as
described in Section 1.10), there are two regions of possible
motion corresponding with the two geometric inversions.
These regions are termed assembly circuits. A mechanism is
unable to move between assembly circuits without being

u4 = 2 tan -1 c L2 sin u2 - L3 sin g

L2 cos u2 + L4 - L1 - L3 cos g
d

u3 = 2 tan -1 c -L2 sin u2 + L4 sin g

L1 + L3 - L2 cos u2 - L4 cos g
d

g = cos-1 c (L3)2 + (L4)2 - (BD)2

2(L3) (L4)
d

BD = 3L1
2 + L2

2 - 2(L1) (L2)cos(u2)

g)u4(u3

(u2)L4)L3L2(L1

g)u4(u3

By physically disconnecting joint , the links can be
reoriented and reassembled into the configuration shown in
Figure 4.24b. As this mechanism is operated, it exhibits
motion in the second circuit. Although the motion of the
mechanism appears to be different, depending on the circuit
of operation, the relative motion between the links does not
change. However, the circuit in which the mechanism is
assembled must be specified to understand the absolute
motion and operation of the mechanism.

For four-bar mechanisms operating in the second
circuit, equation (4.11) must be slightly altered as follows:

(4.13)

(4.14)

4.7 LIMITING POSITIONS: GRAPHICAL
ANALYSIS

The configuration of a mechanism that places one of the
follower links in an extreme location is called a limiting
position. Many machines have linkages that continually
oscillate between two limiting positions. Figure 4.25 illustrates
the limiting positions of an offset slider-crank mechanism.

u4 = 2 tan -1 c L2 sin u2 + L3 sin g

L2 cos u2 + L4 - L1 - L3 cos g
d

u3 = 2 tan -1 c -L2 sin u2 - L4 sin g

L1 + L3 - L2 cos u2 - L4 cos g
d

C

4. Calculate the Resulting Displacement

The angular displacement of the handle, link 3, can be determined by focusing on joint , as shown in

Figure 4.22d. For the original configuration, the angle of link 3 above the horizontal is expressed as

For the displaced configuration, the angle of link 3 above the horizontal is expressed as

Finally, the angular displacement of link 3 is determined by

¢u3 = 13.3° - 6.1° = 7.2°, counterclockwise

∠AB œC œ - 120° = 133.3° - 120.0° = 13.3°

∠ABC - 90° = 96.1°  - 90.0°  = 6.1°

B
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The displacement of the follower link from one limiting
position to the other defines the stroke of the follower. For
translating links, as shown in Figure 4.25a, the stroke is a linear
measurement. For links that exhibit pure rotation, the stroke is
an angular quantity, and is also called throw, as shown in
Figure 4.25b. The configuration of links that place a follower in
a limiting position is associated with the crank and coupler
becoming collinear. Figure 4.25 illustrates the limiting configu-
rations for a slider-crank and a four-bar linkage. An imbalance
angle is defined as the angle between the coupler configura-
tion at the two limiting positions. The imbalance angle influ-
ences the timing of the inward and outward stroke and will be
extensively utilized in Chapter 5. The position of a driver, or
actuated link, that places a follower link in an extreme, or lim-
iting, position is often desired. In addition, the motion of a
linkage is commonly referenced from the actuator position
that places the follower in a limiting position.

The logic used on solving such a problem is similar to
the position analysis just discussed. The following examples
illustrate this analysis.

b

EXAMPLE PROBLEM 4.6

The mechanism shown in Figure 4.26 is the driving linkage for a reciprocating saber saw. Determine the configura-

tions of the mechanism that places the saw blade in its limiting positions.

1.0"

1.75"

.5"

FIGURE 4.26 Saber saw mechanism for Example Problem 4.6.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram for the reciprocating saw mechanism is given in Figure 4.27a. Notice that this is a slider-

crank mechanism as defined in Chapter 1. The slider-crank has one degree of freedom.

2. Construct the Extended Limiting Position

The saw blade, link 4, reaches its extreme downward position as links 2 and 3 move into a collinear alignment.

This configuration provides the maximum distance between points and . To determine this maximum

distance, the lengths of links 2 and 3 must be combined. Adding these lengths,

Once the combined length of lines 2 and 3 is determined, an arc should be constructed of this length,

centered at point . As shown in Figure 4.29b, the intersection of this arc and the possible path of point A

L2 + L3 = 0.5 in. + 1.75 in. = 2.25 in.

CA

(a) Slider-crank

Stroke, |ΔRC|max

B'

A B''

C' C C''

B

β

(b) Four-bar

B'

A
β

D Throw, (θ4)max

B''

C' C

C''B

FIGURE 4.25 Limiting positions.



Position and Displacement Analysis 89

A

B

C

(b)(a)
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4

31
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B

C

L3– L2

C′

C″

2

4

3
1

L2+

L1

L3

L1L2

L3

(c)

FIGURE 4.27 Extreme positions for Example Problem 4.6.

This retracted limiting position can be determined using a technique similar to determining the extended

position. Recall that the distance between and in Figure 4.27b represents the combined length of links 2 and

3. Similarly, the distance between points and represents the difference between links 3 and 2.

Using the distance, the position of point at its extreme upward position, denoted as , can be

determined (Figure 4.27b). Finally, links 2 and 3 can be drawn and the position of point is located.

4. Measure the Stroke of the Follower Link

As shown in Figure 4.27c, the stroke of the saw blade can be measured as the extreme displacement of point .

Scaling this from the kinematic diagram yields the following result:

ƒ ¢RC ƒ max =  1.27 in.

C

Bœœ
C œœCL3 - L2

C œœA

CœA

determines the limiting extended position of C, denoted C. Links 2 and 3 can be drawn, and point can be

determined. This is shown in Figure 4.29c.

3. Construct the Retracted Limiting Position

Next, the configuration that places the saw blade, link 4, in its extreme upper position must be determined. In

this configuration, links 2 and 3 are again collinear but overlapped. This provides the minimum distance

between points and . Thus, this minimum distance is the difference between the lengths of links 3 and 2.

Subtracting the link lengths gives

L3 - L2 = 1.75 in. - 0.5 in. = 1.25 in.

CA

Bœ
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A

D

B

L2 + L3

L2

L4

L3

L3 – L2

C

(b)(a)

2

4

3

1
A

D

B

C

C

C

(c)

FIGURE 4.29 Extreme positions for Example Problem 4.7.

Motor

Water inlet

Nozzle

2.0"

2.0"

2.0"

1.0" .75"

FIGURE 4.28 Water nozzle linkage for Example Problem 4.7.

SOLUTION: 1. Draw the Kinematic Diagram

The kinematic diagram for the water nozzle linkage is given in Figure 4.29. Notice that this is a four-bar

mechanism with one degree of freedom.

2. Construct the Extended Limiting Position

The analysis in this example is very similar to Example Problem 4.6. The nozzle, link 4, reaches its extreme

downward position as links 2 and 3 become collinear. This configuration provides the maximum distance

between points and . To determine this maximum distance, the lengths of links 2 and 3 must be combined.

Adding these lengths gives

L2 + L3 = 0.75 in. + 2.00 in. = 2.75 in.

CA

EXAMPLE PROBLEM 4.7

Figure 4.28 illustrates a linkage that operates a water nozzle at an automatic car wash. Determine the limiting

positions of the mechanism that places the nozzle in its extreme positions.
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Once the combined length of lines 2 and 3 is determined, an arc should be constructed of this length,

centered at point A. As shown in Figure. 4.28b, the intersection of this arc and the possible path of point C

determines the extreme downward position of C, denoted . Links 2 and 3 can be drawn, and point can be

determined. This is shown in Figure 4.29c.

3. Construct the Retracted Limiting Position

Next, the configuration that places the nozzle, link 4, in its extreme upper position must be determined.

Similar to the slider-crank discussed in Example Problem 4.6, the retracted configuration occurs when

links 2 and 3 are collinear but overlapped. This produces the minimum distance between points A and C.

Thus, this minimum distance is the difference between the lengths of links 3 and 2. Subtracting the link

lengths gives

This minimum distance can be constructed similar to the technique for the maximum distance. Recall that

the distance between A and in Figure 4.29c represents the combined length of links 2 and 3. Similarly, the

distance between points A and represents the difference between links 3 and 2.

Using the distance, the position of point at its extreme upward position, denoted as , can be

determined. This is shown in Figure 4.29b. Finally, links 2 and 3 can be drawn and the position of point is

located.

4. Measure the Stroke of the Follower Link

As shown in Figure 4.29c, the stroke of the nozzle can be measured as the extreme angular displacement of link

4. Measuring this from the graphical layout yields the following:

ƒ ¢u4 ƒ max =  47.0°

Bœœ
C œœCL3 - L2

C œœ
C œ

L3 - L2 = 2.00 in. - .75 in. = 1.25 in.

BœC œ

4.8 LIMITING POSITIONS: ANALYTICAL
ANALYSIS

Analytical determination of the limiting positions for a
mechanism is a combination of two concepts presented
earlier in this chapter:

I. The logic of configuring the mechanism into a limiting
configuration. This was incorporated in the graphical
method for determining the limiting positions, as
presented in Section 4.7.

II. The method of breaking a mechanism into convenient
triangles and using the laws of trigonometry to deter-
mine all mechanism angles and lengths, as presented in
Section 4.6.

Combining these two concepts to determine the
position of all links in a mechanism at a limiting position is
illustrated through Example Problem 4.8.

EXAMPLE PROBLEM 4.8

Figure 4.30 shows a conveyor transfer mechanism. Its function is to feed packages to a shipping station at specific in-

tervals. Analytically determine the extreme positions of the lifting conveyor segment.

SOLUTION: 1. Draw the Kinematic Diagram

The kinematic diagram for the mechanism is given in Figure 4.31a. The end of the conveyor segment is labeled

as point of interest .

2. Analyze the Geometry at the Extended Limiting Position

This mechanism is another four-bar linkage. As seen in Example Problem 4.7, the follower of a four-bar is in the

extended limiting position when links 2 and 3 become collinear. Figure 4.31b illustrates this mechanism with the

follower in its upper position. Notice that the links form a general triangle, . Also note that the length of

is 20 in. .(16 + 4)AC œ
¢AC œD

X
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X

A

2

B

CD
4

3

1

A

18

16

20

(b)(a)

B'

C'

8

4

D

A

18

(c)

B'

C''
8

4

D

16

12

FIGURE 4.31 Mechanism for Example Problem 4.8.

18'' 16''

4 ''

8'' 10''

FIGURE 4.30 Conveyor feed for Example Problem 4.8.

This upper-limiting position is fully defined by determination of the internal angles. The internal angle at

joint , , can be found using the law of cosines:

The law of sines can be used to find either of the remaining internal angles. However, the law of sines may

present some confusion with angles between 90° and 180° because

When the inverse sine function is used on a calculator, an angle is between 0° and 90°. However, the desired

result may be an angle between 90° and 180°. To minimize this confusion, it is recommended to draw the trian-

gles to an approximate scale and verify numerical results. Also, it is best to use the law of sines with angles that

are obviously in the range of 0° to 90°.

Using that approach, the internal angle at joint , , is determined using the law of sines because it

is obviously smaller than 90°.

The internal angle at joint , , can be determined:

= 180° - (23.6° + 64.1°) = 92.3°

∠ADC œ = 180° - (∠C œAD + ∠ADC œ)

∠ADCœD

= sin-1 c a18 in.

8 in.
b sin 23.6° d = 64.1°

∠ACœD = sin-1 c aAD

DCœb sin∠CœAD d

∠AC œDC œ

sin u = sin(180° - u)

= cos-1 c (18 in.)2 + (20 in.)2 - (8 in.)2

2(18 in.) (20 in.)
d = 23.6°

∠C œAD = cos-1 cAD 2 + AC œ - C œD 2

2(AD) (AC œ)
d

∠CœADA
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3. Analyze the Geometry at the Retracted Limiting Position

Figure 4.31c illustrates this mechanism with the follower in its lower position. Again, the links form a general tri-

angle, . Notice that the length of AC'' is 12 in. (16 – 4).

To fully define this configuration, the internal angles are determined through a procedure identical to the

one just described.

For the internal angle at joint , :

The internal angle at is in the range of 0° to 90°. Therefore, for the internal angle at joint , :

Finally, the internal angle at joint , , can be determined by the following:

4. Measure the Stroke of the Follower Link

To summarize, the conveyor segment (internal angle at joint cycles between 92.3° and 32.1°, as

measured upward from the vertical:

and the stroke is

ƒ ¢u4 ƒ max =  92.3° - 32.1° =  60.2°

32.1° 6 u4 6 92.3°

D, ∠ADC)

= 180° - (20.7° + 32.1°) = 127.2°

∠AC œœD = 180° - (∠C œœAD + ∠ADC œœ)

D∠AC œœC œœ

= sin-1 ca12 in.

8 in.
b sin 20.7°d = 32.1°

∠ADC œœ = sin-1 c aAC œ

DC œb sin∠C œœADd
∠ADCœœDD

= cos-1 c (18 in.)2 + (12 in.)2 - (8 in.)2

2(18 in.) (12 in.)
d = 20.7°

∠C œœAD = cos-1 cAD 2 + AC œ2 - C œœD 2

2(AD ) (ACœœ)
d

∠C œœADA

¢AC œD

4.9 TRANSMISSION ANGLE

The mechanical advantage of a mechanism is the ratio of the
output force (or torque) divided by the input force (or
torque). In a linkage, the transmission angle quantifies the
force transmission through a linkage and directly affects the
mechanical efficiency. Clearly, the definitions of trans-
mission angle depend on the choice of driving link. The
transmission angle for slider-crank and four-bar mecha-
nisms driven by the crank is shown in Figure 4.32. In these
linkages, the mechanical advantage is proportional to the
sine of the angle . As the linkage moves, the transmission
angle, along with all other joint angles, and the mechanical
advantage constantly change. Often, the extreme trans-
mission angle values are desired.

In the slider-crank, the transmission angle is measured
between the coupler and a line normal to the sliding
direction. The values for the minimum and maximum
transmission angles can be determined by geometrically
constructing the configurations as shown in Figure 4.32a.
Alternatively, the minimum and maximum transmission
angles for a slider-crank can be calculated from

g

g

(4.15)

(4.16)

In the four-bar, the transmission angle is measured
between the output link and the coupler. As with the slider-
crank, the values for the minimum and maximum trans-
mission angles can be determined by geometrically
constructing the configurations as shown in Figure 4.32b.
Alternatively, the minimum and maximum transmission
angles can be calculated from

(4.17)

(4.18)

The transmission angle is one measure of the quality
of force transmission in the mechanism. Ordinarily, the

g max =  cos -1 c L3
2 + L4

2 - 1L1 + L222
2L3 L4

d

g min =  cos -1 c L3
2 + L4

2 - 1L1 - L222
2 L3 L4

d

g max = cos -1 cL1 - L2

L3
d

g min = cos -1 cL1 + L2

L3
d
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coupler is a tension or compression link. Thus, it is only
able to push or pull along the line that connects the two
pins. As a torque applied to the output pivot, optimal force
transmission occurs when the transmission angle is 90°. As
the transmission angle deviates from 90°, only a compo-
nent of the coupler force is converted to torque at the pivot.
Thus, the transmission angle influences mechanical advan-
tage of a mechanism. The configurations of slider-crank
and four-bar mechanisms that produce the maximum and

minimum transmission angles are also shown in
Figure 4.32. A common rule of thumb is that the transmis-
sion angles should remain between 45° and 135°. Further
details are given during the discussion of linkage design in
Chapter 5.

4.10 COMPLETE CYCLE:
GRAPHICAL POSITION ANALYSIS

The configuration of a mechanism at a particular instant is
also referred to as the phase of the mechanism. Up to this
point, the position analyses focused on determining the
phase of a mechanism at a certain position of an input link.
Cycle analysis studies the mechanism motion from an
original phase incrementally through a series of phases
encountered during operation. The assignment of an origi-
nal phase is used as a reference for the subsequent phases.
Any convenient configuration can be selected as the original
phase. It is common to use a limiting position as the original,
or reference, phase.

To complete a position analysis for an entire cycle, the
configuration of the mechanism must be determined at
interval phases of its cycle. The procedure, whether graphical
or analytical, is exactly the same as detailed in the previous
sections. The only adaptation is that these procedures are
repeated at set intervals of the input displacement. The
following example problems illustrate the position analysis
for a full cycle.

(a) Slider-crank

γmax

γ

γmin

γmax

γmin γ

B'

A

L1

L2 L3

L3 L4

L2

L1

B''

C' C'' C

B

(b) Four-bar

B'

A D

B''

C' C

C''B

FIGURE 4.32 Transmission angles.

EXAMPLE PROBLEM 4.9

Figure 4.33 shows the driving mechanism of handheld grass shears. The mechanism operates by rotating the large disc

as shown. Graphically determine the position of the driving mechanism at several phases of its operating cycle.

Motor rotates
disk

Moving shears

Stationary
shears

2.0"

0.5"

1.0"

FIGURE 4.33 Grass shears for Example Problem 4.9.

SOLUTION: 1. Draw the Kinematic Diagram and Calculate Mobility

The kinematic diagram is given in Figure 4.34a. The end of the middle cutting blade is labeled as point of

interest .

The mobility of the mechanism is calculated as:

and

Therefore, the one input link will be moved to operate the shears.

= 3(4 - 1) - 2(4) - 0 = 1

M = 3(n - 1) - 2jp - jh

n = 4 jp = (3 pins + 1 sliding) = 4 jh = 0

X
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(a)

(b)

2. Designate the Reference Phase

To assign a reference phase, only the position of the input link must be specified. Arbitrarily select the configu-

ration when the drive disk, link 2, is in a vertical position, with joint directly below joint .

3. Construct Interval Phases

Drawing the mechanism in several phases of its cycle is identical to the previous position analysis, but repetitive.

While drawing the different phases using graphical methods, the kinematic diagram can become cluttered very

AB

FIGURE 4.34 Mechanism phases for Example Problem 4.9.



96 CHAPTER FOUR

quickly. It is highly recommended that different colors or fonts be used to represent each phase of the cycle. When

using CAD, it is also beneficial to place each phase on a different layer, which can be rapidly displayed or hidden.

For this problem, the driving link, link 2, is positioned at 45° intervals throughout its cycle. Therefore, eight

phases of the mechanism are constructed. The phases are designated as phase 1 through 8. The eight positions of

points and are shown in Figure 4.34b. Notice that the points are identified by using a subscript from 1 to 8,

matching the corresponding phase. In practice, even smaller increments are used depending on the details of the

mechanism motion that is required.

4. Construct the Limiting Positions

The phases associated with the limiting positions should also be determined. The shear blade reaches its

upwardmost position when link 4 rotates to the greatest angle possible. This occurs when link 4 is tangent to

the circle that represents the possible positions of point . The point of tangency is denoted as , and the

corresponding position of the blade is denoted as . This is shown in Figure 4.34c.

Similarly, the lowest position of the blade occurs when link 4 dips to its lowest angle. Again, this occurs

when link 4 is tangent to the circle that represents the possible paths of . The points related to this lowest

configuration are denoted in Figure 4.34c as and .

The maximum displacement of link 4 can be measured from the kinematic construction:

ƒ ¢u4 ƒ max =  29.0°

X œœBœœ
B

X œ
BœB

XB

(c)

4.11 COMPLETE CYCLE:
ANALYTICAL POSITION 
ANALYSIS

To generate the configuration of a mechanism throughout a
cycle, analytical analysis can be repeated to obtain various
phases. This can be an extremely repetitious process and

the use of computer programs as discussed in Chapter 8 is
common.

Equations, generated from triangles defined in part by
the mechanism links, can be summarized as in equations
(4.1) through (4.12). These equations can be solved for vari-
ous values of the driver position. Computer spreadsheets as
discussed in Chapter 8 are ideal for such analyses.

FIGURE 4.34 Continued



Position and Displacement Analysis 97

EXAMPLE PROBLEM 4.10

Figure 4.35 shows a mechanism that is designed to push parts from one conveyor to another. During the transfer,

the parts must be rotated as shown. Analytically determine the position of the pusher rod at several phases of its

motion.

30

30

70

FIGURE 4.35 Conveyor feed for Example Problem 4.10.

L4

3θ

θ2

β
A

B

L3 L2
L1

C

FIGURE 4.36 Kinematic diagram for Example Problem 4.10.

SOLUTION: 1. Draw the Kinematic Diagram

The kinematic diagram for this mechanism is shown in Figure 4.36. Notice that it is an offset slider-crank

mechanism having one degree of freedom.

2. Designate the Original Phase

Arbitrarily, the original phase is selected to be when the crank is horizontal, placing joint directly left of

joint .

3. Construct the Interval Phases

Recall that equations (4.6), (4.7), and (4.8) describe the position of an offset slider-crank mechanism. These can

be used in a full-cycle analysis. The equations were used in conjunction with a spreadsheet, yielding the results

shown in Figure 4.37. If you are not familiar with using spreadsheets, refer to Chapter 8.

4. Identify the Limiting Positions

Focusing on the position of link 4, the slider oscillation can be approximated as

and the maximum displacement as

This is only an approximation because, at 15° increments, the limiting position cannot be precisely detected. When

exact information on the limiting position is required, the techniques discussed in Section 4.8 can be used.

Confusion may arise when observing the value of the angle at the crank angle, , of 360°. The value should be

identical to the initial value at the 0° crank angle. Note that the values differ by 360°. One is measuring the inner angle,

and the other is measuring the outer angle. This illustrates the need to verify the information obtained from the equa-

tions with the physical mechanism.

u2b

ƒ ¢R4 ƒ max = (L4)max - (L4)min � 93.25 - 26.51 = 66.74 mm

26.51 mm 6 L4 6 93.25 mm

A

B



98 CHAPTER FOUR

4.12 DISPLACEMENT DIAGRAMS

Once a full-cycle position analysis is completed, it is insight-
ful to plot the displacement of one point corresponding
to the displacement of another point. It is most common to
plot the displacement of a point on the follower relative to
the displacement of a point on the driver.

Typically, the displacement of the driver is plotted on
the horizontal. In the case of a crank, the driver displace-
ment consists of one revolution. The corresponding dis-
placement of the follower is plotted along the vertical. The
displacement plotted on the vertical axis may be linear or
angular depending on the motion obtained from the specific
mechanism.

FIGURE 4.37 Positions of pusher rod for Example Problem 4.10.

EXAMPLE PROBLEM 4.11

Figure 4.38 shows the driving mechanism of a reciprocating compressor. Plot a displacement diagram of the piston

displacement relative to the crankshaft rotation.

SOLUTION: 1. Draw the Kinematic Diagram

After close examination, the compressor mechanism is identified as a slider-crank. Recall that this mechanism

has one degree of freedom and can be operated by rotating the crank. The kinematic diagram with the appropri-

ate dimensions is shown in Figure 4.39.
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Intake
gas

Exhaust
gas

Cylinder

Cylinder head

Connecting rod

Piston

Crankshaft

Valve plate

.75''

2.0''

FIGURE 4.38 Compressor for Example Problem 4.11.
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4
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FIGURE 4.39 Kinematic diagram for Example Problem 4.11.

2. Designate the Reference Phase

As shown in Figure 4.39, the reference phase is arbitrarily selected as the crank is vertical, placing joint

directly above joint . The position of the piston (point will be measured from this reference 

position.

3. Construct the Interval Phases

The actual displacements can be determined either analytically or graphically, using the methods

presented in the previous sections. For this slider-crank mechanism, the displacements were obtained

analytically using equations (4.3) through (4.5). Using a spreadsheet, the results were obtained as 

shown in Figure 4.40. The crank displacement is in degrees and the piston displacement is in

inches.

4. Identify the Limiting Positions

Focusing on the position of the piston, the oscillation can be approximated as

As stated in the previous problem, this is only an approximation because, at 30° increments, the limiting

position will not be precisely detected. However, for the in-line slider-crank mechanism, inspecting the

geometry reveals that the limiting positions occur at crank angles of 0° and 180°. Therefore, the stroke is

exactly 1.50 in.

5. Plot the Displacement Diagram

The values calculated in the spreadsheet and tabulated in Figure 4.40 were plotted in Figure 4.41 to form a

displacement diagram.

ƒ ¢Rc ƒ max � 1.50 in.

(¢RC)(u2)

CAB
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FIGURE 4.41 Displacement diagram for Example Problem 4.11.

FIGURE 4.40 Position of displacement for Example Problem 4.11.



Position and Displacement Analysis 101

4.13 COUPLER CURVES

Often, the function of a mechanism is to guide a part along a
particular path. The paths generated by points on a connect-
ing rod, or coupler, of a four-bar mechanism can often
achieve the complex motion desired. The trace of a point is
the path that the point follows as the mechanism moves
through its cycle. The path traced by any point on the
coupler is termed a coupler curve. Two coupler curves—
namely, those traced by the pin connections of the coupler—
are simple arcs, centered at the two fixed pivots. However,
other points on the coupler trace rather complex curves.
Figure 4.42 illustrates a four-bar mechanism. The coupler
curves of a few select points are displayed.

The methods in this chapter can be used to construct
the trace of the motion of certain points on a mechanism.
Section 4.10 introduces the concept of constructing the con-
figuration at several phases of its cycle. As these phases are
constructed, the position of a certain point can be retained.
The curve formed by joining the position of this point at
several phases of the mechanism forms the trace of that
point. If the point resides on a floating link, the resulting
trace, or coupler curve, is a complex shape. These traces
can be used to determine the spatial requirements of a
mechanism.

PROBLEMS

Although manual drafting techniques are instructive for
problems that require graphical solution, use of a CAD
system is highly recommended.

General Displacement

4–1. The device shown in Figure P4.1 is a scotch yoke
mechanism. The horizontal position of link 4 can be de-
scribed as cos ( ). Determine the dis-
placement of link 4 during the interval of 0.10 to 1.50 s.

4–2. For the scotch yoke mechanism shown in Figure
P4.1, the horizontal position of link 4 can be
described as cos ( ). Determine the
displacement of link 4 during the interval of 3.8
to 4.7 s.

50 t + 40°x = 3

50t + 40°x = 3

FIGURE 4.42 Coupler curves.

Graphical Displacement Analysis

4–3. Graphically determine the displacement of points 
and as the link shown in Figure P4.3 is displaced
25° counterclockwise. Use and .g = 30°b = 55°

Q
P

4

x (in.)
40°

3"

50 deg/sec

FIGURE P4.1 Problems 1 and 2.

P

Q

14"

10"

β

γ

FIGURE P4.3 Problems 3, 4, 38, 39.

4–4. Graphically determine the displacement of points 
and as the link shown in Figure P4.3 is displaced
35° clockwise. Use and .

4–5. Graphically position the links for the compressor
linkage in the configuration shown in Figure P4.5.
Then reposition the links as the 45-mm crank is
rotated 90° counterclockwise. Determine the resul-
ting displacement of the piston.

g = 15°b = 65°
Q

P

45 mm

30°

crank

100 mm
piston

FIGURE P4.5 Problems 5, 6, 40, 56, 63, 70, 76, 82.

4–6. Graphically position the links for the compressor
linkage in the configuration shown in Figure P4.5.
Then reposition the links as the 45-mm crank is
rotated 120° clockwise. Determine the resulting
displacement of the piston.
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4–7. Graphically position the links for the shearing mech-
anism in the configuration shown in Figure P4.7.
Then reposition the links as the 0.75-in. crank is
rotated 100° clockwise. Determine the resulting dis-
placement of the blade.

.75''

.5''

crank

50°

4''

blade

FIGURE P4.7 Problems 7, 8, 41, 57, 64, 71, 77, 83.

Handle

Stamp
6''

6''

50°

4''

30°
8''

FIGURE P4.9 Problems 9, 10, 42.

9''
8''

15''

18''

10°

FIGURE P4.11 Problems 11, 12, 43.

4–11. Graphically position the links for the furnace door
in the configuration shown in Figure P4.11.
Then reposition the links as the handle, which is
originally set at 10°, is rotated counterclockwise to
40°. Determine the resulting displacement of the
door.

4–8. Graphically position the links for the shearing
mechanism in the configuration shown in Figure
P4.7. Then reposition the links as the blade is low-
ered 0.2 in. Determine the resulting angular dis-
placement of the crank.

4–9. Graphically position the links for the embossing
mechanism in the configuration shown in
Figure P4.9. Then reposition the links as the handle
is rotated 15° clockwise. Determine the resulting
displacement of the stamp and the linear dis-
placement of the handle end.

4–10. Graphically position the links for the embossing
mechanism in the configuration shown in Figure
P4.9. Then reposition the links as the handle is
rotated 10° counterclockwise. Determine the
resulting displacement of the stamp and the linear
displacement of the handle end.

4–12. Graphically position the links for the furnace door
in the configuration shown in Figure P4.11. Then
reposition the links as the door is raised 3 in.
Determine the angular displacement of the handle
required to raise the door 3 in.

4–13. A rock-crushing mechanism is given in
Figure P4.13. Graphically position the links for the
configuration shown. Then reposition the links as
the crank is rotated 30° clockwise. Determine the
resulting angular displacement of the crushing ram.

360 mm

Crushing ram

180 mm

Crank

420 mm

60 mm
75°

FIGURE P4.13 Problems 13, 14, 44, 58, 65, 72, 78, 84.

4–14. A rock-crushing mechanism is given in Figure
P4.13. Graphically position the links for the con-
figuration shown. Then reposition the links as
the crank is rotated 150° counterclockwise. Deter-
mine the resulting angular displacement of the
crushing ram.

4–15. Graphically position the links for the rear-wiper
mechanism shown in Figure P4.15. Then reposition
the links as the 2-in. crank is rotated 50° clockwise.
Determine the resulting angular displacement of the
wiper arm and the linear displacement at the end of
the wiper blade.
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4–16. Graphically position the links for the rear-wiper
mechanism shown in Figure P4.15. Then reposition
the links as the 2-in. crank is rotated 110° clockwise.
Determine the resulting angular displacement of the
wiper arm and the linear displacement at the end of
the wiper blade.

4–17. Graphically position the links for the vise grips
shown in Figure P4.17. Then reposition the links as
the top jaw is opened 40° from the orientation
shown, while the lower jaw remains stationary.
Determine the resulting angular displacement of the
top handle.

Wiper blade

8''

8''
16''

13''

Wiper arm

70°
50°

3.5''

14''

Crank

2''

FIGURE P4.15 Problems 15, 16, 45, 59, 66, 73, 79, 85.

4.2 cm

3.2 cm

7.0 cm

10.6 cm

20°

FIGURE P4.17 Problems 17, 18, 19, 46.

4–18. Graphically position the links for the vise grips
shown in Figure P4.17. Then reposition the links as
the top jaw is opened 20° from the orientation
shown, while the lower jaw remains stationary.
Determine the resulting angular displacement of the
top handle.

4–19. When the thumbscrew in the vise grips shown in
Figure P4.17 is rotated, the effective pivot point of
the 7.0-cm link is moved. During this motion, the
spring prevents the jaws from moving. Graphically
position the links as the effective pivot point is
moved 2 cm to the right. Then reposition the links
as the top jaw is opened 40° from the new orienta-
tion, while the lower jaw remains stationary.
Determine the resulting angular displacement of the
top handle.

4–20. Graphically position the links for the small aircraft
nosewheel actuation mechanism shown in Figure
P4.20. Then reposition the links as the 12-in. crank
is rotated 60° clockwise from the orientation shown.
Determine the resulting angular displacement of the
wheel assembly.

30''26''

30''

32''

5''
12''

15°

FIGURE P4.20 Problems 20, 21, 47, 60, 67, 74, 80, 86.

4–21. Graphically position the links for the small aircraft
nosewheel actuation mechanism shown in Figure
P4.20. Then reposition the links as the 12-in. crank
is rotated 110° clockwise from the orientation
shown. Determine the resulting angular displace-
ment of the wheel assembly.

4–22. Graphically position the links for the foot-operated
air pump shown in Figure P4.22. Then reposition the
links as the foot pedal is rotated 25° counterclockwise
from the orientation shown. Determine the resulting
linear displacement of point and the amount that
the air cylinder retracts. Also, with the diameter of the
cylinder at 25 mm, determine the volume of air dis-
placed by this motion.

X

300 mm

300 mm

200 mm

50 mm40°

225 mm

X

FIGURE P4.22 Problems 22, 23, 48.

4–23. Graphically position the links for the foot-operated
air pump shown in Figure P4.22. Then reposition
the links as the air cylinder retracts to 175 mm.
Determine the resulting angular displacement of the
foot pedal and the linear displacement of point .

4–24. Graphically position the links for the microwave
oven lift, which assists people in wheelchairs, as
shown in Figure P4.24. Then reposition the links as
the linear actuator is retracted to a length of 400 mm.

X
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Determine the resulting angular displacement of
the front support link and the linear displacement
of any point on the oven carrier.

4–28. Graphically position the links for the lift platform
shown in Figure P4.28. Determine the length of the
hydraulic cylinder. Then reposition the links as the
platform is raised to 40 in. Determine the amount
that the hydraulic cylinder must extend to accom-
plish this movement.

Microwave
oven carrier

200 mm

200 mm 100 mm

250 mm

533 mm

Linear actuator

500 mm
TYP.

Support
links

FIGURE P4.24 Problems 24, 25, 49.

3 m
3 m

1.5 m

2 m

1.5 m

FIGURE P4.26 Problems 26, 27, 50.

4–25. Graphically position the links for the microwave
oven lift, which assists people in wheelchairs, as
shown in Figure P4.24. Then reposition the links as
the front support link is raised 45° from the orienta-
tion shown. Determine the distance that the linear
actuator needs to retract.

4–26. Graphically position the links for the box truck,
used to load supplies onto airplanes, as shown in
Figure P4.26. Then reposition the links as the lower
sliding pin moves 0.5 m toward the cab. Determine
the resulting linear displacement of any point on the
cargo box.

4–27. Graphically position the links for the box truck,
used to load supplies onto airplanes, as shown in
Figure P4.26. Then reposition the links as the lower
sliding pin moves 0.75 m away from the cab.
Determine the resulting linear displacement of any
point on the cargo box.

36"

36"

36"

24"

12"

24"

12"

Platform

Hydraulic
cylinder

FIGURE P4.28 Problems 28, 29, 51.

4–29. Graphically position the links for the lift platform
shown in Figure P4.28. Determine the length of the
hydraulic cylinder. Then reposition the links as the
platform is lowered to 30 in. Determine the amount
that the hydraulic cylinder must contract to accom-
plish this movement.

4–30. The mechanism shown in Figure P4.30 is used to
advance the film in movie-quality projectors.
Graphically position the links for the configuration
shown. Then reposition the links as the crank is
rotated 90° clockwise. Determine the resulting dis-
placement of the advancing claw.

28 mm

Advancing
claw

Film

45 mm

25 mm

18 mm

Crank
60°

48 mm

Slide pin

FIGURE P4.30 Problems 30, 31, 52, 61, 68.

4–31. The mechanism shown in Figure P4.30 is used to
advance the film in movie-quality projectors.
Graphically position the links for the configuration
shown. Then reposition the links as the crank is
rotated 130° clockwise. Determine the resulting dis-
placement of the advancing claw.

4–32. Graphically position the links in the automotive
front suspension mechanism shown in Figure P4.32.
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Then reposition the links as the upper control arm
is rotated 20° clockwise. Determine the resulting
displacement of the bottom of the tire. Also deter-
mine the change of length of the spring.

Upper control arm

Spring

8"

14" 10"

4"

28"

16"
3"

90°

4"

14"

FIGURE P4.32 Problems 32, 33, 53.

4–33. Graphically position the links in the automotive
front suspension mechanism shown in Figure P4.32.
Then reposition the links as the upper control arm
is rotated 10° counterclockwise. Determine the
resulting displacement of the bottom of the tire.
Also determine the change of length of the spring.

250 mm

320 mm

60 mm

230 mm230 mm

180 mm

Crank

25°

250 mm

Crushing
ram

180 mm

250 mm

FIGURE P4.34 Problems 34, 35, 54, 62, 69, 75, 81, 87.

4–35. Graphically position the links for the rock-crushing
mechanism as shown in Figure P4.34. Then reposi-
tion the links as the crank is rotated 75° clockwise.
Determine the resulting angular displacement of the
crushing ram.

4–36. Graphically position the links for the dump truck
shown in Figure P4.36. Then reposition the links as
the cylinder is shortened 0.15 m. Determine the

.85 m

.65 m1.4 m

1.4 m .42 m

.30 m

.30 m

.35 m

FIGURE P4.36 Problems 36, 37, 55.

4–34. Graphically position the links for the rock-crushing
mechanism shown in Figure P4.34. Then reposition
the links as the crank is rotated 120° clockwise.
Determine the resulting angular displacement of the
crushing ram.
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resulting angular displacement of any point on
the bed.

4–37. Graphically position the links for the dump truck
shown in Figure P4.36. Then reposition the links as
the cylinder is lengthened 0.2 m. Determine the
resulting angular displacement of any point on
the bed.

Analytical Displacement Analysis

4–38. Analytically determine the displacement of points 
and , as the link shown in Figure P4.3 is displaced
30° counterclockwise. Use and .

4–39. Analytically determine the displacement of points 
and , as the link shown in Figure P4.3 is displaced
40° clockwise. Use and .

4–40. Analytically determine the linear displacement of
the piston in the compressor linkage shown in
Figure P4.5 as the 45-mm crank is rotated from its
current position 90° counterclockwise.

4–41. Analytically determine the linear displacement of
the blade in the shearing mechanism shown in
Figure P4.7 as the 0.75-in. crank is rotated from its
current position 50° counterclockwise.

4–42. Analytically determine the linear displacement of
the stamp in the mechanism shown in Figure P4.9
as the handle is rotated from its current position 20°
clockwise.

4–43. Analytically determine the linear displacement
of the furnace door in the mechanism shown in
Figure P4.11 as the 26-in. handle is rotated 25°
counterclockwise from its current position.

4–44. Analytically determine the angular displacement of
the ram in the rock-crushing mechanism shown in
Figure P4.13 as the 60-mm crank is rotated from its
current position 40° clockwise.

4–45. Analytically determine the angular displacement of
the wiper arm in the rear-wiper mechanism shown
in Figure P4.15 as the 2-in. crank is rotated from its
current position 100° clockwise.

4–46. Analytically determine the angular displacement
of the top handle in the vise grips shown in
Figure P4.17 as the top jaw is opened 25° from its
current position, while the lower jaw remains
stationary.

4–47. Analytically determine the angular displacement of
the wheel assembly in the nosewheel actuation
mechanism shown in Figure P4.20 as the 12-in.
crank is rotated from its current position 60° coun-
terclockwise.

4–48. Analytically determine the distance that the air
cylinder in the foot pump shown in Figure P4.22
retracts when the foot pedal is rotated 20° counter-
clockwise from its current position. Also, with the
diameter of the cylinder at 25 mm, determine the
volume of air displaced during this motion.

g = 15°b = 65°
Q

P

g = 30°b = 55°
Q

P

4–49. Analytically determine the angular displacement of
the front support link of the microwave lift shown
in Figure P4.24 as the linear actuator is retracted to a
length of 425 mm.

4–50. Analytically determine the vertical distance that the
box truck in Figure P4.26 lowers if the bottom pins
are separated from 2.0 m to 1.5 m.

4–51. Analytically determine the extension required from
the hydraulic cylinder to raise the platform shown
in Figure P4.28 to a height of 45 in.

4–52. Analytically determine the displacement of the claw
in the film-advancing mechanism shown in Figure
P4.30 as the crank is rotated 100° clockwise.

4–53. Analytically determine the displacement of the bot-
tom of the tire in the automotive suspension mech-
anism shown in Figure P4.32 as the upper control
arm is rotated 15° clockwise.

4–54. Analytically determine the angular displacement of the
crushing ram in the rock-crushing mechanism shown
in Figure P4.34 as the crank is rotated 95° clockwise.

4–55. Analytically determine the angular displacement of
the dump truck bed shown in Figure P4.36 as the
cylinder is shortened 0.1 m.

Limiting Positions—Graphical

4–56. Graphically position the links for the compressor
mechanism shown in Figure P4.5 into the configu-
rations that place the piston in its limiting positions.
Determine the maximum linear displacement
(stroke) of the piston.

4–57. Graphically position the links for the shearing
mechanism shown in Figure P4.7 into the configu-
rations that place the blade in its limiting positions.
Determine the maximum linear displacement
(stroke) of the blade.

4–58. Graphically position the links for the rock-crushing
mechanism shown in Figure P4.13 into the configu-
rations that place the ram in its limiting positions.
Determine the maximum angular displacement
(throw) of the ram.

4–59. Graphically position the links for the windshield
wiper mechanism shown in Figure P4.15 into the
configurations that place the wiper in its limiting
positions. Determine the maximum angular dis-
placement (throw) of the wiper.

4–60. Graphically position the links for the wheel actuator
mechanism shown in Figure P4.20 into the con-
figurations that place the wheel assembly in its
limiting positions. Determine the maximum angular
displacement (throw) of the wheel assembly.

4–61. Graphically position the links for the film-advancing
mechanism shown in Figure P4.30 into the con-
figurations that place the slide pin in its limiting
positions. Determine the maximum linear displace-
ment (stroke) of the slide pin.
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4–62. Graphically position the links for the rock-crushing
mechanism shown in Figure P4.34 into the configu-
rations that place the ram in its limiting positions.
Determine the maximum angular displacement
(throw) of the crushing ram.

Limiting Positions—Analytical

4–63. Analytically calculate the maximum linear dis-
placement (stroke) of the piston for the compressor
mechanism shown in Figure P4.5.

4–64. Analytically calculate the maximum linear dis-
placement (stroke) of the blade for the shearing
mechanism shown in Figure P4.7.

4–65. Analytically calculate the maximum angular
displacement (throw) of the ram for the rock-
crushing mechanism shown in Figure P4.13.

4–66. Analytically calculate the maximum angular
displacement (throw) of the wiper for the wind-
shield wiper mechanism shown in Figure P4.15.

4–67. Analytically calculate the maximum angular
displacement (throw) of the wheel assembly for the
wheel actuator mechanism shown in Figure P4.20.

4–68. Analytically calculate the maximum linear displace-
ment (stroke) of the slide pin for the film-advancing
mechanism shown in Figure P4.30.

4–69. Analytically calculate the maximum angular dis-
placement (throw) of the ram for the rock-crushing
mechanism shown in Figure P4.34.

Displacement Diagrams—Graphical

4–70. For the compressor mechanism shown in Figure
P4.5, graphically create a displacement diagram for
the position of the piston as the crank rotates a full
revolution clockwise.

4–71. For the shearing mechanism shown in Figure P4.7,
graphically create a displacement diagram for the
position of the blade as the crank rotates a full revo-
lution clockwise.

4–72. For the rock-crushing mechanism shown in Figure
P4.13, graphically create a displacement diagram of
the angular position of the ram as the crank rotates
a full revolution clockwise.

4–73. For the windshield wiper mechanism shown in Figure
P4.15, graphically create a displacement diagram of
the angular position of the wiper as the crank rotates a
full revolution clockwise.

4–74. For the wheel actuator mechanism shown in Figure
P4.20, graphically create a displacement diagram of
the angular position of the wheel assembly as the
crank rotates a full revolution clockwise.

4–75. For the rock-crushing mechanism shown in Figure
P4.34, graphically create a displacement diagram of
the angular position of the ram as the crank rotates
a full revolution clockwise.

Displacement Diagrams—Analytical

4–76. For the compressor mechanism shown in Figure
P4.5, analytically create a displacement diagram for
the position of the piston as the crank rotates a full
revolution counterclockwise.

4–77. For the shearing mechanism shown in Figure P4.7,
analytically create a displacement diagram for the
position of the blade as the crank rotates a full revo-
lution counterclockwise.

4–78. For the rock-crushing mechanism shown in Figure
P4.13, analytically create a displacement diagram of
the angular position of the ram as the crank rotates
a full revolution counterclockwise.

4–79. For the windshield wiper mechanism shown in
Figure P4.15, analytically create a displacement dia-
gram of the angular position of the wiper as the
crank rotates a full revolution counterclockwise.

4–80. For the wheel actuator mechanism shown in
Figure P4.20, analytically create a displacement
diagram of the angular position of the wheel
assembly as the crank rotates a full revolution
counterclockwise.

4–81. For the rock-crushing mechanism shown in Figure
P4.34, analytically create a displacement diagram of
the angular position of the ram as the crank rotates
a full revolution counterclockwise.

Displacement Problems Using Working Model

4–82. For the compressor mechanism shown in Figure
P4.5, use the Working Model software to create a
simulation and plot a displacement diagram for the
position of the piston as the crank rotates a full rev-
olution counterclockwise.

4–83. For the shearing mechanism shown in Figure P4.7,
use the Working Model software to create a simu-
lation and plot a displacement diagram for the
position of the blade as the crank rotates a full
revolution counterclockwise.

4–84. For the rock-crushing mechanism shown in Figure
P4.13, use the Working Model software to create a
simulation and plot a displacement diagram of the
angular position of the ram as the crank rotates a
full revolution counterclockwise.

4–85. For the windshield wiper mechanism shown in
Figure P4.15, use the Working Model software to
create a simulation and plot a displacement diagram
of the angular position of the wiper as the crank
rotates a full revolution counterclockwise.

4–86. For the wheel actuator mechanism shown in Figure
P4.20, use the Working Model software to create a
simulation and plot a displacement diagram of the
angular position of the wheel assembly as the crank
rotates a full revolution counterclockwise.

4–87. For the rock-crushing mechanism shown in Figure
P4.34, use the Working Model software to create a



108 CHAPTER FOUR

simulation and plot a displacement diagram of the
angular position of the ram as the crank rotates a
full revolution counterclockwise.

CASE STUDIES

4–1. Figure C4.1 shows a mechanism that was designed
to impart motion on a machine slide. Carefully
examine the configuration of the components in the
mechanism, then answer the following leading
questions to gain insight into the operation.

following leading questions to gain insight into the
operation.

1. The small, round-head screw blanks are fed into a
threading machine through tracks and . How do
the screws get from bowl to track ?

2. Although not clearly shown, track is of a parallel
finger design. Why is a parallel finger arrangement
used to carry the screws?

3. As a second mechanism intermittently raises link ,
what is the motion of track ?

4. What is the purpose of link ?
5. As a second mechanism intermittently raises link ,

what is the motion of the screws?
6. What determines the lowest position that link can

travel? Notice that the tips of track do not contact
the bottom of bowl .

7. As screws are congested in the outlet track , what
happens to finger as link is forced lower?

8. As screws are congested in the outlet track , what
happens to the tips of track ?

9. What is the purpose of this device? Discuss its
special features.

10. What type of mechanism could be operating link ?

4–3. Figure C4.3 depicts a production transfer machine
that moves clutch housings from one station to
another. Platform supports the housings during
the transfer. Carefully examine the configuration of
the components in the mechanism, then answer the
following leading questions to gain insight into the
operation.

A
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B
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A
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D

D
E
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B
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P
D

C

F

K U

J

FIGURE C4.1 (Courtesy, Industrial Press)

1. As wheel is rotated clockwise, and slide J remains
stationary, what is the continual motion of pin ?

2. What is the continual motion of pin ?
3. What is the continual motion of pin ?
4. What effect does turning the handwheel have on

slide ?
5. What effect does turning the handwheel have on

the motion of the mechanism? Be sure to comment
on all characteristics of the motion.

6. What is the purpose of this device?
7. Draw a kinematic diagram and calculate the

mobility of the mechanism.

4–2. Figure C4.2 presents an interesting materials
handling system for advancing small parts onto a
feed track. Carefully examine the configuration of
the components in the mechanism, then answer the

F
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FIGURE C4.2 (Courtesy, Industrial Press)
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FIGURE C4.3 (Courtesy, Industrial Press)

1. To what type of motion is bar restricted?
2. What motion does link encounter as air cylinder 

is shortened?
3. What is the motion of point as air cylinder is

shortened?
4. Why does joint need to ride in slot ?
5. What is the purpose of this mechanism?
6. What effect does turning the threaded rod end 

have, thus lengthening the cylinder rod?
7. Draw a kinematic sketch of this mechanism.
8. Compute the mobility of this mechanism.
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analysis methods described in the previous chapter. Often,
this involves an iterate-and-analyze methodology, which can
be an inefficient process, especially for inexperienced design-
ers. However, this iteration process does have merit,
especially in problems where synthesis procedures have not
or cannot be developed. However, several methods for
dimensional synthesis have been developed and can be quite
helpful. This chapter serves as an introduction to these
methods. Because analytical techniques can become quite
complex, the focus is on graphical techniques. As stated
throughout the text, employing graphical techniques on a
CAD system produces accurate results.

5.2 TIME RATIO

Many mechanisms that produce reciprocating motion are
designed to produce symmetrical motion. That is, the
motion characteristics of the outward stroke are identical to
those of the inward stroke. These mechanisms often accom-
plish work in both directions. An engine mechanism and
windshield wiper linkages are examples of these kine-
matically balanced mechanisms.

However, other machine design applications require a
difference in the average speed of the forward and return
strokes. These machines typically work only on the forward
stroke. The return stroke needs to be as fast as possible, so
maximum time is available for the working stroke. Cutting
machines and package-moving devices are examples of these
quick-return mechanisms.

A measure of the quick return action of a mechanism is
the time ratio, Q, which is defined as follows:

(5.1)

An imbalance angle, β, is a property that relates the
geometry of a specific linkage to the timing of the stroke.
This angle can be related to the time ratio, Q :

(5.2)

Equation 5.2 can be rewritten to solve the imbalance
angle as follows:

(5.3)b = 180°
(Q - 1)

(Q + 1)

Q =
180° + b
180° - b

Q =
Time of slower stroke

Time of quicker stroke
Ú 1

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Describe mechanism synthesis.

2. Design an in-line slider-crank mechanism.

3. Knowing the desired mechanism time ratio, determine
an appropriate imbalance angle.

4. Use timing charts to synchronize motion and estimate
peak velocity and acceleration magnitudes.

5. Using graphical methods, design offset slider-crank,
crank-rocker, and crank-shaper mechanisms.

6. Using graphical methods, design a single-pivoted link
to move between two prescribed positions.

7. Using graphical methods, design a four-bar mechanism
in which the coupler link moves between two
prescribed positions.

8. Using graphical methods, design a four-bar mechanism
where the coupler link moves between three prescribed
positions.

C H A P T E R

F I V E

MECHANISM DESIGN

5.1 INTRODUCTION

Up to this point in the text, an emphasis was placed on the
analysis of existing mechanisms. The previous chapter
explored methods to determine the displacement of a
mechanism whose link lengths are given. Compared to this
analysis, the design of a mechanism presents the opposite
task: That is, given a desired motion, a mechanism form and
dimensions must be determined. Synthesis is the term given
to describe the process of designing a mechanism that
produces a desired output motion for a given input motion.
The selection of a particular mechanism capable of achiev-
ing the desired motion is termed type synthesis. A designer
should attempt to use the simplest mechanism capable of
performing the desired task. For this reason, slider-crank
and four-bar mechanisms are the most widely used. This
chapter focuses on these two mechanisms.

After selecting a mechanism type, appropriate link
lengths must be determined in a process called dimensional
synthesis. This chapter focuses on dimensional synthesis. To
design a mechanism, intuition can be used along with

109
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Thus, in the dimensional synthesis of a mechanism, the
desired time ratio is converted to a necessary geometric
constraint through the imbalance angle β.

The total cycle time for the mechanism is:

(5.4)strokestroke
¢tcycle = Time of slower + Time of quicker 

For mechanisms that are driven with a constant speed
rotational actuator, the required crank speed, ωcrank, is
related to the cycle time as follows:

(5.5)vcrank = (¢tcycle)
-1

EXAMPLE PROBLEM 5.1

A quick-return mechanism is to be designed, where the outward stroke must consume 1.2 s and the return

stroke 0.8 s. Determine the time ratio, imbalance angle, cycle time, and speed at which the mechanism should be

driven.

SOLUTION: 1. Calculate the Time Ratio and Imbalance Angle

The time ratio can be determined from equation (5.1):

The resulting imbalance angle can be determined from equation (5.3):

2. Calculate Cycle Time for the Mechanism

The total time for the forward and return stroke is as follows:

3. Calculate the Required Speed of the Crank

Because one cycle of machine operation involves both the forward and return strokes the time for the crank to

complete one revolution is also 2.0 s. The required crank speed, ωcrank, is determined as

In Chapter 6, the concept of angular speed will be formally presented.

= 30 rev/min

=
1

2 s/rev
= 0.5 rev/s a 60 s

1 min
b

vcrank = A¢t cycle B -1

¢tcycle = 1.2 + 0.8 = 2.0 s/rev

b = 180°
(1.5 - 1)

(1.5 + 1)
= 36°

Q = a1.2 s

0.8 s
b = 1.5

5.3 TIMING CHARTS

Timing charts are often used in the mechanism design
process to assist in the synchronization of motion between
mechanisms. For example, a pair of mechanisms may be
used to transfer packages from one conveyor to another. One
mechanism could lift a package from the lower conveyor and
the other mechanism would push the package onto the
upper conveyor while the first remains stationary. Both
mechanisms would then return to the start position and set
another cycle. A timing chart is used to graphically display
this information. Additionally, timing charts can be used to
estimate the magnitudes of the velocity and acceleration of
the follower links. The velocity of a link is the time rate at
which its position is changing. Acceleration is the time rate

at which its velocity is changing and is directly related to the
forces required to operate the mechanism. Chapter 6
provides comprehensive coverage of linkage velocity analysis
and Chapter 7 focuses on linkage acceleration. Both velocity
and acceleration are vector quantities, but only their
magnitudes, v and a, are used in timing charts.

Timing charts that are used to synchronize the motion of
multiple mechanisms typically assume constant acceleration.
While the actual acceleration values produced in the mecha-
nism can be considerably different (as will be presented in
Chapter 7), the constant acceleration assumption produces
polynomial equations for the velocity and position as a
function of time. The timing chart involves plotting the mag-
nitude of the output velocity versus time. Assuming constant
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FIGURE 5.1 Timing charts.

acceleration, the velocity-time graph appears as straight lines.
The displacement is related to the maximum velocity, acceler-
ation, and time through the following equations.

(5.6)

(5.7)

For the package-moving scenario previously described,
the lift mechanism is desired to raise 8.0 in. in 1.5 s, remain
stationary for 1.0 s, and return in 1.0 s. The push mechanism
should remain stationary for 1.5 s, push 6.0 in. in 1.0 s, and
return in 1.0 s. The timing charts for both mechanisms are
shown in Figure 5.1. The figures illustrate that as one mech-
anism is lifting (velocity appears as a triangle), the other
remains stationary (no velocity). Also, while the second
mechanism is pushing, the first remains stationary. Thus,
synchronization is verified. Further, the maximum speed
and acceleration are related to the displacement and the time
for the motion by rewriting Equations (5.6) and (5.7),
respectively. For the lifting mechanism,

¢R =
1

4
a (¢t)2

¢R =
1

2
vpeak¢t

In similar computations, the peak velocity of the return
stroke is , and the acceleration is .
For the pushing mechanism, the peak velocity of the push
stroke 12.00 in./s, and the acceleration is 24.00 in./s2. For the
pushing mechanism, the peak velocity of the return stroke

, and the acceleration is .
It is noted that because the velocity is the time rate of

change of the position, principles of calculus dictate that
the displacement of the mechanism is the area under
the v-t chart. This is seen in Equation (5.6) and the dis-
placement is the area of the velocity triangle, which is
1/2(vpeakΔt). The displacement for each motion is labeled
in Figure 5.1. While it must be emphasized that the
velocity and acceleration are estimates, they can be useful
in the early design stage as seen in the following example
problem.

-24.00 in./s2-12.00 in./s

-32.00 in./s2-16.00 in./s

a = 4
¢R

¢t2 = 4
(8.0 in.)

(1.5 s)2 = 14.22 in./s2

Lift stroke: vpeak = 2
¢R

¢t
= 2

(8.0 in.)

(1.5 s)
= 10.67 in./s
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FIGURE 5.2 Timing charts for Example Problem 5.2.

EXAMPLE PROBLEM 5.2

A sleeve bearing insertion process requires a conveyor to index 8.0 in. in 0.4 s and dwell while a bearing is pressed into

a housing on the conveyor. The bearing must travel 4.0 in. to meet the housing, then be pressed 2.0 in. into the hous-

ing. The entire press stroke should take 0.6 s, and return in 0.4 s while the conveyor is indexing.

a. Determine the time ratio, cycle time, and motor speed of the press mechanism.

b. Sketch the synchronized timing charts.

c. Estimate the peak velocity and acceleration of the housing on the conveyor.

d. Estimate the peak velocity and acceleration of the bearing press movement.

e. Estimate the peak velocity and acceleration of the bearing press return.

f. Optimize the motion so the maximum acceleration of any part is less than 1g (1g = 386.4 in./s2).

SOLUTION: 1. Calculate the Time Ratio, Cycle Time, and Crank Speed

The time ratio can be determined from equation (5.1):

The total time for the forward and return stroke is as follows:

Because one cycle of machine operation involves both the forward and return stroke, the time for the crank

to complete one revolution is 1.0 s. The required crank speed is determined as

2. Sketch the Timing Charts

The timing charts are constructed and shown in Figure 5.2.

= 60.0 rev/min

=
1

1.0 s/rev
= 1.0 rev/s a 60 s

1 min
b

vcrank = A¢tcycle B -1

¢tcycle = 0.6 + 0.4 s/rev

Q = a0.6 s

0.4 s
b = 1.5
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3. Calculate Motion Parameters of the Housing on the Conveyor

The estimated velocity and acceleration magnitudes for the housing on the conveyor is

4. Calculate Motion Parameters of the Bearing Press Return Stroke

The estimated velocity and acceleration magnitudes for the bearing press return stroke is

5. Calculate Motion Parameters of the Bearing Press Working Stroke

The estimated velocity and acceleration magnitudes for the bearing press working stroke is

6. Optimize Motion

The largest acceleration magnitude is the housing on the conveyor at 200 in/s2 = 200/386.4 = 0.517g. The motion

can be optimized and production can be increased by substituting a = 386.4 in./s2 (1g) into equation (5.7) and

solving for a reduced conveyor movement time.

Maintaining the time ratio, the reduced bearing press stroke can be determined by rewriting equation (5.1).

The increased crank speed can be determined from equation 5.5

Since production rate is related to line speed, the production is increased 39 percent by using time charts and opti-

mizing the motion while keeping within acceptable acceleration limits.

= 1.389 rev/sa 60 s

1 min
b = 83.3 rev/min

=
1

0.720 s/rev

vcrank = (0.288 + 0.432s)-1

¢t2 = Q ¢t1 = 1.5 (0.288 s) = 0.432s

¢t1 = A4
¢R
a

= A4
(8.0 in.)

(386.4 in./s2)
= 0.288 s

a = 4
¢R

¢t 2
2 = 4

(6.0 in.)

(0.6 s)2 = 66.67 in./s2

vpeak = 2
¢R

¢t2
= 2

(6.0 in.)

(0.6 s)
= 20.00 in./s

a = 4
¢R

¢t1
2 = 4

(-6.0 in.)

(0.4 s)2 = -150.00 in./s2

vpeak = 2
¢R

¢t1
= 2

(-6.0 in.)

(0.4 s)
= -30.00 in./s

a = 4
¢R

¢t1
2 = 4

(8.0 in.)

(0.4 s)2 = 200.00 in./s2

vpeak = 2
¢R

¢t1
= 2

(8.0 in.)

(0.4 s)
= 40.00 in./s

5.4 DESIGN OF SLIDER-CRANK
MECHANISMS

Many applications require a machine with reciprocating,
linear sliding motion of a component. Engines and com-
pressors require a piston to move through a precise dis-
tance, called the stroke, as a crank continuously rotates.
Other applications such as sewing machines and power
hacksaws require a similar, linear, reciprocating motion. A
form of the slider-crank mechanism is used in virtually all
these applications.

5.4.1 In-Line Slider-Crank Mechanism

An in-line slider-crank mechanism has the crank pivot
coincident with the axis of the sliding motion of the piston
pin. An in-line slider-crank mechanism is illustrated in
Figure 5.3. The stroke, |ΔR4|max, is defined as the linear
distance that the sliding link exhibits between the extreme
positions. Because the motion of the crank (L2) and con-
necting arm (L3) is symmetric about the sliding axis, the
crank angle required to execute a forward stroke is the same
as that for the return stroke. For this reason, the in-line
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FIGURE 5.4 Maximum slider acceleration for slider-crank mechanisms.

slider-crank mechanism produces balanced motion.
Assuming that the crank is driven with a constant velocity
source, as an electric motor, the time consumed during a for-
ward stroke is equivalent to the time for the return stroke.

The design of an in-line slider-crank mechanism
involves determining the appropriate length of the two links,
L2 and L3, to achieve the desired stroke, |ΔR4|max. As can be
seen from Figure 5.3, the stroke of the in-line slider-crank
mechanism is twice the length of the crank. That is, the dis-
tance between B1 and B2 is the same as the distance between
C1 and C2. Therefore, the length of crank, L2, for an in-line
slider-crank can be determined as follows:

(5.8)

The length of the connecting arm, L3, does not affect the
stroke of an in-line slider-crank mechanism. However, a
shorter connecting arm yields greater acceleration values.
Figure 5.4 illustrates the effect of the connecting arm length

L2 =  
ƒ ¢  R4 ƒ max

2

C2C1

L2
L3

L 3 −
 L 2

L 3
 + L 2

2L 2

B1 B2

C

A

B

1

2
3 4

⎪ΔR4⎪max

FIGURE 5.3 In-line slider-crank mechanism.

and offset distance (if any) on the maximum acceleration of
the sliding link. These data clearly show that the connecting
arm length should be made as large as possible. (Note that
for an in-line slider-crank, the offset value, L1, is zero.) As a
general rule of thumb, the connecting arm should be at least
three times greater than the length of the crank. A detailed
analysis, as presented in Chapter 7, should be completed to
determine the precise accelerations of the links and resulting
inertial loads.

5.4.2 Offset Slider-Crank Mechanism

The mechanism illustrated in Figure 5.5a is an offset slider-
crank mechanism. With an offset slider-crank mechanism,
an offset distance is introduced. This offset distance, L1, is
the distance between the crank pivot and the sliding axis.
With the presence of an offset, the motion of the crank and
connecting arm is no longer symmetric about the sliding
axis. Therefore, the crank angle required to execute the for-
ward stroke is different from the crank angle required for the
return stroke. An offset slider-crank mechanism provides a
quick return when a slower working stroke is needed.

In Figure 5.5a, it should be noted that A, C1, and C2 are
not collinear. Thus, the stroke of an offset slider-crank
mechanism is always greater than twice the crank length. As
the offset distance increases, the stroke also becomes larger.
By inspecting Figure 5.5a, the feasible range for the offset
distance can be written as:

(5.9)

Locating the limiting positions of the sliding link is
shown in Figure 5.5a and was discussed in Chapter 4. The
design of a slider-crank mechanism involves determining
an appropriate offset distance, L1, and the two links lengths, L2

and L3, to achieve the desired stroke, |ΔR4|max, and imbalance

L1 6 L3 - L2
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FIGURE 5.5 Offset slider-crank mechanism.

angle, β. The graphical procedure to synthesize a slider-crank
mechanism is as follows:

1. Locate the axis of the pin joint on the sliding link. This
joint is labeled as point C in Figure 5.5a.

2. Draw the extreme positions of the sliding link,
separated by the stroke, |ΔR4|max.

3. At one of the extreme positions, construct any line M
through the sliding link pin joint, inclined at an angle
θM. This point is labeled C1 in Figure 5.5b.

4. At the other extreme position, draw a line N through
the sliding link pin joint, labeled C2 in Figure 5.5b,
inclined at an angle β from line M. Note that

.

5. The intersection of lines M and N defines the pivot
point for the crank, point A. The offset distance, L1, can
be scaled from the construction (Figure 5.5b).

6. From the construction of the limiting positions, it is
observed that the length between C1 and D is 2L2. Note
that this arc, C2D, is centered at point A. Because both
lines are radii of the same arc, the radius AC2 is equal to

uN = uM - b

the lengths . Rearranging this relationship
gives

Substituting and rearranging, the length of the crank,
L2, for this offset slider-crank mechanism can be deter-
mined as

(5.10)

7. From the construction of the limiting positions, it is
also observed that

Rearranging, the length of the coupler, L3, for this offset
slider-crank mechanism is

(5.11)

The complete mechanism is shown in Figure 5.5c. The
design procedure, implemented with a CAD system,
achieves accurate results.

Note that any line M can be drawn though point C1 at
an arbitrary inclination angle, θM. Therefore, an infinite
number of suitable mechanisms can be designed. In general,
the mechanisms that produce the longest connecting arm
have lower accelerations, and subsequently lower inertial
forces. Figure 5.4 can be used to determine the ramifications
of using a short connecting arm. As a general rule of thumb,
the connecting arm should be at least three times greater
than the length of the crank. A detailed acceleration analysis,
as presented in Chapter 7, should be completed to determine
the inherent inertial loads.

Analytical methods can be incorporated by viewing the
triangle in Figure 5.5b to generate expressions for the link
lengths L1, L2, and L3, as a function of the stroke |ΔR4|max,
the imbalance angle β, and the inclination of the arbitrary
line M, θM.

(5.12)

(5.13)

(5.14)

5.5 DESIGN OF CRANK-ROCKER
MECHANISMS

A crank-rocker mechanism has also been discussed on
several occasions. It is common for many applications where
repeated oscillations are required. Figure 5.6a illustrates the
geometry of a crank-rocker. Comparable to the stroke of a
slider-crank mechanism, the crank-rocker mechanism
exhibits a throw angle, (Δθ4)max (Figure 5.6a). This throw
angle is defined as the angle between the extreme positions
of the rocker link.

L3 = ƒ ¢R4 ƒ max c sin (uM) + sin(uM - b)

2sin(b)
d

L2 = ƒ ¢R4 ƒ max c sin (uM) - sin (uM - b)

2sin (b)
d

L1 = ƒ ¢R4 ƒ max c sin (uM) sin(uM - b)

sin (b)
d

L3 = AC1 + L2

AC1 = L3 - L2

L2 =
1

2
 (AC2 - AC1)

C1D = AC2 - AC1

AC1 + C1D
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FIGURE 5.6 Crank-rocker mechanism.

Similar to the offset slider-crank mechanism, a crank-
rocker can be used as a quick-return mechanism. The time
ratio defined in equations (5.1) and (5.2) equally applies to a
crank-rocker. The imbalance angle, β, of a crank-rocker
mechanism is also shown in Figure 5.6a.

The limiting positions of a crank-rocker are shown in
Figure 5.6a and were discussed extensively in Chapter 4.
Note that the radial length between the two extreme
positions is twice the crank length. This notion becomes
important when designing a crank-rocker mechanism.

The design of a crank-rocker mechanism involves
determining appropriate lengths of all four links to achieve
the desired throw angle, (Δθ4)max, and imbalance angle, β.
The graphical procedure to synthesize a crank-rocker mech-
anism is as follows:

1. Locate the pivot of the rocker link, point D in Figure 5.6b.

2. Choose any feasible rocker length, L4. This length is
typically constrained by the spatial allowance for the
mechanism.

3. Draw the two positions of the rocker, separated by the
throw angle, (Δθ4)max.

4. At one of the extreme positions, construct any line M
through the end of the rocker link, inclined at an angle
θM. This point is labeled C2 in Figure 5.6b.

5. At the other extreme position, draw a line N through
the end of the rocker link, which is inclined at angle β
from line M. Note that .

6. The intersection of lines M and N defines the pivot
point for the crank, point A. The length between the
two pivots, L1, can be scaled from the construction
(Figure 5.6c). For cases where a balanced timing is
required ( ), lines M and N are collinear. Thus, a
pivot point for the crank, point A, can be selected
anywhere along lines M and N.

7. From the construction of the limiting positions, it is
observed that the length between C1 and E is 2L2. Note
that this arc, C2E, is centered at point A. Because
both lines are radii of the same arc, the radius AC2 is
equal to the lengths . Rearranging this
relationship gives

Substituting and rearranging, the length of the crank, L2,
for this crank-rocker mechanism can be determined as

(5.15)

8. From the construction of the limiting positions, it is
also observed that

Rearranging, the length of the coupler, L3, for this
crank-rocker mechanism is

(5.16)

The completed mechanism is shown in Figure 5.6c. In
step 4, line M is drawn through point C1, at an arbitrary
inclination angle, θM. Therefore, an infinite number of suit-
able mechanisms can be designed to achieve the desired
throw angle and time ratio As with slider-crank mechanisms,
four-bar mechanisms that include a longer coupler will have
lower accelerations and subsequently lower inertial forces.

An additional measure of the “quality” of a four-bar
mechanism is the transmission angle, γ. This is the angle
between the coupler and the rocker, as illustrated in

L3 = AC1 + L2

AC1 = L3 - L2

L2 =
1

2
 (AC2 - AC1)

C1E = AC2 - AC1

AC1 + C1E

Q = 1

uN = uM - b
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FIGURE 5.7 Crank-shaper mechanism.

Figure 5.6c. A common function of a four-bar linkage is to
transform rotary into oscillating motion. Frequently, in such
applications, a large force must be transmitted. In these
situations, the transmission angle becomes of extreme
importance. When the transmission angle becomes small,
large forces are required to drive the rocker arm. For best
results, the transmission angle should be as close to 90° as
possible during the entire rotation of the crank. This will
reduce bending in the links and produce the most favorable
force-transmission conditions. The extreme values of the
transmission angle occur when the crank lies along the line
of the frame. A common rule of thumb is that a four-bar
linkage should not be used when the transmission angle is
outside the limits of 45° and 135°. Force analysis, as
presented in Chapters 13 and 14, can be used to determine
the effect of the actual transmission angle encountered.

In some instances, the length of one of the links must be
a specific dimension. Most commonly, a target length of the
frame (L1) is specified. However, only the rocker length (L4)
is directly specified in the procedure just outlined. Since the
four-bar mechanism was designed to attain specific angular
results, the length of all the links can be appropriately scaled
to achieve the desired link dimension and maintain the
design objective. All CAD systems have the ability to scale
the constructed geometry of Figure 5.6b.

Analytical methods can be incorporated by analyzing
the triangles in Figure 5.6b to generate expressions for the
link lengths L2, L3, and L4, as a function of the throw
(Δθ4)max, the frame length (L1), the imbalance angle β, and
the inclination of the arbitrary line M, θM.

(5.17)

Where:

k = sin2b + 4sin2 A(¢u4)max /2 B sin2(uM + b)

L4 =
L1sin b

2k
The graphical procedure to synthesize the crank-shaper
mechanism is as follows:

1. Construct a line whose length is equal to the desired
stroke, |ΔRE|max. The endpoints are labeled at each D1

and D2 as shown in Figure 5.7a.

2. Construct an inclined line from D1 and another from
D2 at an angle β/2 as shown in Figure 5.7a.

3. The intersection of the two inclined lines locates the
rocker pivot, point A in Figure 5.7a. The line between
points A and D1 or between A and D2 represents the
rocker and will be designated L3.

4. Draw a line perpendicular to line D1D2 through A. This
line is labeled P in Figure 5.7a.

5. The crank pivot, point C, can be placed anywhere along
line P. The distance between points A and C represents
the frame and will be designated L1.

6. Draw a line perpendicular to line AD1, through point C.
The intersection will be designated B1 as shown in
Figure 5.5a. Line B1C represents the crank and will be
designated L2. Similarly, draw a line perpendicular to
line AD2, through point C. The intersection will be
designated B2.

7. The length of L4, as shown in Figure 5.7b, can be made
an appropriate value to fit the application. As with
other slider-crank mechanisms, longer lengths will
reduce maximum accelerations.

(5.18)

(5.19)

5.6 DESIGN OF CRANK-SHAPER
MECHANISMS

A crank-shaper mechanism that is capable of higher time ra-
tios is shown in Figure 5.7. It is named for its use in metal
shaper machines, where a slow cutting stroke is followed by a
rapid return stroke when no work is being performed. The
design of an crank-shaper mechanism involves determining
the appropriate length of the three primary links—L1, L2,
and L3—to achieve the desired stroke, |ΔRE |max.

L2 = L3 -
2L4sin A(¢u4)max/2 B sin uM

sinb

L3 =
L4 sin A(¢u4)max/2B

sin b
Csin uM + sin(uM + b) D

 sin A(¢u4)max/2 + uM) B
- 4sin b sin A(¢u4)max /2 B  sin(uM + b)
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FIGURE 5.8 Two-position synthesis with a pivoting link.

Note that the crank pivot, point C, can be placed along
line P. Therefore, an infinite number of suitable mechanisms
can be designed. A longer L1 will dictate a longer crank, L2,
which will exhibit less force at joint B, but higher sliding
speeds. It is common to compromise and select point C near
the middle of line P.

Analytical methods can be incorporated by viewing
the triangle in Figure 5.7a to generate expressions for the
link lengths L2 and L3, as a function of the stroke |ΔRE|max,
the imbalance angle β, and the frame length L1 selected.
As stated, L4 should be made as long as the application
allows.

(5.20)

(5.21)

5.7 MECHANISM TO MOVE A LINK
BETWEEN TWO POSITIONS

In material handling machines, it is common to have a link
that moves from one general position to another. When two
positions of a link are specified, this class of design problems
is called two-position synthesis. This task can be accom-
plished by either rotating a link about a single pivot point or
by using the coupler of a four-bar mechanism.

5.7.1 Two-Position Synthesis with a
Pivoting Link

Figure 5.8a illustrates two points, A and B, that reside on a
common link and move from A1B1 to A2B2. A single link can
be designed to produce this displacement. The problem
reduces to determining the pivot point for this link and the
angle that the link must be rotated to achieve the desired
displacement.

The graphical procedure to design a pivoting link for
two-position synthesis is as follows:

1. Construct two lines that connect A1A2 and B1B2,
respectively.

2. Construct a perpendicular bisector of A1A2.

3. Construct a perpendicular bisector of B1B2.

4. The intersection of these two perpendicular bisectors
is the required location for the link pivot and shown
as point C in Figure 5.8b. The center of rotation
between two task positions is termed the displacement
pole. Point C is the displacement pole of position
1 and 2.

5. The angle between the pivot point C, A1, and A2 is the
required angle that the link must be rotated to produce
the desired displacement. This angle is labeled Δθ in
Figure 5.8c. A crank-rocker linkage can be subsequently
designed to achieve this rotational motion, if it is
desired to drive the mechanism with a continually
rotating crank.

L2 = L1 sin (b/2)

L3 =
ƒ ¢RE ƒ max

2sin (b/2)

5.7.2 Two-Position Synthesis of the
Coupler of a Four-Bar Mechanism

In an identical problem to the one presented in the preced-
ing section, Figure 5.9a illustrates two points, A and B, that
must sit on a link and move from A1B1 to A2B2. Some appli-
cations may make a single pivoted link unfeasible, such as
when the pivot point of the single link is inaccessible. In
these cases, the coupler of a four-bar linkage can be designed
to produce the required displacement. Appropriate lengths
must be determined for all four links and the location of
pivot points so that the coupler achieves the desired
displacement.

The graphical procedure to design a four-bar mechanism
for two-position synthesis is as follows:

1. Construct two lines that connect A1A2 and B1B2,
respectively.

2. Construct a perpendicular bisector of A1A2.

3. Construct a perpendicular bisector of B1B2.

4. The pivot points of the input and output links can be
placed anywhere on the perpendicular bisector. These
pivot points are shown as C and D in Figure 5.9b.

5. The length of the two pivoting links are determined by
scaling lengths A1C and B1D (Figure 5.9c).

The completed linkage is shown in Figure 5.9c. Because
the pivot points C and D can be placed anywhere along the
perpendicular bisectors, an infinite number of mechanisms
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FIGURE 5.9 Two-position synthesis with a coupler link.

can be designed to accomplish the desired displacement.
Note that longer pivoting links rotate at a smaller angle to
move the coupler between the two desired positions. This
produces larger transmission angles and reduces the force
required to drive the linkage. The CAD system produces
accurate results.

5.8 MECHANISM TO MOVE A LINK
BETWEEN THREE POSITIONS

In some material handling machines, it is desired to have
a link move between three positions. When three positions
of a link are specified, this class of design problem is
called three-position synthesis. For three-point synthesis, it
generally is not possible to use a single pivoting link.
This task is accomplished with the coupler of a four-bar
mechanism.

Figure 5.10a illustrates two points, A and B, that must sit
on a link and move from A1B1 to A2B2 to A3B3. Appropriate
lengths must be determined for all four links and the loca-
tion of pivot points so that the coupler achieves this desired
displacement.

The graphical procedure to design a four-bar mecha-
nism for three-point synthesis is as follows:

1. Construct four lines connecting A1 to A2, B1 to B2, A2

to A3, and B2 to B3.

2. Construct a perpendicular bisector of A1A2, a perpen-
dicular bisector of B1B2, a perpendicular bisector of
A2A3, and a perpendicular bisector of B2B3.

3. The intersection of the perpendicular bisector of
A1A2 and the perpendicular bisector of A2A3

locates one pivot point. This is shown as point C in
Figure 5.10b.

4. The intersection of the perpendicular bisector of B1B2

and the perpendicular bisector of B2B3 locates the
other pivot point. This is shown as point D in
Figure 5.10b.

5. The length of the two pivoting links is determined 
by scaling lengths A1C and B1D, as shown in 
Figure 5.7c.

The completed linkage is shown in Figure 5.10c.
Again, the CAD system produces accurate 
results.

5.9 CIRCUIT AND BRANCH DEFECTS

As introduced in Chapter 4, an assembly circuit is all possi-
ble configurations of the mechanism links that can be real-
ized without disconnecting the joints. Figure 4.24 illustrates
two assembly circuits for the four-bar mechanism. As the
procedure in Sections 5.5 and 5.6 is followed, it is possible
that the one position will sit on a different assembly circuit
as the other position(s). This is called a circuit defect, and is
a fatal flaw in a linkage design. Once a four-bar mechanism
has been synthesized, a position analysis should be per-
formed to verify that the target positions can be reached
from the original linkage configuration without discon-
necting the joints.
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FIGURE 5.10 Three-position synthesis with a coupler link.
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A branch defect occurs if the mechanism reaches a toggle
configuration between target positions. Unlike a circuit defect,
a branch defect is dependent on the selection of driving link. In
a toggle configuration, the mechanism becomes locked and the
driving link is unable to actuate. The branch defect may not be
a fatal flaw in the design, as an alternate link can be actuated to
drive the mechanism between target positions.

PROBLEMS

Time Ratio Calculations
In Problems 5–1 through 5–3, a quick-return mechanism is to be
designed where the outward stroke consumes t1 and the return
stroke t2. Determine the time ratio, imbalance angle, and speed at
which the mechanism should be driven.

5–1.

5–2.

5–3.

For Problems 5–4 through 5–6, a quick-return mechanism drives at
ω rpm and has an imbalance angle of β. Determine the time ratio
and the time to complete the outward and return strokes.

5–4.

5–5.

5–6.

Timing Charts

5-7. A reciprocating saw needs to move the blade
downward 0.75 in. in 0.10 s and return in 0.08 s.
Determine the time ratio and crank speed. Also,
sketch the timing chart and estimate the peak
velocity and acceleration of the motion.

5-8. A punch press needs to move a stamp downward
1.5 in. in 0.60 s and return in 0.35 s. Determine the
time ratio and crank speed. Also, sketch the timing
chart and estimate the peak velocity and accele-
ration of the motion.

5-9. A process requires a conveyor to index packages
6.0 in. in 0.6 s and dwell while a stamp is applied
to the package. The stamp head must travel 8.0 in.
to meet the package. The entire stamp stroke
should take 0.8 s. Determine the time ratio and
crank speed of the mechanism. Also, sketch the
synchronized timing charts and estimate the peak
velocity and acceleration of the different motion
elements.

5-10. A process requires a conveyor to index cans 2.0 in.
in 0.12 s and dwell while a cover is pressed onto a
can. The cap head must travel 3.0 in. to approach
the can. The entire cover pressing stroke should take
0.25 s. Determine the time ratio and crank speed of
the mechanism. Also, sketch the synchronized
timing charts and estimate the peak velocity and
acceleration of the different motion elements.

v = 500 rpm; b = 20°.

v = 75 rpm ; b = 37°.

v = 180 rpm; b = 25°.

t1 = 0.041s ; t2 = 0.027 s.

t1 = 0.35s; t2 = 0.20 s.

t1 = 1.1 s; t2 = 0.8 s.

Design of Slider-Crank Mechanisms
For Problems 5–11 through 5–18, design a slider-crank mechanism
with a time ratio of Q, stroke of and time per cycle of t. Use
either the graphical or analytical method. Specify the link lengths L2,
L3, offset distance L1 (if any), and the crank speed.

5–11.

5–12.

5–13.

5–14.

5–15.

5–16.

5–17.

5–18.

Design of Crank-Rocker Mechanisms
For Problems 5–19 through 5–28, design a crank-rocker mechanism
with a time ratio of Q, throw angle of (Δθ4)max, and time per cycle
of t. Use either the graphical or analytical method. Specify the link
lengths L1, L2, L3, L4, and the crank speed.

5–19.

5–20.

5–21.

5–22.

5–23.

5–24.

5–25.

5–26.

5–27.

5–28.

Design of Crank-Shaper Mechanisms
For Problems 5–29 through 5–32, design a crank-shaper mechanism
with a time ratio of Q, stroke of and time per cycle of t. Use
either the graphical or analytical method. Specify the link lengths L1,
L2, L3, L4, and the crank speed.

5–29.

5–30.

5–31.

5–32.

Two-Position Synthesis, Single Pivot
For Problems 5–33 through 5–36, a link containing points A and B
must assume the positions listed in the table for each problem.
Graphically determine the location of a fixed pivot for a single pivot-
ing link that permits the motion listed. Also determine the degree
that the link must be rotated to move from position 1 to position 2.

5–33.

Q = 1.80; |¢RE|max = 1.2 in.; t = 0.25 s.

Q = 2.00;|¢RE| max = 0.375 in.; t = 0.014 s.

Q = 1.75; |¢RE|max = 46 mm; t = 3.4 s.

Q = 1.50; |¢RE|max = 2.75 in.; t = 0.6 s.

ƒ ¢RE ƒ max

L1 = 100.0 mm.
Q = 1.08; (¢u4)max = 105°; t = 1.50s;

Q = 1.22; (¢u4)max = 88°; t = 0.75s; L1 = 8.0 in.

Q = 1.10; (¢u4)max = 115°; t = 0.2s; L1 = 6.5 in.

Q = 1.18; (¢u4)max = 72°; t = 0.08s; L1 = 8.0 in.

Q = 1.20; (¢u4)max = 96°; t = 0.3 s.

Q = 1.36; (¢u4)max = 45°; t = 1.2 s.

Q = 1.24; (¢u4)max = 85°; t = 1.8 s.

Q = 1.15; (¢u4)max = 55°; t = 0.45s.

Q = 1; (¢u4)max = 100°; t = 3.5s.

Q = 1; (¢u4)max = 78°; t = 1.2s.

Q = 1.10; |¢R4|max = 0.625 in.; t = 0.033s.

Q = 1.20; |¢R4|max = 0.375 in.; t = 0.025s.

Q = 1.15; |¢R4|max = 1.2 in.; t = 0.014s.

Q = 1.37; |¢R4|max = 46mm; t = 3.4s.

Q = 1.25; |¢R4|max = 2.75 in.; t = 0.6s.

Q = 1; |¢R4|max = 0.9 mm; t = 0.4 s.

Q = 1; |¢R4|max = 8 mm; t = 0.08s.

Q = 1; |¢R4|max = 2 in.; t = 1.2s.

ƒ ¢R4 ƒ max

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 0.0000 9.0000 5.0000 9.0000
Position 2 6.3600 6.3600 9.9005 2.8295
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5–35.

rotated to move the coupler from position 1 to position 2, then from
position 2 to position 3.

5–41.

5–44.

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 2.2800 5.3400 6.8474 7.3744
Position 2 9.7400 8.5000 12.5042 4.336

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 -53.000 41.000 75.205 19.469
Position 2 -36.000 40.000 87.770 -8.112

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 25.507 47.312 83.000 11.000
Position 2 97.000 30.000 150.676 71.748

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 -0.3536 4.8501 4.4000 3.3000
Position 2 -3.1000 3.2000 1.5562 5.0220

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 0.9000 4.5000 9.0380 7.7150
Position 2 -1.0000 5.6000 5.5727 11.3760

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 -40.000 -60.000 28.936 -30.456
Position 2 -65.350 -26.352 8.000 -42.000

5–34.

5–36.

Two-Position Synthesis, Two Pivots
In Problems 5–37 through 5–40, a link containing points A and B is
to assume the positions listed in the table for each problem.
Graphically find the location of two fixed pivots and the lengths of all
four links of a mechanism with a coupler that will exhibit the motion
listed. Also, determine the amount that the pivot links must be
rotated to move the coupler from position 1 to position 2.

5–37.

5–38.

5–39.

5–40.

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 -37.261 -2.041 -18.000 1.000
Position 2 -18.000 -3.000 0.858 -7.963

Three-Position Synthesis
For Problems 5–41 through 5–44, a link containing points A and B
must assume the three positions listed in the table for each problem.
Graphically find the location of two fixed pivots and the lengths of all
four links of a mechanism with a coupler that will exhibit the motion
listed. Also, determine the amount that the pivot links must be

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 -1.0000 -0.9000 5.2862 -1.7980
Position 2 -2.7000 -1.3000 3.6428 -0.9980
Position 3 -4.4000 -2.0000 1.7719 -0.5068

Coordinates: Ax (in.) Ay (in.) Bx (in.) By (in.)

Position 1 -5.5000 -0.1000 7.9836 5.2331
Position 2 -2.4000 0.5000 12.0831 1.1992
Position 3 -0.6000 1.6000 13.6483 -1.0902

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 0.000 40.000 54.774 44.980
Position 2 21.000 51.000 72.204 30.920
Position 3 39.000 49.000 82.143 14.887

Coordinates: Ax (mm) Ay (mm) Bx (mm) By (mm)

Position 1 43.000 -76.000 149.890 -50.027
Position 2 3.000 -52.000 111.127 -72.211
Position 3 -12.000 -33.000 91.840 -69.294

5–42.

5–43.

CASE STUDIES

5–1. Figure C5.1 shows a mechanism that drives a sliding
block, I. Block I, in turn, moves the blade of a power
hacksaw. Carefully examine the configuration of the
components in the mechanism. Then, answer the
following questions to gain insight into the opera-
tion of the mechanism.

ID
H

A
C

E

F

G

B

FIGURE C5.1 (Courtesy, Industrial Press.)

1. As shaft A rotates 90° cw, what is the motion of lobe
B, which is attached to shaft A?

2. As shaft A rotates 90° cw, what is the motion of item C?
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A

C

E

D

B

FIGURE C5.2 (Courtesy, Industrial Press.)

3. Is a slot necessary at roller E?
4. As shaft A rotates 90° cw, what is the motion of pin H?
5. As shaft A rotates 90° cw, what is the motion of

pin I?
6. Determine the mobility of this mechanism.
7. As thread G rotates to pull roller E downward, how

does that alter the motion of link C ?
8. As thread G rotates to pull roller E downward, how

does that alter the motion of pin H?
9. What is the purpose of this mechanism?

5–2. Figure C5.2 shows a mechanism that also drives
a sliding block B. This sliding block, in turn, drives a
cutting tool. Carefully examine the configuration of
the components in the mechanism. Then, answer
the following questions to gain insight into the
operation of the mechanism.

1. As rod A drives to the right, what is the motion of
sliding block B?

2. Describe the motion of sliding block B as roller C
reaches groove D.

3. Describe the motion of sliding block B as rod A
drives to the left, bringing C out of groove D.

4. Describe the continual motion of sliding block B as
rod A oscillates horizontally.

5. What is the purpose of this mechanism?
6. Describe a device that could drive rod A to the left

and right.
7. The adjustment slots at E provide what feature to

the mechanism?



6.2 LINEAR VELOCITY

Linear velocity, V, of a point is the linear displacement of that
point per unit time. Recall that linear displacement of a
point, ΔR, is a vector and defined as a change in position of
that point. This concept was introduced in Section 4.3.

As described in Chapter 4, the displacement of a point is
viewed as translation and is discussed in linear terms. By
definition, a point can only have a linear displacement.
When the time elapsed during a displacement is considered,
the velocity can be determined.

As with displacement, velocity is a vector. Recall that
vectors are denoted with the boldface type. The magnitude
of velocity is often referred to as “speed” and designated as

. Understanding the direction of linear velocity
requires determining the direction in which a point is
moving at a specific instant.

Mathematically, linear velocity of a point is expressed as

(6.1)

and for short time periods as

(6.2)

Since displacement is a vector, equation (6.1) indicates
that velocity is also a vector. As with all vectors, a direction is
also required to completely define velocity. Linear velocity is
expressed in the units of length divided by time. In the U.S.
Customary System, the common units used are feet per
second (ft/s or fps), feet per minute (ft/min or fpm), or
inches per second (in./s or ips). In the International System,
the common units used are meters per second (m/s) or
millimeters per second (mm/s).

6.2.1 Linear Velocity of Rectilinear Points

A point can move along either a straight or curved path. As
seen in the earlier chapters, many links are constrained to
straight-line, or rectilinear, motion. For points that are attached
to a link that is restricted to rectilinear motion, equations (6.1)
and (6.2) can be used to calculate the magnitude of the velocity.
The orientation of the linear velocity vector is simply in the
direction of motion, which is usually obvious.

V �
¢R

¢t

V = lim
¢t:0

dR

dt

v = ƒ V ƒ

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Define linear, rotational, and relative velocities.

2. Convert between linear and angular velocities.

3. Use the relative velocity method to graphically solve for
the velocity of a point on a link, knowing the velocity of
another point on that link.

4. Use the relative velocity method to graphically and
analytically determine the velocity of a point of interest
on a floating link.

5. Use the relative velocity method to analytically solve
for the velocity of a point on a link, knowing the
velocity of another point on that link.

6. Use the instantaneous center method to graphically
and analytically determine the velocity of a point.

7. Construct a velocity curve to locate extreme velocity
values.

VELOCITY ANALYSIS

6.1 INTRODUCTION

Velocity analysis involves determining “how fast” certain
points on the links of a mechanism are traveling. Velocity is
important because it associates the movement of a point on
a mechanism with time. Often the timing in a machine is
critical.

For instance, the mechanism that “pulls” video film
through a movie projector must advance the film at a rate
of 30 frames per second. A mechanism that feeds packing
material into a crate must operate in sequence with the
conveyor that indexes the crates. A windshield wiper mecha-
nism operating on high speed must sweep the wiper across
the glass at least 45 times every minute.

The determination of velocity in a linkage is the
purpose of this chapter. Two common analysis procedures
are examined: the relative velocity method and the instan-
taneous center method. Consistent with other chapters in
this book, both graphical and analytical techniques are
included.
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Vcrate

FIGURE 6.1 Translating crate for Example Problem 6.1.

A

B

VB

2ω

VA
2

FIGURE 6.2 Linear velocities of points on a link.

EXAMPLE PROBLEM 6.1

Crates on a conveyor shown in Figure 6.1 move toward the left at a constant rate. It takes 40 s to traverse the 25-ft 

conveyor. Determine the linear velocity of a crate.

6.2.2 Linear Velocity of a General Point

For points on a link undergoing general motion, equations
(6.1) and (6.2) are still valid. The direction of the linear velocity
of a point is the same as the direction of its instantaneous
motion. Figure 6.2 illustrates the velocity of two points on a
link. The velocities of points A and B are denoted as VA and VB,
respectively. Note that although they are on the same link, both
these points can have different linear velocities. Points that are
farther from the pivot travel faster. This can be “felt” when
sitting on the outer seats of amusement rides that spin.

From Figure 6.2, the velocity of point A, VA, is directed
along the path that point A is moving at this instant––that
is, tangent to an arc centered at O, which is also perpendic-
ular to link OA. In casual terms, if point A were to break
away from link 2 at this instant, point A would travel in the
direction of its linear velocity.

6.2.3 Velocity Profile for Linear Motion

Advances in technology have allowed precise motion control
for many applications, such as automation, test, and
measurement equipment. These systems implement servo
drives, which are motors controlled by a microprocessor.
The intended motion is specified to a controller. Sensors
monitor the motion of the moving link and provide feed-
back to the controller. If a difference between the intended
motion and the actual motion is measured, the controller
will alter the signal to the motor and correct the deviation.
Because of the precision, responsiveness, and lowering cost,
the use of servo systems is growing rapidly.

For optimal motion control, smooth high-speed motion is
desired, with a minimal effort required from the motor. The
controller must direct the motor to change velocity wisely to

achieve maximum results. For a linear servo system, the motion
characteristics of a translating machine component are usually
specified with a shaped velocity profile. The velocity profile pre-
scribes the speed-up, steady-state, and slow-down motion seg-
ments for the translating link. The actual displacement can be
calculated from the velocity profile. Rewriting equation (6.1),

Solving for the displacement, ΔR, gives

(6.3)

With knowledge from elementary calculus, equation (6.3)
states that the displacement for a certain time interval is the
area under the v–t curve for that time interval.

¢R = LV dt

dR = V dt

EXAMPLE PROBLEM 6.2

Servo-driven actuators are programmed to move according to a specified velocity profile. The linear actuator, shown

in Figure 6.3a, is programmed to extend according to the velocity profile shown in Figure 6.3b. Determine the total

displacement during this programmed move.

SOLUTION: Because the crates travel at a constant rate, equation (6.2) can be used to determine the linear velocity of the

crate.

Vcrate =
¢R

¢t
=

25 ft
40 s

= .625 ft>s ¢ 12 in.

1 ft
≤ = 7.5 in.>s ;
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(a) (b)

v (in./s)

t (s)

4

2

V

1 2 3 4 5 6

FIGURE 6.3 Velocity profile for Example Problem 6.2.

SOLUTION: 1. Displacement during the Speed-Up Portion of the Move

During the first one-second portion of the move, the actuator is speeding up to its steady-state velocity. The area

under the v–t curve forms a triangle and is calculated as

2. Displacement during the Steady-State Portion of the Move

During the time interval between 1 and 4.5, the actuator is moving at its steady-state velocity. The area under the

v–t curve forms a rectangle and is calculated as

3. Displacement during the Slow-Down Portion of the Move

During the time interval between 4.5 and 5.5, the actuator is slowing down from its steady-state velocity. The

area under the v–t curve forms a triangle and is calculated as

4. Total Displacement during the Programmed Move

The total displacement during the programmed move is the sum of the displacement during the speed-up,

steady-state, and slow-down portions of the move.

¢Rtotal = ¢Rspeed-up + ¢Rsteady-state + ¢Rslow-down = 2 + 14 + 2 = 18 in. ¡   (extension)

¡¢Rslow-down = 1⁄2 AVsteady-state B A¢tslow-down B = 1⁄2 A4 in.>s B  [(5.5 - 4.5) s] = 2 in.

¡¢Rsteady-state = AVsteady-state B A¢tsteady-state B = A4 in.>s B [(4.5 - 1) s] = 14 in.

¡¢Rspeed-up = 1⁄2 AVsteady-state B A¢tspeed-up B = 1⁄2 A4 in.>s B [(1 - 0) s] = 2 in.

6.3 VELOCITY OF A LINK

Several points on a link can have drastically different linear
velocities. This is especially true as the link simply rotates
about a fixed point, as in Figure 6.2. In general, the motion
of a link can be rather complex as it moves (translates) and
spins (rotates).

Any motion, however complex, can be viewed as a
combination of a straight-line movement and a rotational
movement. Fully describing the motion of a link can consist
of identification of the linear motion of one point and the
rotational motion of the link.

Although several points on a link can have different linear
velocities, being a rigid body, the entire link has the same
angular velocity. Angular velocity, ω, of a link is the angular dis-
placement of that link per unit of time. Recall that rotational
displacement of a link, Δθ, is defined as the angular change in
orientation of that link. This was introduced in Section 4.3.

Mathematically, angular velocity of a link is expressed as:

(6.4)v = lim
¢tBo

¢u
¢t

=
du

dt

and for short time periods, or when the velocity can be
assumed linear,

(6.5)

The direction of angular velocity is in the direction of
the link’s rotation. In planar analyses, it can be fully
described by specifying either the term clockwise or
counterclockwise. For example, the link shown in Figure 6.2
has an angular velocity that is consistent with the linear
velocities of the points that are attached to the link. Thus, the
link has a clockwise rotational velocity.

Angular velocity is expressed in the units of angle
divided by time. In both the U.S. Customary System
and the International System, the common units used are
revolutions per minute (rpm), degrees per second (deg/s),
or radians per second (rad/s or rps).

v �
¢u
¢t
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ω

FIGURE 6.4 Rotating gear for Example Problem 6.3.

EXAMPLE PROBLEM 6.3

The gear shown in Figure 6.4 rotates counterclockwise at a constant rate. It moves 300° in. 0.5 s. Determine the 

angular velocity of the gear.

6.4 RELATIONSHIP BETWEEN LINEAR AND
ANGULAR VELOCITIES

For a link in pure rotation, the magnitude of the linear
velocity of any point attached to the link is related to the
angular velocity of the link. This relationship is expressed as

(6.6)

where:

Linear velocity is always perpendicular to a line that
connects the center of the link rotation to the point of consid-
eration. Thus, linear velocity of a point on a link in pure rota-
tion is often called the tangential velocity. This is because the
linear velocity is tangent to the circular path of that point, or
perpendicular to the line that connects the point with the pivot.

It is extremely important to remember that the angular
velocity, ω, in equation (6.6) must be expressed as units
of radians per time. The radian is a dimensionless unit of
angular measurement that can be omitted. Linear velocity is

point of consideration
v = angular velocity of the rotating link that contains the 

consideration
r = distance from the center of rotation to the point of 

point  of consideration
v = ƒ V ƒ = magnitude of the linear velocity of the 

v = rv

expressed in units of length per time and not radians times
length per time, as equation (6.6) would imply.

Often, the conversion must be made from the more
common unit of revolutions per minute (rpm):

(6.7)

and

(6.8)

As mentioned, a radian is a dimensionless measure of
an angle. To be exact, an angle expressed in radians is the
ratio of the arc length swept by the angle to the radius. When
an angle expressed in radians is multiplied by another value,
the radian designation is omitted.

As stated in the previous section, the angular velocity of
the link and the linear velocities of points on the link are
consistent. That is, the velocities (rotational or linear) are
in the direction that the object (link or point) is instanta-
neously moving. As mentioned, linear velocity is always
perpendicular to a line that connects the center of link rota-
tion to the point of consideration.

=
p

30
Cv(rev>min) D

v (rad>s) = Cv (rev>min) D ca2p rad

1 rev
b a1 min

60 s
bd

= 2p Cv (rad>min) D
v (rad>min) = Cv (rad>min) D c 2p rad

rev
d

EXAMPLE PROBLEM 6.4

Figure 6.5 illustrates a cam mechanism used to drive the exhaust port of an internal combustion engine. Point B is a

point of interest on the rocker plate. At this instant, the cam forces point B upward at 30 mm/s. Determine the angu-

lar velocity of the rocker plate and the velocity of point C.

SOLUTION: Because the gear rotates at a constant rate, equation (6.4) can be used to determine the angular velocity of

the gear.

vgear =
¢ugear

¢t
=

300°

0.5 s
= 600 deg>s  a 1 rev

360 deg
b a 60 s

1 min
b = 50 rpm, counterclockwise
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15 mm

C

70�

B
A

20 mm

FIGURE 6.5 Mechanism for Example Problem 6.4.

C

B 20 mm

70°

15 mm

2

1

3

VB = 30 mm/s

FIGURE 6.6 Kinematic diagram for Example Problem 6.4.

SOLUTION: 1. Draw a Kinematic Diagram and Calculate Degrees of Freedom

The rocker plate is connected to the frame with a pin joint at point A. The velocity of point B is a vector directed

upward with a magnitude of 30 mm/s. Figure 6.6 shows a kinematic diagram.

2. Calculate the Angular Velocity of Link 2

It should be apparent that as point B travels upward, the rocker plate, link 2, is forced to rotate clockwise.

Therefore, as point B has upward linear velocity, the rocker plate must have a clockwise angular velocity. The

magnitude of the angular velocity is found by rearranging equation (6.5):

This can be converted to rpm by rearranging equation (6.6):

Including the direction,

3. Calculate the Linear Velocity of Point C

The linear velocity of point C can also be computed from equation (6.5):

The direction of the linear velocity of C must be consistent with the angular velocity of link 2. The 

velocity also is perpendicular to the line that connects the center of rotation of link 2, point A, to 

point C. Therefore, the velocity of point C is directed 20° (90°–70°) above the horizontal. Including the

direction,

VC = 22.5 mm>s 20°

vC = rACv2 = (15 mm)(1.5 rad>s) = 22.5 mm>s

v2 = 1.5 rad>s, cw

v2 (rev>min) =
30

p
Cv2 (rad>s) D =

30

p
 [1.5 rad>s] = 14.3 rpm

v2 =
vB

rAB
=

30 mm>s
20 mm

= 1.5 rad>s

Q
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B

A24"

VB = 10.4 in./s

VA = 12 in./s

30�
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FIGURE 6.7 Mechanism for Example Problem 6.5.

A

O

B

(a) (b)

32

1

4

VA = 12 in./s
VB = 10.4 in./s

VB/A = VB → VA

VB/A

VA = 12 in./s

30°

θ30°

VB = 10.4 in./s

FIGURE 6.8 Kinematic diagram for Example Problem 6.5.

6.5 RELATIVE VELOCITY

The difference between the motion of two points is termed
relative motion. Consider a situation where two cars travel
on the interstate highway. The car in the left lane travels at
65 miles per hour (mph), and the car in the right lane travels
at 55 mph. These speeds are measured in relationship to a
stationary radar unit. Thus, they are a measurement of
absolute motion.

Although both are moving forward, it appears to the
people in the faster car that the other car is actually moving
backward. That is, the relative motion of the slower car to
the faster car is in the opposite direction of the absolute
motion. Conversely, it appears to the people in the slower car
that the faster car is traveling at 10 mph. That is, the relative
velocity of the faster car to the slower car is 10 mph.

Relative velocity is a term used when the velocity of one
object is related to that of another reference object, which
can also be moving. The following notation distinguishes
between absolute and relative velocities:

B with respect to A
B “as observed” from point A

Relative motion, that is, the difference between the
motion of two points, can be written mathematically as

(6.9)

or rearranged as

(6.10)

Note that equations (6.9) and (6.10) are vector
equations. Therefore, in order to use the equations, vector
polygons must be prepared in accordance with the
equations. The techniques discussed in Section 3.16 must be
used in dealing with these equations.

VB = VA + 7 VB/A

VB/A = VB - 7 VA

=  velocity of point
VB/A = relative velocity of point

VB = absolute velocity of point B

VA = absolute velocity of point A

EXAMPLE PROBLEM 6.5

Figure 6.7 shows a cargo lift mechanism for a delivery truck. At this instant, point A has a velocity of 12 in./s in the

direction shown, and point B has a velocity of 10.4 in./s, also in the direction shown. Determine the angular veloc-

ity of the lower link and the relative velocity of point B relative to point A.

SOLUTION: 1. Draw a Kinematic Diagram and Identify Mobility

Figure 6.8a shows the kinematic diagram of this mechanism. Notice that it is the familiar four-bar mechanism,

having a single degree of freedom.
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2. Calculate the Angular Velocity of Link 2

From the kinematic diagram, it should be apparent that as point A travels up and to the right, link 2 rotates

counterclockwise. Thus, link 2 has a counterclockwise angular velocity. The magnitude of the angular velocity is

found by rearranging equation (6.6) as follows:

This can be converted to rpm by rearranging equation (6.7) as

Including the direction,

3. Calculate the Linear Velocity of Point B Relative to Point A

The relative velocity of B with respect to A can be found from equation (6.9):

A vector polygon is formed from this equation and is given in Figure 6.8b. Notice that this is a general triangle.

Either a graphical or analytical solution can be used to determine the vector vB/A.

Arbitrarily using an analytical method, the velocity magnitude vB/A can be found from the law of cosines.

The angle between the velocity magnitudes vB/A and vB is shown as θ in Figure 6.8b. It can be found by us-

ing the law of sines:

Thus, this vector polygon actually formed a right triangle. The relative velocity of B with respect to A is

stated formally as follows:

VB/A = 6.0 in.>s ;

u = sin-1 c (12 in.>s)

6 in.>s   sin 30° d = 90  °

= A(12 in.>s)2 + (10.4 in.>s)2 - 2(12 in.>s) (10.4 in.>s) (cos 30 °)= 6.0 in.>s
vB/A = 2[vA

2 + vB
2- 2(vA ) (vB ) (cos 30°)]

VB/A = VB - 7 VA

v2 = 4.8 rpm,  counterclockwise

v2(rev>min) =
30

p
Cv2   (rad>s) D =

30

p
 [0.5 rad>s] = 4.8 rpm

v2 =
vA

rAO2

=
(12 in.>s)

(24 in.)
= 0.5 rad>s

A

B

VB/A(drawn perpendicular
                         to line AB)

Relative pivot

FIGURE 6.9 Relative velocity of two points on the same link.

Relative velocity between two points on a link is useful in
determining velocity characteristics of the link. Specifically,
the relative velocity of any two points on a link can be used to
determine the angular velocity of that link. Assuming that
points A, B, and C lay on a link, the angular velocity can be
stated as

(6.11)v =
vA/B

rAB
=

vB/C

rBC
=

vA/C

rAC

The direction of the angular velocity is consistent with
the relative velocity of the two points. The relative velocity of
B with respect to A implies that B is seen as rotating about A.
Therefore, the direction of the relative velocity of B “as seen
from” A suggests the direction of rotation of the link that is
shared by points A and B. Referring to Figure 6.9, when vB/A is
directed up and to the left, the angular velocity of the link is
counterclockwise. Conversely, when vB/A is directed down and
to the right, the angular velocity of the link is clockwise.
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6.6 GRAPHICAL VELOCITY ANALYSIS:
RELATIVE VELOCITY METHOD

Graphical velocity analysis will determine the velocity
of mechanism points in a single configuration. It must be
emphasized that the results of this analysis correspond to the
current position of the mechanism. As the mechanism
moves, the configuration changes, and the velocities also
change.

The basis of the relative velocity method of analysis is
derived from the following fact:

Two points that reside on the same link can only have a
relative velocity that is in a direction perpendicular to the
line that connects the two points.

This fact is an extension of the definition of relative
velocity. Figure 6.9 illustrates two points, A and B, that are
on the same link. Recall that vB/A is the velocity of B “as
observed” from A. For an observer at A, it appears that B is
simply rotating around A, as long as both A and B are on the
same link. Thus, the velocity of B with respect to A must be
perpendicular to the line that connects B to A.

With this fact and vector analysis techniques, the
velocity of points on a mechanism can be determined.

6.6.1 Points on Links Limited to Pure
Rotation or Rectilinear Translation

The most basic analysis using the relative velocity method
involves points that reside on links that are limited to pure
rotation or rectilinear translation. The reason is that the
direction of the motion of the point is known. Pin joints are
convenient points of analysis because they reside on two
links, where one is typically constrained to pure rotation or
rectilinear translation.

Figure 6.10 shows a slider-crank mechanism. Point B
resides on links 2 and 3. Notice that the direction of the
velocity of point B is known because link 2 is constrained
to pure rotation. Point C resides on links 3 and 4. Likewise,
the direction of the velocity of point C is known because
link 4 is constrained to rectilinear translation. If the veloc-
ity of point B is known, the velocity of point C can
be quickly found because the direction of that velocity is

also known. Only the magnitude and sense need to be 
determined.

The general solution procedure to problems of this type
can be summarized as:

1. Determine the direction of the unknown velocity by
using the constraints imposed by the joint, either pure
rotation or pure translation.

2. Determine the direction of the relative velocity between
the two joints. For two points on the same link, the rel-
ative velocity is always perpendicular to the line that
connects the points.

3. Use the following relative velocity equation to draw a
vector polygon:

4. Using the methods outlined in Section 3.18, and the
vector equation above, determine the magnitudes of

This analysis procedure describes the logic behind graphi-
cal velocity analysis. The actual solution can be completed
using manual drawing techniques (using a protractor and
compass) or can be completed on a CAD system (using a rotate
and copy command). The logic is identical; however, the CAD
solution is not susceptible to limitations of drafting accuracy.
Regardless of the method being practiced, the underlying
concepts of graphical position analysis can be further illus-
trated and expanded through the following example problem.

VUnknown point and VUnknown point/Known point

+ 7  VUnknown point/Known point

VUnknown point = VKnown point

3
2

1

4

C

B

A

VB

VC

ω2

FIGURE 6.10 Links constrained to pure rotation and
rectilinear translation.

EXAMPLE PROBLEM 6.6

Figure 6.11 shows a rock-crushing mechanism. It is used in a machine where large rock is placed in a vertical hopper

and falls into this crushing chamber. Properly sized aggregate, which passes through a sieve, is discharged at the

bottom. Rock not passing through the sieve is reintroduced into this crushing chamber.

Determine the angular velocity of the crushing ram, in the shown configuration, as the 60-mm crank rotates at

120 rpm, clockwise.

SOLUTION: 1. Draw a Kinematic Diagram and Calculate Degrees of Freedom

Figure 6.12a shows a kinematic diagram of this mechanism. Notice that this mechanism is the familiar four-bar

linkage, having a single degree of freedom. With one degree of freedom, this mechanism is fully operated with

the one input motion. Of course, this motion is the rotation of link 2, at a rate of 120 rpm.
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360 mm

400 mm

180 mm

60 mm
90�

Crushing
chamber

FIGURE 6.11 Mechanism for Example Problem 6.6.

90°
360 mm

400 mm

VC/B (drawn perpendicular
to line BC)

VC (drawn perpendicular
to line CD)

VC = VB +> VC/B

VB

180 mm
60 mm

A

B

C

D

(a)
(b)

2 = 120 rpmω

1

2

3
4

(c)

FIGURE 6.12 Diagrams for Example Problem 6.6.

2. Decide on an Appropriate Relative Velocity Equation

The objective of the analysis is to determine the angular velocity of link 4. Link 2 contains the input motion (ve-

locity). Point B resides on both links 2 and 3. Point C resides on both links 3 and 4. Because points B and C re-

side on link 3, the relative velocity method can be used to relate the input velocity (link 2) to the desired velocity

(link 4). The relative velocity equation for this analysis becomes

VC = VB + 7 VC/B
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3. Determine the Velocity of the Input Point

The velocity of point B is calculated as

4. Determine the Directions of the Desired Velocities

Because link 4 is fixed to the frame at D, link 4 is limited to rotation about D. Therefore, the velocity of point C

must be perpendicular to the line CD.

Also, as earlier stated, points B and C reside on link 3. Therefore, the relative velocity of C with respect to B

must lie perpendicular to the line BC.

5. Draw a Velocity Polygon

In the relative velocity equation, only the magnitudes of VC and VC/B are unknown. This is identical to the prob-

lems illustrated in Section 3.18. The vector polygon used to solve this problem is shown in Figure 6.12b. The

magnitudes can be determined by observing the intersection of the directed lines of VC and VC/B. The completed

vector polygon is shown in Figure 6.12c.

6. Measure the Velocities from the Velocity Polygon

The velocities are scaled from the velocity diagram to yield

7. Calculate Angular Velocities

Ultimately, the angular velocities of link 4 is desired. The angular velocities of both links 3 and 4 can be deter-

mined from equation (6.6):

v3 =
vC/B

rBC
=

101.1 mm>s
(400 mm)

= 0.25 rad>s ,  cw

v4 =
vC

rCD
=
A789.4 mm>s B

(180 mm)
= 4.36 rad>s , cw

VC/B = 101.1 mm>s  72.7°

VC = 784.0 mm>s  7.0°

VB = v2 rAB = A12.56 rad>s B (60 mm) = 754 mm>s ;
v2 Arad>s B =

p

30
 (120 rpm) = 12.56 rad>s, cw

6.6.2 General Points on a Floating Link

Determining the velocity of general points on a floating link
presents a slightly more complicated analysis. A floating link
is simply a link that is not limited to pure rotation or recti-
linear translation. The difficulty arises in that neither the
direction nor magnitude of the unknown velocity is known.
This is fundamentally different from the analysis presented
in Example Problem 6.6.

To determine the velocity of a general point on a float-
ing link, the velocity of two additional points on the link
must be already determined. The two points are commonly
pin joints constrained to either translation or rotation, as
presented in Section 6.6.1. The velocities of these special
points are readily obtained in an analysis similar to Example
Problem 6.6.

Figure 6.13a illustrates a link in which the velocities of
points A and B are already determined. To determine the
velocity of point C, the following procedure can be followed:

1. Two equations can be written.

VC = VB + 7 VC/B

VC = VA + 7 VC/A

Since points A, B, and C are on the same link, the
directions of VC/A and VC/B are perpendicular to lines
CA and CB, respectively.

2. The individual relative velocity equations can be set
equal to each other. In this case, this yields the following:

3. The relative velocities can be solved by again using
the techniques outlined in Section 3.18. This involves
constructing the vector polygon as shown in
Figure 6.13b.

4. The relative velocity magnitudes can be measured from
the vector polygon.

5. Knowing the relative velocities, the velocity of the point
of interest, point C, can be determined using one of
the individual equations outlined in step 1. This can be
readily found from the original vector polygon, as
shown in Figure 6.13c.

Again, vector polygons can be constructed using identi-
cal logic with either manual drawing techniques or CAD.
This logic behind the analysis is illustrated in the following
example problem.

VC = VA + 7 VC/A = VB + 7 VC/B

a

a
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B

C
VA = 27.5 in./s

VB = 15 in./s 

VC/A (drawn perpendicular
to line CA)

VA

VB

VC/B

A

(a)

(drawn perpendicular
to line CB)

(b)

VC/A

VA

VC = VA + > VC/A = VB + > VC/B

VC

VB

VC/B

(c)

0

Scale:

in./s

10

FIGURE 6.13 Velocity of a point of interest.

EXAMPLE PROBLEM 6.7

Figure 6.14 illustrates a mechanism that extends reels of cable from a delivery truck. It is operated by a hydraulic

cylinder at A. At this instant, the cylinder retracts at a rate of 5 mm/s. Determine the velocity of the top joint,

point E.

SOLUTION: 1. Draw a Kinematic Diagram and Calculate Degrees of Freedom

Figure 6.15a shows the kinematic diagram of this mechanism. To fully understand this mechanism, the mobility

is computed.

and

M = 3(n - 1) - 2jp - jh = 3(6 - 1) - 2(7) - 0 = 1

n = 6 jp = (5 pins + 2 sliders) = 7 jh = 0

1000

1000

1000
300

All dimensions are in mm.

F

EB

D

C

A

FIGURE 6.14 Mechanism for Example Problem 6.7.
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C

(a) (c)(b)

D

EB1

2

5

4

3
6

VC VC

VE/C (drawn perpendicular
to EC)

VD

VD/C

VD (drawn perpendicular
                             to BD)

VE/D

VD = VC + > VD/C VC + > VE/C = VD + > VE/D

VD/C (drawn perpendicular
                                 to CD)

(drawn perpendicular to ED)
F

(d)

FIGURE 6.15 Diagrams for Example Problem 6.7.

With one degree of freedom, this mechanism is fully operated with the one input motion. Of course, this motion

is the actuation of the hydraulic cylinder upward at a rate of 5 mm/s.

2. Decide on a Method to Achieve the Desired Velocity

Link 5 carries both point C (known velocity) and point E (unknown velocity). However, link 5 is a floating link,

as it is not constrained to either pure rotation or pure translation. Therefore, prior to determining the velocity of

point E, one other velocity on link 5 must be established. Point D is a convenient point because it resides on link

5 and a link that is constrained to rotation (link 2).

3. Determine the Velocity of the Convenient Point (Point D)

The equation that will allow determination of the velocity of point D can be written as

Because link 2 is fixed to the frame at B, point D is constrained to rotation about B. Therefore, the velocity

of point D must be perpendicular to the line BD.

In addition, both points D and C reside on the same link, namely, link 5. Therefore, the relative velocity of

D with respect to C must be perpendicular to the line DC. From the previous two statements, the directions of

both velocities VD and VD/C are known.

V D = VC + 7 VD/C
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The vector polygon used to solve this problem is shown in Figure 6.15b. The magnitudes can be determined

by observing the intersection of the directed lines, VD and VD/C. The magnitudes of the velocities can be scaled,

yielding the following equations:

4. Determine the Velocity of the Point on the Floating Link (Point 5)

Now that the velocities of two points on link 5 are fully known, the velocity of point E can be 

determined. Using two forms of the relative velocity equation, the velocity of the points C, D, and E can be

related:

The velocities of C and D as well as the direction of the relative velocities are known. A vector polygon is

constructed in Figure 6.15c.

Once the magnitudes of the relative velocities are determined, the polygon can be completed. The

completed polygon is shown in Figure 6.15d. The velocity of E can be included in the polygon according to the

vector equation above. Measuring the vectors from the completed polygon yields

VE = 5.29 mm>s    19.4°

VE/C = 5.95 mm>s     33.0°

VE/D = 2.65 mm>s  16.7°

VE = VC + 7 VE/C = VD + 7 VE/D

VD = 3.5 mm>s    45°

VD/C = 3.5 mm>s 45°

6.6.3 Coincident Points on Different Links

Calculating velocities of moving links that are connected
through a sliding joint involves using coincident points that
reside on the two bodies. Typically, the direction of the sliding

motion is known. Therefore, the direction of the relative
velocity of the coincident points is known. This is sufficient
information to determine the motion of the driven links. The
concept is best illustrated through an example problem.

EXAMPLE PROBLEM 6.8

Figure 6.16 shows a mechanism that tips the bed of a dump truck. Determine the required speed of the hydraulic

cylinder in order to tip the truck at a rate of 5 rad/min.

7'

1.5'

4'

9'

FIGURE 6.16 Dump truck mechanism for Example Problem 6.8.

SOLUTION: 1. Draw a Kinematic Diagram and Identify the Degrees of Freedom

Kinematically, this mechanism is an inversion to the common slider-crank mechanism. The slider-crank has one

degree of freedom, which in this case is the extension and contraction of the hydraulic cylinder. Figure 6.17a

shows the kinematic diagram of this mechanism.

Link 1 represents the bed frame, link 4 is the cylinder, link 3 is the piston/rod, and link 2 is the bed. Notice

that the pin joint that connects links 2 and 3 is labeled as point B. However, because links 2, 3, and 4 are located

at point B, these coincident points are distinguished as B2, B3, and B4.

R

R

Q

Q
R
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VB2/B4 (drawn parallel to
               line BC)

VB4 (drawn perpendicular
         to line BC)

VB2 = VB4 +> VB2/B4

(b)

VB2

(a)

A
C

2

3

1

4

B2

B4

B3

(c)

FIGURE 6.17 Diagrams for Example Problem 6.8.

2. Decide on a Method to Achieve the Desired Velocity

The problem is to determine the speed of the hydraulic cylinder that will cause link 2 to rotate at a rate 

of 5 rad/min, counterclockwise. In terms of the kinematic model, the velocity of B2 relative to B4 must be

determined.

The velocities of the coincident points are related through equation (6.9):

In this equation, the magnitude, VB2, can be calculated from the rotational speed of link 2. Additionally,

because the links are constrained to pure rotation, the directions of VB2 and VB4 are perpendicular to links

2 and 4, respectively.

Finally, because B2 and B4 are connected through a sliding joint and the direction of the sliding is known,

the relative velocity, vB2/B4, must be along this sliding direction. Therefore, enough information is known to

construct a velocity polygon.

3. Determine the Velocity of the Input Point (Point B2)

The velocity of B2 can be found with the following:

The direction of the velocity of point B2 is perpendicular to link 2, which is up and to the left.

vB2 = v2 rAB2 = A5 rad>min B  (7 ft) =  35 ft>min

VB2 = VB4 + 7 VB2/B4
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4. Determine the Velocity of the Point on the Follower Link (Point B4)

The vector polygon used to solve this problem is shown in Figure 6.17b. The magnitudes can be determined by

observing the intersection of the directed lines of vB4 and vB2/B4.

5. Measure the Desired Velocities from the Polygon

The magnitudes of the velocities can be scaled from the CAD layout in Figure 6.17c, yielding the following:

Therefore, at this instant, the cylinder must be extended at a rate of 33 ft/min to have the bed tip at a rate of 5

rad/min.

VB4 = 11.4 ft>min   34°

VB2/B4 = 33.1 ft>min 56°

6.7 VELOCITY IMAGE

A useful property in velocity analysis is that each link in
a mechanism has an image in the velocity polygon. To
illustrate, a mechanism is shown in Figure 6.18a, with its
associated velocity diagram in Figure 6.18b.

Examine the triangle drawn using the terminus of the
three absolute velocity vectors. This triangle is shaped with
proportional dimensions to the floating link itself and
rotated 90°. The shape in the velocity polygon is termed a
velocity image of the link. The velocity image of link 5 in
Example Problem 6.7 can be seen in Figure 6.15d.

A

B

E

D

C

(a)

ED

C

VC
VD

VE

VC/E

VD/C

VD/E

(b)

VD = VC + > VD/C = VE + > VD/E

FIGURE 6.18 Velocity image.

If this concept of velocity image is known initially,
the solution process can be reduced considerably. Once
the velocity of two points on a link is determined, the
velocity of any other point that sits on the link can be
readily found. The two points can be used as the base of
the velocity image. The shape of that link can be scaled
and constructed on the velocity polygon. Care must be
taken, however, not to allow the shape of the link to be
inverted between the kinematic diagram and the velocity
polygon.

6.8 ANALYTICAL VELOCITY ANALYSIS:
RELATIVE VELOCITY METHOD

Analytical velocity analysis involves exactly the same logic
as employed in graphical analysis. The vector polygons 
are created according to the appropriate relative velocity
equations. Because analytical techniques are used, the

accuracy of the polygon is not a major concern, although a
rough scale allows insight into the solutions. The vector
equations can be solved using the analytical techniques
presented in Chapter 3.

Analytical solutions are presented in the following
example problems.

EXAMPLE PROBLEM 6.9

Figure 6.19 shows a primitive well pump that is common in undeveloped areas. To maximize water flow, the piston

should travel upward at a rate of 50 mm/s. In the position shown, determine the angular velocity that must be

imposed on the handle to achieve the desired piston speed.

SOLUTION: 1. Draw a Kinematic Diagram and Identify the Degrees of Freedom

Figure 6.20a shows the kinematic diagram of this mechanism. Notice that this is a variation of a slider-crank

mechanism, which has one degree of freedom. Link 2 represents the handle. Therefore, the goal of this problem

is to determine ω2.

a

Q
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1000 mm

250 mm

300 mm

200 mm

B

C

A

15�

FIGURE 6.19 Well pump for Example Problem 6.9.
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Drawn perpendicular to AB
(15� from vertical)
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VC = 50 mm/s

VB/C drawn perpendicular to BC
(7.95� from horizontal, or 

82.05� from vertical)

VB = VC + > VB/C

VB

B A
D

C

4

3

2

1

(a)

FIGURE 6.20 Diagrams for Example Problem 6.9.

2. Analyze the Mechanism Geometry

Figure 6.20b isolates the geometry of the core mechanism links. Notice that this geometry was used to form two

right triangles. Focusing on the upper triangle, ABF, and using the trigonometric functions, the length of sides

BF and AF can be determined.

The length of BE is calculated by

BE = BF - EF = 241.48 mm - 200 mm = 41.48 mm

AF = (250 mm)  sin 15° = 64.70 mm

BF = (250 mm) cos 15° = 241.48 mm
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Focusing on the lower triangle, the interior angle at C can be found with the following:

3. Assemble the Velocity Polygon

To solve for the angular velocity of link 2, the linear velocity of point B, which resides on link 2, must be

determined. Link 3 is of special interest because it carries both point C (known velocity) and point B (unknown

velocity).

Because link 2 is fixed to the frame at A, point B is limited to rotation about A. Therefore, the velocity of

point B must be perpendicular to line AB. In addition, since both points B and C reside on the same link (link 3),

the relative velocity of B with respect to C must lie perpendicular to the line BC.

From the previous two statements, the directions of both velocities VB and VB/C are known.

Velocity VB is perpendicular to AB, 15° from the vertical. Velocity vB/C is perpendicular to BC, 7.95° from

the horizontal, or 90° – 7.95° = 82.05° from the vertical. These velocities can be related using equation

(6.10):

In this equation, only the magnitudes of VB and VB/C are unknown. The vector polygon that is used to solve

this problem is shown in Figure 6.20c. The magnitudes can be determined by solving for the length of the sides

(vector magnitudes) of the general triangle.

The remaining interior angle of this vector triangle is

4. Calculate the Velocity of Point B

The law of sines is used to determine the vector magnitudes:

5. Determine the Angular Velocity of Link 2

Now that the velocity B is determined, the angular velocity of link 2 can be solved. Notice that consistent with the

direction of VB, link 2 must rotate clockwise:

Convert this result to rpm with the following:

v Arev>min B =
30

p
Cv Arad>s B D =

30

p
  [0.20 rad>s] = 1.9 rpm,  cw

v2 =
vB

rAB
=

49.9 mm>s
250 mm

= 0.20 rad>s,  cw

VB = VC a sin 82.05°

sin 82.95°
b = 49.90 mm>s  15° =  49.9 mm>s 75°

VB/C = VC a sin 15°

sin 82.95°
b = 13.04 mm>s   7.95°

180° - 82.05° - 15° = 82.95°

VB = VC + 7 VB/C

∠BCE = sin-1 a 41.48

300
b = 7.95°

EXAMPLE PROBLEM 6.10

Figure 6.21 illustrates a roofing material delivery truck conveyor. Heavy roofing materials can be transported on the

conveyor to the roof. The conveyor is lifted into place by extending the hydraulic cylinder. At this instant, the cylinder

is extending at a rate of 8 fpm (ft/min). Determine the rate that the conveyor is being lifted.

SOLUTION: 1. Draw the Kinematic Diagram and Identify the Degrees of Freedom

Figure 6.22a shows the kinematic diagram of this mechanism. Link 4 represents the conveyor, link 2 represents

the cylinder, and link 3 represents the piston/rod. Because a sliding joint is used to connect two rotating links,

defining coincident points will aid problem solution. Point B2 is attached to link 2, and point B4 is attached, as a

point of reference, to link 4. The goal of this problem is to determine ω4.

a

b

a
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2. Analyze the Mechanism Geometry

Figure 6.22b isolates the geometry of the core mechanism links. Notice that this geometry was used to form two

triangles. Focusing on the lower right, triangle ACE yields the following:

∠ACE = tan-1 a AE

CE
b = tan-1 a1 ft

3 ft
b = 18.43°

∠CAE = tan-1 aCE

AE
b = tan-1 a 3 ft

1 ft
b = 71.57°

= 2(1 ft)2 + (3 ft)2 = 3.16 ft

AC = 2[AE 2 + CE2]

1

2

3

B
B

Kinematic diagram

Mechanism geometry

C
C

A

Velocity polygon

Drawn perpendicular to AB

Drawn along AB at 47.47� (180� – 132.53�)
from the horizontal

Drawn perpendicular to BC
at 20� from vertical or
70� (90� – 20�) from the horizontal

70�47.47�

VB2

VB4 = VB4/B2 +> VB2

VB4/B2 = 8 fpm

VB4

A E1'

3'

6'

20�
20�

4

(a)

(c)

(b)

FIGURE 6.22 Diagrams for Example Problem 6.10.

15'

6'

1'

3'

20�

FIGURE 6.21 Conveyor for Example Problem 6.10.
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Because link 4 is inclined at 20° above horizontal, the full angle at C is

then the angle at C in the upper triangle is

The geometry of the upper triangle can be fully determined by the law of cosines

and the law of sines

Finally, the total included angle at A is

3. Assemble a Velocity Polygon

To solve for the angular velocity of link 2, the linear velocity of point B2, which resides on link 2, must be

determined. The extension of the hydraulic cylinder is given, which represents the velocity of point B on

link 4, relative to point B on link 2 (VB4/B2). These velocities can be related using equation (6.10):

Because link 4 is fixed to the frame at C, point B4 is limited to rotation about C. Therefore, the velocity of

point B4 must be perpendicular to the line BC.

In addition, link 2 is fixed to the frame at A, and point B2 is limited to rotation about A. Therefore, the

velocity of point B2 must be perpendicular to the line AB.

From the previous two statements, the directions of both velocities VB4 and VB2 are known.

The vector polygon that is used to solve this problem is shown in Figure 6.22c. Notice that these vectors

form a right triangle. The magnitudes can be determined by solving for the length of the sides (vector magni-

tudes) of the right triangle.

The bottom interior angle of this vector triangle is

4. Calculate the Velocity of Point B

The velocity of B2 is found from the following trigonometric relationships of a right triangle:

5. Determine the Angular Velocity of Link 2

Now that velocity B4 is known, the angular velocity of link 4 can be solved. Notice that consistent with the

direction of vB4, link 4 must rotate clockwise:

Convert this result to rpm by

v4 = a 2.89 rad

min
b a 1 rev

2p  rad
b = 0.46 rev>min , cw

v4 =
vB4

rBC
=

17.43 ft/min

6 ft
= 2.89 rad/min, cw

VB4 = a VB4/B2

cos 62.53°
b = 17.43 ft>min  70°

180° - 70° - 47.47° = 62.53°

VB4 = VB4/B2 + 7 VB2

∠BAE = ∠CAE + ∠BAC = 71.57° + 60.96° = 132.53°

∠CBA = sin-1e a 3.16 ft

6.86 ft
b  sin 91.57° f = 27.42°

∠BAC = sin-1 ea 6 ft

6.86 ft
b  sin  91.57° f = 60.96°

= 2(3.16 ft)2 + (6 ft)2 - 2(3.16 ft) (6 ft) cos  91.57° = 6.86 ft

AB = 2AC2 + BC2 - 2(AC) (BC) cos∠ACB

∠ACB = ∠BCE - ∠ACE = 110° - 18.43° = 91.57°

∠BCE = 90° + 20° = 110°

Q
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6.9 ALGEBRAIC SOLUTIONS 
FOR COMMON MECHANISMS

For the common slider-crank and four-bar mechanisms,
closed-form algebraic solutions have been derived [Ref. 12].
They are given in the following sections.

6.9.1 Slider-Crank Mechanism

A general slider-crank mechanism was illustrated in
Figure 4.19 and is uniquely defined with dimensions L1, L2,
and L3. With one degree of freedom, the motion of one link
must be specified to drive the other links. Most often the
crank is driven. Therefore, knowing θ2, ω2, and the position
of all the links, from equations (4.6) and (4.7), the velocities
of the other links can be determined. As presented in
Chapter 4, the position equations are

(4.6)

(4.7)

The velocity equations are given as [Refs. 10, 11, 12, 14]

(6.12)

(6.13)

6.9.2 Four-Bar Mechanism

A general four-bar mechanism was illustrated in Figure
4.23 and is uniquely defined with dimensions L1, L2, L3,
and L4. With one degree of freedom, the motion of one
link must be specified to drive the other links. Most often
the crank is driven. Therefore, knowing θ2, ω2, and the
position of all the links, from equations (4.9) through
(4.12), the velocities of the other links can be determined.
As presented in Chapter 4, the position equations are as
follows:

(4.9)

(4.10)

(4.11)

(4.12)

The velocity equations are as follows [Refs. 10, 11, 12, 14]:

(6.14)

(6.15)v4 = -v2 c L2 sin(u3 - u2)

L4 sin g
d

v3 = -v2 c L2 sin(u4 - u2)

L3 sin g
d

u4 = 2tan-1 c L2 sin u2 - L3 sin g

L2 cos u2 + L4 - L1 - L3 cos g
d

u3 = 2tan-1 c -L2 sin u2 + L4 sin g

L1 + L3 - L2 cosu2 - L4 cosg
d

g = cos-1 c (L3)2 + (L4)2 - (BD)2

2(L3)(L4)
d

BD = 2L1
2 + L2

2 - 2(L1) (L2)cos u2

v4 = -v2L2 sin u2 + v3L3 sin u3

v3 = -v2 aL2 cos u2

L3 cos u3
b

L4 = L2 cos(u2) + L3 cos(u3)

u3 = sin-1 e L1 + L2 sin u2

L3
f

6.10 INSTANTANEOUS CENTER OF
ROTATION

In determining the velocity of points on a mechanism, the
concept of instant centers can be used as an alternative
approach to the relative velocity method. This approach is
based on the fact that any link, regardless of the complexity
of its motion, instantaneously appears to be in pure rotation
about a single point. This instantaneous pivot point is
termed the instant center of rotation for the particular link.
The instant center for a floating link, link 3, in relation to the
frame is shown as (13) in Figure 6.23.

A

C

X
B

VB VX

VC

At this instant,
link 3 "appears"
to be rotating
about the point (13).

1 2
4

(13)

3

FIGURE 6.23 Instantaneous center.

Using this concept, each link can be analyzed as if it were
undergoing pure rotation. An instant center may exist on or off
the body, and its position is not fixed in time. As a link moves,
its instant center also moves. However, the velocities of differ-
ent points on a mechanism are also instantaneous. Therefore,
this fact does not place a serious restriction on the analysis.

This concept also extends to relative motion. That is, the
motion of any link, relative to any other link, instanta-
neously appears to be rotating only about a single point.
Again, the imagined pivot point is termed the instant center
between the two links. For example, if two links were desig-
nated as 1 and 3, the instant center would be the point at
which link 3 instantaneously appears to be rotating relative
to link 1. This instant center is designated as (13) and verbal-
ized as “one three,” not thirteen. Note that the instant center
shown in Figure 6.23 is designated as (13). If link 1 were the
frame, as is the typical designation, this instant center would
describe the absolute motion of link 3. From kinematic
inversion, this point is also the center of instantaneous
motion of link 1 relative to link 3. Thus, the instant center
(13) is the same as (31).

Because every link has an instant center with every other
link, each mechanism has several instant centers. The total
number of instant centers in a mechanism with n links is

(6.16)

6.11 LOCATING INSTANT CENTERS

In a typical analysis, it is seldom that every instant center
is used. However, the process of locating each center should
be understood because every center could conceivably be
employed.

Total number of instant centers =
n(n - 1)

2



6.11.1 Primary Centers

Some instant centers can be located by simply inspecting
a mechanism. These centers are termed primary centers. In
locating primary centers, the following rules are used:

1. When two links are connected by a pin joint, the
instant center relating the two links is at this pivot
point. This first rule is illustrated in Figure 6.24a.

2. The instant center for two links in rolling contact with
no slipping is located at the point of contact. This
second rule is illustrated in Figure 6.24b.

3. The instant center for two links with straight line sliding
is at infinity, in a direction perpendicular to the direc-
tion of sliding. The velocity of all points on a link,

which is constrained to straight sliding relative to
another link, is identical and in the direction of sliding.
Therefore, it can be imagined that this straight motion
is rotation about a point at a great distance because a
straight line can be modeled as a portion of a circle
with an infinitely large radius. Because velocity is always
perpendicular to a line drawn to the pivot, this instant
center must be perpendicular to the sliding direction.
This center could be considered to be on any line paral-
lel to the sliding direction because the lines meet at
infinity. This third rule is illustrated in Figure 6.24c.

4. The instant center for two links having general sliding
contact must lie somewhere along the line normal to
the direction of sliding contact. This fourth rule is
illustrated in Figure 6.24d.
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(23)

(23)

23 along this common normal
(23)

First rule

Second rule

Fourth ruleThird rule

13 at infinity
(13∞)

(a)

(b)

(d)
(c)

1

2

2

2

2

(12)

(23)

(13)

(13)(12)

3

3

3

3

FIGURE 6.24 Locating primary centers.

EXAMPLE PROBLEM 6.11

Figure 6.25 illustrates an air compressor mechanism. For this mechanism, locate all the primary instant centers.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram for the air compressor is illustrated in Figure 6.26.

Intake Exhaust

FIGURE 6.25 Air compressor for Example Problem 6.11.
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A
2

B

C

4

3

1

FIGURE 6.26 Kinematic diagram for Example Problem 6.11.

2. Use the First Rule to Locate Primary Centers

The four links are numbered on the kinematic diagram. The pin joints are also lettered. The first pin joint, A,

connects link 1 and link 2. From the first rule for primary instant centers, this joint is the location of instant

center (12). Similarly, pin joint B is instant center (23) and pin joint C is instant center (34).

It is clear from the kinematic diagram in Figure 6.26 that rolling contact does not join any links. Therefore,

the second rule does not apply to this mechanism.

3. Use the Third Rule to Locate Primary Centers

Because a straight sliding joint occurs between links 4 and 1, this instant center is visualized at infinity, in a

direction perpendicular to the sliding direction. Figure 6.27 illustrates the notation used to identify this, along

with labeling all other primary instant centers. Recall that this instant center could be on a line parallel to line

(14 ) because it can be considered that parallel lines intersect at infinity.q

A

(23)

(12)

(34)

B

C (14 ∞)

2

4

3

1

FIGURE 6.27 Primary instant centers for Example Problem 6.11.

It is clear from the kinematic diagram in Figure 6.26 that general sliding does not join any links. Therefore, the fourth

rule does not apply to this mechanism.

6.11.2 Kennedy’s Theorem

Instant centers that cannot be found from the four rules
for primary centers are located with the use of Kennedy’s
theorem. It states that

“The three instant centers corresponding with any
three bodies all lie on the same straight line”

For example, imagine three arbitrary links––links 3, 4, and 5.
Kennedy’s theorem states that instant centers (34), (45), and
(35) all lie on a straight line. By applying this theorem, after
locating all primary instant centers, all other instant centers
can be found. Locating the precise position of the instant
centers can be accomplished by using either graphical or
analytical methods. Of course, graphical methods include
both manual drawing techniques or CAD.

6.11.3 Instant Center Diagram

An instant center diagram is a graphical technique used
to track the instant centers that have been located and those
that still need to be found. In addition, it indicates the

combinations of instant centers that can be used in applying
Kennedy’s theorem. It is rare that all instant centers need to
be located to perform a velocity analysis. The mechanism
and the actuation link(s) and required output should be
studied to determine the specific instant centers required.
Then, the instant center diagram can be used to find those
specific instant centers.

The instant center diagram is a circle divided into
segments, one for each link in the mechanism being
analyzed. The segment separators are labeled with the
numbers corresponding to the links. An instant center
diagram for a four-bar mechanism is shown in Figure 6.28a.

Any line that connects two points on the diagram rep-
resents an instant center, relating the two links identified by
the endpoints. For example, the line that connects point 1
and point 4 represents the instant center (14). For instant
centers that have been located, the corresponding line on
the diagram is drawn heavy. Figure 6.28b indicates that
instant centers (12), (23), (34), and (14) have been located.
Instant centers needing to be located may then be repre-
sented by dashed lines. Figure 6.28c indicates that instant
centers (13) and (24) have not yet been found. All instant
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1

(c)

2

34

1

(b)

2

34

1

(a)

2

34

FIGURE 6.28 Instant center diagram.

centers are located when each point is connected to every
other point.

Note that the lines in the diagram form triangles.
Each triangle represents three instant centers, relating
the three links at the vertices. From Kennedy’s theorem, the
three instant centers represented by the sides of a triangle
must lie in a straight line. For example, refer to Figure 6.28c
and isolate the triangle formed by lines (12), (23), and (13).
Kennedy’s theorem states that these three instant centers
must be collinear.

If two sides of a triangle are drawn heavy, a line can be
drawn on the mechanism diagram connecting the two
known instant centers. This line contains the third instant
center. If a second line can be drawn, the intersection of
these two lines will locate the third center. Summarizing, to
locate an instant center, two triangles must be found in
the diagram that have two known sides and have as the
unknown side the instant center being sought.

The following example problems illustrate the procedure
for finding all instant centers.

EXAMPLE PROBLEM 6.12

Figure 6.29 illustrates a self-locking brace for a platform used on shipping docks. For this mechanism, locate all the

instant centers.

5.4'

5.4'
4.6'3'

20�

FIGURE 6.29 Locking brace for Example Problem 6.12.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram for the loading platform is illustrated in Figure 6.30a. The four links are numbered on

the kinematic diagram. The pin joints are also lettered. Compute the total number of instant centers, with 

links, as follows:

2. Sketch an Instant Center Diagram

An instant center diagram is shown in Figure 6.30b. Table 6.1 can be used to systematically list all possible instant

centers in a mechanism.

3. Locate the Primary Instant Centers

The first pin joint, A, connects links 1 and 2. From the first rule for primary instant centers, this joint is the loca-

tion of instant center (12). Similarly, pin joints B, C, and D are instant centers (23), (34), and (14), respectively. In

Figure 6.30c, the instant center diagram is redrawn to reflect locating the primary instant centers (12), (23), (34),

and (14). The instant centers (13) and (24) remain to be determined.

4. Use Kennedy’s Theorem to Locate (13)

The instant center diagram that is used to obtain (13) is shown in Figure 6.30d. Focus on the lower 

triangle formed by (13), (14), and (34). Applying Kennedy’s theorem, (13) must lie on a straight line

Total number of instant centers =
n (n - 1)

2
=

4(4 - 1)

2
= 6

n = 4
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D

C

B

20�

A

4

3

2

1

1

(d)

2

34

1

(e)

2

34

1

(c)

2

34

1

(b)

(a)

2

34

FIGURE 6.30 Kinematic and instant center diagram for Example Problem 6.12.

formed by (14) and (34), both of which have already been located, as indicated by the solid lines in

Figure 6.30d.

Also notice the upper triangle created by (13), (12), and (23). Likewise, (13) must also lie on a straight line

formed by (12) and (23), both of which have been previously located.

Thus, the intersection of these lines, (14)–(34) and (12)–(23), will determine the location of (13). Recall

that at this instant, link 3 appears to be rotating around point (13).

5. Use Kennedy’s Theorem to Locate (24)

The instant center diagram that is used to obtain (24) is shown in Figure 6.30e. In an identical process, Kennedy’s

theorem states that instant center (24) must lie on the same line as (14) and (12), which have been located.

Likewise, (24) must also lie on the same line as (23) and (34), also located. Thus, if a straight line is drawn

through (14) and (12) and another straight line is drawn through (23) and (34), the intersection of these lines

will determine the location of (24). At this instant, link 2 appears to be rotating, relative to link 4, around

point (24).

Figure 6.31 illustrates the mechanism with all instant centers located.

TABLE 6.1 Possible Instant Centers 
in a Mechanism (n = 4)

1 2 3 4

12 23 34

13 24

14

B

A
(12)

(24)

D
(14)

(13)

(23)

C

(34)

1

2

3

4

Line of
(23) and (34)

Line of
(12) and (14) Line of

(14) and (34)

Line of
(12) and (23)

FIGURE 6.31 Instant centers for Example Problem 6.12.
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EXAMPLE PROBLEM 6.13

Figure 6.32 illustrates a rock crusher. For this mechanism, locate all the instant centers.

3.00"

9.32"

5.50"

40�

12.27"
10.47"

15.13"

10.15"

FIGURE 6.32 Rock crusher for Example Problem 6.13.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram for the rock crusher is illustrated in Figure 6.33a. The six links are numbered on the

kinematic diagram. The pin joints are also lettered. Compute the total number of instant centers, with 

links, as follows:

2. Sketch an Instant Center Diagram

An instant center diagram is shown in Figure 6.33b. Table 6.2 systematically lists all possible instant centers in a

mechanism.

3. Locate the Primary Instant Centers

The first pin joint, A, connects links 1 and 2. From the first rule for primary instant centers, this joint is the location

of instant center (12). Similarly, pin joints B–F locate instant centers (23), (34), (14), (45), and (56), respectively.

Because a straight sliding joint exists between links 6 and 1, this instant center (16) is located at infinity, in

a direction perpendicular to the sliding direction. Recall that this instant center could be on a line parallel to this

line because the lines meet at infinity. In Figure 6.33c, the instant center diagram is redrawn to locate (12), (23),

(34), (45), (56), (14), and (16).

4. Use Kennedy’s Theorem to Locate the Other Instant Centers

The remaining combinations that need to be determined are instant centers (13), (24), (35), (46), (25), (36),

(15), and (26).

The instant center diagram that is used to obtain (13) is shown in Figure 6.33d. Focus on the triangle

formed by (12), (23), and (13). Applying Kennedy’s theorem, (13) must lie on a straight line formed by (12) and

(23), which have already been located, as indicated by the solid lines in Figure 6.33d.

Total number of instant centers =
n (n - 1)

2
=

6(6 - 1)

2
= 15

n = 6
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FIGURE 6.33 Kinematic diagram for Example Problem 6.13.

Also notice the triangle created by (13), (34), and (14). Likewise, (13) must also lie on a straight line formed

by (13) and (34), which have been previously located. Thus, the intersection of these lines, (12)–(23) and

(13)–(34), will determine the location of (13).

Table 6.3 is formulated to locate all remaining instant centers.Note that the order in which instant centers are

found is extremely dependent on which instant centers are already located. This becomes quite an iterative process,

but the instant center diagram becomes valuable in devising this approach. Figure 6.34 illustrates the mechanism with

all instant centers located.

TABLE 6.2 Possible Instant Centers 
in a Mechanism (n = 6)

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

TABLE 6.3 Locating Instant Centers for Example Problem 6.13

To Locate Instant Center Use Intersecting Lines Instant Center Diagram

13 (12)–(23) and (14)–(34) Figure 6.33d

24 (12)–(14) and (23)–(34) Figure 6.33e

15 (16)–(56) and (14)–(45) Figure 6.33f

46 (14)–(16) and (45)–(56) Figure 6.33g

36 (13)–(16) and (34)–(46) Figure 6.33h

26 (12)–(16) and (23)–(36) Figure 6.33i

35 (56)–(36) and (34)–(45) Figure 6.33j

25 (24)–(45) and (23)–(35) Figure 6.33k
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FIGURE 6.34 Instant centers for Example Problem 6.13.

6.12 GRAPHICAL VELOCITY
ANALYSIS: INSTANT CENTER 
METHOD

The instant center method is based on the following three
principles:

I. The velocity of a rotating body is proportional to the
distance from the pivot point.

II. The instant center that is common to two links can be
considered attached to either link.

III. The absolute velocity of the point, which serves as the
common instant center, is the same, no matter which
link is considered attached to that point.

Using these principles, the absolute velocity of any
point on the mechanism can be readily obtained through a
general method. This method is outlined in the following
six steps:

1. Isolate the link with a known velocity (link A), the link
containing the point for which the velocity is desired
(link B), and the fixed link (link C).

2. Locate the instant center that is common to the link
with the known velocity and the fixed link (instant
center AC).

3. Locate the instant center that is common to the link
with the known velocity and the link that contains the
point where the velocity is desired (instant center AB).

4. Determine the velocity of the instant center (AB).
This can be done by understanding that the velocity
of a point on a link is proportional to the distance
from the pivot. The instant center (AC) serves as
the pivot. The known velocity on link A can be
proportionally scaled to determine the velocity of
the instant center (AB).

5. Locate the instant center that is common to the link
with the point whose velocity is desired and the fixed
link (instant center BC).

6. Determine the desired velocity. This can be done
by understanding that the velocity on a link is propor-
tional to the distance from the pivot. The instant center
(BC) serves as this pivot. The velocity of the common
instant center (AB) can be proportionally scaled to
determine the desired velocity.

A graphical technique for proportionally scaling a
vector uses a line of centers, LC. This is a line drawn from the
pivot point of the link to the start of the known vector. A line
of proportion, LP, must also be constructed. This is a line
drawn from the pivot point to the end of the known vector.
Figure 6.35a illustrates both the line of centers and the line
of proportion. The distance from the pivot to the desired
point can be transferred to the line of centers. The magni-
tude of the proportionally scaled vector is determined
as parallel to the known vector and extending from LC to LP
at the transferred distance. This is also illustrated in
Figure 6.35a.
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Of course, the magnitude of the velocity is per-
pendicular to the line that connects the point with
unknown velocity to the pivot point. Determining the
magnitude and positioning of that vector in the proper
direction fully defines the vector. Thus, the vector
is graphically proportioned. The result is shown in
Figure 6.35b.

We have described the logic behind the instantaneous
center method of velocity analysis using graphical techniques.
The actual solution can be completed with identical logic
whether using manual drawing or CAD. Regardless of the
process used, the underlying concepts of a graphical approach
to the instantaneous center method of velocity analysis can be
illustrated through the following example problems.

EXAMPLE PROBLEM 6.14

Figure 6.29 illustrated an automated, self-locking brace for a platform used on shipping docks. Example Problem 6.12

located all instant centers for the mechanism. Determine the angular velocity of link 4, knowing that link 2 is rising at

a constant rate of 3 rad/s.

SOLUTION: 1. Draw a Kinematic Diagram with Instant Centers Located

The kinematic diagram, with the instant centers and scale information, is reproduced as Figure 6.36a.
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B
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Magnitude of VB

A
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B

(b)

A
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FIGURE 6.35 Using a line of centers and line of proportion.
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FIGURE 6.36 Kinematic diagram for Example Problem 6.14.

2. Determine the Linear Velocity of a Convenient Point (B)

The linear velocity of point B can be determined from the angular velocity of link 2. Point B has been measured

to be 3 ft from the pivot of link 2 (point A).

VB = rABv2 = (3 ft) A3 rad>s B = 9 ft>s 20°R
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3. Incorporate the General Instant Center Velocity Procedure

a. Isolate the links.

Link 2 contains the known velocity,

Link 4 contains the point for which the velocity is desired, and

Link 1 is the fixed link.

b. The common instant center between the known and fixed link velocities is (12).

c. The common instant center between the known and unknown link velocities is (24).

d. The velocity of instant center (24) is graphically proportioned from the velocity of point B. Link 2 contains

both point B and instant center (24); therefore, the velocity is proportionally scaled relative to instant 

center (12). This construction is shown in Figure 6.36b. The magnitude of this velocity, v(24), is scaled 

to 7.4 ft/s.

e. The common instant center between the unknown and fixed link velocities is (14).

f. The velocity of point C is graphically proportioned from the velocity of instant center (24). Link 4

contains both point C and instant center (24); therefore, the velocity is proportionally scaled relative to

instant center (14). This construction is shown in Figure 6.36c. The magnitude of this velocity, vC, is

scaled to 13.8 ft/s.

4. Determine the Angular Velocity of Link 4

Finally, the angular velocity of link 4 can be found from the velocity of point C. Point C has been scaled to be

positioned at a distance of 5.4 ft from the pivot of link 4 (point D).

Because the direction of the angular velocity is consistent with the velocity of point C, the link rotates coun-

terclockwise. Therefore,

Note that this rotational velocity could also be determined from the velocity of instant center (24) because this

point is considered to consist of both links 2 and 4. However, as the first example problem on the topic, it can be

difficult to visualize this point rotating with link 4.

v4 = 2.6 rad>s, counterclockwise

v4 =
vC

rCD
=

13.8 ft>s
5.4 ft

= 2.6 rad>s

EXAMPLE PROBLEM 6.15

Figure 6.32 illustrates a rock-crushing device. Example Problem 6.13 located all instant centers for the mechanism. In

the position shown, determine the velocity of the crushing ram when the crank is rotating at a constant rate of 60 rpm

clockwise.

SOLUTION: 1. Draw a Kinematic Diagram with Instant Centers Located

The kinematic diagram with the scale information is reproduced as Figure 6.37a.

2. Determine the Linear Velocity of a Convenient Point B

The linear velocity of point B can be determined from the angular velocity of link 2. Point B has been scaled to

be positioned at a distance of 4.5 in. from the pivot of link 2 (point A):

The purpose of this problem is to determine the linear velocity of point C.

VB = rABv2 = (4.5 in.) A6.28 rad>s B = 28.3 in.>s 40°

v2 = 60 rpm a p
30
b = 6.28 rad>s

Q
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3. Incorporate the General Instant Center Velocity Procedure

a. Isolate the links.

Link 2 contains the known velocity,

Link 5 (or 6) contains the point for which the velocity is desired, and

Link 1 is the fixed link.

b. The common instant center between the known and fixed link velocities is (12).

c. The common instant center between the known and unknown link velocities is (25).

d. The velocity of the instant center (25) is graphically proportioned from the velocity of point B. Link 2

contains both point B and instant center (25); therefore, the velocity is proportionally scaled relative to

instant center (12). This construction is shown in Figure 6.37b. The magnitude of this velocity, v(25), is

scaled to 37.1 in./s.

e. The common instant center between the unknown and fixed link velocities is (15).

f. The velocity of point C is graphically proportioned from the velocity of instant center (25). Link 5 contains

both point C and instant center (25); therefore, the velocity of instant center (25) is rotated to a line of cen-

ters created by point C and instant center (15). The velocity of instant center (25) is used to create a line of

proportions. This line of proportions is then used to construct the velocity of C. This construction is shown

in Figure 6.37c. The magnitude of this velocity, vC, is scaled to 33.8 in./s.

Formally stated,

VC = 33.8 in.>s T
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FIGURE 6.37 Diagrams for Example Problem 6.15.

6.13 ANALYTICAL VELOCITY 
ANALYSIS: INSTANT CENTER 
METHOD

The instant center method is virtually unaltered when
an analytical approach is used in the solution. The only
difference is that the positions of the instant centers must

be determined through trigonometry, as opposed to
constructing lines and locating the intersection points.
This can be a burdensome task; thus, it is common to
locate only the instant centers required for the velocity
analysis. An analytical approach is illustrated through the
following example problem.
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EXAMPLE PROBLEM 6.16

Figure 6.38 shows a mechanism used in a production line to turn over cartons so that labels can be glued to the

bottom of the carton. The driver arm is 15 in. long and, at the instant shown, it is inclined at a 60° angle with a

clockwise angular velocity of 5 rad/s. The follower link is 16 in. long. The distance between the pins on the carriage

is 7 in., and they are currently in vertical alignment. Determine the angular velocity of the carriage and the

slave arm.

Slave arm

Carriage

7"

15"

60�
Driver
arm

16"

FIGURE 6.38 Turnover mechanism for Example Problem 6.16.

SOLUTION: 1. Draw a Kinematic Diagram

The kinematic diagram is shown in Figure 6.39a. A point of interest, X, was included at the edge of the 

carriage.

4

1

2

3 3

4

1

2

2

3

C

D
A60�

(a) (b)

B B

X

60�

(34)
(13)

(14)(12)

(c)

(23)

XC

M D
A

7"

15"

N
16"

ω

ω
V(34)

V(23)

FIGURE 6.39 Kinematic diagram for Example Problem 6.16.

2. Analyze the Mechanism Geometry

Trigonometry is used to determine the distances and angles inherent in this mechanism’s configuration.

Triangles used to accomplish this are shown in Figure 6.39b. The distances BM and AM can be determined from

triangle ABM.

Along the vertical BCM,

The angle ADC and the distance DN can be determined from triangle CDM.

DM = CD cos (22°) = (16 in.) cos (22°) = 14.8 in.

∠ADC = sin-1 a CM

CD
b = sin-1 ca 6 in.

16 in.
bd = 22.0°

CM = BM - BC = 13.0 - 7.0 = 6.0 in.

AM = AB  cos (60°) = (15 in.)  cos (60°) = 7.5 in.

BM = AB  sin (60°) = (15 in.)  sin (60°) = 13.0 in.
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3. Incorporate the General Instant Center Velocity Procedure

At this point, the general method for using the instant center method can be followed to solve the problem.

a. Isolate the links.

Link 2 contains the known velocity,

Link 3 contains the point for which the velocity is desired, and

Link 1 is the fixed link.

b. The common instant center between the known and fixed link velocities is (12). By inspection, this instant

center is located at point A.

c. The common instant center between the known and unknown link velocities is (23). By inspection, this

instant center is located at point B.

d. The velocity of instant center (23) is simply the velocity of point B. This can be determined as

e. The common instant center between the unknown and fixed link velocities is (13). This instant center is

located at the intersection of instant centers (12)–(23) and (14)–(34). By inspection, instant center (34)

is located at point C and (14) is located at point D. Therefore, instant center (13) is located at the intersec-

tion of links 2 and 4. This point is labeled N in Figure 6.39b. The angles DAN, AND, and the distance AN

can be determined from the general triangle AND.

Similarly,

f. Link 3 instantaneously rotates around instant center (13). Thus, the angular velocity of link 3 can be calcu-

lated from the velocity of the common instant center (23) relative to instant center (13). This is illustrated

in Figure 6.39c and is calculated as follows:

Because the direction of the angular velocity is consistent with the velocity of point (23) relative to (13), the

link rotates clockwise. Therefore,

The velocity of point (34) can also be obtained using the angular velocity of link 3 because it is

instantaneously rotating around instant center (13).

Because link 4 is rotating relative to (14), the slave link velocity is

v4 =
v(23)

r(14)- (23)
=

65.6 in.>s
16 in.

= 4.1 rad>s,  cw

V(34) = v3 r(13)- (34) = A7.9 rad>s B (8.3 in.) = 65.6 in.>s  22° = 65.6 in.>s   68°

v3 = 7.9 rad>s, cw

v3 =
v23

r(13)- (23)
=

(75 in.>s)

(9.5 in.)
= 7.9 rad>s

CN = CD - DN = 16 - 7.7 = 8.3 in.

DN = csin ∠DAN a AN

sin ∠AND
b d = csin 120° a 5.5 in.

sin 38°
b d = 7.7 in.

BN = BA - AN = 15 - 5.5 = 9.5 in.

AN = csin(∠ADN) a AD

sin (∠AND)
b d = csin 22°a 7.3 in.

sin (38°)
b d = 5.5 in.

∠AND = 180° - (120° + 22°) = 38°

∠DAN = 180° - 60° = 120°

VB = rABv2 = (15 in.) A5 rad>s B = 75 in.>s 30°Q

Q
Q
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6.14 VELOCITY CURVES

The analyses presented up to this point in the chapter are
used to calculate the velocity of points on a mechanism at a
specific instant. Although the results can be useful, they
provide only a “snapshot” of the motion. The obvious short-
coming of this analysis is that determination of the extreme
conditions is difficult. It is necessary to investigate several
positions of the mechanism to discover the critical phases.

It is convenient to trace the velocity magnitude of a certain
point, or link, as the mechanism moves through its cycle. A
velocity curve is such a trace. A velocity curve can be generated
from a displacement diagram, as described in Section 4.11.

Recall that a displacement diagram plots the movement
of a point or link as a function of the movement of an input
point or link. The measure of input movement can be read-
ily converted to time. This is particularly common when the
driver operates at a constant velocity.

As discussed throughout the chapter, velocity is the time
rate of change of displacement. Restating equations (6.1)
and (6.2),

v =
dR

dt
�

¢R

¢t

displacement per change in time
Linear velocity magnitude = v = Change in linear 

Restating equations (6.4) and (6.5),

Often, the driver of a mechanism operates at a constant
velocity. For example, an input link driven by an electric
motor, in steady state, operates at constant velocity. The
motor shaft could cause the crank to rotate at 300 rpm, thus
providing constant angular velocity. This constant velocity
of the driver link converts the x-axis of a displacement
diagram from rotational displacement to time. In linear
terms, rearranging equation (6.2) yields:

(4.17)

In rotational terms, rearranging equation (6.5) yields:

(6.18)

Thus, equations (6.17) and (6.18) can be used to
convert the displacement increment of the x-axis to a time
increment. This is illustrated with Example Problem 6.17.

¢t =
¢u
v

¢t =
¢R
v

v =
du

dt
�

¢u
¢t

 displacement per change in time
Rotational velocity = v = Change in angular 

EXAMPLE PROBLEM 6.17

A displacement diagram of the piston operating in a compressor was plotted in Example Problem 4.11. This diagram

was plotted relative to the crankshaft rotation. Use this data to plot the piston displacement relative to time when the

crankshaft is driven by an electric motor at 1750 rpm.

SOLUTION: 1. Calculate the Time for 30° of Crank Rotation

The main task of this problem is to convert the increment of crank angle in Figure 4.41 to time. The 

x-axis increment is 30° and the crankshaft rotates at 1750 rpm. To keep units consistent, the x-axis increment is

converted to revolutions.

The time increment for the crank to rotate 0.08333 rev (30°) can be computed from equation (6.18).

2. Add Time Column to Displacement Table

The results of position analysis are reproduced with the time increment inserted into a spreadsheet. This is

shown as Figure 6.40, which shows time tabulated in thousandths of a second. If not familiar with a spreadsheet,

refer to Chapter 8.

3. Use Displacement and Time Data to Plot a Displacement Curve

Using a spreadsheet, these values are plotted in Figure 6.41 to form a displacement diagram relative 

to time.

= (0.0000476 min) a 60 s

1 min
b = 0.00286 s

= 0.0000476 min

¢t =
¢u
v

=
(0.08333 rev)

(1750 rev>min)

¢u = 30° a 1 rev

360°
b = 0.08333 rev
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FIGURE 6.40 Time and displacement values for Example Problem 6.17.

FIGURE 6.41 Time displacement diagram for Example Problem 6.17.
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These displacement diagrams relative to time can be used to generate a velocity curve because

Differential calculus declares that the velocity at a particular instant is the slope of the displacement diagram at that

instant. The task is to estimate the slope of the displacement diagram at several points.

Velocity =
d (displacement)

d(time)

6.14.1 Graphical Differentiation

The slope at a point can be estimated by sketching a line
through the point of interest, tangent to the displacement
curve. The slope of the line can be determined by calculating
the change in y-value (displacement) divided by the change
in x-value (time).

The procedure is illustrated in Figure 6.42. Notice that
a line drawn tangent to the displacement diagram at t1 is
horizontal. The slope of this tangent line is zero. Therefore,
the magnitude of the velocity at t1 is zero.

A line drawn tangent to the displacement diagram at t2 is
slanted upward as shown. The slope of this line can be calcu-
lated as the change of displacement divided by the correspond-
ing change in time. Notice that this ΔR, Δt triangle was drawn
rather large to improve measurement accuracy. The velocity at
t2 is found as ΔR/Δt and is positive due to the upward slant of
the tangent line. Also notice that this is the steepest section of
the upward portion of the displacement curve. This translates
to the greatest positive velocity magnitude.

This procedure can be repeated at several locations
along the displacement diagram. However, only the velocity

extremes and abrupt changes between them are usually
desired. Using the notion of differential calculus and slopes,
the positions of interest can be visually detected. In general,
locations of interest include:

� The steepest portions of the displacement diagram,
which correspond to the extreme velocities

� The locations on the displacement diagram with the
greatest curvature, which correspond to the abrupt
changes of velocities

As mentioned, the velocity at t2 is greatest because t2

is the steepest portion of the displacement diagram. The
velocity at t4 is the greatest velocity in the negative direction
because t4 is the steepest downward portion of the displace-
ment diagram.

Identifying the positions of extreme velocities is
invaluable. A complete velocity analysis, as presented
in the previous sections of this chapter, can then be per-
formed at these locations. Thus, comprehensive velocity
analysis is performed only during important mechanism
configurations.

Magnitude
of Linear
velocity
(v) of
point A

Time (t)

Time (t)

RΔ
Δ
Δ

Δ

t2t1 t3 t4 t5

v(t2)

v(t3)

v(t4)

v(t5)

v(t1)

Slope at t2
v(t2) = R

t

t

Magnitude
of Linear
displacement
(ΔR) of
point A

FIGURE 6.42 Velocity curves.

EXAMPLE PROBLEM 6.18

A displacement diagram relative to time was constructed for a compressor mechanism in Example Problem 6.17. Use

this data to plot a velocity curve relative to time.
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SOLUTION:

1. Identify Horizontal Portions of the Displacement Diagram

The main task of constructing a velocity curve is to determine the slope of many points on the displacement

curve. This curve is reprinted as Figure 6.43.
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FIGURE 6.43 Displacement curve for Example Problem 6.18.

From this curve, it is apparent that the curve has a horizontal tangent, or zero slope, at 0, 0.017, and 0.034 s.

Therefore, the velocity of the piston is zero at 0, 0.017, and 0.034 s. These points are labeled t0, t2, and t4,

respectively.

2. Calculate the Slope at the Noteworthy Portions of the Displacement Diagram

The maximum upward slope appears at 0.008 s. This point is labeled as t1. An estimate of the velocity can be made

from the values of ΔR1 and Δt1 read off the graph. The velocity at 0.008 s is estimated as

Likewise, the maximum downward slope appears at 0.027 s. This point is labeled as t3. Again, an estimate

of the velocity can be made from the values of ΔR3 and Δt3 read off the graph. The velocity at 0.027 s is

estimated as

The procedure of determining the slope of the displacement curve can be repeated at other points in time.

3. Sketch the Velocity Curve

Compiling the slope and time information, a velocity curve can be constructed as shown in Figure 6.44.

v (t3) = v3 =
-0.60 in.

0.004 s
= -150 in.>s

v (t1) = v1 =
0.60 in.

0.004 s
= -150 in.>s

v(t2) = 0

v(t1) = 150

v(t3) = –150

v(t4) = 0

v(t0) = 0
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FIGURE 6.44 Velocity curve for Example Problem 6.18.
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6.14.2 Numerical Differentiation

In creating a velocity curve using graphical differentiation,
the theories of differential calculus are strictly followed.
However, even with careful attention, inaccuracies are com-
monly encountered when generating tangent curves. Thus,
other methods, namely numerical approaches, are often
used to determine the derivative of a curve defined by a
series of known points. The most popular method of
numerically determining the derivative is The Richardson
Method [Ref. 2]. It is valid for cases where the increments
between the independent variables are equal. This limits the
analysis to a constant time interval, which is not typically
difficult. The derivative of the displacement–time curve can
be numerically approximated from the following equation:

(6.19)

where:

ti = time at data point i
¢t = t2 - t1 = t3 - t2 = t4 - t3

¢Ri = displacement at data point i
i = data point index

- c¢R i+2 - 2 ¢R i+1 + 2 ¢R i-1 - ¢R i-2

12 ¢t
d

vi = c¢R i+1 - ¢R i-1

2 ¢t
d

Although the general form may look confusing with the
terms i, , and so on, actual substitution is straightfor-
ward. To illustrate the use of this equation, the velocity at the
fifth data point can be found by the following equation:

Some confusion may occur when calculating the deriva-
tive at the endpoints of the curves. For mechanism analysis,
the displacement diagram repeats with every revolution of
crank rotation. Therefore, as the curve is repeated, the data
points prior to the beginning of the cycle are the same points
at the end of the cycle. Thus, when 12 points are used to
generate the displacement curve, the displacement at point 1
is identical to the displacement at point 13. Then the velocity
at point 1 can be calculated as

Because this equation is a numerical approximation, the
associated error decreases drastically as the increment of the
crank angle and time are reduced.

v1 = c¢R 2 - ¢R12

2¢t
d - c¢R3 - 2¢R 2 + 2¢R12 - ¢R11

12¢t
d

- c¢R7 - 2¢R6 + 2¢R4 - ¢R 3

12¢t
d

v5 = c ¢R 6 - ¢R 4

2 ¢t
d

i +1

EXAMPLE PROBLEM 6.19

A displacement diagram of the piston operating in a compressor was plotted in Example Problem 4.11. This diagram

was converted to a displacement curve relative to time in Example Problem 6.17. Use this data to numerically gener-

ate a velocity curve.

SOLUTION: 1. Determine the Time Increment between Position Data Points

The spreadsheet from Example Problem 6.17 is expanded by inserting an additional column to include the pis-

ton velocity. The time increment is calculated as follows:

2. Use Equation (6.19) to Calculate Velocity Data Points

To illustrate the calculation of the velocities, a few sample calculations are shown:

= c (0.0 - 0.483)

2(0.00286)
d - c 0.136 - 2(0.0) + 2(0.483) - 0.896

2(0.00286)
d = -91.47 in.>s

v 12 = c (¢R13 - ¢R11)

2¢t
d - c ¢R2 - 2¢R13 + 2¢R11 - ¢R10

12¢t
d ,

= c (0.896 - 1.435)

2(0.00286)
d - c 0.483 - 2(0.896) + 2(1.435) - 1.50

12(0.00286)
d = -95.48 in.>s

v9 = c (¢R10 - ¢R8)

¢t
d - c ¢R11 - 2¢R10 + 2¢R8 - ¢R7

12¢t
d

= c (0.483 - 0.0)

2(0.00286)
d - c 0.896 - 2(0.483) + 2(0.0) - 0.136

12(0.00286)
d = 142.67 in.>s

v2 = c (¢R3 - ¢R1)

2¢t
d - c ¢R4 - 2¢R3 + 2¢R1 - ¢R12

12¢t
d

¢t = t 2 - t1 = (0.00289 - 0.0) = 0.00286 s
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3. Compute the Velocity Data and Plot the Velocity Curve

The results can be computed and tabulated as shown in Figure 6.45. A spreadsheet was used efficiently to perform

these redundant calculations. For those who are unfamiliar with spreadsheets, refer to Chapter 8.

FIGURE 6.45 Velocity data for Example Problem 6.19

FIGURE 6.46 Velocity curve for Example Problem 6.19.
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These values are plotted in Figure 6.46 to form a velocity diagram relative to time. Notice that this curve is still

rather rough. For accuracy purposes, it is highly suggested that the crank angle increment be reduced to 10° or 15°.

When a spreadsheet is used to generate the velocity data, even smaller increments are advisable to reduce the difficulty

of the task.

PROBLEMS

General Velocity

6–1. A package is moved at a constant rate from one end
of a 25-ft horizontal conveyor to the other end in 15 s.
Determine the linear speed of the conveyor belt.

6–2. A hydraulic cylinder extends at a constant rate of
2 fpm (ft/min). Determine the time required to
traverse the entire stroke of 15 in.

6–3. Determine the average speed (in mph) of an athlete
who can run a 4-minute mile.

6–4. Determine the average speed (in mph) of an athlete
who can run a 100-m dash in 10 s.

6–5. A gear uniformly rotates 270° clockwise in 2 s.
Determine the angular velocity in rpm and rad/s.

6–6. Determine the angular velocity (in rpm) of the
second, minute, and hour hand of a clock.

6–7. A servo-driven actuator is programmed to extend
according to the velocity profile shown in Figure P6.7.
Determine the total displacement during this
programmed move.

6–12. The drive roller for a conveyor belt is shown in
Figure P6.11. Determine the linear speed of the belt
when the roller operates at 30 rpm counterclockwise.

6–13. Link 2 is isolated from a kinematic diagram and
shown in Figure P6.13. The link is rotating coun-
terclockwise at a rate of 300 rpm. Determine the
velocity of points A and B. Use ° and

.b = 60°
g = 50

v (in./s)

t (s)

8

4

2 4 6 8 10 12

FIGURE P6.7 Problems 7 and 8.

6–8. A servo-driven actuator is programmed to extend
according to the velocity profile shown in
Figure P6.7. Use a spreadsheet to generate plots of
velocity versus time and displacement versus time
during this programmed move.

6–9. A linear motor is programmed to move according to
the velocity profile shown in Figure P6.9. Determine
the total displacement during this programmed move.

6–10. A linear motor is programmed to move according to
the velocity profile shown in Figure P6.9. Use a
spreadsheet to generate plots of velocity versus
time and displacement versus time during this
programmed move.

6–11. The drive roller for a conveyor belt is shown in
Figure P6.11. Determine the angular velocity of the
roller when the belt operates at 10 fpm (10 ft/min).

v (in./s)

t (s)

2

1

1 2 3 4 5 6

FIGURE P6.9 Problems 9 and 10.

V

16"

ω

FIGURE P6.11 Problems 11 and 12.

A

B

2 18"

γ
β

8"

FIGURE P6.13 Problems 13 and 14.

6–14. Link 2 is isolated from a kinematic diagram and
shown in Figure P6.13. The link is rotating clock-
wise, driving point A at a speed of 40 ft/s. Determine
the velocity of points A and B and the angular veloc-
ity of link 2. Use ° and .b = 60°g = 50



Relative Velocity

6–15. A kinematic diagram of a four-bar mechanism is
shown in Figure P6.15. At the instant shown,

mm/s and mm/s. Graphically
determine the relative velocity of point B with
respect to point A. Also determine the angular
velocity of links 2 and 4.

vB = 888vA = 800

Relative Velocity Method—Graphical

6–19. For the compressor linkage shown in Figure P6.19,
use the relative velocity method to graphically deter-
mine the linear velocity of the piston as the crank
rotates clockwise at 1150 rpm.
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FIGURE P6.15 Problems 15 and 16.

6–16. A kinematic diagram of a four-bar mechanism is
shown in Figure P6.15. At the instant shown,

mm/s and mm/s. Graphically
determine the relative velocity of point B with
respect to point A. Also determine the angular
velocity of links 2 and 4.

6–17. A kinematic diagram of a slider-crank mechanism is
shown in Figure P6.17. At the instant shown,

ft/s and ft/s. Graphically deter-
mine the relative velocity of point A with respect to
point B. Also, determine the angular velocity of link 2.

vB = 400vA = 380

vB = 22.2vA = 20

A

.9" .5"

45�

2.
6"

B

3

2

VB

VA

FIGURE P6.17 Problems 17 and 18.

6–18. A kinematic diagram of a slider-crank mechanism is
shown in Figure P6.17. At the instant shown,

ft/s and ft/s. Graphically determine
the relative velocity of point A with respect to point
B. Also, determine the angular velocity of link 2.

vB = 21vA = 20

2"

35�

Crank

6"Piston

FIGURE P6.19 Problems 19, 20, 41, 52, 63, 74, 85, 96,
104, and 112.

6–20. For the compressor linkage shown in Figure P6.19,
use the relative velocity method to graphically deter-
mine the linear velocity of the piston as the crank
rotates counterclockwise at 1775 rpm.

6–21. For the reciprocating saw shown in Figure P6.21, use
the relative velocity method to graphically deter-
mine the linear velocity of the blade as the crank
wheel rotates counterclockwise at 1500 rpm.

Blade

.50"   Crank wheel 

.65"130�3.25"

FIGURE P6.21 Problems 21, 22, 42, 53, 64, 75, 86, 97,
105, and 113.

6–22. For the reciprocating saw shown in Figure P6.21, use
the relative velocity method to graphically deter-
mine the linear velocity of the blade as the crank
wheel rotates clockwise at 900 rpm.

6–23. For the shearing mechanism in the configuration
shown in Figure P6.23, use the relative velocity
method to graphically determine the linear velocity
of the blade as the crank rotates clockwise at 100 rpm.

.75"

.5"

Crank

40�

4"

Blade

FIGURE P6.23 Problems 23, 24, 43, 54, 65, 76, 87, 98, 106,
and 114.



6–24. For the shearing mechanism in the configuration
shown in Figure P6.23, use the relative velocity
method to graphically determine the linear velocity
of the blade as the crank rotates counterclockwise
at 80 rpm.

6–25. For the rear windshield wiper mechanism shown in
Figure P6.25, use the relative velocity method to
graphically determine the angular velocity of the
wiper arm as the crank rotates counterclockwise
at 40 rpm.

shown, use the relative velocity method to graphically
determine the angular velocity of the water bath as
the crank is driven clockwise at 75 rpm.

6–29. The device in Figure P6.29 is a drive mechanism
for the agitator on a washing machine. For the
configuration shown, use the relative velocity
method to graphically determine the angular
velocity of the segment gear as the crank is driven
clockwise at 50 rpm.
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Wiper blade

8"

8"
16"

13"

Wiper arm

70�

50�

3.5"

14"

Crank

2"

FIGURE P6.25 Problems 25, 26, 44, 55, 66, 77, 88, 99,
107, and 115.

6–26. For the rear windshield wiper mechanism shown
in Figure P6.25, use the relative velocity method to
graphically determine the angular velocity of
the wiper arm as the crank rotates clockwise at
60 rpm.

6–27. The device in Figure P6.27 is a sloshing bath used
to wash vegetable produce. For the configuration
shown, use the relative velocity method to graph-
ically determine the angular velocity of the water
bath as the crank is driven counterclockwise at
100 rpm.

720 mm

Water bath

800 mm

120 mm

1200 mm

Crank
75�

80 mm

FIGURE P6.27 Problems 27, 28, 45, 56, 67, 78, 89, 100,
108, and 116.

6–28. The device in Figure P6.27 is a sloshing bath used to
wash vegetable produce. For the configuration

2"

40�

4.5"

7"

8"

FIGURE P6.29 Problems 29, 30, 46, 57, 68, 79, 90, 101,
109, and 117.

6–30. The device in Figure P6.29 is a drive mechanism for
the agitator on a washing machine. For the configu-
ration shown, use the relative velocity method
to graphically determine the angular velocity of
the segment gear as the crank is driven counter-
clockwise at 35 rpm.

6–31. For the hand-operated shear shown in Figure P6.31,
use the relative velocity method to graphically deter-
mine the angular velocity of the handle required to
have the blade cut through the metal at a rate of
3 mm/s. Also determine the linear velocity of point X.

175 mmpt X

40�
30 mm

60 mm

25�

75 mm

100 mm

FIGURE P6.31 Problems 31, 32, 47, 58, 69, 80, and 91.

6–32. For the hand-operated shear shown in Figure P6.31,
use the relative velocity method to graphically deter-
mine the linear velocity of the blade as the handle is
rotated at a rate of 2 rad/s clockwise. Also determine
the linear velocity of point X.
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6–33. For the foot-operated air pump shown in
Figure P6.33, use the relative velocity method to
graphically determine the angular velocity of the
foot pedal required to contract the cylinder at a
rate of 5 in./s. Also determine the linear velocity
of point X.

6–38. A package-moving device is shown in Figure P6.37.
For the configuration illustrated, use the relative
velocity method to graphically determine the linear
velocity of the package as the crank rotates clock-
wise at 65 rpm.

6–39. A package-moving device is shown in Figure P6.39.
For the configuration illustrated, use the relative
velocity method to graphically determine the linear
velocity of the platform as the hydraulic cylinder
extends at a rate of 16 fpm.

7.5"pt X

40�

1.75"

4.5"

10"

8"

FIGURE P6.33 Problems 33, 34, 48, 59, 70, 81, and 92.

6–34. For the foot-operated air pump shown in
Figure P6.33, use the relative velocity method to
graphically determine the rate of cylinder compres-
sion when the angular velocity of the foot pedal
assembly is 1 rad/s counterclockwise. Also deter-
mine the linear velocity of point X.

6–35. A two-cylinder compressor mechanism is shown in
Figure P6.35. For the configuration shown, use the
relative velocity method to graphically determine
the linear velocity of both pistons as the 1.5-in.
crank is driven clockwise at 1775 rpm. Also deter-
mine the instantaneous volumetric flow rate out of
the right cylinder.

Left
piston

Right
piston

∅1.0" ∅1.0"

6.0" 1.5"

45� 45�

Crank
6.0"

FIGURE P6.35 Problems 35, 36, 49, 60, 71, 82, 93, 102,
110, and 118.

6–36. A two-cylinder compressor mechanism is shown in
Figure P6.35. For the configuration shown, use the
relative velocity method to graphically determine
the linear velocity of both pistons as the 1.5-in.
crank is driven counterclockwise at 1150 rpm. Also
determine the instantaneous volumetric flow rate
out of the left cylinder.

6–37. A package-moving device is shown in Figure P6.37.
For the configuration illustrated, use the relative
velocity method to graphically determine the linear
velocity of the package as the crank rotates clock-
wise at 40 rpm.

.2 m

.2 m

.37 m

35�

.6 m

.3 m

.32 m

.65 m

.4 m.1 m
.1 m

FIGURE P6.37 Problems 37, 38, 50, 61, 72, 83, 94, 103,
111, and 119.
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FIGURE P6.39 Problems 39, 40, 51, 62, 73, 84, and 95.

6–40. A package-moving device is shown in Figure P6.39.
For the configuration illustrated, use the relative
velocity method to graphically determine the linear
velocity of the platform as the hydraulic cylinder
retracts at a rate of 12 fpm.

Relative Velocity Method—Analytical

6–41. For the compressor linkage shown in Figure P6.19,
use the relative velocity method to determine the
linear velocity of the piston as the crank rotates
clockwise at 950 rpm.

6–42. For the reciprocating saw shown in Figure P6.21, use
the relative velocity method to analytically deter-
mine the linear velocity of the blade as the crank
wheel rotates counterclockwise at 1700 rpm.
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6–43. For the shearing mechanism in the configuration
shown in Figure P6.23, use the relative velocity
method to analytically determine the linear velocity
of the blade as the crank rotates clockwise at 85 rpm.

6–44. For the rear windshield wiper mechanism shown in
Figure P6.25, use the relative velocity method to
analytically determine the angular velocity of the
wiper arm as the crank rotates counterclockwise at
45 rpm.

6–45. The device in Figure P6.27 is a sloshing bath used to
wash vegetable produce. For the configuration
shown, use the relative velocity method to analyti-
cally determine the angular velocity of the water bath
as the crank is driven counterclockwise at 90 rpm.

6–46. The device in Figure P6.29 is a drive mechanism for
the agitator on a washing machine. For the configura-
tion shown, use the relative velocity method to analyt-
ically determine the angular velocity of the segment
gear as the crank is driven clockwise at 60 rpm.

6–47. For the links for the hand-operated shear shown in
Figure P6.31, use the relative velocity method to
analytically determine the angular velocity of the
handle required to have the blade cut through the
metal at a rate of 2 mm/s.

6–48. For the foot-operated air pump shown in Figure
P6.33, use the relative velocity method to analyti-
cally determine the rate of cylinder compression as
the foot pedal assembly rotates counterclockwise at
a rate of 1 rad/s.

6–49. A two-cylinder compressor mechanism is shown in
Figure P6.35. For the configuration shown, use the
relative velocity method to analytically determine
the linear velocity of both pistons as the 1.5-in.
crank is driven clockwise at 2000 rpm. Also deter-
mine the instantaneous volumetric flow rate out of
the right cylinder.

6–50. A package-moving device is shown in Figure P6.37.
For the configuration illustrated, use the relative
velocity method to analytically determine the linear
velocity of the package as the crank rotates clock-
wise at 80 rpm.

6–51. A package-moving device is shown in Figure P6.39.
For the configuration illustrated, use the relative
velocity method to analytically determine the linear
velocity of the platform as the hydraulic cylinder
retracts at a rate of 10 fpm.

Locating Instantaneous 

Centers—Graphically

6–52. For the compressor linkage shown in Figure P6.19,
graphically determine the location of all the instan-
taneous centers.

6–53. For the reciprocating saw shown in Figure P6.21,
graphically determine the location of all the instan-
taneous centers.

6–54. For the shearing mechanism in the configuration
shown in Figure P6.23, graphically determine the
location of all the instantaneous centers.

6–55. For the rear windshield wiper mechanism shown in
Figure P6.25, graphically determine the location of
all the instantaneous centers.

6–56. For the produce-washing bath shown in Figure
P6.27, graphically determine the location of all the
instantaneous centers.

6–57. For the washing machine agitation mechanism
shown in Figure P6.29, graphically determine the
location of all the instantaneous centers.

6–58. For the hand-operated shear shown in Figure P6.31,
graphically determine the location of all the instan-
taneous centers.

6–59. For the foot-operated air pump shown in Figure
P6.33, graphically determine the location of all the
instantaneous centers.

6–60. For the two-cylinder compressor mechanism shown
in Figure P6.35, graphically determine the location
of all the instantaneous centers.

6–61. For the package-moving device shown in Figure
P6.37, graphically determine the location of all the
instantaneous centers.

6–62. For the package-moving device shown in Figure
P6.39, graphically determine the location of all the
instantaneous centers.

Locating Instantaneous 

Centers—Analytically

6–63. For the compressor linkage shown in Figure P6.19,
analytically determine the location of all the instan-
taneous centers.

6–64. For the reciprocating saw shown in Figure P6.21,
analytically determine the location of all the instan-
taneous centers.

6–65. For the shearing mechanism in the configuration
shown in Figure P6.23, analytically determine the
location of all the instantaneous centers.

6–66. For the rear windshield wiper mechanism shown in
Figure P6.25, analytically determine the location of
all the instantaneous centers.

6–67. For the produce-washing bath shown in Figure
P6.27, analytically determine the location of all the
instantaneous centers.

6–68. For the washing machine agitation mechanism
shown in Figure P6.29, analytically determine the
location of all the instantaneous centers.

6–69. For the hand-operated shear shown in Figure P6.31,
analytically determine the location of all the instan-
taneous centers.

6–70. For the foot-operated air pump shown in Figure
P6.33, analytically determine the location of all the
instantaneous centers.
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6–71. For the two-cylinder compressor mechanism shown
in Figure P6.35, analytically determine the location
of all the instantaneous centers.

6–72. For the package-moving device shown in Figure
P6.37, analytically determine the location of all the
instantaneous centers.

6–73. For the package-moving device shown in Figure
P6.39, analytically determine the location of all the
instantaneous centers.

Instantaneous Center Method—Graphical

6–74. For the compressor linkage shown in Figure P6.19,
use the instantaneous center method to graphically
determine the linear velocity of the piston as the
crank rotates counterclockwise at 1500 rpm.

6–75. For the reciprocating saw shown in Figure P6.21, use
the instantaneous center method to graphically
determine the linear velocity of the blade as the
crank wheel rotates clockwise at 1200 rpm.

6–76. For the shearing mechanism in the configuration
shown in Figure P6.23, use the instantaneous center
method to graphically determine the linear velocity
of the blade as the crank rotates counterclockwise
at 65 rpm.

6–77. For the rear windshield wiper mechanism shown
in Figure P6.25, use the instantaneous center
method to graphically determine the angular
velocity of the wiper arm as the crank rotates
clockwise at 55 rpm.

6–78. For the produce-sloshing bath shown in Figure
P6.27, use the instantaneous method to graphically
determine the angular velocity of the water bath as
the crank is driven clockwise at 110 rpm.

6–79. For the washing machine agitator mechanism
shown in Figure P6.29, use the instantaneous center
method to graphically determine the angular veloc-
ity of the segment gear as the crank is driven coun-
terclockwise at 70 rpm.

6–80. For the hand-operated shear in the configuration
shown in Figure P6.31, use the instantaneous
method to graphically determine the angular veloc-
ity of the handle required to have the blade cut
through the metal at a rate of 4 mm/s.

6–81. For the foot-operated air pump shown in Figure
P6.33, use the instantaneous center method to
graphically determine the rate of cylinder compres-
sion as the foot pedal assembly rotates counter-
clockwise at a rate of 0.75 rad/s.

6–82. A two-cylinder compressor mechanism is shown in
Figure P6.35. For the configuration shown, use the
instantaneous center method to graphically deter-
mine the linear velocity of both pistons as the 1.5-in.
crank is driven counterclockwise at 2200 rpm. Also
determine the instantaneous volumetric flow rate
out of the right cylinder.

6–83. A package-moving device is shown in Figure P6.37.
For the configuration illustrated, use the graphical
instantaneous center method to determine the
linear velocity of the package as the crank rotates
clockwise at 70 rpm.

6–84. A package-moving device is shown in Figure P6.39.
For the configuration illustrated, use the instanta-
neous center method to graphically determine
the linear velocity of the platform as the hydraulic
cylinder extends at a rate of 8 fpm.

Instantaneous Center Method—Analytical

6–85. For the compressor linkage shown in Figure P6.19,
use the instantaneous center method to analytically
determine the linear velocity of the piston as the
crank rotates clockwise at 1100 rpm.

6–86. For the reciprocating saw shown in Figure P6.21, use
the instantaneous center method to analytically
determine the linear velocity of the blade as the
crank wheel rotates counterclockwise at 1375 rpm.

6–87. For the shearing mechanism in the configuration
shown in Figure P6.23, use the instantaneous center
method to analytically determine the linear velocity
of the blade as the crank rotates clockwise at 55 rpm.

6–88. For the rear windshield wiper mechanism shown in
Figure P6.25, use the instantaneous center method
to analytically determine the angular velocity of
the wiper arm as the crank rotates counterclockwise
at 35 rpm.

6–89. For the produce-sloshing bath shown in Figure
P6.27, use the instantaneous method to analytically
determine the angular velocity of the water bath as
the crank is driven counterclockwise at 95 rpm.

6–90. For the washing machine agitator mechanism shown
in Figure P6.29, use the instantaneous center method
to analytically determine the angular velocity of the
segment gear as the crank is driven clockwise at
85 rpm.

6–91. For the hand-operated shear in the configuration
shown in Figure P6.31, use the instantaneous
method to analytically determine the angular
velocity of the handle required to have the blade
cut through the metal at a rate of 2.5 mm/s.

6–92. For the foot-operated air pump shown in Figure
P6.33, use the instantaneous center method to ana-
lytically determine the rate of cylinder compression
as the foot pedal assembly rotates counterclockwise
at a rate of 0.6 rad/s.

6–93. A two-cylinder compressor mechanism is shown in
Figure P6.35. For the configuration shown, use the
instantaneous center method to analytically deter-
mine the linear velocity of both pistons as the 1.5-in.
crank is driven clockwise at 1775 rpm. Also deter-
mine the instantaneous volumetric flow rate out of
the right cylinder.
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6–94. A package-moving device is shown in Figure P6.37.
For the configuration illustrated, use the graphical
instantaneous center method to determine the
linear velocity of the package as the crank rotates
clockwise at 30 rpm.

6–95. A package-moving device is shown in Figure P6.39.
For the configuration illustrated, use the instanta-
neous center method to analytically determine the
linear velocity of the platform as the hydraulic
cylinder retracts at a rate of 7 fpm.

Velocity Curves––Graphical

6–96. The crank of the compressor linkage shown in
Figure P6.19 is driven clockwise at a constant rate of
1750 rpm. Graphically create a curve for the linear
displacement of the piston as a function of the crank
angle. Convert the crank angle to time. Then graph-
ically calculate the slope to obtain a velocity curve of
the piston as a function of time.

6–97. The crank wheel of the reciprocating saw shown
in Figure P6.21 is driven counterclockwise at a
constant rate of 1500 rpm. Graphically create a
curve for the linear displacement of the saw blade
as a function of the crank angle. Convert the crank
angle to time. Then graphically calculate the slope
to obtain a velocity curve of the saw blade as a func-
tion of time.

6–98. The crank of the shearing mechanism shown in
Figure P6.23 is driven clockwise at a constant rate of
80 rpm. Graphically create a curve for the linear
displacement of the shear blade as a function of the
crank angle. Convert the crank angle to time. Then
graphically calculate the slope to obtain a velocity
curve of the shear blade as a function of time.

6–99. The crank of the rear windshield wiper mechanism
shown in Figure P6.25 is driven clockwise at a
constant rate of 65 rpm. Graphically create a curve
for the angular displacement of the wiper blade as a
function of the crank angle. Convert the crank angle
to time. Then graphically calculate the slope to
obtain an angular velocity curve of the wiper blade
as a function of time.

6–100. The crank of the sloshing bath shown in Figure
P6.27 is driven counterclockwise at 90 rpm.
Graphically create a curve for the angular displace-
ment of the bath as a function of the crank angle.
Convert the crank angle to time. Then graphically
calculate the slope to obtain an angular velocity
curve of the bath as a function of time.

6–101. The crank of the washing machine agitator mecha-
nism shown in Figure P6.29 is driven clockwise at
80 rpm. Graphically create a curve for the angular
displacement of the segment gear as a function of the
crank angle. Convert the crank angle to time. Then
graphically calculate the slope to obtain an angular
velocity of the segment gear as a function of time.

6–102. The crank of the two-cylinder compressor mecha-
nism shown in Figure P6.35 is driven clockwise at
1250 rpm. Graphically create a curve for the linear
displacement of both pistons as a function of the
crank angle. Convert the crank angle to time. Then
graphically calculate the slope to obtain velocity
curves of both pistons as a function of time.

6–103. The crank of the package-moving device shown in
Figure. P6.37 is driven clockwise at 25 rpm.
Graphically create a curve for the linear displace-
ment of the ram as a function of the crank angle.
Convert the crank angle to time. Then graphically
calculate the slope to obtain a velocity curve of the
ram as a function of time.

Velocity Curves—Analytical

6–104. The crank of the compressor linkage shown in
Figure P6.19 is driven counterclockwise at a con-
stant rate of 2150 rpm. Use a spreadsheet to analyti-
cally create a curve for the linear displacement of the
piston as a function of the crank angle. Convert the
crank angle axis to time. Then use numerical differ-
entiation to obtain a velocity curve of the piston as a
function of time.

6–105. The crank wheel of the reciprocating saw shown in
Figure P6.21 is driven clockwise at a constant rate of
1900 rpm. Use a spreadsheet to analytically create a
curve for the linear displacement of the saw blade as
a function of the crank angle. Convert the crank
angle axis to time. Then use numerical differentia-
tion to obtain a velocity curve of the saw blade as a
function of time.

6–106. The crank of the shearing mechanism shown in
Figure P6.23 is driven clockwise at a constant rate of
80 rpm. Use a spreadsheet to analytically create a
curve for the linear displacement of the shear blade
as a function of the crank angle. Convert the crank
angle axis to time. Then use numerical differentia-
tion to obtain a velocity curve of the shear blade as a
function of time.

6–107. The crank of the rear windshield wiper mecha-
nism shown in Figure P6.25 is driven counter-
clockwise at a constant rate of 55 rpm. Use a
spreadsheet to analytically create a curve for the
angular displacement of the wiper blade as a func-
tion of the crank angle. Convert the crank angle
axis to time. Then use numerical differentiation to
obtain an angular velocity curve of the wiper
blade as a function of time.

6–108. The crank of the sloshing bath shown in Figure
P6.27 is driven clockwise at 65 rpm. Use a spread-
sheet to analytically create a curve for the angular
displacement of the bath as a function of the crank
angle. Convert the crank angle axis to time. Then
use numerical differentiation to obtain an angular
velocity curve of the bath as a function of time.
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6–109. The crank of the washing machine agitator mecha-
nism shown in Figure P6.29 is driven counterclock-
wise at 65 rpm. Use a spreadsheet to analytically
create a curve for the angular displacement of the
segment gear as a function of the crank angle.
Convert the crank angle axis to time. Then use
numerical differentiation to obtain an angular veloc-
ity curve of the segment gear as a function of time.

6–110. The crank of the two-cylinder compressor mecha-
nism shown in Figure P6.35 is driven counterclock-
wise at 1500 rpm. Use a spreadsheet to analytically
create a curve for the linear displacement of both
pistons as a function of the crank angle. Convert
the crank angle axis to time. Then use numerical
differentiation to obtain velocity curves of both
pistons as a function of time.

6–111. The crank of the package-moving device shown in
Figure P6.37 is driven counterclockwise at 30 rpm.
Use a spreadsheet to analytically create a curve for
the linear displacement of the ram as a function of
the crank angle. Convert the crank angle axis to
time. Then use numerical differentiation to obtain a
velocity curve of the ram as a function of time.

Velocity Using Working Model

6–112. The crank of the compressor linkage shown in
Figure P6.19 is driven clockwise at a constant rate
of 1750 rpm. Use the Working Model software to
create a simulation and plot the linear velocity of the
piston as a function of the crank angle.

6–113. The crank wheel of the reciprocating saw shown
in Figure P6.21 is driven counterclockwise at a
constant rate of 1500 rpm. Use the Working Model
software to create a simulation and plot the linear
velocity of the saw blade as a function of the crank
angle.

6–114. The crank of the shearing mechanism shown in
Figure P6.23 is driven clockwise at a constant rate of
80 rpm. Use the Working Model software to create a
simulation and plot the angular velocity of the
wiper blade as a function of the crank angle.

6–115. The crank of the rear windshield wiper mechanism
shown in Figure P6.25 is driven clockwise at a con-
stant rate of 65 rpm. Use the Working Model software
to create a simulation and plot the angular velocity of
the wiper blade as a function of the crank angle.

6–116. The crank of the sloshing bath shown in Figure
P6.27 is driven counterclockwise at 90 rpm. Use the
Working Model software to create a simulation and
plot the angular velocity of the bath as a function of
the crank angle.

6–117. The crank of the washing machine agitator mecha-
nism shown in Figure P6.29 is driven clockwise at
80 rpm. Use the Working Model software to create a
simulation and plot the angular velocity of the
segment gear as a function of the crank angle.

6–118. The crank of the two-cylinder compressor mecha-
nism shown in Figure P6.35 is driven clockwise
at 1250 rpm. Use the Working Model software to
create a simulation and plot the angular velocity of
both pistons as a function of the crank angle.

6–119. The crank of the package-moving device shown in
Figure P6.37 is driven clockwise at 25 rpm. Use the
Working Model software to create a simulation and
plot the linear velocity of the ram as a function of
the crank angle.

CASE STUDIES

6–1. Figure C6.1 illustrates a mechanism that is used to
drive a power hacksaw. The mechanism is powered
with an electric motor shaft, keyed to gear A.
Carefully examine the configuration in question,
then answer the following leading questions to gain
insight into the operation of the mechanism.

E

B

A

C
D

FIGURE C6.1 (Courtesy, Industrial Press.)

1. When gear A is forced to rotate counterclockwise,
what is the motion of mating gear B ?

2. When gear A is forced to rotate counterclockwise,
what is the motion of stud pin C ?

3. When gear A is forced to rotate counterclockwise,
what is the motion of lever D?

4. How does the motion of lever D differ from the
motion of lever E ?

5. Determine the position of gear B that would place
lever D at its lower extreme position.

6. Determine the position of gear B that would place
lever D at its upper extreme position.

7. Examine the amount of rotation of gear B to raise
lever D and the amount of rotation to lower the
lever.

8. Approximately what is the difference between the
time to raise and the time to lower lever D?

9. Comment on the continual motion of lever E.
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6–2. Figure C6.2 illustrates the mechanism that drives a
table for a special grinding operation. Carefully
examine the configuration in question, then answer
the following leading questions to gain insight into
the operation of the mechanism.

6–3. Figure C6.3 illustrates the mechanism that drives a
bellows for an artificial respiration machine.
Carefully examine the configuration in question,
then answer the following leading questions to gain
insight into the operation of the mechanism.
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B C
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F D G

I

FIGURE C6.2 (Courtesy, Industrial Press.)

1. When wheel C is forced to rotate counterclockwise,
what is the motion of pin D?

2. When wheel C is forced to rotate counterclockwise,
what is the motion of link G ?

3. Determine the position of wheel C that would place
point I at its upper extreme position.

4. Determine the position of wheel C that would place
point I at its lower extreme position.

5. Examine the amount of rotation of wheel C to raise
point I and the amount of rotation to lower the
point.

6. Approximately what is the difference between the
time to raise and the time to lower point I ?

7. Comment on the cyclical motion of lever E.
8. Describe the motion of table R.
9. What is the function of this mechanism?

10. Why are there screw threads on both ends of link H ?
11. Compute the mobility of this mechanism.

1. When link E drives continually counterclockwise
and rides slot J, at the instant shown, what is the
motion of disk F ?

2. When link E drives continually counterclockwise
and rides slot J, at the instant shown, what is the
motion of strap G ?

3. When link E drives continually counterclockwise
and rides slot J, at the instant shown, what is the
motion of slide A?

4. As link E approaches the ramped pad M, what
happens to the spring N ?

5. As link E contacts the ramped pad M, what happens
to link E ?

6. As link E contacts the ramped pad M, what is the
motion of disk F ?

7. As link E contacts the ramped pad M, what is the
motion of slide A?

8. As link E continues to rotate beyond the ramped
pad M, what is the motion of disk F ?

9. As link E catches slot K, what is the motion of disk F ?
10. Describe the continual motion of slide A, which

drives one end of the bellows.
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FIGURE C6.3 (Courtesy, Industrial Press.)
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C H A P T E R

S E V E N

ACCELERATION ANALYSIS

analysis is the relative acceleration method, which utilizes
the results of the relative velocity method introduced in
Chapter 6. Consistent with other chapters in this book, both
graphical and analytical techniques are utilized.

7.2 LINEAR ACCELERATION

Linear acceleration, A, of a point is the change of linear
velocity of that point per unit of time. Chapter 6 was dedi-
cated to velocity analysis. Velocity is a vector quantity, which
is defined with both a magnitude and a direction. Therefore,
a change in either the magnitude or direction of velocity
produces an acceleration. The magnitude of the acceleration
vector is designated .

7.2.1 Linear Acceleration of Rectilinear
Points

Consider the case of a point having straight line, or recti-
linear, motion. Such a point is most commonly found on a
link that is attached to the frame with a sliding joint. For this
case, only the magnitude of the velocity vector can change.
The acceleration can be mathematically described as

(7.1)

However, because

then

(7.2)

For short time periods, or when the acceleration can be
assumed to be linear, the following relationship can be used:

(7.3)

Because velocity is a vector, equation (7.1) states that
acceleration is also a vector. The direction of linear acceleration
is in the direction of linear movement when the link accelerates.
Conversely, when the link decelerates, the direction of linear
acceleration is opposite to the direction of linear movement.

A �
¢V

¢t

A =
d 2 R

dt 2

V =
dR

dt

A = lim
¢t:0

¢V

¢t
=

dv

dt

a = ƒ A ƒ

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Define linear, rotational, normal, tangential, Coriolis,
and relative accelerations.

2. Use the relative acceleration method to graphically
solve for the acceleration of a point on a link,
knowing the acceleration of another point on 
that link.

3. Use the relative acceleration method to graphically
determine the acceleration of a point of interest on a
floating link.

4. Understand when the Coriolis acceleration is present,
and include it in the analysis.

5. Use the relative acceleration method to analytically
solve for the acceleration of a point.

6. Use the relative acceleration method to analytically
determine the acceleration of a point of interest on a
floating link.

7. Construct an acceleration curve to locate extreme
acceleration values.

7.1 INTRODUCTION

Acceleration analysis involves determining the manner in
which certain points on the links of a mechanism are either
“speeding up” or “slowing down.” Acceleration is a critical
property because of the inertial forces associated with it. In
the study of forces, Sir Isaac Newton discovered that an iner-
tial force is proportional to the acceleration imposed on a
body. This phenomenon is witnessed anytime you lunge
forward as the brakes are forcefully applied on your car.

Of course, an important part of mechanism design is to
ensure that the strength of the links and joints is sufficient to
withstand the forces imposed on them. Understanding all
forces, especially inertia, is important. Force analysis is
introduced in Chapters 13 and 14. However, as a preliminary
step, acceleration analysis of a mechanism’s links must be
performed.

The determination of accelerations in a linkage is the
purpose of this chapter. The primary procedure used in this
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Linear acceleration is expressed in the units of velocity
(length per time) divided by time, or length per squared time.
In the U.S. Customary System, the common units used are
feet per squared second (ft/s2) or inches per squared second
(in./s2). In the International System, the common units used
are meters per squared second (m/s2) or millimeters per
squared second (mm/s2). For comparison purposes, linear
acceleration is often stated relative to the acceleration due to
gravity . Thus, a
10g acceleration is equivalent to 3864 in./s2.

7.2.2 Constant Rectilinear Acceleration

Rewriting equation (7.3), the velocity change that occurs
during a period of constant acceleration is expressed as

(7.4)¢V = Vfinal - Vinitial = A ¢t

g = 32.17 ft/s2 = 386.4 in./s2 = 9.81 m/s2

Additionally, the corresponding displacement that
occurs during a period of constant acceleration can be
written as

(7.5)

Equations (7.4) and (7.5) can be combined to give

(7.6)

Since rectilinear motion is along a straight line, the direction
of the displacement, velocity, and acceleration (r, v, a) can be
specified with an algebraic sign along a coordinate axis.
Thus, equations (7.4), (7.5), and (7.6) can be written in
terms of the vector magnitudes (r, v, a).

(Vfinal)
2 = (Vinitial)

2 + 2 A ¢R

¢R =
1

2
A¢t2 + Vinitial ¢t

EXAMPLE PROBLEM 7.1

An express elevator used in tall buildings can reach a full speed of 15 mph in 3 s. Assuming that the elevator experiences

constant acceleration, determine the acceleration and the displacement during the 3 s.

SOLUTION: 1. Calculate Acceleration

Assuming that the acceleration is constant, equation (7.3) can be accurately used. Because the elevator starts at

rest, the velocity change is calculated as

Then, the acceleration is calculated as

2. Normalize the Acceleration with Respect to Gravity

When people accelerate in an elevator, the acceleration is often “normalized” relative to the acceleration due to

gravity. The standard acceleration due to gravity (g) on earth is 32.17 ft/s2 or 9.81 m/s2. Therefore, the accelera-

tion of the elevator can be expressed as

3. Calculate the Displacement during the 3-Second Interval

The displacement can be determined from equation (7.5).

= 32.9 ft c  (or roughly 3 floors)

¢R =
1

2
a¢t 2 + vinitial¢t =

1

2
17.3 ft/s22(3 s)2 + (0)(3 s)

A = 7.3 ft/s2 a 1 g

32.2 ft/s2 b = 0.22 g

A =
¢V

¢t
=
122 ft/s2

3 s
= 7.3 ft / s2 c

= a 15 miles

hr
b a 5280 ft

1 mile
b a 1 hr

3600 s
b = 22 ft/s

¢V = (15 mph - 0) = 15 mph

7.2.3 Acceleration and the Velocity Profile

As stated in equation (7.1), the instantaneous acceleration is
the first derivative of the instantaneous velocity with respect
to time. Occasionally, a closed-form equation for the instan-
taneous velocity of a point is available. In these cases, the
derivative of the equation, evaluated at the specified time,

will yield the instantaneous acceleration. More often, espe-
cially in programmable actuators used in automation,
velocity profiles are specified as introduced in Chapter 6.
Recall that the displacement for a certain time interval is the
area under the v-t curve for that time interval. Conversely,
the acceleration at a certain time is the slope of the v-t curve.
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EXAMPLE PROBLEM 7.2

An automated assembly operation requires linear motion from a servo actuator. The total displacement must be 10 in.

For design reasons, the maximum velocity must be limited to 2 in./s, and the maximum acceleration or deceleration

should not exceed 4 in./s2. Plot the velocity profile for this application.

SOLUTION: 1. Determine the Motion Parameters during Speed-Up

For the standard velocity profile for a servomotor, the speed-up portion of the motion is constant acceleration.

Rewriting and substituting the magnitudes of the velocity v and acceleration a into equation (7.3) gives the time

consumed during speed-up.

Equation (7.5) is used to calculate the magnitude of the displacement during speed-up.

2. Determine the Motion Parameters during Slow-Down

For a standard velocity profile, the slow-down portion of the motion is constant acceleration. The time

consumed during slow-down is

The magnitude of the displacement during slow-down is

3. Determine the Motion Parameters during Steady-State

Because 0.5 in. of displacement occurs during speed-up and another 0.5 in. during shut-down, the remaining 9.0

in. of displacement is during constant velocity motion. Equation (6.2) is used to calculate the time consumed

during constant velocity.

4. Determine the Motion Parameters during Steady-State

Using the velocity and time information for this sequence, the velocity profile shown in Figure 7.1 is 

generated.

¢t =
¢R

v
=

9 in.

2 in./s
= 4.5 s

=
1

2
A - 4 in./s2 B(.5 s)2 + 22 in./s(.5 s) = 0.5 in.

¢R =
1

2
a¢t 2 + v initial¢t

¢t =
¢v

a
=

(0 - 2) in./s

-4 in./s2 = 0.5 s

=
1

2
A4 in./s2 B (.5 s)2 + (0)(.5 s) = 0.5 in.

¢R =
1

2
a¢t 2 + vinitial ¢t

¢t =
¢v

a
=

(2 - 0) in./s

4 in./s2 = 0.5 s

v (in./s)

t (s)

2.0

1.0

1.0 2.0 3.0 4.0 5.0

FIGURE 7.1 Velocity profile for Example Problem 7.2.
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A

AA (normal acceleration of point A)n

AA (tangential acceleration of point A)t

Path of
movement

VA (velocity of point A)

FIGURE 7.2 Acceleration of point A.

7.2.4 Linear Acceleration of
a General Point

As earlier mentioned, the velocity of a point moving in a
general fashion may change in two ways:

1. The magnitude of the velocity can change. This pro-
duces an acceleration acting along the path of motion,
as presented in the previous section. This acceleration
is termed tangential acceleration, At.

2. The direction of the velocity vector can change over
time. This occurs as the link, with which the point is
associated, undergoes rotational motion. It produces a
centrifugal acceleration that acts perpendicular to the
direction of the path of motion. This acceleration is
termed normal acceleration, An.

Figure 7.2 illustrates point A, which is moving along a
curved path. The tangential acceleration of point A, , is
the linear acceleration along the direction of motion. Note
that the vector points in the direction of motion because
point A is accelerating. If point A were decelerating, the
acceleration vector would point opposite to the direction of
motion. Of course, the velocity vector always points in the
direction of motion. Therefore, an accelerating point is
associated with a tangential acceleration vector that is con-
sistent with the velocity vector. Conversely, deceleration is
associated with a tangential acceleration vector that opposes
the velocity vector. The magnitude of tangential acceleration
can be determined using equations (7.1), (7.2), or (7.3).

AA
t

As with velocity, several points on a link can have different
accelerations, yet the entire link has the same rotational
acceleration.

7.3.1 Angular Acceleration

Angular acceleration, α, of a link is the angular velocity of
that link per unit of time. Mathematically, angular accelera-
tion of a link is described as

(7.7)

However, because

then

(7.8)

For short time periods, or when the angular acceleration is
assumed to be linear, the following relationship can be used:

(7.9)

Similarly to the discussion in Section 7.2, the direction
of angular acceleration is in the direction of motion when
the angular velocity increases or the link accelerates.
Conversely, the angular acceleration is in the opposite direc-
tion of motion when the angular velocity decreases, or the
link is decreasing. In planar analyses, the direction should be
described as either clockwise or counterclockwise.

Angular acceleration is expressed in the units of angular
velocity (angle per time) divided by time, or angle per
squared time. In both the U.S. Customary System and
the International System, the common units used are degrees
per squared second (deg/s2), revolutions per squared second
(rev/s2), or the preferred unit of radians per squared
second (rad/s2).

7.3.2 Constant Angular Acceleration

Rewriting equation (7.7), the angular velocity change that
occurs during a period of constant angular acceleration is
expressed as

(7.10)

Additionally, the corresponding angular displacement
that occurs during a period of constant angular acceleration
can be written as

(7.11)

Equations (7.10) and (7.11) can be combined to give

(7.12)(vfinal)
2 = (vinitial)

2 + 2a¢u

¢u =
1

2
a¢t2 + vinitial ¢t

¢v = vfinal - vinitial = a ¢t

a �
¢v
¢t

a =
d2u

dt2

v =
du

dt

a = lim
¢t:0

¢v
¢t

=
dv

dt

The normal acceleration of point A, , is a result of a
change in the direction of the velocity vector. It acts along a
line that is perpendicular to the direction of movement and
toward the center of curvature of this path. Further details
pertaining to tangential and normal accelerations are pre-
sented in Section 7.4.

7.3 ACCELERATION OF A LINK

Recall from Section 6.3 that any motion, however complex,
can be viewed as a combination of a straight line movement
and a rotational movement. Fully describing the motion of a
link can consist of specifying the linear motion of one point
and the rotational motion of the link about that point.

AA
n
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ω α

FIGURE 7.3 Grinding wheel for Example Problem 7.3.

EXAMPLE PROBLEM 7.3

An electric motor drives the grinding wheel clockwise, as shown in Figure 7.3. It will speed up to 1800 rpm in 2 s

when the power is turned on. Assuming that this speed-up is at a constant rate, determine the angular

acceleration of the grinding wheel. Also determine the number of revolutions that the wheel spins before it is at

full speed.

SOLUTION: 1. Calculate the Acceleration

Since acceleration is typically specified in rad/s2, convert the speed of the grinding wheel to rad/s with the fol-

lowing:

With constant acceleration, equation (7.9) can be used, giving

The direction of the acceleration is clockwise, which is in the direction of motion because the grinding

wheel is speeding up.

2. Calculate the Displacement during the 2-Second Interval

The number of revolutions during this speed-up period can be determined through equation (7.11).

= 188.4 rada 1 rev

2p rad
b = 30.0 revolutions

¢u =
1

2
a¢t2 + vinitial¢t =

1

2
A94.2 rad/s2 B(2 s)2 + (0)(2 s)

= a 188.5 rad/s - 0

2 s
b = 94.2 rad/s2, cw

a =
¢v
¢t

¢v = 1800 rpma 2p rad

1 rev
b a 1 min

60 s
b = 188.5 rad/s, cw

7.4 NORMAL AND TANGENTIAL
ACCELERATION

As presented in Section 7.2.4, the velocity of a point mov-
ing in a general path can change in two independent ways.
The magnitude or the direction of the velocity vector can
change over time. Of course, acceleration is the time rate of
velocity change. Thus, acceleration is commonly separated
into two elements: normal and tangential components. The
normal component is created as a result of a change in the
direction of the velocity vector. The tangential component

is formed as a result of a change in the magnitude of the
velocity vector.

7.4.1 Tangential Acceleration

For a point on a rotating link, little effort is required to
determine the direction of these acceleration compo-
nents. Recall that the instantaneous velocity of a point on
a rotating link is perpendicular to a line that connects that
point to the center of rotation. Any change in the magni-
tude of this velocity creates tangential acceleration, which
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2

0

A

(a) (b)

dθ2

dθ2dV

O

dV = VA″ – > VA′

rA

VA′

VA′

VA″

VA″

FIGURE 7.4 Normal acceleration.

is also perpendicular to the line that connects the point
with the center of rotation. The magnitude of the tan-
gential acceleration of point A on a rotating link 2 can be
expressed as

(7.13)

It is extremely important to remember that the angular
acceleration, α, in equation (7.13) must be expressed as units
of radians per squared time. Radians per squared second is
the most common unit. Similarly to the discussion in
Section 7.2, tangential acceleration acts in the direction of
motion when the velocity increases or the point accelerates.
Conversely, tangential acceleration acts in the opposite
direction of motion when the velocity decreases or the point
decelerates.

7.4.2 Normal Acceleration

Any change in velocity direction creates normal accele-
ration, which is always directed toward the center of
rotation. Figure 7.4a illustrates a link rotating at constant
speed. The velocity of point A is shown slightly before and
after the configuration under consideration, separated by a
small angle dθ2. Because the link is rotating at constant
speed, the magnitudes of are equal. Thus,

.
Figure 7.4b shows a velocity polygon, vectorally solving

for the change in velocity, dv. Notice that the change of the
velocity vector, dv, is directed toward the center of link rota-
tion. In fact, the normal acceleration will always be directed
toward the center of link rotation. This is because, as the
point rotates around a fixed pivot, the velocity vector will
change along the curvature of motion. Thus, the normal

VA¿ = VA–
VA¿ and VA–

aA
t =

dvA

dt
=

d(v2rOA)

dt
= rOA

dv2

dt
= rOAa2

vector to this curvature will always be directed toward the
fixed pivot.

In Figure 7.4a, because Δ is small, the following
relationship can be stated:

Because acceleration is defined as the time rate of velocity
change, both sides should be divided by time:

Using equation (6.6), the relationships between the magni-
tude of the linear velocity and angular velocity, the following
equations for the magnitude of the normal acceleration of a
point can be derived:

(7.14)

(7.15)

7.4.3 Total Acceleration

As previously mentioned, acceleration analysis is important
because inertial forces result from accelerations. These loads
must be determined to ensure that the machine is
adequately designed to handle these dynamic loads. Inertial
forces are proportional to the total acceleration of a body.
The total acceleration, A, is the vector resultant of the
tangential and normal components. Mathematically, it is
expressed as

(7.16)AA = AA
n +7 AA

t

aA
n = vAv2 = vAa vA

rOA
b =

vA
2

rOA

aA
n = vAv2 = (v2rOA)v2 = v2

2 rOA

aA
n =

dvA

dt
= vA

du2

dt
= vAv2

dvA = vAdu2

u

EXAMPLE PROBLEM 7.4

The mechanism shown in Figure 7.5 is used in a distribution center to push boxes along a platform and to a loading

area. The input link is driven by an electric motor, which, at the instant shown, has a velocity of 25 rad/s and

accelerates at a rate of 500 rad/s2. Knowing that the input link has a length of 250 mm, determine the instantaneous

acceleration of the end of the input link in the position shown.
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40°

ω

Input link

250 mm

FIGURE 7.5 Transfer mechanism for Example Problem 7.4.
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FIGURE 7.6 Diagrams for Example Problem 7.4.

SOLUTION: 1. Draw a Kinematic Diagram and Calculate Degrees of Freedom

The kinematic diagram for the transfer mechanism is shown as Figure 7.6a. Notice that it is the familiar four-bar

mechanism.

2. Determine the Tangential Acceleration of Point A

Because the input link (link 2) is in pure rotation, the acceleration components of the end of the link 

can be readily obtained. Equation (7.13) can be used to determine the magnitude of the tangential

acceleration.

Because the link is accelerating, the direction of the vector is in the direction of the motion at the end of the

link, which is perpendicular to the link itself. Thus, the tangential acceleration is

3. Determine the Normal Acceleration of Point A

Equation (7.14) can be used to determine the magnitude of the normal acceleration.

Normal acceleration always occurs toward the center of rotation. Thus, normal acceleration is 

calculated as

The components of the acceleration are shown in Figure 7.6b.

AA
n = 156.25 m/s2 40°

aA
n = rO2Av2

2 = (250 mm) A25 rad/s B2 = 156,250 mm/s2 = 156.25 m/s2

A A
t = 125.0 m/s2 50°

aA
t = ra2 = (250 mm) A500 rad/s2 B = 125,000 mm/s2 = 125.0 m/s2

R 

b 
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4. Determine the Total Acceleration of Point A

The total acceleration can be found from analytical methods presented in Chapter 3. A sketch of the vector addi-

tion is shown in Figure7.6c. Because the normal and tangential components are orthogonal, the magnitude of

the total acceleration is computed as

The angle of the total acceleration vector from the normal component can be calculated as

The direction of the total acceleration vector from the horizontal axis is

Formally, the total acceleration can then be written as

The total acceleration can also be determined through a graphical procedure using either CAD or traditional drawing

techniques, as explained in Chapter 3.

AA = 200.10 m/s2 78.7°

40.0° + 38.7° = 78.7°

b = tan-1a aA
t

aA
n b = tan-1a 125.0 m/s2

156.25 m/s2 b = 38.7°

= 2(125.0 m/s2)2 + (2156.25 m/s2)2 = 200.10 m/s2

aA = 3(aA
n)2 + (aA

t )2

7.5 RELATIVE MOTION

As discussed in detail in Chapter 6, the difference between
the motion of two points is termed relative motion. Relative
velocity was defined as the velocity of one object as
observed from another reference object that is also moving.
Likewise, relative acceleration is the acceleration of one
object as observed from another reference object that is
also moving.

7.5.1 Relative Acceleration

As with velocity, the following notation is used to distinguish
between absolute and relative accelerations:

“as observed”
from point A

= acceleration (total) of point B

with respect to A
AB/A = relative  acceleration (total) of point B

AB = absolute acceleration (total) of point B

AA = absolute acceleration (total) of point A

From equation (6.10), the relationship between
absolute velocity and relative velocity can be written as

Taking the time derivative of the relative velocity equation
yields the relative acceleration equation. This can be written
mathematically as

(7.17)

Typically, it is more convenient to separate the total acceler-
ations in equation (7.17) into normal and tangential
components. Thus, each acceleration is separated into its
two components, yielding the following:

(7.18)

Note that equations (7.17) and (7.18) are vector equa-
tions and the techniques discussed in Chapter 3 must be
used in dealing with these equations.

AB
n + 7AB

t = AA
n + 7AA

t + 7AB/A
n + 7 AB/A

t

AB = AA + 7AB/A

VB = VA + 7 VB/A

EXAMPLE PROBLEM 7.5

Figure 7.7 shows a power hacksaw. At this instant, the electric motor rotates counterclockwise and drives the free

end of the motor crank (point B) at a velocity of 12 in./s. Additionally, the crank is accelerating at a rate of 37 rad/s2.

The top portion of the hacksaw is moving toward the left with a velocity of 9.8 in./s and is accelerating at a rate of

82 in./s2. Determine the relative acceleration of point C with respect to point B.

SOLUTION: 1. Draw a Kinematic Diagram and Identify the Degrees of Freedom

Figure 7.8a shows the kinematic diagram of the power hacksaw. Notice that it is the familiar slider-crank mech-

anism with one degree of freedom.

b 
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FIGURE 7.7 Power saw for Example Problem 7.5.
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FIGURE 7.8 Kinematic diagram for Example Problem 7.5.

2. Determine the Tangential Acceleration of Point B

From the kinematic diagram, it should be apparent that point B travels up and to the left as link 2 rotates coun-

terclockwise. Because the motor crank (link 2) is in pure rotation, the components of the acceleration at the end

of the link can be readily obtained. Equation (7.13) can be used to determine the magnitude of the tangential ac-

celeration.

Because the link accelerates, the direction of the vector is in the direction of the motion at the end of the

link. Thus, the tangential acceleration is calculated as

3. Determine the Normal Acceleration of Point B

Equation (7.15) can be used to determine the magnitude of the normal acceleration.

Normal acceleration is always directed toward the center of rotation. Thus, normal acceleration is

Link 2 is isolated and the components of this acceleration are shown in Figure 7.8b.

4. Specify the Acceleration of Point C

Point C is constrained to linear motion. Therefore, point C does not experience a normal acceleration. The total

acceleration is given in the problem statement as

AC = 82 in./s2 ;

AB
n = 82.29 in./s2 30°

aB
n = v

2
B

rAB
=
112 in./s22

1.75 in.
= 82.29 in./s2

AB
t = 64.75 in./s2 60°

aB
t = rABa2 = (1.75 in.) A37 rad/s2 B = 64.75 in./s2

a 

b 
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5. Construct the Velocity Polygon for the Acceleration of C Relative to B

To determine the relative acceleration, equation (7.16) can be written in terms of points B and C and

rearranged as

Because two acceleration components of point B exist, the equation is written as

A vector polygon is formed from this equation (Figure 7.8c). The unknown vector can be determined

using the methods presented in Chapter 3. Either a graphical or analytical solution can be used to determine

vector AC/B.

6. Solve for the Unknown Vector Magnitudes

Arbitrarily using an analytical method, the acceleration AC/B can be found by separating the vectors into

horizontal and vertical components. See Table 7.1.

AC/B = AC - 71AB
n + 7  AB

t2 = AC - 7  AB
n - 7  AB

t

AC/B = AC - 7  AB

7.5.2 Components of Relative Acceleration

The acceleration of points on a mechanism can be much
more easily analyzed when separated into normal and
tangential components. For links that are attached directly
to the frame, the direction of the acceleration components
is obvious, as described in the previous section. The
normal component is always directed to the center of rota-
tion, and the tangential component is perpendicular to the
normal component and in the direction that is consistent

with either the acceleration or deceleration of the point.
Recall that tangential acceleration is in the direction of
motion when the point accelerates. Conversely, tangential
acceleration is opposite to the direction of motion when
the point decelerates.

For points that are on the same link, a link that is not
directly attached to the frame, the analysis focuses on the
relative accelerations of these points. Figure 7.9 shows such a
link that is not directly attached to the frame, typically called

Separate algebraic equations can be written for the horizontal and vertical components as follows:

vertical comp.:

The magnitude of the acceleration can be found by

The direction of the vector can be determined by

Finally, the relative acceleration of C with respect to B is

AC/B = 26.05 in./s2    35°

ux = tan-1 c a
h
C/B

av
C/B
d = tan-1 c -14.93 in./s2

21.35 in./s2 d = -35° =     35°

= 2(21.35)2 + (-14.93)2 = 26.05 in./s2

AC/B = 3Aa h
C/B B2 + Aa v

C/B B2

Av C /B = (0) - (-41.15) - (+56.08) = -14.93 in./s2

= + 21.35 = 21.35 in./s2

horizontal comp.: Ah
C/B = (-82.0) - (-71.27) - (-32.38)

AC/B = AC - 7  AB
n - 7   AB

t

TABLE 7.1 Horizontal and Vertical Vector Components for Acceleration AC/B

Vector Reference Angle ( )U x

Horizontal Component 
ah = a cos U x

Vertical Component 
av = a sin Ux

Ac 180° - 82.00 0

AB
n 210° - 71.26 - 41.15

AB
t 120° - 32.83 56.08

R 

R 
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FIGURE 7.9 Relative normal and tangential accelerations.

a floating link. The relative acceleration between two points
that reside on that link is shown. Notice that the normal and
tangential components of this acceleration are also shown
and are directed along the link (normal) and perpendicular
to the link (tangential). Reiterating, the relative acceleration
of two points is the acceleration of one point as seen from
the other reference point.

As with velocity analysis, relative motion consists of
pure relative rotation of the observed point about the

reference point. In other terms, the relative motion of B with
respect to A is visualized as if point B were rotating around
point A. Thus, a normal component of relative acceleration
is directed toward the center of relative rotation, or the refer-
ence point. The tangential relative acceleration is directed
perpendicular to the normal relative acceleration. The
magnitudes of these components are computed in a similar
fashion to the absolute acceleration of points rotating
around fixed points.

(7.19)

(7.20)

The direction of the relative tangential acceleration is
consistent with the angular acceleration of the floating
link, and vice versa. Referring to Figure 7.9, the relative
tangential acceleration shows the tangential acceleration of
point B as it rotates around point A directed upward and
toward the right, which infers a clockwise angular accele-
ration of link 3.

aB/A
n = rBAv

2 =
(vB/A)2

rBA

aB/A
t =

dvB/A

dt
=

d(v3rBA)

dt
= rBAa3

EXAMPLE PROBLEM 7.6

For the power hacksaw in Example Problem 7.5, determine the angular acceleration of the 6-in. connecting link 

(link 3).

SOLUTION: 1. Identify the Relevant Link Geometry

The relative acceleration of C with respect to B was determined as

Also note from Figure 7.7 that the connecting link is inclined at a 15° angle. Using this data, the total rela-

tive acceleration can be resolved into normal and tangential components. These components are shown in

Figure 7.10.

AC/B = 26.05 in./s2 35°

AC/B

B

C 6"

35°

AC/B
t

15°
20°

3

AC/B
n

FIGURE 7.10 Relative accelerations for Example Problem 7.6.

2. Resolve the Total Relative Acceleration into Normal and Tangential Components

Figure 7.10 illustrates that 20° (35°–15°) separates the total relative acceleration vector and the normal

component. Thus, the magnitudes of the relative acceleration components can be analytically determined from

the following trigonometric relationships:

AC/B
n = aC/B (cos 20°) = 26.05 in/.s2 (cos 20°) = 24.48 in./s2 75°

A C/B
t = aC/B (sin 20°) = 26.05 in./s2 (sin 20°) = 8.91 in./s2 15°

R 

R 

b 
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3. Calculate the Rotational Acceleration of Link 3

From Figure 7.10, the tangential acceleration of point C with respect to B is downward and to the right. This im-

plies that the angular acceleration of link 3 is counterclockwise. The magnitude can be determined as

Therefore, the angular acceleration of the connecting link is determined by

a3 = 1.49 rad/s2, counterclockwise

a3 =
a C/B

t

rCB
=

8.91 in./s2

6 in.
= 1.49 rad/s2

7.6 RELATIVE ACCELERATION ANALYSIS:
GRAPHICAL METHOD

Acceleration analysis is usually employed to determine the
acceleration of several points on a mechanism at a single con-
figuration. It must be understood that the results of this
analysis yield instantaneous motion characteristics. As the
mechanism moves, even an infinitesimal amount, the motion
characteristics change. Nonetheless, the instantaneous char-
acteristics are needed, particularly the extreme values. It was
emphasized earlier that accelerations impose inertial forces
onto the links of a mechanism. The resulting stresses must be
fully understood to ensure safe operation of a machine.

The strategy for determining the acceleration of a point
involves knowing the acceleration of another point on that
same link. In addition, the velocity of the desired point and
the relative velocity between the two points must be known.
This information can complete a relative velocity analysis as
described in Chapter 6.

Analysis can proceed throughout a mechanism by using
points that are common to two links. For example, a point
that occurs on a joint is common to two links. Therefore,
determining the acceleration of this point enables one to
subsequently determine the acceleration of another point on
either link. In this manner, the acceleration of any point on a
mechanism can be determined by working outward from
the input link.

Recall from equation (7.18) that the relative acceleration
equation can be expanded to include the normal and tan-
gential components.

AB/A
n + 7AB/A

tAB
n + 7AB

t = AA
n + 7AA

t + 7

Assume that the acceleration of point B needs to be
determined and the acceleration of point A is already known.
Also assume that a full velocity analysis, involving the two
points, has already been conducted. In a typical situation, the
directions of all six components are known. All normal com-
ponents are directed toward the center of relative rotation. All
tangential components are perpendicular to the normal
components. In addition, the magnitudes of all the normal
acceleration vectors can be found from equation (7.14) or
(7.15). Of course, the magnitude of the tangential accelera-
tion of the known point (point A) is also established.
Therefore, the vector analysis only needs to determine the
magnitude of the tangential component of the point desired
and the magnitude of the relative tangential component.

Relative acceleration analysis forms a vector problem
identical to the general problems presented in Sections 3.18
and 3.19. Both graphical and analytical solutions are feasible,
as seen throughout Chapter 3. In many problems, the magni-
tude of certain terms may be zero, eliminating some of the six
vector components in equation (7.18). For example, when the
known point is at a joint that is common to a constant angular
velocity link, the point has no tangential acceleration. Another
example occurs when a point is common to a link that is
restricted to linear motion. The velocity of the point does not
change direction and the point has no normal acceleration.

As in velocity analysis, the graphical solution of accelera-
tion polygons can be completed using manual drawing tech-
niques or on a CAD system. The logic is identical; however, the
CAD solution is not susceptible to limitations of drafting accu-
racy. Regardless of the method being practiced, the underlying
concepts of graphical position analysis can be further illus-
trated and expanded through the following example problems.

EXAMPLE PROBLEM 7.7

The mechanism shown in Figure 7.11 is designed to move parts along a conveyor tray and then rotate and lower those

parts to another conveyor. The driving wheel rotates with a constant angular velocity of 12 rpm. Determine the angu-

lar acceleration of the rocker arm that rotates and lowers the parts.

SOLUTION: 1. Draw the Kinematic Diagram and Identify the Degrees of Freedom

The portion of the mechanism that is under consideration includes the driving wheel, the follower arm, and the

link that connects the two. Notice that, once again, this is the common four-bar mechanism having one degree of

freedom. A scaled, kinematic diagram is shown in Figure 7.12a.
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1.75'.75'

45°

12 rpm

3.75'

4.75'
Rocker
arm

Driving wheel

1.5'

FIGURE 7.11 Mechanism for Example Problem 7.7.

2. Decide on a Method to Achieve the Desired Acceleration

The angular acceleration of the rocker (link 4) can be determined from the tangential component of the ac-

celeration of point C. Thus, the crux of the problem is to determine the acceleration of point C. In turn, the accel-

eration of point C, which also resides on link 3, can be determined from knowing the acceleration of point B.

Point B is positioned on both links 2 and 3. Therefore, the acceleration of point B can be determined from know-

ing the motion of the input link, link 2.

4.75

.75

1.5C

B

D

(a)

A

4

3

1
2

2 = 12 rpm

2 = 0α
ω

3.75'

1.75'

(b)

FIGURE 7.12 Diagrams for Example Problem 7.7.
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(c)

3. Determine the Velocity of Points B and C

The first step is to construct a velocity diagram that includes points B and C. Calculating the magnitude of the

velocity of point B can be accomplished with the following:

The direction of VB is perpendicular to link 2 and in the direction consistent with ω2, down and to

the right. Using CAD, a vector can be drawn to scale, from the velocity diagram origin, to represent this

velocity.

The relative velocity equation for points B and C can be written as

Thus, at the origin of the velocity diagram, a line can be drawn to represent the direction of vector VC.

This is perpendicular to link 4 because point C resides on a link that pivots about a fixed center. At the end of

the vector VB, a line can also be drawn to represent the direction of VC/B. As with all relative velocity vectors,

the direction is perpendicular to the line that connects points C and B. The intersection of the VC and VC/B

direction lines determines the magnitudes of both vectors. The completed velocity diagram is shown in

Figure 7.12b.

Scaling the vectors from the diagram yields the following:

4. Calculate Acceleration Components

The next step is to construct an acceleration diagram that includes points B and C. Calculating the magnitudes

of the known accelerations is accomplished by

point A)

1directed toward the center of  rotation, 

AB
n =

(VB)2

rAB
=
10.943 ft/s22

0.75 ft
= 1.186 ft/s2 45°

VC/B = 1.950 ft/s    80°

VC = 1.290 ft/s    76°

VC = VB + 7 VC/B

VB = v2 rAB = A1.26 rad/s B(0.75 ft) = .943 ft/s    45°

v21rad/s2 =
p

30
 (v rpm) =

p

30
 (12 rpm) = 1.26 rad/s,  counterclockwise

FIGURE 7.12 Continued

R 

Q 

a 

Q 
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5. Construct an Acceleration Diagram

The relative acceleration equation for points B and C can be written as

In forming the acceleration diagram, vector construction arbitrarily begins on the right side of the

equation. At the origin of the acceleration diagram, a line can be drawn to represent the vector which is

completely known. Because it has zero magnitude, the vector can be eliminated in the acceleration

diagram. Therefore, at the end of vector another line can be drawn to represent the vector 

, which is also completely known. At the end of this vector, a line can be drawn to represent the direc-

tion of vector . The magnitude is not known, but the direction is perpendicular to the normal

component, .

Focusing on the left side of the equation, a new series of vectors will begin from the origin of the

acceleration diagram. A line can be drawn to represent vector , which is completely known. At the end of this

vector, a line can be drawn to represent the direction of vector ; however, the vector magnitude is unknown.

The line is directed perpendicular to the normal component, . Finally, the intersection of the and 

direction lines determines the magnitudes of both vectors. The completed acceleration diagram is shown in

Figure 7.12c.

6. Measure the Desired Acceleration Components

Scaling the vector magnitudes from the diagram yields the following:

Notice that the tangential acceleration of point C is in the same direction as the velocity. This indicates that

point C is accelerating (speeding up), not decelerating.

7. Calculate the Desired Angular Acceleration

Finally, the angular acceleration of link 4 can be determined. By observing the direction of the tangential compo-

nent of the acceleration of point C (up and to the right), it is obvious that link 4 accelerates in a clockwise direc-

tion. The magnitude of this angular acceleration is computed as

Therefore, the angular acceleration of the rocker arm is

a4 = 1.25 rad/s2, cw

a4 = ac
t

rCD
=
A1.879 ft/s2 B

1.5 ft
= 1.25 rad/s2

AC/B
t = .585 ft/s2 80°

AC
t = 1.879 ft/s2 76°

AC/B
tAC

tAC
n

AC
t

AC
n

AC/B
n

AC/B
t

AC/B
n

AB
n

AB
t

AB
n

AC
n + 7 AC

t = AB
n + 7 AB

t + 7 AC/B
n + 7 AC/B

t

point D, measured from CAD)

1directed toward the center of  rotation, 

AC
n =

(VC)2

rCD
=
11.290 ft/s22

1.5 ft
= 1.109 ft/s2 14°

from CAD)

1directed from C toward B,  measured

AC/B
n =

1VC/B22
rCB

=
11.950 ft/s22

4.75 ft
= .800 ft/s2 10°

aB
t = a2rAB = (0) (0.75 ft) = 0 ft/s2

EXAMPLE PROBLEM 7.8

The mechanism shown in Figure 7.13 is a common punch press designed to perform successive stamping operations.

The machine has just been powered and at the instant shown is coming up to full speed. The driveshaft rotates

clockwise with an angular velocity of 72 rad/s and accelerates at a rate of 250 rad/s2. At the instant shown, determine

the acceleration of the stamping die, which will strike the workpiece.

Q 

R 

Q 

Q
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= 250 rad/s2

= 72 rad/s

α

ω

Drive shaft

4"

Stamping die

Workpiece

60°

1"

FIGURE 7.13 Mechanism for Example Problem 7.8.

SOLUTION: 1. Draw the Kinematic Diagram and Identify the Degrees of Freedom

The portion of the mechanism that is under consideration includes the driving wheel, the stamping die, and the

link that connects the two. Notice that this is the common slider-crank mechanism, having a single degree of free-

dom. A scaled kinematic diagram is shown in Figure 7.14a.

(a)

4.0"

1.0" 60°
B

C

A

3

2 1

4

2 = 72 rad/s
2 = 250 rad/s2α

ω

FIGURE 7.14 Diagrams for Example Problem 7.8.

2. Decide on a Method to Achieve the Desired Acceleration

The acceleration of the die (link 4) is strictly translational motion and is identical to the motion of point A. The

acceleration of point A, which also resides on link 3, can be determined from knowing the acceleration of point

B. Point B is positioned on both links 2 and 3. Therefore, the acceleration of point B can be determined from

knowing the motion of the input link, link 2.

3. Determine the Velocity of Points A and B

Calculating the magnitude of the velocity of point B is as follows:

The direction of VB is perpendicular to link 2 and consistent with the direction of ω2, up and to the left. Using

CAD, a vector can be drawn to scale, from the velocity diagram origin, to represent this velocity.

VB = v2rAB = 172 rad/s211.0 in.2 = 72 in./s 60° Q
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(b)

(c)

The next step is to construct a velocity diagram that includes points A and B. The relative velocity equation

for points A and B can be written as

Thus, at the origin of the velocity diagram, a line can be drawn to represent the direction of vector VA. This

is parallel to the sliding surface because link 4 is constrained to vertical sliding motion. At the end of the vector

VA = VB + 7 VA/B.

FIGURE 7.14 Continued
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VB, a line is drawn to represent the direction of VA/B. As with all relative velocity vectors between two points on

the same line, the direction is perpendicular to the line that connects points A and B. The intersection of the VA

and VA/B direction lines determines the magnitudes of both vectors. The completed velocity diagram is shown in

Figure 7.14b.

Scaling the vector magnitudes from the diagram is determined as follows:

4. Calculate the Acceleration Components

The next step is to construct an acceleration diagram that includes points A and B. Calculating the magnitudes

of the known accelerations is accomplished by the equations:

AB
n =

(vB)2

rBC
=

(72 in./s)2

1.0 in.
= 5184 in./s2 30°

VA/B = 36.8 in./s   13°

VA = 70.3 in./s c

Note that point A does not have a normal acceleration because the motion is strictly translational.

5. Construct an Acceleration Diagram

The relative acceleration equation for points A and B can be written as

In forming the acceleration diagram, vector construction will arbitrarily start on the right side of the equa-

tion. At the origin of the acceleration diagram, a line can be drawn to represent the vector which is known. At

the end of , a line can be drawn to represent vector which is also known. At the end of vector another

line can be drawn to represent vector which is also known. At the end of this vector, a line can be drawn to

represent the direction of vector . This is perpendicular to the normal component, , but has an

unknown magnitude.

Focusing on the left side of the equation, a new series of vectors will begin from the origin of the accelera-

tion diagram. The vector has zero magnitude and is ignored. A line can be drawn to represent the direction

of vector ; however, the magnitude is unknown. The line is directed parallel to the sliding motion of link 4.

Finally, the intersection of the and direction lines determines the magnitudes of both vectors. The

completed acceleration diagram is shown in Figure 7.14c.

6. Measure the Desired Acceleration Components

Scaling the vector magnitudes from the diagram is done with the following:

Thus the total acceleration of point A is

Notice that the tangential acceleration of point A is in the same direction as the velocity. This indicates that

point A is accelerating (speeding up), not decelerating.

AA = AA
t = 2138 in./s2 = 178 ft/s2 = 5.53 g c

AA
t = 2138 in./s2 c

AA/B
t = 4404 in./s2 13°

AA/B
tAA

t
AA

t
AA

n

AA/B
nAA/B

t
AA/B

n
AB

tAB
tAB

n
AB

n

AA
n + 7AA

t = AB
n + 7AB

t + 7AA/B
n + 7AA/B

t

measured from CAD)

1directed from A toward B,

AA/B
n =

AvA/B B2
rAB

=
A36.8 in./s B2

4.0 in.
= 338 in./s2 77°

acceleration)
in the direction of rotational 

1directed perpendicular to BC,

AB
t = a2rAB = 1250 rad/s22 (1.0 in.) = 250 in./s2 60°

point C)

1directed toward the center of  rotation, 

a 

a 

Q 

Q 

b 
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7.7 RELATIVE ACCELERATION ANALYSIS:
ANALYTICAL METHOD

The strategy for analytically determining the acceleration
of various points on a mechanism is identical to the
method outlined in the previous section. The difference is
that vector polygons only need to be roughly sketched.

The magnitude and angles can be solved using the ana-
lytical methods introduced in Chapter 3 and incor-
porated in Chapter 6 and earlier sections in this chapter.
The most effective manner of presenting the analytical
method of acceleration analysis is through an example
problem.

EXAMPLE PROBLEM 7.9

The mechanism shown in Figure 7.15 is used to feed cartons to a labeling machine and, at the same time, to prevent

the stored cartons from moving down. At full speed, the driveshaft rotates clockwise with an angular velocity

of 200 rpm. At the instant shown, determine the acceleration of the ram and the angular acceleration of the

connecting rod.

40°

8''

Ram

Connecting rod

3''

FIGURE 7.15 Mechanism for Example Problem 7.9.

(a) (b) (c)

3

B

A

3" 8"

C
4

2

1

2ω

β

AC

AC/B
t

AB = 1314.6n

AC/B = 307.5n

0v

VC/BVB = 62.8

VC

40°

50° 76.1°

76.1°

40°

13.9°

FIGURE 7.16 Diagrams for Example Problem 7.9.

SOLUTION: 1. Draw a Kinematic Diagram

The portion of the mechanism that is under consideration includes the drive crank, the pusher ram, and the link

that connects the two. Once again, notice that this is the common in-line, slider-crank mechanism. A kinematic

diagram is shown in Figure 7.16a.

2. Decide on a Method to Achieve the Desired Acceleration

As in Example Problem 7.8, the acceleration of the ram (link 4) is strictly translational motion and is identical to the

motion of point C. The acceleration of point C, which also resides on link 3, can be determined from knowing 

the acceleration of point B. Point B is positioned on both links 2 and 3. Therefore, the acceleration of point B can be

determined from knowing the motion of the input link, link 2.

3. Analyze the Mechanism Geometry

The angle between link 3 and the horizontal sliding surface of link 4,β in Figure 7.16a, can be determined from

the law of sines.

b = sin-1a rAB sin 40°

rBC
b = sin-1a (3 in.) sin 40°

(8 in.)
b = 13.9°
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4. Determine the Velocity of Points B and C

Calculate the magnitude of the velocity of point B using the following equation:

The direction of VB is perpendicular to link 2 and consistent with the direction of ω2, down and to the

right. The velocity of point C is parallel to the horizontal sliding surface, and the velocity of C with respect to B

is perpendicular to the link that connects points B and C. Calculating this angle,

By understanding the directions of the vectors of interest, a velocity polygon can be assembled

(Figure 7.16b). The magnitude of the third angle in the velocity polygon can be determined because the sum of

all angles in a triangle is 180°.

The magnitudes of the velocities can be found from the law of sines.

Solve for the unknown velocities with the following:

5. Calculate Acceleration Components

The next step is to construct an acceleration diagram that includes points B and C. Calculate the magnitudes of

the known accelerations using the following equations:

AC/B
n =

1VC/B22
rBC

=
149.6 in./s22

8.0 in.
= 307.5 in./s2 13.9°

constant velocity)

(because the driving link is rotating at

AB
t = a2rAB = 10 rad/s22 (3.0 in.) = 0

rotation, point A)

(directed toward the center of 

AB
n =
1VB22

rAB
=
162.8 in./s22

3.0 in.
= 1314.6 in./s2 40°

VC/B = VBa sin 50°

sin 76.1°
b = 62.8 in./s a sin 50°

sin 76.1°
b = 49.6 in./s       76.1°

VC = VBa sin 53.9°

sin 76.1°
b = 62.8 in./s a sin 53.9°

sin 76.1°
b = 52.3 in./s:

180° - (50° +  76.1°) = 53.9°

90° + (-b) = 90° + (-13.9°) = 76.1°

VB = v2 rAB = 120.9 rad/s2 (3.0 in.) = 62.8 in./s     50°

v2 =
p

30
 (200 rpm) = 20.9 rad/s

a 

R 

Q 

Note that point C does not have a normal acceleration because the motion is strictly translational.

6. Using Vector Methods, Solve the Relative Acceleration Equation

The relative acceleration equation for points B and C can be written as

In forming an acceleration diagram, vector placement arbitrarily starts on the right side of the equation. At

the origin of the acceleration diagram, vector , which is completely known, is placed. Because no tangential

component of the acceleration of point B exists, is ignored. Vector , which is also completely known, is

placed at the end of . At the end of , the vector is placed; however, only the direction of this vector is

known. It is directed perpendicular to the normal component, , and thus, perpendicular to the line that

connects B and C. The angle has been calculated as

The first term on the left side of the equation can be ignored because there is no normal component of the

acceleration of point C. Therefore, the vector representing the tangential acceleration of point C is placed at the

90° + (-b) = 90° + (-13.4°) = 76.1°

AC/B
n

AC/B
tAC/B

nAB
n

AC/B
nAB

t
AB

n

AC
n + 7 AC

t = AB
n + 7 AB

t + 7 AC/B
n + 7 AC/B

t

(directed from C toward B)

b 
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origin. However, only the direction of this vector is known: It is parallel to the horizontal surface that link 4 is

constrained to slide upon. The vector polygon is illustrated in Figure 7.16c. The unknown vector magnitudes,

and , can be determined using the methods presented in Chapter 3. First, each vector can be separated into

horizontal and vertical components, as shown in Table 7.2.

AC
t

AC/B
t

7.8 ALGEBRAIC SOLUTIONS 
FOR COMMON 
MECHANISMS

For the common slider-crank and four-bar mechanisms,
closed-form algebraic solutions have been derived [Ref. 12].
They are given in the following sections.

7.8.1 Slider-Crank Mechanism

A general slider-crank mechanism was illustrated in Figure 4.20
and is uniquely defined with dimensions L1, L2, and L3. With
one degree of freedom, the motion of one link must be
specified to drive the other links. Most often the crank is
driven and θ2, ω2, and α 2 are specified. To readily address

TABLE 7.2 Acceleration Components for Example Problem 7.9

Vector
Reference 
Angle (θx)

Horizontal Component 
ah = a cosUx

Vertical Component 
av = a sinUx

aB
n AB

n 220° 1007.0 845.0

AC/B
n

166.1° -298.5 73.9

AC/B
t

76.1° .240 aC/B
t .971 aC/B

t

AC 180° -aC 0

Separate algebraic equations can be written for the horizontal and vertical components.

The vertical component equation can be solved algebraically to give the magnitude

This result can then be substituted into the horizontal equation to give the magnitude

7. Clearly Specify the Desired Results

Formally stated, the motion of the ram is

Notice that because the acceleration is in the opposite direction of the ram movement and velocity, the ram

is decelerating.

8. Calculate the Angular Acceleration

Finally, the motion of the connecting arm is calculated.

where the direction is consistent with the velocity of C relative to B, counterclockwise. Also

where the direction is consistent with the tangential acceleration of C relative to B, counterclockwise.

a3 =
aC/B

t

rCB
=

794.1 in./s

8.0 in.
= 99.3 rad/s2, counterclockwise

v3 =
vC/B

rCB
=

49.6 in./s

8 in.
= 6.2 rad/s, counterclockwise

Ac = 1496.1 in./s ;
Vc = 52.3 in./s :

aC = 1496.1 in./s2

aC/B
t = 794.1 in./s2

vertical comp.:       0 = (-845.0) + (+73.9) +  A +0.971 aC/B
t B

horizontal comp.: +  aC = (-1007.0) + (-298.5) + A +0.240a t
C/B B

AC = AB
n + 7 AC/B

n + 7 AC/B
t
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the slider-crank mechanism, position, velocity, and accelera-
tion equations (as a function of θ2, ω2, and α 2) are available.
As presented in Chapter 4, the position equations include

(4.6)

(4.7)

As presented in Chapter 6, the velocity equations are

(6.12)

(6.13)

The acceleration equations are then given as [Ref. 12]

(7.21)

(7.22)

Note that an in-line slider-crank is analyzed by substituting
zero for L1 in equation (4.6).

7.8.2 Four-Bar Mechanism

A general four-bar mechanism was illustrated in Figure 4.22
and is uniquely defined with dimensions L1, L2, L3, and L4.
With one degree of freedom, the motion of one link must be
specified to drive the other links. Most often the crank is
driven and θ2, ω2, and α2 are specified. To readily address the
four-bar mechanism, position, velocity, and acceleration
equations (as a function of θ2, ω2, and α2) are available. As
presented in Chapter 4, the position equations are

(4.9)

(4.10)

(4.11)

(4.12)

As presented in Chapter 6, the velocity equations are

(6.14)

(6.15)

The acceleration equations can be presented as

(7.23)

(7.24)

a4 =
a2L2 sin(u2 - u3) + v2

2L2 cos(u2 - u3) - v3
2L4 cos(u4 - u3) + v3

2L3

L4 sin(u4 - u3)

a3 =
a2L2 sin(u2 - u4) + v2

2L2 cos(u2 - u4) - v4
2L4 + v3

2L3 cos(u4 - u3)

L3 sin(u4 - u3)

v4 = -v2 cL2 sin(u3 - u2)

L4 sing
d

v3 = -v2 c L2 sin(u4 - u2)

L3 sing
d

u4 = 2tan-1 c L2 sin u2 - L3 sing

L2 cos u2 + L4 - L1 - L3 cosg
d

u3 = 2tan-1 c -L2 sinu2 + L4 sing

L1 + L3 - L2 cos u2 - L4 cos g
d

g = cos-1aL3
2 + L4

2 - BD2

2(L3) (L4)
b

BD = 2L1
2 + L2

2 - 2(L1) (L2)cos(u2)

- v2
2L2 cos u2 - v3

2L3 cos u3

a4 = -a2L2 sin u2 - a3L3 sin u3

a3 =
v2

2 L2 sin u2 + v3
2 L3 sin u3 - a2L2 cos u2

L3 cos u3

v4 = -v2L2 sin u2 + v3L3 sin u3

v3 = -v2 aL2 cos u2

L3 cos u3
b

L4 = L2 cos(u2) + L3 cos(u3)

u3 = sin-1 aL1 + L2 sin u2

L3
b

7.9 ACCELERATION OF 
A GENERAL POINT ON 
A FLOATING LINK

Recall that a floating link is not directly connected to the
fixed link. Therefore, the motion of a floating link is not
limited to only rotation or translation, but a combination of
both. In turn, the direction of the motion of points that
reside on the floating link is not generally known. Contrast
this with the motion of a point on a link that is pinned to the
fixed link. The motion of that point must pivot at a fixed
distance from the pin connection. Thus, the direction of
motion is known.

During the acceleration analyses presented in the
preceding sections, the underlying premise of the solution is
that the direction of the motion is known. For a general
point on a floating link, this is not true. For these cases, two
relative acceleration equations must be used and solved
simultaneously.

To illustrate the strategy of determining the acceleration
of a general point on a floating link, consider the kinematic
sketch of the four-bar linkage shown in Figure 7.17.

Link 3 is a floating link because it is not directly
attached to link 1, the fixed link. Because points A and B
both reside on links attached to the fixed link, the accele-
ration of these points can be readily determined. That is,
using the methods in the previous two sections, both the
direction and magnitude of and can be
established.

However, point C does not reside on a link that is
directly attached to the fixed link. Therefore, the exact path
of motion of point C is not obvious. However, two relative
acceleration equations can be written as

(7.25)

(7.26)

In equation (7.25), both the magnitude and direction of
aC is unknown along with the magnitude of Equation
(7.26) introduces an additional unknown, namely the
magnitude of Overall, two vector equations can be
written, each with the capability of determining two

AC/A.
t

aC/B
t .

AC = AA
n + 7 AA

t + 7 AC/A
n   + 7AC/A

t

AC = AB
n + 7 AB

t + 7 AC/B
n   + 7AC/B

t

AB
tAA

n , AA
t , AB

n,

3

A

B

C

4

O2 O4

2

1

2

2

ω

α

FIGURE 7.17 Point on a floating link.
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560 rpm

34

48

18

All dimensions are in mm.

60°

45

28

FIGURE 7.18 Film advance mechanism for Example Problem 7.10.

EXAMPLE PROBLEM 7.10

The mechanism shown in Figure 7.18 is used to pull movie film through a projector. The mechanism is driven by the

drive wheel rotating at a constant 560 rpm. At the instant shown, graphically determine the acceleration of the claw,

which engages with the film.

SOLUTION: 1. Draw a Kinematic Diagram

A scaled kinematic diagram of this mechanism is shown in Figure 7.19a. Notice that this is the basic slider-crank

mechanism with a point of interest, point X, located at the claw.

The first step is to construct a velocity diagram that includes points B, C, and X. Calculate the magnitude of

the velocity of point B with the following:

The direction of VB2 is perpendicular to link 2 and consistent with the direction of ω2, down and to the right.

Therefore, a vector can be drawn to scale from the velocity diagram origin to represent this velocity.

The relative velocity equation for points B and C can be written as

The velocity of C is constrained to translation in the vertical direction. Of course, the relative velocity of C

with respect to B is perpendicular to the line that connects C and B. The velocity diagram shown in Figure 7.19b

was drawn and the vector magnitudes were measured as

VC/B = 1.072 m/s    31.5°

VC = 1.087 m/s T

VC = VB + 7 VC/B

VB = v2 rAB = 258.6 rad/s (18 mm) = 1055 mm/s = 1.055 mm/s       30°

v =
p

30
 (560 rpm) = 58.6 rad/s, counterclockwise

2 = 560 rpm

2 = 0

28

45

48 mm

34 mm

(a)

X

B

18

C

2

4

1

3 A

ω
α

0

Scale:

mm

25

60°

FIGURE 7.19 Diagrams for Example Problem 7.10.

b

R 

unknowns. In the typical analysis, these two equations
present four unknown quantities. Therefore, using the two
equations simultaneously, the acceleration of point C can

be determined either through a graphical or analytical
procedure. The following example problem illustrates this
method.
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(b)

(c)

FIGURE 7.19 Continued
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(d)

(e)

FIGURE 7.19 Continued

Because it is a general point on a floating link, the velocity of point X must be determined from solving the

simultaneous vector equations.

VX = VC + 7VX/C

VX = VB + 7 VX/B
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The velocities of points B and C are already known and the directions of VX/B and VX/C are perpendicular to

the lines that connect points X and B and X and C, respectively. These velocities were drawn to scale and added

to the velocity polygon. The completed velocity diagram is shown in Figure 7.19c. The magnitudes of the un-

known velocities were found as

2. Calculate the Acceleration Components

The next step is to construct an acceleration diagram that includes points A and B and, eventually, X. Calculate

the magnitudes of the known accelerations with the following:

Note that point C does not have normal acceleration because the motion is strictly translational.

3. Construct an Acceleration Diagram

Understanding that there are no and components of acceleration, the relative acceleration equation for

points B and C can be written as

An acceleration diagram drawn to scale is shown in Figure 7.19d.

4. Measure the Unknown Components

Scaling the vector magnitudes from the diagram gives the following results.

5. Continue the Acceleration Diagram

As with velocities, because point X is a general point on a floating link, its acceleration must be determined from

solving the simultaneous vector equations.

As determined, the accelerations and are zero. Also, and have been

determined.

AX / C
nAB

n, AC
t , AX /B

n ,AC
nAB

t

AX = A C
n + 7 AC

t + 7 AX / C
n + 7 AX / C

t

AX = AB
n + 7 AB

t + 7 AX/ B
n + 7 AX / B

t

AC = AC
t = 6.5 m/s2 c

AC/B
t = 50.9 m/s2 31.5°

AC = A C
t = AB

n + 7 AB
t + 7 AC/ B

n + 7 A C/ B
t

AC
nAB

t

measured from CAD) 

(directed from X toward C

AX/C
n =

1vX/C22
rCX

=
162.5 mm/s22

28 mm
= 13,950 mm/s2 = 13.9 m/s2 54.8°

measured from CAD) 

(directed from X toward B

AX/B
n =

1vX/B22
rBX

=
11046 mm/s22

45 mm
= 24,313 mm/s2 = 24.3 m/s2 23.6°

measured from CAD) 
(directed from C toward B

AC/B
n =

1vC/B22
rCB

=
11072 mm/s22

48 mm
= 23,941 mm/s2 = 23.9 m/s2 58.5°

AB
t = 0 (because a2 = 0)

rotation, point A)

(directed toward the center of 

AB
n =

(vB)2

rAB
=
11055 mm/s22

18 mm
= 61,834 mm/s2 = 61.8 m/s2 60°

VX/B = 1.046 m/s     66.4°

VX/C = 0.625 m/s     35.2°R 

b 

Q 

Q 

R 

R

b 
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Again, in a similar fashion to the velocity analysis, the two acceleration equations are superimposed

onto the original acceleration polygon. The accelerations were drawn to scale, and the completed accelera-

tion diagram is shown in Figure 7.19e.

6. Measure the Desired Components

The magnitudes of the unknown accelerations were measured as

and finally,

AX = 33.8 m/s2 0.3°

AX / B
t = 48.1 m/s2 66.4°

AX / C
t = 31.6 m/s2 35.2°

ω α

B Y

(a)

C

OA

AX
AX

X

A

OV C

Y

X

VC

VY

VX

VX/B

VY/C

VC/B
VB

B
(b)

VY/B

n

AB
n

AB
n

AC
t

AY/C
n

AB
t AB

t

AX/B
n

AY/B

AY

AY/B

AY/C AC/B

OA
C

n

AC/B
n

AX/B

AX/B
AB

AB

t

AX
X

B B

Y

(c) (d)

t AY/C
t

AC/B
tAY/B

t

FIGURE 7.20 Acceleration image.

7.10 ACCELERATION IMAGE

As with a velocity polygon, each link in a mechanism has an
image in the acceleration polygon [Ref. 10]. To illustrate, a
mechanism is shown in Figure 7.20a, with its associated
velocity diagram in Figure 7.20b and acceleration diagrams
in Figure 7.20c and 7.20d.

In Figure 7.20c, a triangle was drawn using the total
acceleration vectors of points B and X. Notice that this
triangle is a proportional image of the link that contains

points B and X. Similarly, Figure 7.20d shows a triangle that
was constructed from the total acceleration vectors of points
B, C, and X. Again, this triangle is a proportional image of
the link that contains points B, C, and X. These shapes in the
acceleration polygons are wisely termed the acceleration
images of the links.

This concept provides a convenient means of con-
structing the acceleration polygon for a mechanism with
complex links. The magnitudes of the relative acceleration

R

b 

R
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A

C

1

(a) (b)

Point B

2

4

3

FIGURE 7.21 Case where Coriolis acceleration is 
encountered.

vectors for all points on a link will be proportional to the
distance between the points. It means that the points on the
acceleration diagram will form an image of the correspond-
ing points on the kinematic diagram. Once the acceleration
of two points on a link is determined, the acceleration of
any other point can be readily found. The two points can be
used as the base of the acceleration image. As with the
velocity image, care must be taken, however, not to allow
the shape of the link to be mirrored between the kinematic
diagram and the velocity polygon.

7.11 CORIOLIS ACCELERATION

Throughout the preceding analyses, two components of an
acceleration vector (i.e., normal and tangential) were
thoroughly examined. In certain conditions, a third compo-
nent of acceleration is encountered. This additional compo-
nent is known as the Coriolis component of acceleration and is
present in cases where sliding contact occurs between two
rotating links.

Mechanisms used in machines have been known to fail
due to the mistaken omission of this Coriolis component.
Omitting the Coriolis component understates the accelera-
tion of a link and the associated inertial forces. The actual
stresses in the machine components can be greater than
the design allows, and failure may occur. Therefore, every
situation must be studied to determine whether a Coriolis
acceleration component exists.

Specifically, the Coriolis component is encountered
in the relative acceleration of two points when all of the
following three conditions are simultaneously present:

1. The two points are coincident, but on different links;

2. The point on one link traces a path on the other link; and

3. The link that contains the path rotates.

Figure 7.21 illustrates a rear hatch of a minivan and
the related kinematic diagram. Notice that point B can be
associated with link 2, 3, or 4. To clarify the association to a
link, point B is referred to as B2, B3, and B4. Up to this point
in the chapter, a coincident point on different links had the
same acceleration because only pin joints were used to
connect two rotating links. In Figure 7.21, both pin and
sliding joints are used to connect the two rotating links, links
2 and 4. In this case, the velocities and accelerations of the
coincident points B2 and B4 are not the same.

Relative motion equations can be used to relate the
velocities and accelerations as follows:

This situation represents a mechanism analysis case where
the Coriolis component must be included in the relative
acceleration term, AB2/B4. Notice that

AB2 = AB4 + 7 AB2 /B4

VB2 = VB4 + 7 VB2 /B4

� The points are coincident, but not on the same link
(condition 1);

� Point B2 slides along and traces a path on link 4 
(condition 2); and

� The link that contains the path, link 4, rotates (condition 3).

Separating the relative acceleration term into its compo-
nents yields

(7.27)

where

Coriolis component of acceleration

The magnitude of the Coriolis component has been
derived [Ref. 4] as

(7.28)

Both the relative linear velocity and the absolute angular
velocity can be determined from a thorough velocity analysis
of the mechanism. The angular velocity, ω, must be of the
link that contains the path of the sliding point. Care must be
taken because a common error in calculating the Coriolis
component is selecting the wrong angular velocity.

The direction of the Coriolis component is per-
pendicular to the relative velocity vector, vB4/B2. The sense
is obtained by rotating the relative velocity vector such
that the head of the vector is oriented in the direction of
the angular velocity of the path. Thus, when the angular
velocity of the path, ω4, rotates clockwise, the Coriolis
direction is obtained by rotating the relative velocity
vector 90° clockwise. Conversely, when the angular
velocity of the path, ω4, rotates counterclockwise, the
Coriolis direction is obtained by rotating the relative
velocity vector 90° counterclockwise. Figure 7.22
illustrates the four cases where the direction of the
Coriolis component is determined.

Because both the magnitude and direction of the
Coriolis component can be readily calculated from the
velocity data, no additional unknown quantities are added
to the acceleration equation. However, in solving problems,
it is more convenient to write the acceleration equation with
the point tracing on the left side. The technique for such
acceleration analyses is best illustrated through the following
example problem.

aB2/B4
c = 2vB2/B4v4

AB2 /B4
c = the

AB2/B4 = AB2 /B4
n + 7 AB2 / B4

t + 7 AB2 /B4
c
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Relative motion
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FIGURE 7.22 Directions of the Coriolis acceleration component.

EXAMPLE PROBLEM 7.11

Figure 7.23 illustrates handheld grass shears, used for trimming areas that are hard to reach with mowers or weed

whackers. The drive wheel rotates counterclockwise at 400 rpm. Determine the angular acceleration of the oscillating

blades at the instant shown.

Stationary
shears Oscillating

blades

Housing

1.4"

2.7"

45�

Drive wheel

FIGURE 7.23 Grass shears for Example Problem 7.11.

SOLUTION: 1. Draw a Kinematic Diagram

A scaled kinematic diagram of this mechanism is shown in Figure 7.24a.

2. Decide on a Method to Achieve the Desired Acceleration

The acceleration of B2 can be readily determined from the input information of link 2. The acceleration of B4

must be found to determine the angular acceleration of link 4. Notice that sliding occurs between rotating links

(2 and 4); thus, all three of the Coriolis conditions are met. The acceleration of link 4 will be obtained by incor-

porating equations (7.27) and (7.28).
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C

2.7"

1.4"

A

B4

4

1

2

3

B2,

(a)

45°

(b)

FIGURE 7.24 Diagrams for Example Problem 7.11.

3. Complete a Full Velocity Analysis

The first step is to construct a velocity diagram that includes points B2 and B4. Calculate the magnitude of the

velocity of point B2 with the following:

The direction of VB2 is perpendicular to link 2 and consistent with the direction of ω2, down and to the right.

Therefore, a vector can be drawn to scale from the velocity diagram origin to represent this velocity.

The relative velocity equation for points B2 and B4 can be written as

Because link 4 is pinned to the fixed link, the velocity of B4 is perpendicular to the line that connects B4 with

the center of rotation (point C). For this case, the relative velocity of B2 with respect to B4 is parallel to link 4

VB2 = VB4 + 7 VB2/B4

VB2 = v2rAB = 241.9 rad/s (1.4 in.) = 58.6 in./s        45°

v2 =
p

30
 (400 rpm) = 41.9 rad/s, counterclockwise

R 
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(c)

because B2 slides along link 4. The velocity diagram shown in Figure 7.24b was drawn to scale to find the velocity

magnitudes of

The distance between points C and B4 was measured from CAD as 3.8 in. Therefore, the angular velocity of

link 4 can be calculated as

Because the velocity of B4 has been found to be directed down and to the right, the angular velocity of link

4 must be counterclockwise.

4. Calculate Acceleration Components

Calculate the magnitudes of the known accelerations with the following:

(directed toward the center of

rotation, point A)

(directed toward the center of

rotation, point C)

(because B2 is sliding on B4 and the relative motion is purely translational)

= 779 in./s2 = 65 ft/s2    15°

AB2/B4
c = 2(vB2/B4)(v4) = 2(29.3 in./s) (13.3 rad/s)

A
n
B2/B4 = 0

AB4
n =

(VB4)2

rCB4
=
150.7 in./s22

3.8 in.
= 676 in./s2 = 56 ft/s2 75°

AB2
t = 0 (a2 = 0)

AB2
n =

(VB2)2

rCB2
=
158.6 in./s22

1.4 in.
= 2453 in./s2 = 204 ft/s2 45°

v4 =
VB4

rCB4
=

50.7 in/.s

3.8 in.
= 13.3 rad/s, counterclockwise

VB2/B4 = 29.3 in./s     75°

VB4 = 50.7 in./s     15°

FIGURE 7.24 Continued

R 

b 

Q 

Q 

R 
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The direction of the Coriolis component is that of vB2/B4, which is parallel to the path of B2 relative 

to B4, (75° ), rotated 90° in the direction of ω4 (counterclockwise). Therefore, the Coriolis component is directed

perpendicular to link 4, down and toward the right (  15°).

5. Construct an Acceleration Diagram

The next step is to construct an acceleration diagram that includes points B2 and B4. As mentioned, it is typically

more convenient to write the acceleration equation with the point doing the tracing, B2, on the left side. Using

this guideline, the acceleration equation is written as

The unknown quantities in the acceleration equation are and Rewrite the acceleration equation

so that each unknown is the last term on both sides of the equation:

An acceleration diagram drawn to scale is shown in Figure 7.24c.

6. Measure the Desired Acceleration Components

Scale the vector magnitudes from the diagram using the following equations:

and finally,

Because the tangential acceleration of B4 was determined to be down and to the right, the corresponding

rotational acceleration of link 4 must be counterclockwise; therefore,

a4 = 177 rad/s2, counterclockwise

a4 =
aB4

t

rCB4
=

444 in./s2

3.8 in.
= 117 rad/s2

AB4
t = 37 ft/s2 = 444 in./s2 15°

AB2/B4
t = 112 ft/s2 75°

AB2
n + 7 AB2

t + 7 AB2/B4
t = AB2/B4

n + 7 AB2/B4
c + 7 AB4

n + 7 AB4
t

AB2/B4
t .AB4

t

AB
n

2 + 7 AB2
t = AB4

n + 7 AB4
t + 7 AB2/B4

n + 7 AB2/B4
t + 7 AB2/B4

c

7.12 EQUIVALENT LINKAGES

Up to this point in the text, the examples of motion analysis
involved only mechanisms with primary joints; that is, pin
and sliding joints. Recall from Chapter 1 that a higher-order
joint, such as a cam or gear joint, involves rolling and sliding
motion. Both cams and gears are the focus in later chapters.
However, the motion analysis of mechanisms with higher-
order joints can be performed using the concepts already
presented.

Velocity and acceleration analysis of mechanisms
that utilize higher-order joints is greatly simplified by
constructing an equivalent linkage. This method converts
the instantaneous configuration of a mechanism to an
equivalent linkage, where the links are connected by
primary joints. Figure 7.25 illustrates two cam mechanisms
that contain rolling and sliding joints. The dotted lines rep-
resent the equivalent linkages.

Notice that the coupler of these equivalent linkages is
drawn from the respective centers of curvature of the two
mating links. For a finite length of time, the two centers of
curvature for the two mating links will remain a constant
distance apart. Notice in Figure 7.25 that a coupler is used to
replace the higher-order joint. This coupler extends between

the center of curvature for the contacting surfaces of the two
mating links. For a finite length of time, the centers of curva-
ture for the two mating surfaces will remain a constant
distance apart. The rationale behind this stems from the
concept of instantaneous center, introduced in Section 6.10.
Therefore, a coupler link, with two pin joints, can be used to
replace the higher-order joint. It is important to note that
the location of the center of curvature will change as the
mechanism moves. However, once the equivalent linkage has
been constructed, the method of analysis is identical to the
problems previously encountered in this text.

(a) (b)

FIGURE 7.25 Equivalent linkages.

Q 

R 

R 
b 
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7.13 ACCELERATION CURVES

The analyses presented up to this point in the chapter are
used to calculate the acceleration of points on a mechanism
at a specific instant. Although they are important, the results
provide only a snapshot of the motion. The obvious short-
coming of this analysis is that determination of the extreme
conditions throughout a cycle is difficult. It is necessary to
investigate several positions of the mechanism to discover
the critical phases.

As shown with velocity, it is also convenient to trace the
acceleration magnitude of a certain point, or link, as the
mechanism moves through its cycle. Such a trace provides
information about critical phases in the cycle. An accele-
ration curve provides this trace. An acceleration curve plots
the acceleration of a point, or link, as a function of time. It
can be generated from a velocity curve, which was intro-
duced in Section 6.14.

Recall that a velocity curve plots the velocity magni-
tude of a point or link as a function of time. A velocity
curve is generated from a displacement curve, which was
introduced in Section 4.11. Thus, a displacement curve can
be used to generate a velocity curve, which, in turn, can be
used to generate an acceleration curve. This is because
acceleration can be expressed as

Differential calculus suggests that the acceleration at a
particular instant is the slope of the velocity curve at that
instant. Because velocity is the time derivative of displace-
ment, acceleration can also be expressed as

This equation suggests that acceleration at a particular
instant is the curvature of the displacement curve.
Admittedly, curvature may not be so convenient to determine
as the slope. However, it is easy to visualize the locations of
extreme accelerations by locating the regions of sharp curves
on the displacement diagram. Although values may be diffi-
cult to calculate, the mechanism can be configured to the

Acceleration =
d2(displacement)

dt2

Acceleration =
d(velocity)

dt

desired position, then a thorough acceleration analysis can be
performed, as presented in the preceding sections.

To determine values for the acceleration curves, it is best
to determine the slope at several regions of the velocity curve
(see Section 6.14).

7.13.1 GRAPHICAL DIFFERENTIATION

The task is to estimate the slope of the velocity curve at
several points. The slope of a curve, at a point, can be
graphically estimated by sketching a line tangent to
the curve at the point of interest. The slope of the line can
be determined by calculating the measured change in
“rise” (velocity) divided by the measured change in “run”
(time).

This procedure can be repeated at several points along
the velocity diagram. However, only the acceleration
extremes and abrupt changes are usually desired. Using the
notion of differential calculus and slopes, the positions of
interest can be visually detected. They include:

� The steepest portions of the velocity diagram, which
correspond to the extreme accelerations; and

� The locations on the velocity diagram with the greatest
curvature, which correspond to the abrupt changes of
accelerations.

It must be noted that errors can easily occur when
determining the slope of a curve. These errors are magnified
as the slope is measured from a derived curve. This is the
case as an acceleration curve stems from a velocity curve,
which stems from a displacement curve. Therefore, the
values obtained for the acceleration diagram should be used
cautiously.

Nevertheless, identifying the positions of extreme accel-
erations is invaluable. A complete acceleration analysis, as
presented in the previous sections of this chapter, should
then be performed at these mechanism orientations to
obtain accurate acceleration values. The benefit of the
acceleration curve is locating the important mechanism
configurations; therefore, a comprehensive acceleration
analysis can be performed.

EXAMPLE PROBLEM 7.12

A velocity curve was constructed for a compressor mechanism in Example Problem 6.18. Use these data to plot an

acceleration curve.

SOLUTION: 1. Identify the Horizontal Portions of the Velocity Diagram

The main task of constructing an acceleration curve is to determine the slope of many points on 

the velocity curve. This velocity curve was constructed in Example Problem 6.18 and is reprinted as

Figure 7.26.

From this curve, it is apparent that the curve has a horizontal tangent, or zero slope, at 0.007 and 0.027 s.

Therefore, the acceleration of the piston is zero at 0.007 and 0.027 s. These points are labeled t1 and t3,

respectively.
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FIGURE 7.26 Velocity curve for Example Problem 7.12.

Acceleration curve
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FIGURE 7.27 Acceleration curve for Example Problem 7.12.

2. Calculate the Slope at the Noteworthy Portions of the Velocity Curve

The maximum upward slope appears at 0 s. This point was labeled as t0. An estimate of the velocity can be made

from the values of Δv0 and Δt0 read from the graph. Acceleration at 0 s is estimated as

Likewise, the maximum downward slope appears at 0.017 s. This point was labeled as t2. Again, an estimate

of the acceleration can be made from the values of Δv2 and Δt2 read from the graph. The velocity at 0.017 s is

estimated as

3. Sketch the Acceleration Curve

The procedure for determining the slope of the velocity curve can be repeated at other points in time. By com-

piling the slope and time information, an acceleration curve can be constructed (Figure 7.27).

a2 =
¢v2

¢t2
=

-85 in./s

0.005 s
= -17,000 in./s2

a0 =
¢v0

¢t0
=

80 in./s

0.0025 s
= 32,000 in./s2
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7.13.2 Numerical Differentiation

Similar to Section 6.14.2, the acceleration curve can be deter-
mined from the velocity data by numerical differentiation.
Again, the Richardson method [Ref. 3] is used for determin-
ing the derivative of a series of data points with an equally
spaced, independent variable. Thus, the derivative of the
velocity-time curve can be numerically approximated by
using the following equation:

(7.29)

where:

vi = velocity at data point i
i = data point index

ai = cvi+1 - vi-1

2 ¢t
d - cvi+2 - 2vi+1 + 2vi-1 - vi-2

12 ¢t
d

The second derivative can also be determined through
numerical approximations. Although not as accurate, this
allows the acceleration curve to be derived directly from the
displacement–time curve. Again, the Richardson method is
used to numerically determine the second derivative with
the following equation:

(7.30)

where, in addition to the notation above,
¢Ri = displacement at data point i

ai = c¢ Ri+1 - 2¢ Ri + ¢ Ri-1

¢t2 d

ti = time at data point i
¢t = t2 - t1 = t3 - t2 = t4 - t3

EXAMPLE PROBLEM 7.13

A displacement diagram of the piston operating in a compressor was plotted in Example Problem 4.11. From this

diagram, a velocity curve was derived in Example Problem 6.18. Use this data to numerically generate an 

acceleration curve.

SOLUTION: 1. Determine the Time Increment Between Data Points

The spreadsheet data from Example Problem 6.17 (Figure 6.40) was expanded by inserting an additional column

to include the magnitude of piston acceleration. In addition, in Example Problem 6.18 the time increment was

calculated as

2. Use Equation (7.29) to Calculate Acceleration Data Points

To illustrate the calculation of the accelerations, a few sample calculations using equation (7.29) follow:

= 26,898 in./s2

= c (0.0) - (-142.67)

2(.00286)
d - c (91.47) - 2(0.0) + 2(-91.47) - (142.67)

12(.00286)
d

a12 = c v13 - v11

2¢t
d - c v2 - 2v13 + 2v11 - v10

12 ¢t
d

= -17,305 in./s2

= c (-142.67) - (-95.48)

2(.00286)
d - c (-91.47) - 2(-142.67) + 2(-95.48) - (46.03)

12(.00286)
d

a9 = c v10 - v8

2¢t
d - c v11 - 2v10 + 2v 8 - v 7

12 ¢t
d

= 26,898 in./s2

= c 142.67 - 0.0

2(.00286)
d - c137.50 - 2(142.67) + 2(0.0) - (-91.47)

12(.00286)
d

a2 = cv 3 - v1

2¢t
d - c v4 - 2v3 + 2v1 - v12

12 ¢t
d

¢t = t2 - t1 = (0.00286 - 0.0) = 0.00286 s
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FIGURE 7.28 Acceleration data for Example Problem 7.13.

FIGURE 7.29 Acceleration curve for Example Problem 7.13.

3. Compile the Acceleration Results and Plot the Curve

The resulting information, with all acceleration magnitudes calculated, is given in Figure 7.28. These values are

plotted in Figure 7.29 to form an acceleration diagram, relative to time.

Notice that this curve is still rather rough. For accuracy purposes, it is highly suggested that the crank angle in-

crement be reduced to 10° or 15°. When a spreadsheet is used to generate the acceleration data, even smaller incre-

ments are advisable and do not make the task any more difficult.
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PROBLEMS

Manual drawing techniques can be instructive for problems
requiring graphical solution, but using a CAD system is
highly recommended.

General Acceleration

7–1. Boxes are sitting on a conveyor belt as the conveyor is
turned on, moving the boxes toward the right. The
belt reaches full speed of 45 fpm (ft/min) in 0.5 s.
Determine the linear acceleration of the boxes
assuming that this acceleration is constant. Also
determine the linear displacement of the boxes dur-
ing this speed-up period.

7–2. A high-performance vehicle has a 0-to-60 (mph)
time of 8.3 s. Determine the linear acceleration
of the vehicle and the distance traveled in reaching
60 mph.

7–3. An elevator moves upward at a velocity of 12 ft/s.
Determine the distance required to stop if the con-
stant deceleration is not to exceed 10 ft/s2.

7–4. Point A is on a slider that is accelerating uniformly
upward along a vertical straight path. The slider has a
velocity of 100 mm/s as it passes one point and
300 mm/s as it passes a second point, 0.2 s later.
Determine the linear acceleration and the linear dis-
placement of point A during this interval of time.

7–5. A linear actuator is used to push a load leftward.
Starting at rest, it requires 1.5 s to reach a full speed of
0.75 m/s. Determine the linear acceleration of the
load. Also determine the linear displacement of
the load during this acceleration phase of the motion.

7–6. Starting from rest, a cam accelerates uniformly to
750 rpm clockwise in 8 s. Determine the angular
acceleration of the cam.

7–7. The rotor of a jet engine rotates clockwise and idles at
10,000 rpm. When the fuel is shut off, the engine slows
to a stop in 2 min. Assuming that the speed reduces
uniformly, determine the angular acceleration of the
engine. Also determine the rotational displacement of
the rotor during this shutdown period.

7–8. The angular velocity of a shaft is increased with con-
stant acceleration from 1000 rpm to 2500 rpm
clockwise in 20 s. Determine the angular accelera-
tion of the shaft.

7–9. A wheel rotates 400 revolutions counterclockwise
while decelerating from 1100 rpm to 800 rpm.
Determine the angular acceleration of the wheel.

Velocity Profiles

A servo-driven actuator is programmed to extend
according to the velocity profile shown in
Figure P7.10. Determine the maximum accele-
ration, maximum deceleration, and linear displace-
ment during this programmed move.

7–11. A servo-driven actuator is programmed to extend
according to the velocity profile shown in Figure
P7.10. Use a spreadsheet to generate plots of
displacement versus time, velocity versus time, and
acceleration versus time during this programmed
move.

7–12. A linear motor is programmed to move right-
ward according to the velocity profile shown in
Figure P7.12. Determine the maximum accele-
ration, maximum deceleration, and linear displace-
ment during this programmed move.

v (in./s)

t (s)

10

5

2 4 6 8 10 12

FIGURE P7.10 Problems 10 and 11.

v (in./s)

t (s)

4

2

1 2 3 4 5 6

FIGURE P7.12 Problems 12 and 13.

7–13. A linear motor is programmed to move rightward
according to the velocity profile shown in Figure P7.12.
Use a spreadsheet to generate plots of displacement
versus time, velocity versus time, and acceleration
versus time during this programmed move.

7–14. A linear actuator is programmed to move 10 in. The
maximum velocity is 4 in./s, and the constant
acceleration and deceleration is limited to 6 in./s2.
Use a spreadsheet to generate plots of displacement
versus time, velocity versus time, and acceleration
versus time during this programmed move.

7–15. A linear actuator is programmed to move 75 mm. The
maximum velocity is 50 mm/s, and the constant accel-
eration and deceleration is limited to 100 mm/s2.
Use a spreadsheet to generate plots of displacement
versus time, velocity versus time, and acceleration
versus time during this programmed move.

Normal and Tangential Acceleration

7–16. Link 2 is isolated from a kinematic diagram and
shown in Figure P7.16. The link is rotating counter-
clockwise at a constant rate of 300 rpm. Determine
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A

B

2 18"

γ
β

8"

FIGURE P7.16 Problems 16, 17, and 18.

Point B

Point A

Drive shaft

ω

Output shaft

Friction pads

10"

10°

FIGURE P7.19 Problems 19, 20, and 21.

the total linear acceleration of points A and B. Use
and β = 60 .

7–17. Link 2 is isolated from a kinematic diagram and
shown in Figure P7.16. The link is rotating counter-
clockwise at a rate of 200 rpm, and accelerating at
400 rad/s2. Determine the total linear acceleration of
points A and B. Use 

7–18. Link 2 is isolated from a kinematic diagram and
shown in Figure P7.16. The link is rotating counter-
clockwise at a rate of 300 rpm, and decelerating at
800 rad/s2. Determine the total linear acceleration of
points A and B. Use 

Figure P7.19 shows a centrifugal clutch that
engages two shafts at a threshold rotational velocity.

g = 50° and b = 60°.

g = 50° and b = 60°.

°g = 50°

7–19. Determine the total acceleration of point A on the
friction pad of the centrifugal clutch shown in
Figure P7.19. At the instant shown, the driveshaft
rotates at a constant 300 rpm clockwise.

7–20. Determine the total acceleration of point A on the
friction pad of the centrifugal clutch shown in
Figure P7.19. At the instant shown, the driveshaft is
rotating at 300 rpm clockwise and is speeding up at
a rate of 300 rad/s2.

7–21. Determine the total acceleration of point A on the
friction pad of the centrifugal clutch shown in

A

B
θ

FIGURE P7.22 Problems 22 and 23.

3'

Shoe

Window

Drive nut Motor

B

C

θ

FIGURE P7.24 Problems 24 and 25.

Figure P7.19. At the instant shown, the driveshaft is
rotating at 300 rpm clockwise and is slowing down
at a rate of 300 rad/s2.

Relative Acceleration

7–22. For the kinematic diagram shown in Figure P7.22,
the length of link AB is 100 mm and . Box A
moves upward at a velocity of 10 mm/s and acceler-
ates at 5 mm/s2. At the same time, the velocity of box
B is 7 mm/s and accelerates at a rate of 25 mm/s2.
Graphically determine the linear velocity of A with res-
pect to B and the linear acceleration of A with
respect to B.

u = 35°

7–23. For the kinematic diagram shown in Figure P7.22, the
length of link AB is 15 in. and . Box A moves
upward at a velocity of 50 in./s and decelerates at
125 in./s2. At the same time, the velocity of box B is
42 in./s and accelerates at a rate of 48.6 in./s2. Analy-
tically determine the linear velocity of A with respect
to B and the linear acceleration of A with respect to B.

7–24. Figure P7.24 shows a device to open windows com-
monly found in elevated locations of gymnasiums
and factories. At the instant when , the drive
nut moves to the right at a velocity of 1 ft/s and
accelerates at 1 ft/s2. At the same time, the velocity of
the shoe is 0.47 ft/s, and it accelerates at a rate of
0.91 ft/s2. Graphically determine the linear velocity
of C with respect to B and the linear acceleration of
C with respect to B.

u = 25°

u = 40°

7–25. For the window-opening mechanism shown in
Figure P7.24, at the instant when , the drive
nut moves to the right at a velocity of 2 ft/s and
accelerates at 1 ft/s2. At the same time, the velocity of

u = 55°
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the shoe is 2.85 ft/s, and it accelerates at a rate of
8.51 ft/s2. Graphically determine the linear velocity
of C with respect to B and the linear acceleration of
C with respect to B.

Relative Acceleration Method—Graphical

7–26. For the compressor linkage shown in Figure P7.26,
use the relative acceleration method to graphically
determine the linear velocity and linear acceleration
of the piston as the crank rotates clockwise at a con-
stant rate of 1150 rpm.

2"

30°

Crank

5"Piston

FIGURE P7.26 Problems 26, 27, 28, 44, 75, 81, and 87.

7–27. For the compressor linkage in Figure P7.26, at the
instant shown, the crank is rotating counterclock-
wise at 2000 rpm and accelerating at 10,000 rad/s2.
Use the relative acceleration method to graphically
determine the linear velocity and linear acceleration
of the piston.

7–28. For the compressor linkage in Figure P7.26, at the
instant shown, the crank is rotating clockwise at 1500
rpm and decelerating at 12,000 rad/s2. Use the rela-
tive acceleration method to graphically determine the
linear velocity and linear acceleration of the piston.

7–29. For the sewing machine linkage in Figure P7.29, at the
instant when , the drive wheel rotates counter-
clockwise at a constant 200 rpm. Use the relative accel-
eration method to graphically determine the linear
velocity and linear acceleration of the needle.

u = 30°

8 mm

15 mm

30 mm

C

B
θ

FIGURE P7.29 Problems 29, 30, 31, 45, 76, 82, and 88.

7–30. For the sewing machine linkage in Figure P7.29, at
the instant when , the drive wheel is rotating
clockwise at 300 rpm and accelerating at 800 rad/s2.
Use the relative acceleration method to graphically
determine the linear velocity and linear acceleration
of the needle.

7–31. For the sewing machine linkage in Figure P7.29, at
the instant when , the drive wheel is rotat-
ing clockwise at 200 rpm and decelerating at
400 rad/s2. Use the relative acceleration method to
graphically determine the linear velocity and linear
acceleration of the needle.

7–32. For the power hacksaw in Figure P7.32, at the
instant shown, the 1.75-in. crank rotates clockwise
at a constant 80 rpm. Use the relative acceleration
method to graphically determine the linear velocity
and linear acceleration of the saw blade.

7–33. For the power hacksaw in Figure P7.32, at the instant
shown, the 1.75-in. crank rotates clockwise at 60 rpm

u = 120°

u = 30°

30°

C

B

6.0"

2.5"

1.75"

FIGURE P7.32 Problems 32, 33, 34, 46, 77, 83, and 89.

and accelerates at 40 rad/s2. Use the relative accelera-
tion method to graphically determine the linear
velocity and linear acceleration of the saw blade.

7–34. For the power hacksaw in Figure P7.32, at the instant
shown, the 1.75-in. crank rotates clockwise at 70 rpm
and decelerates at 45 rad/s2. Use the relative accelera-
tion method to graphically determine the linear
velocity and linear acceleration of the saw blade.

7–35. The motor on the coin-operated horse in Figure P7.35
rotates clockwise at a constant rate of 90 rpm. At the

4"
10"

6"

27"30"

θ

FIGURE P7.35 Problems 35, 36, 37, 47, 78, 84, and 90.
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instant when , use the relative acceleration
method to graphically determine the angular velocity
and angular acceleration of the horse.

7–36. At the instant when , the motor on the
coin-operated horse in Figure P7.35 rotates clock-
wise at 60 rpm and accelerates at 30 rad/s2. Use the
relative acceleration method to graphically deter-
mine the angular velocity and angular acceleration
of the horse.

7–37. At the instant when , the motor on the
coin-operated horse in Figure P7.35 rotates clock-
wise at 40 rpm and decelerates at 20 rad/s2. Use the
relative acceleration method to graphically deter-
mine the angular velocity and angular acceleration
of the horse.

7–38. The motor on the car wash sprayer in Figure P7.38
rotates counterclockwise at a constant rate of
120 rpm. At the instant when , use the rela-
tive acceleration method to graphically determine
the angular velocity and angular acceleration of the
nozzle arm.

u = 40°

u = 120°

u = 45°

u = 30°

3"
10"

6"

θ

12"

1.5"

FIGURE P7.38 Problems 38, 39, 40, 48, 79, 85, 91.

7–39. At the instant when , the motor on the car
wash sprayer in Figure P7.38 rotates counter-
clockwise at 150 rpm and accelerates at 200 rad/s2.
Use the relative acceleration method to graphically
determine the angular velocity and angular acceler-
ation of the nozzle arm.

7–40. At the instant when , the motor on the car
wash sprayer in Figure P7.38 rotates counter-
clockwise at 100 rpm and decelerates at 100 rad/s2.
Use the relative acceleration method to graphically
determine the angular velocity and angular acceler-
ation of the nozzle arm.

7–41. The 12-in. crank on the small aircraft landing gear
actuation in Figure P7.41 rotates counterclockwise

u = 120°

u = 90°

30"26"

30"

32"

5"
12"

15°

FIGURE P7.41 Problems 41, 42, 43, 49, 80, 86, and 92.

at a constant rate of 20 rpm. At the instant shown,
use the relative acceleration method to graphically
determine the angular velocity and angular accelera-
tion of the wheel assembly.

7–42. At the instant shown, the 12-in. crank on the small
aircraft landing gear actuation in Figure P7.41
rotates counterclockwise at 15 rpm and accelerates
at 4 rad/s2. Use the relative acceleration method to
graphically determine the angular velocity and
angular acceleration of the wheel assembly.

7–43. At the instant shown, the 12-in. crank on the small
aircraft landing gear actuation in Figure P7.41
rotates counterclockwise at 18 rpm and decelerates
at 3.5 rad/s2. Use the relative acceleration method to
graphically determine the angular velocity and
angular acceleration of the wheel assembly.

Relative Acceleration Method—Analytical

7–44. For the compressor linkage in Figure P7.26, at the
instant shown, the crank is rotating clockwise at
1800 rpm and accelerating at 12,000 rad/s2. Use the
relative acceleration method to analytically deter-
mine the linear velocity and linear acceleration of
the piston.

7–45. For the sewing machine linkage in Figure P7.29, at
the instant when , the drive wheel is rotating
clockwise at 250 rpm and accelerating at 6000
rad/s2. Use the relative acceleration method to
graphically determine the linear velocity and linear
acceleration of the needle.

7–46. For the power hacksaw in Figure P7.32, at the instant
shown, the 1.75-in. crank rotates clockwise at 55 rpm
and decelerates at 35 rad/s2. Use the relative accelera-
tion method to graphically determine the linear
velocity and linear acceleration of the saw blade.

7–47. At the instant when , the motor on the coin-
operated horse in Figure P7.35 rotates clockwise at
45 rpm and accelerates at 25 rad/s2. Use the relative
acceleration method to graphically determine the
angular velocity and angular acceleration of the
horse.

u = 45°

u = 30°
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7–48. At the instant when , the motor on the car
wash sprayer in Figure P7.38 rotates counterclock-
wise at 130 rpm and decelerates at 180 rad/s2. Use
the relative acceleration method to graphically
determine the angular velocity and angular acceler-
ation of the nozzle arm.

7–49. At the instant shown, the 12-in. crank on the small
aircraft landing gear actuation in Figure P7.41
rotates counterclockwise at 12 rpm and accelerates
at 3 rad/s2. Use the relative acceleration method to
graphically determine the angular velocity and
angular acceleration of the wheel assembly.

Acceleration of Points on a Floating 

Link—Graphical

7–50. The 3.25-in. link on the stamp mechanism in
Figure P7.50 rotates clockwise at a constant rate of
20 rpm. At the instant when , graphically
determine the linear acceleration of point X on the
stamp.

u = 60°

u = 90°

3.25"

6.75"

4.32"

8"

60°

9.38"

11.25"

X

6.0"

FIGURE P7.50 Problems 50–53, 58.

7–51. The 3.25-in. link on the stamp mechanism in Figure
P7.50 rotates clockwise at a constant rate of 20 rpm.
At the instant when , graphically deter-
mine the linear acceleration of point X on the
stamp.

7–52. The 3.25-in. link on the stamp mechanism in Figure
P7.50 rotates clockwise at 30 rpm and is accelerating
at 6 rad/s2. At the instant when , graphically
determine the linear acceleration of point X on the
stamp.

7–53. The 3.25-in. link on the stamp mechanism in Figure
P7.50 rotates clockwise at 30 rpm and is decele-
rating at 6 rad/s2. At the instant when ,
graphically determine the linear acceleration of
point X on the stamp.

7–54. The 0.5-m link on the lift mechanism in Figure P7.54
rotates counterclockwise at a constant rate of
12 rpm. At the instant when , graphically
determine the linear acceleration of point X.

u = 20°

u = 90°

u = 90°

u = 120°

7–55. The 0.5-m link on the lift mechanism in Figure
P7.54 rotates clockwise at a constant rate of 20 rpm.
At the instant when , graphically determine
the linear acceleration of point X.

7–56. The 0.5-m link on the lift mechanism in Figure
P7.54 rotates clockwise at 30 rpm and accelerates at
5 rad/s2. At the instant when , graphically
determine the linear acceleration of point X.

7–57. The 0.5-m link on the lift mechanism in Figure
P7.54 rotates counterclockwise at 18 rpm and
decelerates at 5 rad/s2. At the instant when ,
graphically determine the linear acceleration of
point X.

Acceleration of Points on a Floating 

Link—Analytical

7–58. The 3.25-in. link on the stamp mechanism in Figure
P7.50 rotates clockwise at a constant rate of 20 rpm.
At the instant when , analytically determine
the linear acceleration of point X on the stamp.

7–59. The 0.5-m link on the lift mechanism in Figure
P7.54 rotates counterclockwise at a constant rate of
12 rpm. At the instant when , graphically
determine the linear acceleration of point X.

Coriolis Acceleration

7–60. For the kinematic diagram shown in Figure P7.60, at
the instant when , the angular velocity of
link 2 is 30 rad/s clockwise. Slide 3 also moves
outward on link 2 at a rate of 15 mm/s. Determine
the Coriolis acceleration of point B on link 3 relative
to link 2.

u = 60°

u = 20°

u = 60°

u = 0°

u = 20°

u = 30°

X

2.0 m

2.1 m
.25 m

.9 m

.5 m

.6 m
55°

θ

FIGURE P7.54 Problems 54–57, 59.
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FIGURE P7.60 Problems 60–62.
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7–61. For the kinematic diagram shown in Figure P7.60, at
the instant when , the angular velocity of
link 2 is 30 rad/s counterclockwise. Slide 3 is also
moving outward on link 2 at a rate of 15 mm/s.
Determine the Coriolis acceleration of point B on
link 3 relative to link 2.

7–62. For the kinematic diagram shown in Figure P7.60, at
the instant when , the angular velocity of
link 2 is 30 rad/s clockwise. Slide 3 is also moving
inward on link 2 at a rate of 15 mm/s. Determine the
Coriolis acceleration of point B on link 3 relative to
link 2.

Linkage Acceleration with 

Coriolis—Graphical

7–63. For the kinematic diagram shown in Figure P7.63,
the angular velocity of link 2 is 20 rad/s counter-
clockwise. Graphically determine the angular
velocity of link 4, the sliding velocity of link 3 on
link 4, and the angular acceleration of link 4.

u = 30°

u = 45°
accelerating at a rate of 45 rad/s2. Graphically deter-
mine the linear acceleration of the saw blade.

7–67. Figure P7.67 illustrates a bicycle pump mechanism.
At the instant shown, the cylinder is being retracted
at a constant rate of 2 in./s. Graphically determine
the rotational acceleration of the pedal assembly
and the linear acceleration of point X.

40°
2

6"

2.5"
AC

B

3

4

1

FIGURE P7.63 Problems 63, 64, and 71.

7–64. For the kinematic diagram shown in Figure P7.63,
the angular velocity of link 2 is 20 rad/s counter-
clockwise, and it is accelerating at a rate of 5 rad/s2.
Graphically determine the angular velocity of link 4,
the sliding velocity of link 3 on link 4, and the
angular acceleration of link 4.

7–65. Figure P7.65 illustrates the driving mechanism in a
saber saw. At the instant shown, the crank is rotat-
ing at a constant rate of 300 rpm clockwise.
Graphically determine the linear acceleration of the
saw blade.

45°

25 mm

Saw blade

Crank

FIGURE P7.65 Problems 65, 66, and 72.

7–66. For the saber saw mechanism in Figure P7.65, the
crank is rotating at a rate of 200 rpm clockwise and

0.3 m 0.4 m

0.7 m
Actuator

Boat wall

Rudder
Seal boot

FIGURE P7.69 Problems 69, 70, and 74.

10"

7.5"

pt X

8" 4.5"

1.75"40°

FIGURE P7.67 Problems 67, 68, and 73.

7–68. For the bicycle pump in Figure P7.67, the cylinder is
retracting at a rate of 2 in./s and accelerating at a
rate of 3 in./s2. Graphically determine the rotational
acceleration of the pedal assembly and the linear
acceleration of point X.

7–69. Figure P7.69 illustrates a rudder mechanism used to
steer ships. At the instant shown, the actuator is
being extended at a constant rate of 0.1 m/s.
Graphically determine the rotational velocity and
acceleration of the rudder assembly.

7–70. For the rudder mechanism in Figure P7.69, the
actuator is extending at a rate of 0.1 m/s and decel-
erating at a rate of 0.3 m/s2. Graphically determine
the rotational velocity and acceleration of the
rudder assembly.



212 CHAPTER SEVEN

Linkage Acceleration with 

Coriolis—Analytical

7–71. For the kinematic diagram shown in Figure P7.63,
the angular velocity of link 2 is 20 rad/s counter-
clockwise. Analytically determine the angular
velocity of link 4, the sliding velocity of link 3 on
link 4, and the angular acceleration of link 4.

7–72. Figure P7.65 illustrates the driving mechanism in a
saber saw. At the instant shown, the crank is rotating
at a constant rate of 300 rpm clockwise. Analytically
determine the linear acceleration of the saw blade.

7–73. Figure P7.67 illustrates a bicycle pump mechanism.
At the instant shown, the cylinder is being retracted
at a constant rate of 2 in/s. Analytically determine
the angular acceleration of the pedal assembly and
the linear acceleration of point X.

7–74. Figure P7.69 illustrates a rudder mechanism used to
steer ships. At the instant shown, the actuator is
being extended at a constant rate of 0.1 m/s.
Analytically determine the angular velocity and
acceleration of the rudder assembly.

Acceleration Curves—Graphical

7–75. The crank of the compressor linkage shown in
Figure P7.26 is driven clockwise at a constant rate of
1750 rpm. Graphically create a curve for the linear
displacement of the piston as a function of the crank
angle. Convert the crank angle axis to time. Then
graphically calculate the slope to obtain velocity
and acceleration curves of the piston as a function
of time.

7–76. The crank of the sewing machine linkage shown in
Figure P7.29 is driven counterclockwise at a con-
stant rate of 175 rpm. Graphically create a curve for
the linear displacement of the needle as a function
of the crank angle. Convert the crank angle axis to
time. Then graphically calculate the slope to obtain
velocity and acceleration curves of the needle as a
function of time.

7–77. The crank of the power hacksaw shown in Figure
P7.32 is driven clockwise at a constant rate of
90 rpm. Graphically create a curve for the linear dis-
placement of the blade as a function of the crank
angle. Convert the crank angle axis to time. Then
graphically calculate the slope to obtain velocity and
acceleration curves of the blade as a function of
time.

7–78. The motor on the coin-operated horse shown in
Figure P7.35 is driven clockwise at a constant rate of
70 rpm. Graphically create a curve for the angular
displacement of the horse as a function of the crank
angle. Convert the crank angle axis to time. Then
graphically calculate the slope to obtain angular
velocity and angular acceleration curves of the horse
as a function of time.

7–79. The motor on the car wash sprayer mechanism
shown in Figure P7.38 is driven counterclockwise at
a constant rate of 100 rpm. Graphically create a
curve for the angular displacement of the nozzle
arm as a function of the crank angle. Convert the
crank angle axis to time. Then graphically calculate
the slope to obtain angular velocity and angular
acceleration curves of the nozzle arm as a function
of time.

7–80. The crank on the landing gear mechanism shown in
Figure P7.41 is driven counterclockwise at a con-
stant rate of 18 rpm. Graphically create a curve for
the angular displacement of the wheel assembly as a
function of the crank angle. Convert the crank angle
axis to time. Then graphically calculate the slope to
obtain angular velocity and angular acceleration
curves of the wheel assembly as a function of time.

Acceleration Curves—Graphical

7–81. The crank of the compressor linkage shown in
Figure P7.26 is driven clockwise at a constant rate of
1450 rpm. Use a spreadsheet to analytically create a
curve for the linear displacement of the piston as a
function of the crank angle. Convert the crank angle
to time. Then use numerical differentiation to
obtain velocity and acceleration curves of the piston
as a function of time.

7–82. The crank of the sewing machine linkage shown in
Figure P7.29 is driven counterclockwise at a con-
stant rate of 160 rpm. Use a spreadsheet to analyti-
cally create a curve for the linear displacement of the
needle as a function of the crank angle. Convert the
crank angle axis to time. Then use numerical differ-
entiation to obtain velocity and acceleration curves
of the needle as a function of time.

7–83. The crank of the power hacksaw shown in Figure
P7.32 is driven clockwise at a constant rate of
85 rpm. Use a spreadsheet to analytically create a
curve for the linear displacement of the blade as
a function of the crank angle. Convert the crank
angle axis to time. Then use numerical differentia-
tion to obtain velocity and acceleration curves of the
piston as a function of time.

7–84. The motor on the coin-operated horse shown in
Figure P7.35 is driven clockwise at a constant rate of
80 rpm. Use a spreadsheet to analytically create a
curve for the angular displacement of the horse as a
function of the crank angle. Convert the crank angle
axis to time. Then use numerical differentiation to
obtain angular velocity and angular acceleration
curves of the horse as a function of time.

7–85. The motor on the car wash sprayer mechanism
shown in Figure P7.38 is driven counterclockwise at
a constant rate of 110 rpm. Use a spreadsheet to
analytically create a curve for the angular displace-
ment of the nozzle as a function of the crank angle.
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Convert the crank angle axis to time. Then use
numerical differentiation to obtain angular velocity
and angular acceleration curves of the nozzle as a
function of time.

7–86. The crank on the landing gear mechanism shown in
Figure P7.41 is driven counterclockwise at a
constant rate of 16 rpm. Use a spreadsheet to analyt-
ically create a curve for the angular displacement of
the wheel assembly as a function of the crank angle.
Convert the crank angle axis to time. Then use
numerical differentiation to obtain angular velocity
and angular acceleration curves of the wheel assem-
bly as a function of time.

Acceleration Using Working Model

7–87. The crank of the compressor linkage shown in
Figure P7.26 is driven clockwise at a constant rate of
1750 rpm. Use the Working Model software to
create a simulation and plot a linear acceleration
curve of the piston as a function of time.

7–88. The crank of the sewing machine linkage shown in
Figure P7.29 is driven counterclockwise at a constant
rate of 175 rpm. Use the Working Model software to
create a simulation and plot a linear acceleration
curve of the needle as a function of time.

7–89. The crank of the power hacksaw shown in Figure
P7.32 is driven clockwise at a constant rate of
90 rpm. Use the Working Model software to create a
simulation and plot a linear acceleration curve of
the blade as a function of time.

7–90. The motor on the coin-operated horse shown in
Figure P7.35 is driven clockwise at a constant rate of
70 rpm. Use the Working Model software to create a
simulation and plot an angular acceleration curve of
the horse as a function of time.

7–91. The motor on the car wash sprayer mechanism
shown in Figure P7.38 is driven counterclockwise at
a constant rate of 100 rpm. Use the Working Model
software to create a simulation and plot an angular
acceleration curve of the nozzle arm as a function of
time.

7–92. The crank on the landing gear mechanism shown in
Figure P7.41 is driven counterclockwise at a
constant rate of 18 rpm. Use the Working Model
software to create a simulation and plot an angular
acceleration curve of the wheel assembly as a
function of time.

CASE STUDIES

7–1. Figure C7.1 shows a specialty machine that is driven
by crankshaft I. The top cap H on the machine
drives another mechanism, which is not shown.
Carefully examine the components of the mecha-
nism, then answer the following leading questions
to gain insight into its operation.

1. As crankshaft I rotates clockwise 30° from the posi-
tion shown, what is the motion of slide J ?

2. As crankshaft I rotates a few more degrees clock-
wise, what happens to the mechanism?

3. What purpose does item C serve?
4. As crankshaft I continues to rotate, describe the mo-

tion of the slide.
5. What purpose does item B serve?
6. Describe the purpose of this mechanism.

7–2. Figure C7.2 shows a machine that feeds rivets to an
automated assembly machine. Carefully examine
the components of the mechanism, then answer the
following leading questions to gain insight into its
operation.

C

G

D

K

I

F

H

J

B

Machine base

A

FIGURE C7.1 (Courtesy, Industrial Press.)

Z

Z

J

J

A

A

H

B

B

E

F
G

K

L

D
Rivets

Rotary
machine table
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FIGURE C7.2 (Courtesy, Industrial Press.)

1. As the rotating machine table turns counterclock-
wise, what happens to lever E ?

2. What purpose does spring K serve?
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3. As the rotating table turns, what is the motion of
item D?

4. What purpose does spring L serve?
5. What is the general name of the type of connection

between items B and D? Describe the details of its
function.

6. What is the purpose of the components at item H?
7. Describe the motion and actions that take place

during the operation of this machine.

7–3. Figure C7.3 shows a specialty machine that accepts
partially wrapped cartons from slot B. The
machine folds the top and bottom wrappers down
and moves the carton to another operation. In the
position illustrated, a carton is shown at A and is
being ejected from the machine. Carefully examine
the components of the mechanism, then answer
the following leading questions to gain insight into
its operation.

1. As link J rotates clockwise 90° from the position
shown, what is the motion of bellcrank H?

2. As link J rotates clockwise 90° from the position
shown, what is the motion of pusher E and plate C ?

3. As link J rotates clockwise 90° from the position
shown, what is the motion of pin S? (Note that pin S
is attached to slide D and is not constrained to ride
in the groove.)

4. As link J rotates clockwise 90° from the position
shown, what is the motion of guide pin R? (Note
that pin R is constrained to ride in the groove.)

5. As link J rotates clockwise 90° from the position
shown, what is the motion of bellcrank P?

6. As link J rotates clockwise 90° from the position
shown, what is the motion of slide L and plate M?

7. Why is there a need for a short link N? Can link P be
directly connected to slide L?

8. Comment on the relative spacing between plates C
and M after link J rotates 90° clockwise.

9. Discuss the continual motion of plates C and M
along with pusher E.
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FIGURE C7.3 (Courtesy, Industrial Press.)



dynamic analysis software was introduced. This chapter
focuses on other forms of computer approaches to mecha-
nism analysis. These other forms include using spreadsheets
and creating routines using programming languages.

8.2 SPREADSHEETS

Spreadsheets, such as Microsoft® Excel, are very popular in the
professional environment for a variety of tasks. Spreadsheets
have numerous built-in functions, ease of plotting results, and
the ability to recognize formulas. These analytical features
prompted widespread use of spreadsheets for more routine
mechanism problems. Spreadsheets have been used in various
problem solutions in this text. This section outlines the basics
of using spreadsheets. Of course, the specific software manu-
als should be consulted for further details.

A spreadsheet is arranged in a large array of columns
and rows. The number of columns and rows varies among
the different software products. Column headings are
lettered from A to Z, then from AA to AZ, then BA to BZ,
and so on. Row headings are numbered 1, 2, 3, and so on.
The top corner of a general spreadsheet is shown in Figure 8.1.

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Understand the basics of a general spreadsheet.

2. Understand the strategy for using a general spreadsheet
for mechanism analysis.

3. Create computer routines for determining kinematic
properties of either four-bar or slider-crank
mechanisms.

COMPUTER-AIDED MECHANISM ANALYSIS

8.1 INTRODUCTION

Throughout the text, both graphical and analytical techniques
of mechanism analysis are introduced. As the more accurate,
analytical solutions are desired for several positions of a
mechanism, the number of calculations can become
unwieldy. In these situations, the use of computer solutions is
appropriate. Computer solutions are also valuable when
several design iterations must be analyzed. In Section 2.2,
“Computer Simulation of Mechanisms,” the use of dedicated
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The intersection of a column and a row is called a cell. Each
cell is referred to by a cell address, which consists of the
column and row that define the cell. Cell D3 is defined by the
fourth (D) column and the third row. The cursor can
be moved among cells with either the keyboard (arrow keys)
or a mouse.

The value of a spreadsheet lies in storing, manipulat-
ing, and displaying data contained in a cell. This data
commonly consists of either text, numbers, or formulas.
The spreadsheet shown in Figure 8.2 has text entered into
cells A1, F1, and F2 and numbers entered into cells A2
through A24, G1, and G2.

Although subtle differences may exist in the syntax
among the spreadsheet programs, the logic behind creating
formulas is identical. The syntax given here is applicable to
Microsoft Excel. The user’s manual of another product
should be consulted for the details on any differences in
syntax.

Entering a formula into a cell begins with an equal sign (=).
The actual formula is then constructed using values, operators
(+, –, *, /), cell references (e.g., G2), and functions (e.g., SIN,
AVERAGE, ATAN, and RADIANS). Formulas for kinematic
analysis can get rather complex. As an example, a simple
formula can be placed in cell A8:

(8.1)

Although the actual cell contents would contain this formula,
the spreadsheet would visually show the number 60 in cell
A8. The calculation would be automatically performed. For
another example, the following expression can be inserted
into cell B2:

(8.2)= ASIN(G1* SIN(A2 * PI()/180)/G2) * 180/PI()

= A7 + 10

This expression represents the angle between the
connecting rod and the sliding plane for an in-line slider-
crank mechanism. It was presented as equation (4.3) in
Chapter 4:

(4.3)

The spreadsheet formula assumes that the following
values have been entered:

� θ2 in cell A2

� L2 in cell G1

� L3 in cell G2

It should be noted that as with most computer func-
tions, any reference to angular values must be specified in
radians. Notice that A2, an angle in degrees, is multiplied
by π/180 to convert it to radians. After using the inverse
sine function, ASIN, the resulting value also is an angle in
radians. Therefore, it is converted back to degrees by multi-
plying by 180/π. Excel has predefined RADIANS and
DEGREES functions that can be convenient in conversions.
Equation (4.3) can alternatively be inserted into a cell B2 of
a spreadsheet with:

(8.3)

If expression (8.1) were typed into A8 and expression
(8.2) or (8.3) were typed into B2, the resulting spreadsheet
would appear as depicted in Figure 8.3. It is important to
remember that as a cell containing input data is changed,
all results are updated. This allows design iterations to be
completed with ease.

=  DEGREES(ASIN(G1 * SIN(RADIANS(A2))/G2))

u3 = sin-1a L2

L3
sinu2b

FIGURE 8.2 Spreadsheet with text and numbers entered into cells.
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FIGURE 8.3 Spreadsheet with formulas entered into A8 and B2.

Another important feature of a spreadsheet is the copy
and paste feature. The contents of a cell can be duplicated and
placed into a new cell. The copy and paste feature eliminates
redundant input of equations into cells.

Cell references in a formula can be either relative or
absolute. Relative references are automatically adjusted
when a copy of the cell is placed into a new cell. Consider the
following formula entered in cell A8:

The cell reference A7 is a relative reference to the cell directly
above the cell that contains the formula, A8. If this equation
were copied and placed into cell A9, the new formula would
become

Again, the cell reference A8 is a relative one; therefore, the
spreadsheet would automatically adjust the formula.

An absolute address does not automatically adjust the
cell reference after using the copy and paste feature.
However, to specify an absolute reference, a dollar symbol
must be placed prior to the row and column. For example,
an absolute reference to cell G1 must appear as $G$1.

Consider expression (8.2) being placed into cell B2. To
be most efficient, this formula should be slightly modified
to read:

In this manner, only the angle in cell A2 is a relative address.
If the formula were copied to cell B3, the new formula would
become

= ASIN($G$1 * (SIN(A3 * PI()/180)/$G$2)) * 180PI()

= ASIN($G$1 * (SIN (A2 * PI()/180)/$G$2)) * 180/PI()

= A8 + 10

= A7 + 10

Notice that the address of cell A2 has been automatically
adjusted to read “A3.” The connecting rod angle is calculated
for the crank angle specified in cell A3.

To continue with an analysis of a mechanism, the
following formula can be typed into cell C2:

This formula, shown in Figure 8.4, calculates the interior
angle between the crank and connecting rod (equation 4.4):

(4.4)

Because the angles are simply added, and a function is not
called, a radian equivalent is not required.

Also, the following formula can be typed into cell D2:

This formula calculates the distance from the crank pivot to
the slider pin joint (equation 4.5):

(4.5)

If these two formulas were typed into C2 and D2, and text
descriptions were typed into cells B1, C1, and D1, the
resulting spreadsheet would appear as depicted in Figure 8.4.

Finally, because much care was taken with using absolute
and relative cell addresses in creating the formulas in B2, C2,
and D2, they can be copied into the cells down their respec-
tive columns. The user’s manual should be consulted for the
actual steps needed to copy the data into the remaining cells,
which is usually a simple two- or three-step procedure. The
resulting spreadsheet is shown in Figure 8.5.

L4 = 3L2
2 + L3

2 - 2(L2) (L3)cosg

(2 * $G$1 * $G$2 * COS(C2 * PI()/180)))

= SQRT(($G$1)¿2 + ($G$2)¿2 -

g = 180° - (u2 + u3)

= 180 - (A2 + B2)
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FIGURE 8.5 Final spreadsheet.

EXAMPLE PROBLEM 8.1

Figure 8.6 illustrates a linkage that operates a water nozzle at an automatic car wash. Using a spreadsheet, analytically

determine the angular motion of the nozzle throughout the cycle of crank rotation.

SOLUTION:

The nozzle mechanism is a familiar four-bar linkage. Figure 8.7 shows the kinematic representation 

of this mechanism. A spreadsheet for this analysis has been set up and the upper portion is shown in 

Figure 8.8.

FIGURE 8.4 Formula added to cell C2.
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FIGURE 8.7 Kinematic sketch for Example Problem 8.1.

FIGURE 8.8 Spreadsheet for solution to Example Problem 8.1.
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Motor

Water

FIGURE 8.6 Water nozzle linkage for Example Problem 8.1.

General equations, which govern the motion of the links of a four-bar mechanism, were given in Chapter 4. Equation

4.9 gave the general equation for the diagonal from point B to point D, as shown in Figure 8.7:

A spreadsheet version of this equation can be placed and copied down column B. In cell B2, the following formula is

inserted:

= SQRT($H$1¿2 + $H$2¿2 - 2 * $H$1* $H$2* COS(RADIANS(A2)))

BD = 3L1
2 + L2

2 - 2(L1) (L2)cos(u2)
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FIGURE 8.9 Completed spreadsheet for Example Problem 8.1.

To facilitate copying the formula, note the use of absolute and relative addresses. Equation (4.10) gave the general

equation for the transmission angle, γ, as shown in Figure 8.7:

A spreadsheet version of this equation can be placed and copied down column C. In cell C2, the following formula is

inserted:

Rewriting equation (4.11) will give the general equation for the angle of link 4, θ4, as shown in Figure 8.7:

A spreadsheet version of this equation can be placed and copied down column E. In cell E2, the following formula is

inserted:

Finally, equation (4.12) gave the general equation for the angle of link 3, θ3, as shown in Figure 8.7:

A spreadsheet version of this equation can be placed and copied down column D. In cell D2, the following formula is

inserted:

These formulas in cells B2, C2, D2, and E2 can then be copied and pasted in their respective columns. The resulting

upper part of the spreadsheet is shown in Figure 8.9.

($H$1 + $H$3 - $H$2 * COS(RADIANS(A2)) - $H$4 * COS(RADIANS(C2)))))

= DEGREES(2 * ATAN((- $H$2 * SIN(RADIANS(A2)) + $H$4 * SIN(RADIANS(C2)))/

u3 = 2 tan-1 c -L2 sin u2 + L4 sin g

L1 + L3 - L2 cos u2 - L4 cos g
d

($H$2 * COS(RADIANS(A2)) + $H$4 - $H$1 - $H$3 * COS(RADIANS(C2)))))

= DEGREES(2 * ATAN(($H$2 * SIN(RADIANS(A2)) - $H$3 * SIN(RADIANS(C2)))/

u4 = 2 tan-1 c L2 sin u2 - L3 sin g

L2 cos u2 + L4 - L1 - L3 cos g
d

= DEGREES(ACOS(($H$3¿2 + $H$4¿2 - B2¿2)/(2 * $H$3 * $H$4)))

g = cos-1 L3
2 + L4

2 + BD 2

2L3L4
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FIGURE 8.10 Offset slider-crank mechanism.

8.3 USER-WRITTEN COMPUTER
PROGRAMS

To solve mechanism problems, user-written computer
routines can be written by using application software, such
as MATHCAD or MATLAB, or a high-level language, such as
VisualBasic or VisualC++. The programming language
selected must have direct availability to trigonometric and
inverse trigonometric functions. Due to the time and effort
required to write a special program, they are most effective
when a complex, yet commonly encountered, problem needs
to be solved.

The logic behind writing computer programs to
perform kinematic analysis is virtually identical to that for
using a spreadsheet. The structure and syntax of the different
high-level programming languages vary greatly. The follow-
ing sections offer a strategy for writing computer programs
to solve the kinematic properties of the two most common
mechanisms, the slider-crank and the four-bar.

8.3.1 Offset Slider-Crank Mechanism

The following algorithm computes the position, velocity, and
acceleration of all links of an offset slider-crank mechanism as
the crank rotates at constant velocity. A kinematic sketch of a
general offset slider-crank mechanism is shown in Figure 8.10.
The general kinematic relationships used in the algorithm have
been presented in various sections of this text [Ref. 12].

Step 15: Compute v4 = –ω2(b) – ω3(g)
Step 16: Compute α3 = {b(ω2)2 + g(ω3)2}/h
Step 17: Compute a4 = –{g(α3) + c(ω2)2 + h(ω3)2}
Step 18: Print (or write to file) i, θ3, ω3, α3, L4, ν4, a4

Step 19: Increment i and return back to step 3

Recall that computer functions assume that angles are
given in radians. Therefore, it is necessary to convert angular
input and output as has been done in steps 4 and 8. This
algorithm also works for an in-line slider-crank mechanism,
by specifying L1 = 0 as input.

8.3.2 Four-Bar Mechanism

The following algorithm computes the position, velocity,
and acceleration of all links of a four-bar mechanism as the
crank rotates at constant velocity. A kinematic sketch of a
general four-bar mechanism is shown in Figure 8.11. Again,
the general kinematic relationships used in this algorithm
have been presented in various sections of this text [Ref. 12].

The dimensions of the mechanism are accepted as data,
and the algorithm performs the calculations for one full
cycle of crank rotation. The output can be either printed or
written to a file. This file could then be converted to a
spreadsheet if desired.

Step 1: Accept numeric data for L1, L2, L3, and ω2 and store
Step 2: Compute π = 4 tan–1(1.0)
Step 3: Enter a loop that indexes i from 0 to 360
Step 4: Compute a = i (π/180)
Step 5: Compute b = L2 sin a
Step 6: Compute c = L2 cos a
Step 7: Compute d = –sin–1{(L1 + a)/L3}
Step 8: Compute θ3 = d(180/π)t
Step 9: Compute e = L2 sin d
Step 10: Compute f = L2 cos d
Step 11: Compute g = L3 sin d
Step 12: Compute h = L3 cos d
Step 13: Compute L4 = c + f
Step 14: Compute ω3 = –ω2 (c/f)

L1

x

y

L2

L3

L4

2

3θ

θ θ4

γ

FIGURE 8.11 Four-bar mechanism.

As in the previous algorithm, the dimensions of the
mechanism are accepted as data, and the algorithm performs
the calculations for one full cycle of crank rotation. The out-
put can be either printed or written to a file. This file could
then be converted to a spreadsheet if desired.

Step 1: Accept numeric data for L1, L2, L3, L4, and ω2 and
store

Step 2: Compute π = 4 tan–1(1.0)
Step 3: Enter a loop that indexes i from 0 to 360
Step 4: Compute a = i(π/180)
Step 5: Compute b = (L3

2 + L4
2 – L1

2 – L2
2)/(2L3L4)

Step 6: Compute c = L1/L3L4

Step 7: Compute d = L2 sin a
Step 8: Compute e = L2 cos a
Step 9: Compute f = cos–1(b + ce)
Step 10: Compute γ = f (180/π)
Step 11: Compute g = sin f
Step 12: Compute h = cos f
Step 13: Compute p = 2 tan–1{(–d + L4g)/( –e + L3 +

L1 – L4h)}
Step 14: Compute θ3 = p(180/π)
Step 15: Compute q = 2 tan–1{(d – L3g)/(e + L4 – L1 – L3h)}
Step 16: Compute θ4 = q(180/π)
Step 17: Compute ω3 = ω2L2 sin(q – a)/(L3g)
Step 18: Compute ω4 = ω2L2 sin(p – a)/(L4g)
Step 19: Print (or write to file) i, γ, θ3, ω3, θ4, ω4

Step 20: Increment i and return back to step 3
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FIGURE C8.1 (Courtesy, Industrial Press.)

Recall that computer functions will assume that angles
are given in radians. Therefore, it is necessary to convert
angular input and output as has been done in steps 4, 10,
14, and 16. This algorithm will give the solution for a four-
bar mechanism in the first circuit. If the mechanism was
assembled in the second circuit, this routine could be
quickly modified to reflect that configuration. That can
be accomplished by changing the plus and minus signs in
the numerators of steps 13 and 15.

PROBLEMS

For Problems 8–1 and 8–2, develop a spreadsheet that can ana-
lyze the position of all links in an offset slider-crank mechanism
for crank angles that range from 0 to 360. Keep it flexible so that
the length of any link can be quickly altered. Using the listed
values, produce a plot of the slider distance versus crank angle.

8–1 offset = 0.5 in.; crank = 1.25 in.; coupler = 7.0 in.

8–2 offset = 10 mm; crank = 25 mm; coupler = 140 mm.

For Problems 8–3 and 8–4, develop a spreadsheet that can ana-
lyze the position of all links in a four-bar mechanism for crank
angles that range from 0 to 360. Keep it flexible so that the
length of any link can be quickly altered. Using the listed
values, produce a plot of the follower angle versus crank angle.

8–3 frame = 750 mm; crank = 50 mm; coupler = 750 mm;
follower = 75 mm.

8–4 frame = 14 in.; crank = 1 in.; coupler = 16 in.;
follower = 4.0 in.

For Problems 8–5 and 8–6, develop a spreadsheet that can
determine the slider position, velocity, and acceleration for
crank angles that range from 0 to 360. Keep it flexible so that
the length of any link can be quickly altered. Using the listed
values, produce a plot of the slider velocity versus crank angle.

8–5 offset = 1.25 in.; crank = 3.25 in.; coupler = 17.5 in.;
crank speed = 20 rad/s; crank acceleration = 0 rad/s2.

8–6 offset = 30 mm; crank = 75 mm; coupler = 420 mm;
crank speed = 35 rad/s; crank acceleration = 100 rad/s2.

For Problems 8–7 and 8–8, develop a spreadsheet that can 
determine the follower position and velocity for crank angles
that range from 0 to 360. Keep it flexible so that the length of
any link can be quickly altered. Using the following values,
produce a plot of the follower velocity versus crank angle.

8–7 frame = 9 in.; crank = 1 in.; coupler = 10 in.;
follower = 3.5 in.; crank speed = 200 rad/s; crank
acceleration = 0 rad/s2.

8–8 frame = 360 mm; crank = 40 mm; coupler = 400 mm;
follower = 140 mm; crank speed = 6 rad/s; crank
acceleration = 20 rad/s2.

For Problems 8–9 and 8–10, develop a computer program that
can determine the position, velocity, and acceleration of all
links in a slider-crank mechanism for crank angles that range
from 0 to 360. Keep it flexible so that the length of any link can
be quickly altered. Using the listed values, determine the crank
angle that produces the maximum slider acceleration.

8–9 offset = 3 in.; crank = 7.5 in.; coupler = 52.5 in.;
crank speed = 4 rad/s; crank acceleration = 0 rad/s2.

8–10 offset = 40 mm; crank = 94 mm; coupler = 525 mm;
crank speed = 10 rad/s; crank acceleration = 10 rad/s2.

For Problems 8–11 and 8–12, develop a computer program
that can determine the position and velocity of all links in a
four-bar mechanism for crank angles that range from 0 to 360.
Using the listed values, determine the crank angle that
produces the maximum slider acceleration.

8–11 frame = 18 in.; crank = 2 in.; coupler = 20 in.;
follower = 7 in.; crank speed = 150 rad/s; crank
acceleration = 0 rad/s2.

8–12 frame = 60 mm; crank = 18 mm; coupler = 70 mm;
follower = 32 mm; crank speed = 360 rad/s; crank
acceleration = 20 rad/s2.

CASE STUDY

8–1. The mechanism shown in Figure C8.1 is an elaborate
crankshaft and crank for a slider-crank mechanism
that is not shown, for which link K serves as the
connecting rod. Carefully examine the components
of the mechanism, then answer the following leading
questions to gain insight into the operation.

1. In the position shown, as slide bar E pulls to the left,
what is the motion of link D?

2. In the position shown, as slide bar E pulls to the left,
what is the motion of slide block I?

3. Pulley J is keyed to shaft A. As pulley J rotates, what
is the motion of crank pin C?

4. As pulley J rotates, what is the motion of slide bar E?
5. What effect does moving slide bar E to the left have

on crank pin C and on the motion of the slider-
crank mechanism it drives?

6. Sleeve F is keyed to the housing H. As pulley J drives
shaft A, what is the motion of sleeve F?

7. Sleeve J is integrally molded with item G. What is
item G?

8. Sleeve J has internal threads at its right end, and
sleeve F has external threads at its right end. As item
G rotates, what happens to sleeve F?

9. As item G rotates, what happens to slide bar E?
10. What is the purpose of this mechanism and how

does it operate?



for this purpose. In cases where the follower is in the vertical
plane, the weight of the follower may be sufficient to main-
tain contact. Some cam designs capture the follower in a
groove to maintain contact. The important point is that con-
tact between the cam and the follower must be sustained.

The unique feature of a cam is that it can impart a very
distinct motion to its follower. In fact, cams can be used to
obtain unusual or irregular motion that would be difficult, or
impossible, to obtain from other linkages. Because the motion
of cams can be prescribed, they are well suited for applications
where distinct displacements and timing are paramount.
Cams are often used in factory automation equipment
because they can sequence displacements in a cost-efficient
manner. Cams are precision machine components that gener-
ally cost more than conventional linkages. Figure 9.2 shows a
selection of custom cams designed for special motion require-
ments. Note their precision machined outer profile. This
chapter introduces the fundamentals of cam design.

9.2 TYPES OF CAMS

A great variety of cams are available from companies that
specialize in design and manufacture. The manufacturers
may classify cams into subcategories and market the cams

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Identify the different types of cams and cam 
followers.

2. Create a follower displacement diagram from
prescribed follower motion criteria.

3. Understand the benefits of different follower motion
schemes.

4. Use equations to construct cam follower displacement
diagrams.

5. Geometrically construct cam follower displacement
diagrams.

6. Graphically and analytically construct disk cam
profiles with several types of followers.

7. Graphically and analytically construct cylindrical cam
profiles.

CAMS: DESIGN AND KINEMATIC ANALYSIS

9.1 INTRODUCTION

A cam is a common mechanism element that drives a mating
component known as a follower. From a functional view-
point, a cam-and-follower arrangement is very similar to the
linkages discussed throughout this book. The cam accepts
an input motion similar to a crank and imparts a resultant
motion to a follower.

Figure 9.1 illustrates one of the most common cam
applications—namely, the valve train of an automotive
engine. In this application, an oblong-shaped cam is
machined on a shaft. This camshaft is driven by the engine.
As the cam rotates, a rocker arm drags on its oblong surface.
The rocker arm, in turn, imparts a linear, reciprocating
motion to a valve stem. The motion of the valve must be
such that the exhaust pathway is closed during a distinct
portion of the combustion cycle and open during another
distinct portion. Thus, the application is perfect for a cam
because timing and motion must be precisely sequenced.

Notice that a spring is used around the valve stem. The
rocker arm follower needs to maintain contact with the cam
surface to achieve the desired motion. Thus, in most cam
applications, the follower is forced against the cam surface
through some mechanical means. Springs are very common
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for different applications or different configurations.
However, the great majority of cams can be separated into
the following three general types:

Plate or disk cams are the simplest and most common
type of cam. A plate cam is illustrated in Figure 9.3a.
This type of cam is formed on a disk or plate. The
radial distance from the center of the disk is varied
throughout the circumference of the cam. Allowing a
follower to ride on this outer edge gives the follower a
radial motion.

A cylindrical or drum cam is illustrated in Figure 9.3b.
This type of cam is formed on a cylinder. A groove is
cut into the cylinder, with a varying location along
the axis of rotation. Attaching a follower that rides in
the groove gives the follower motion along the axis of
rotation.

A linear cam is illustrated in Figure 9.3c. This type of
cam is formed on a translated block. A groove is cut
into the block with a distance that varies from the
plane of translation. Attaching a follower that rides in
the groove gives the follower motion perpendicular
to the plane of translation.

As mentioned, plate cams are the most common type of
cam. Once the underlying theory is understood, it is also
equally applicable to other types of cams.

9.3 TYPES OF FOLLOWERS

Followers are classified by their motion, shape, and position.
The details of these classifications are shown in Figure 9.4
and discussed next.

9.3.1 Follower Motion

Follower motion can be separated into the following two
categories:

Translating followers are constrained to motion in a
straight line and are shown in Figure 9.4a and c.

Swinging arm or pivoted followers are constrained 
to rotational motion and are shown in Figure 9.4b
and d.

9.3.2 Follower Position

The follower position, relative to the center of rotation of the
cam, is typically influenced by any spacing requirements of

FIGURE 9.2 Various custom cams. (Courtesy of DE-STA-Co CAMCO Products.)
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FIGURE 9.3 Cam types.

(a) In-line, knife-edge follower (b) Pivoted, roller follower

(c) Offset, flat-face follower (d) Pivoted, spherical-face follower

FIGURE 9.4 Follower types.



Cams: Design and Kinematic Analysis 225

9.4 PRESCRIBED FOLLOWER 
MOTION

As mentioned, the unique feature of a cam is that it can
impart a very distinct motion to its follower. Of course, the
motion of the follower depends on the task required and can
be prescribed to exacting detail.

For example, suppose a follower is used to drive pickup
fingers on a paper-handling machine. Prescribing the
desired follower involves separating the motion into seg-
ments and defining the action that must take place during
the segments. To illustrate this process, assume that the
pickup fingers must:

1. Remain closed for 0.03 s.

2. Open to a distance of 0.25 in., from the closed position,
in 0.01 s.

3. Remain in this open position for 0.02 s.

4. Move to the closed position in 0.01 s.

Thus, by listing the exact requirements of the fingers, the
motion of the follower has been prescribed.

Actually, the follower motion can be expressed in terms
of angular cam displacement rather than time. This is more
convenient in applications where the motion must be
synchronized, such as the valve train shown in Figure 9.1.

For the pickup fingers just described, prescribed motion,
stated in terms of cam rotation, could be listed as follows:

1. Remain closed for 154.3° of cam rotation.

2. Open to a distance of 0.25 in., from the closed position,
in 51.4° of cam rotation.

3. Remain in this open position for 102.9° of cam rotation.

4. Move to the closed position in 51.4° of cam rotation.

Once the follower motion is prescribed, it is convenient to
record it in a graphical form.

A plot of follower displacement versus time, or cam
angular displacement, is termed a follower displacement
diagram. This diagram is indispensable in that the follower
motion and kinematics can be explored without regard to
the shape of the cam itself. The vertical axis of this diagram
displays the linear follower displacement, expressed in
inches or millimeters. The horizontal axis displays time,
measured in seconds or minutes, or angular cam displace-
ments, measured in degrees or fractions of a revolution. This
diagram is usually constructed to scale, and, along with
follower kinematic analysis, it is extremely useful in deter-
mining cam shape.

For kinematic analysis, the follower displacement versus
time curve is preferred. To assist in the task of designing a
cam shape, the follower displacement versus cam angle
curve is desired. Relating the cam rotation and time is a
straightforward process using the theory presented in
Chapter 6. Equation (6.4) gave the following:

(6.4)vcam =
¢u
¢t

the machine. The position of translating followers can be
separated into two categories:

An in-line follower exhibits straight-line motion, such
that the line of translation extends through the center
of rotation of the cam and is shown in Figure 9.4a.

An offset follower exhibits straight-line motion, such
that the line of the motion is offset from the center of
rotation of the cam and is shown in Figure 9.4c.

In the case of pivoted followers, there is no need to
distinguish between in-line and offset followers because they
exhibit identical kinematics.

9.3.3 Follower Shape

Finally, the follower shape can be separated into the follow-
ing four categories:

A knife-edge follower consists of a follower that is
formed to a point and drags on the edge of the cam.
The follower shown in Figure 9.4a is a knife-edge
follower. It is the simplest form, but the sharp edge
produces high contact stresses and wears rapidly.
Consequently, this type of follower is rarely used.

A roller follower consists of a follower that has a separate
part, the roller that is pinned to the follower stem.
The follower shown in Figure 9.4b is a roller follower.
As the cam rotates, the roller maintains contact with
the cam and rolls on the cam surface. This is the most
commonly used follower, as the friction and contact
stresses are lower than those for the knife-edge
follower. However, a roller follower can possibly jam
during steep cam displacements. A more thorough
discussion of the tendency for a follower to jam is
presented later.

A flat-faced follower consists of a follower that is formed
with a large, flat surface available to contact the cam.
The follower shown in Figure 9.4c is a flat-faced
follower. This type of follower can be used with a
steep cam motion and does not jam. Consequently,
this type of follower is used when quick motions are
required. However, any follower deflection or
misalignment causes high surface stresses. In addi-
tion, the frictional forces are greater than those of the
roller follower because of the intense sliding contact
between the cam and follower.

A spherical-faced follower consists of a follower formed
with a radius face that contacts the cam. The fol-
lower shown in Figure 9.4d is a spherical-face
follower. As with the flat-faced follower, the spheri-
cal-face can be used with a steep cam motion
without jamming. The radius face compensates for
deflection or misalignment. Yet, like the flat-faced
follower, the frictional forces are greater than those
of the roller follower.

Notice that these follower features are interchangeable.
That is, any follower shape can be combined with either
follower motion or position.
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FIGURE 9.5 Cam system for Example Problem 9.1.

When the cam is rotating at a constant velocity, which
incorporates the overwhelming majority of applications, time
can be related to angular displacement and vice versa. Cam
rotation during an interval of follower motion is typically
expressed by the symbol �. Likewise, the time consumed dur-
ing an interval is designated T. The amount of follower rise, or
fall, during an interval is designated H. Rewriting equation
(6.4), using cam nomenclature, gives the relationship between
cam rotation and time for an arbitrary interval, i:

(9.1)

Equation (9.1) can also be used to determine the required speed
of the cam, by observing the time consumed during one cycle.

bi = (vcam)(Ti)

(9.2)

where
Ti = the total time for all motion intervals that comprise

one cycle.
The period of cam rotation where there is no follower

motion is termed a dwell. The details of motion during the
follower raising and lowering intervals are primarily
dictated by the task that needs to be accomplished and
dynamic considerations. Because large forces are associated
with large accelerations, there is a benefit to minimizing
acceleration.

©

vcam =
1rev

©Ti

EXAMPLE PROBLEM 9.1

A cam is to be used for a platform that will repeatedly lift boxes from a lower conveyor to an upper conveyor. This

machine is shown in Figure 9.5. Plot a displacement diagram and determine the required speed of the cam when the

follower motion sequence is as follows:

1. Rise 2 in. in 1.2 s.

2. Dwell for 0.3 s.

3. Fall 1 in. in 0.9 s.

4. Dwell 0.6 s.

5. Fall 1 in. in 0.9 s.

SOLUTION: 1. Calculate the Time for a Full Cycle

The total time to complete the full cycle is needed to determine the required speed of the cam.

2. Calculate the Required Rotational Speed of the Cam

Then from equation (9.2),

3. Determine the Cam Rotation for Each Follower Motion Interval

The angular increment of the cam consumed by each follower motion sequence is determined by 

equation (9.1).

= 10.307rev2 (360°/1 rev) = 110.5°

b1 = (vcam)(Ti) = 10.256rev/s2 (1.2 s) = 0.307rev

vcam =
1rev

©Ti
=

1rev

3.9s
= 0.256rev/s a 60s

1 min 
b = 15.38 rpm

©Ti = T1 + T2 + T3 + T4 + T5 = (1.2 + 0.3 + 0.9 + 0.6 + 0.9) s = 3.9s
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4. Plot the Displacement Diagram

The resulting displacement diagram with both cam angle and time displayed on the horizontal axis is shown in

Figure 9.6. Notice that a curved displacement profile was constructed during the rise and fall sequences.

Dynamic considerations dictate the actual shape of the rise and fall sections.

b5 = (0.256rev/s)(0.9 s) = 0.230rev = 82.9°

b4 = (0.256rev/s)(0.6 s) = 0.154rev = 55.3°

b3 = (0.256rev/s)(0.9 s) = 0.230rev = 82.9°

b2 = (0.256rev/s)(0.3 s) = 0.077rev = 27.6°

9.5 FOLLOWER MOTION SCHEMES

In designing a cam, the objective is to identify a suitable
shape for the cam. The primary interest is to ensure that the
follower will achieve the desired displacements. Of course,
these displacements are outlined in the displacement dia-
gram. The shape of the cam is merely a means to obtain this
motion.

In the previous section, the follower motion during
rise and fall sequences was not fully identified. It was 
mentioned that the dynamic characteristics of the follower
are important. Large accelerations cause large forces and,
consequently, high stresses. Rapidly changing accelera-
tions cause vibration and, consequently, noise. Due to
these fundamental dynamic principles, the rise and fall
portions of a cam displacement diagram are of vital
importance.

For slow-moving cams, high accelerations are not a
factor. Therefore, the cam is designed to merely yield the
given displacements at the specified instant. The manner in
which the follower arrives at the given point is trivial.
In these cases, the cam is manufactured in the most conve-
nient manner, as long as the given displacement is
achieved. A plate cam can be simply composed of a combi-
nation of circular arcs and straight lines, which can be
readily manufactured.

For high-speed applications, it is not enough to provide a
given displacement. The dynamic characteristics of the follower
during the rise and fall sequences must be specified in consider-
able detail in order to minimize the forces and vibrations.

A wide variety of motion schemes are available for
moving the follower. The objective of these schemes is to pro-
duce the movement with smooth accelerations. In studying
the dynamic characteristics of the follower for the different
motion schemes, the following nomenclature is used:

H = Total follower displacement during the rise or fall
interval under consideration. In the case of a pivoted
follower, this is the total angular displacement of the
follower link, ΔθL, during the particular interval.

T = Total time period for the rise or fall interval under
consideration.

t = Time into rise or fall interval that defines the instan-
taneous follower properties.

β = Rotation angle of cam during the rise or fall inter-
val under consideration (deg).

= Angle into rise or fall interval that defines the
instantaneous follower properties (deg).

ωcam = Speed of the cam (degrees per time).

ΔR = Magnitude of the instantaneous follower displace-
ment at time t or cam angle β. In the case of a
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pivoted follower, this is analogous to the instanta-
neous angular displacement of the follower link,
ΔθL.

v = Magnitude of the instantaneous follower velocity =
dR/dt. In the case of a pivoted follower, this is anal-
ogous to the rotation of the follower link, ωL.

a = Magnitude of the instantaneous follower accelera-
tion = dv/dt.

9.5.1 Constant Velocity

The simplest follower motion during a rise or fall scheme is
constant velocity. Constant velocity motion is characterized
with a straight-line displacement diagram because velocity is
uniform. The dynamic characteristics of a constant velocity
rise are listed in Table 9.1.

Although the notion of zero acceleration is appealing,
the ends of this motion scheme cause problems.
Theoretically, the instantaneous jump from any constant
value of velocity to another constant value of velocity results
in an infinite acceleration. Because the machines driven by
the follower will always have mass, this theoretically results
in an infinite force. In practice, an instantaneous change in
velocity is impossible due to the flexibility in machine
members. Nevertheless, any shock is serious and must be
kept to a minimum. Therefore, this motion in its pure form
is impractical except for low-speed applications.

A constant velocity displacement diagram, along with
velocity and acceleration curves, is shown in Figure 9.7.

9.5.2 Constant Acceleration

Constant acceleration motion during a rise or fall sequence
produces the smallest possible values of acceleration for a
given rise and time interval. The displacement diagram for a
rise or fall interval is divided into two halves, one of constant
acceleration and the other of constant deceleration.
The shapes of each half of the displacement diagram are
mirror-image parabolas. The dynamic characteristics of a
constant acceleration rise are listed in Table 9.2.

This motion scheme, also known as parabolic or gravity
motion, has constant positive and negative accelerations.
However, it has an abrupt change of acceleration at the
end of the motion and at the transition point between the
acceleration and deceleration halves. These abrupt changes

result in abrupt changes in inertial forces, which typically
cause undesirable vibrations. Therefore, this motion in its
pure form is uncommon except for low-speed applications.
A constant acceleration displacement diagram, along with
velocity and acceleration curves, is shown in Figure 9.8.

A scaled displacement diagram is required to construct
the actual cam profile. The equations presented in Table 9.2
can be used in conjunction with a spreadsheet or other
equation-plotting package to complete this diagram.
Although this analytical method is precise, care must be
taken to plot the diagram to scale.

Graphical construction of a displacement diagram is an
alternative method to generating a displacement diagram to
scale. Such a construction using the constant acceleration
motion scheme can be accomplished by referring to Figure 9.9
and using the following procedure:

1. Divide the follower rise (or fall) sequence into two
halves. From Figure 9.9, AE represents the time period
and EF the magnitude of rise for the first half of this
motion scheme.

2. Divide both the horizontal and vertical axes of the
quadrant AEFH into equal parts.

3. Construct vertical lines from the horizontal divisions.

4. Construct straight lines from corner A to the vertical
divisions.

5. Draw a smooth curve through the points of intersection
of the vertical lines and the lines drawn from corner A.

6. Repeat steps 2 through 5 for the remaining half of the
curve as shown in quadrant FICG in Figure 9.9.
A constant acceleration fall is constructed as a mirror

image to Figure 9.9.

9.5.3 Harmonic Motion

As seen with the polynomial follower schemes just described,
inertial problems arise with discontinuities in the motion
curves. To address that shortcoming, harmonic motion has
been studied. Harmonic motion is derived from trigonomet-
ric functions, thus exhibiting very smooth motion curves. In a
physical sense, it is the projection motion of a point on a
rotating disk projected to a straight line. The dynamic charac-
teristics of a harmonic rise are listed in Table 9.3.

This motion scheme is a definite improvement on the
previous curves. It has a smooth, continuous acceleration.

TABLE 9.1 Cam Follower Kinematics for Constant Velocity Motion

Rise Fall

Displacement:
 ¢Ri = H0 +  

Hi ti

Ti
= H0 +  

Hif i

bi
¢Rj = HF + Hja1 -  

tj

Tj
 b = HF + Hja1 -  

fj

bj
 b

Velocity:
 vi =  

Hi

Ti
 =  

Hi v

bi
vj =  

-Hj

Tj
 =  

-Hj v

bj

Acceleration: a = 0 (q at transitions) a = 0 (q at transitions)
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FIGURE 9.7 Constant velocity motion curves.

TABLE 9.2 Cam Follower Kinematics for Constant Acceleration Motion

Rise Fall

For 0 < t < 0.5 T ( 0 < < 0.5 β):f

Displacement:

 = H0 + 2Hi afi

bi
 b2

 ¢Ri = H0 + 2Hi a  ti

Ti
 b2

 = HF + Hj - 2Hj a  
fj

bj
 b2

 ¢Ri = HF + Hj - 2Hj a
tj

Tj
 b2

Velocity:
vi =  

4Hi ti

Ti
2

 =  
4Hi vfi

bi
2 vj =  

-4Hj tj

Tj
2

 =  
-4Hj v fj

bj
2

Acceleration:
ai =  

4Hi 

Ti
2

 =  
4Hi v2

bi
2 aj =  

-4Hj 

Tj
2  =  

-4Hj v2

bj
2

For 0.5 T < t < T ( 0.5 β < < β):f

Displacement:

 = H0 + Hi + 2Hia1 -  
fi

bi
 b2

 ¢Ri = H0 + Hi - 2Hia1 -  
ti

Ti
 b2

= HF + 2Hja1 -  
fj

bj
 b2

¢Rj = HF + 2Hja1 -  
tj

Tj
 b2

Velocity:
vi =  

4Hi

Ti
 a1 -  

ti

Ti
 b =  

4Hi v

bi
 a1 -  

fi

bi
 b   vi =  

-4Hj

Tj
 a1 -  

tj

Tj
 b =  

-4Hj v

bj
 a1 -  

fj

bj
 b

Acceleration:
ai =  

-4Hi

Ti
2

 =  
-4Hi v2

bi
2 aj =  

4Hj

Tj
2
 =  

4Hj v2

bj
2



230 CHAPTER NINE

Initial height, H0 Final height, HF

Fo
llo

w
er

 D
is

pl
ac

em
en

t Δ
R

i

Fo
llo

w
er

 D
is

pl
ac

em
en

t Δ
R

j

Rise, Hi

Dwell DwellPeriod for fall, Tj, βj

Constant Acceleration Rise

Cam motion 

2Hi

Fo
llo

w
er

 V
el

oc
ity

 v
i

Fall, Hj

Constant Acceleration Fall

Cam motion 

vmaxi
=

Ti

Fo
llo

w
er

 V
el

oc
ity

 v
j

Fo
llo

w
er

 A
cc

el
er

at
io

n 
a i

Fo
llo

w
er

 A
cc

el
er

at
io

n 
a j

4Hiamaxi
=

T i
2

T i
2

   Hjamaxj
=

T j
2

4

   Hjaminj
=

T j
2

−2

   Hj

Tj
vmaxj

=
−2

   Hiamini
=

−4

ti or φi tj or φj

tj or φj

tj or φj

ti or φi

ti or φi

Dwell DwellPeriod for rise, Ti, βi

FIGURE 9.8 Constant acceleration motion curves.

1

1

2

3

2

Follower
rise, Hi

E

G

F

D

...................
...................

........

..........
..........

..........
..........

.......

.......
.......

.......
.......

.......
.......

.......

.......
.......

.......
.......

.......
.......

.......

..........
..........

..........
..........

.......
....................

....................
.....

......
......

......
......

......
......

......
......

......
......

......
......

......
......

......
......

......

H
I

C

BA 3

Period for rise, Ti, βi

FIGURE 9.9 Construction of a constant acceleration
displacement diagram.

However, it has a sudden change of acceleration at the ends
of the motion. Again, this sudden change can be objection-
able at higher speeds.

A harmonic displacement diagram, along with velocity
and acceleration curves, is shown in Figure 9.10.

As with other schemes, a scaled displacement
diagram is required to construct the actual cam profile.
The equations in Table 9.3 can be used in conjunction
with a spreadsheet or other equation-plotting package to
complete this diagram. Although this analytical method is
precise, care must be taken to plot the diagram accurately.

Graphical construction of a displacement diagram is an
alternative method to generate a displacement diagram to
scale. Such a construction using the harmonic motion
scheme can be accomplished by referring to Figure 9.11 and
using the following procedure:

1. Construct a semicircle having a diameter equal to the
amount of rise (or fall) desired.

2. Divide the rise time period into incremental divisions.

3. Divide the semicircle into the same number of equal
divisions of the follower rise period.

4. Draw vertical lines from the divisions on the time axis.

5. Draw horizontal lines from the division points on the
semicircle to the corresponding division lines on the
time axis.

6. Draw a smooth curve through the points of intersec-
tion found in the previous step.

A harmonic fall is constructed as a mirror image to Figure 9.11.

9.5.4 Cycloidal Motion

Cycloidal motion is another motion scheme derived from
trigonometric functions. This scheme also exhibits very
smooth motion curves and does not have the sudden change
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in acceleration at the ends of the motion, which makes it
popular for high-speed applications. It has low vibration
wear and stress characteristics of all the basic curves
described. In a physical sense, it is the motion of a point on a
disk rolling on a straight line. The dynamic characteristics of

a cycloidal rise are listed in Table 9.4. A cycloidal displace-
ment diagram, along with velocity and acceleration curves, is
shown in Figure 9.12.

As before, a scaled displacement diagram is required to
construct the actual cam profile. The equations presented in

TABLE 9.3 Cam Follower Kinematics for Harmonic Motion

Rise Fall

Displacement:

 = H0 +  
Hi

2
 c1 -  cos a  p fi

bi
 b d

 ¢Ri = H0 +  
Hi

2
 c1 -  cos a  p ti

Ti
 b d

= HF +  
Hj

2
 c1 -  cos a  p fj

bj
 b d

¢Rj = HF +  
Hj

2
 c1 +  cos a  p tj

Tj
 b d

Velocity:

 =  
p Hi v

2bi
 c  sin a  p fi

bi
 b d

 vi =  
p Hi

2Ti
 c  sin a  p ti

Ti
 b d

=  
-p Hj v

2bj
 c  sin a  p fj

bj
 b d

vj =  
-p Hj

2Tj
 c  sin a  p tj

Tj
 b d

Acceleration:

=  
p2

 Hi v2

2bi
2

 c  cos a  p fi

bi
 b d

ai =  
p2

 Hi

2Ti
2

 c  cos a  p ti

Ti
 b d

=  
-p2

 Hj v2

2bj
2

 c  cos a  p fj

bj
 b d

aj =  
-p2

 Hi

2Ti
2

 c  cos a  p tj

Tj
 b d
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TABLE 9.4 Cam Follower Kinematics for Cycloidal Motion

Rise Fall

Displacement:

 = H0 + Hi c  fi

bi
 -  

1

2p
  sin a  

2p fi

bi
 b d

 ¢Ri = H0 + Hi c  ti

Ti
 -  

1

2p
  sin a  

2p ti

Ti
 b d

 = HF + Hj c  
fj

bj
 -  

1

2p
  sin a  2p fj

bj
 b d

 ¢Rj = HF + Hj c1 -  
tj

Tj
 +  

1

2p
  sin a  2p tj

Tj
 b d

Velocity:

=  
Hi v

bi
 c1 -  cos a  

2p fi

bi
 b d

vi =  
Hi

Ti
 c1 -  cos a 2p ti

Ti
b d

=  
-Hj v

bj
 c1 -  cos a  2p fj

bj
 b d

vj =  
-Hj

Ti
 c1 -  cos a  2p ti

Ti
 b d

Acceleration:

=  
2p Hi v2

bi
2

 c  sin a  2p fi

bi
 b d

ai =  
2p Hi

Ti
2

 c  sin a  
2p ti

Ti
 b d

=  
-2p Hj v2

bj
2
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 b d
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FIGURE 9.11 Construction of a harmonic displacement diagram.

Table 9.4 can be used in conjunction with a spreadsheet or
other equation-plotting package to complete this diagram.
Although this analytical method is precise, care must be
taken to plot the diagram to full scale if graphical construc-
tion techniques will be used to design the cam.

Graphical construction of a displacement diagram is an
alternative method to generating a displacement diagram to
scale. Such a construction using the cycloidal motion
scheme can be accomplished by referring to Figure 9.13 and
using the following procedure:

1. On a displacement diagram grid, draw a line from the
beginning point of the rise (or fall) to the final point.
This line is drawn from A to C on Figure 9.13.

2. Extend the line drawn in the previous step and draw
a circle, with radius r = H/2π centered anywhere on
that line.

3. Construct a vertical line through the center of the circle.

4. Divide the circle into an even number of parts.

5. Connect the circle division lines as shown in Figure
9.13 (1 to 4, 2 to 5, etc.).

6. Mark the intersection points of the lines drawn in step
5 with the vertical line drawn in step 3.

7. Divide the time period into the same number of equal
parts as the circle. Construct vertical lines from these
division points.

8. Project the points identified in step 6 along a line paral-
lel with the line constructed in step 1.

9. Mark intersection points of the lines constructed in
step 8 with the vertical lines drawn in step 7, as shown
in Figure 9.13.

10. Construct a smooth curve through the points identi-
fied in step 9.

A cycloidal fall is constructed as a mirror image of
Figure 9.13.
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FIGURE 9.13 Construction of a cycloidal displacement diagram.



EXAMPLE PROBLEM 9.2

A cam is to be designed for an automated part loader as shown in Figure 9.14. Using the motion equations, construct

a chart that tabulates follower displacement versus time and cam rotation. Also plot this data when the prescribed

motion for this application is as follows:

1. Rise 50 mm in 1.5 s using the constant velocity motion scheme.

2. Return in 2.0 s using the cycloidal motion scheme.

3. Dwell for 0.75 s.

4. Repeat the sequence.

234 CHAPTER NINE

Cam
Follower

FIGURE 9.14 Part loader for Example Problem 9.2.

SOLUTION: 1. Calculate Time to Complete a Full Cycle

The total time to complete the full cycle is needed to determine the required speed of the cam.

2. Calculate the Required Rotational Speed of the Cam

From equation (9.2),

3. Determine the Cam Rotation for Each Follower Motion Interval

The angular increment of the cam consumed by each follower motion sequence is determined by 

equation (9.1).

4. Calculate the Displacement during Each Follower Motion Interval

The first motion interval has H1 = 50 mm and T1 = 1.5 s. For a constant velocity rise, the displacement equation

is given as

The second motion interval has H2 = 50 mm and T2 = 2.0 s. For a cycloidal fall, the displacement equation is

given as

The last motion interval is a dwell, where ΔR = constant. This dwell occurs at the retracted follower 

position; thus, ΔR3 = 0.

¢R2 = H2 c1 - a t 2

T2
b +

1

2p
sin a 2pt2

T2
b d

¢R1 =
H1t1

T1

b3 = 10.235rev/s2 (0.75 s) = 0.177rev = 63.7°

b2 = 10.235rev/s2 (2.0 s) = 0.470rev = 169.3°

b1 = (vcam)(T1) = 10.235rev/s2 (1.5 s) = 0.353  rev = 127.0°

vcam =
1rev

©Ti
=

1rev

4.25s
= 0.235rev/s a 60s

1 min 
b = 14.12rpm

= 1.5 + 2.0 + 0.75 = 4.25s

©Ti = T1 + T2 + T3
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These equations were substituted into a spreadsheet (Figure 9.15). This data is used to produce the plot in

Figure 9.16.

FIGURE 9.15 Follower displacement plot for Example Problem 9.2.

FIGURE 9.16 Spreadsheet for Example Problem 9.2.
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FIGURE 9.17 Follower displacement plot for Example Problem 9.3.

9.5.5 Combined Motion Schemes

In selecting a particular motion scheme, one goal is to
minimize the dynamic forces induced during the rise or fall
interval. This is done by minimizing the magnitude of
the follower acceleration and keeping it continuous.
Additionally, the kinetic energy stored in the follower is
proportional to the square of the velocity. Thus, minimizing
the maximum velocity is another goal that should be consid-
ered when specifying a motion scheme.

In addition to these goals, for high-speed applications it
is wise to keep the acceleration smooth to avoid abrupt
changes in dynamic loads. The time derivative of the acceler-
ation is referred to as jerk. Sudden changes in acceleration
are quantified by high magnitudes of jerk. Thus, reducing
the magnitude and maintaining a continuous jerk versus
time curve has advantages on machine loading.

Negative aspects of the constant velocity, constant accel-
eration, harmonic and cycloidal schemes are often adjusted
to improve motion characteristics. The resulting motion is
called a combined scheme. Descriptions of some of the more
common combined schemes are given below. More compre-
hensive cam design sources should be consulted to obtain
the details of the motion equations [Refs. 5, 11, 14].
Software, such as Dynacam, Analytix/Cams, and CamTrax,
are available to construct motion follower displacement dia-
grams of these and other schemes.

Trapezoidal Acceleration is a scheme that improves on
the constant acceleration scheme shown in Figure 9.10,

where the acceleration versus time curve appears as a square
wave. The difficulty with the square wave is that the
acceleration, and consequently inertial force, changes
abruptly. Thus, a jerk is induced onto the machine. The
trapezoidal acceleration scheme softens the transitions
where the acceleration versus time curve appears as a
trapezoid. However, the area lost by knocking off the corners
must be replaced by increasing the maximum acceleration.

Modified Trapezoidal Acceleration improves on the
trapezoidal scheme by replacing the sloped sides on the
acceleration versus time curve with portions of a sine wave.
By eliminating the corners, a smooth acceleration curve is
created. The continuous slope (jerk) ensures that the change
in dynamic forces is smooth.

3-4-5 Polynomial Displacement is another scheme that
improves on the constant acceleration scheme. Being second
order polynomial, the constant acceleration scheme is hindered
with a discontinuous acceleration curve. As with the trapezoidal
scheme, another method of eliminating the discontinuity is to
use a higher-order polynomial. Thus, a scheme has been
formulated that incorporates third, fourth, and fifth order
terms. Having fifth order term, this scheme provides
continuous slope on the acceleration versus time curve.
However, the jerk versus time curve will have discontinuities.

4-5-6-7 Polynomial Displacement expands the 3-4-5
polyno-mial scheme and includes a seventh order term to
provide a continuous and smooth jerk.

EXAMPLE PROBLEM 9.3

For the application presented in Example Problem 9.2, graphically construct a follower displacement diagram.

SOLUTION: Using the data from Example Problem 9.2, the displacement diagram shown in Figure 9.17 can be constructed. Note

that the circle used to construct the cycloidal fall has a radius of

r =
H1

2p
=

(50 mm)

2p
= 7.96mm
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Modified Sinusoidal Acceleration improves on the
cycloidal scheme by incorporating a second sinusoidal term
with a different frequency. Smoothness of the cycloidal
motion is retained and the maximum is reduced.

A summary of the peak velocity, peak acceleration, and
peak jerk for the different motion schemes, as a function of
the rise H and period of the interval T, is shown in Table 9.5.

the application. In general, a large base circle causes fewer
problems with force transmission. However, a large base
circle and, hence, a large cam is contradictory to the
common design goal of smaller products.

The trace point serves as a reference to determine the
effective location of the follower. For a knife-edge follower, it
is the point of cam and follower contact. For a roller
follower, the trace point is chosen at the center of the roller.
For a flat- or spherical-face follower, the trace point is
chosen on the contact surface of the follower.

The home position of the cam is the orientation that
corresponds to the 0° reference position on a
displacement diagram.

The prime circle is a circle drawn through the trace point
of the follower while the cam is at its home position.

The pitch curve is the path of the center of the follower.

For ease in cam profile construction, kinematic inver-
sion will be used. The cam will be imagined as being
stationary. The follower then should be rotated opposite
to the direction of cam rotation. The desired location for
the follower, at several positions, is constructed from the base
circle. Conceptually, this is comparable to wrapping the
displacement diagram around the base circle, creating the
cam shape.

The specific procedures for different follower arrange-
ments are illustrated in the following sections. The general
displacement diagram shown in Figure 9.19 is used for all
constructions. Notice that follower displacements have been
identified at specific cam angles from the rise and fall
portions of the diagram. These prescribed displacements are
translated to the cam profile.

9.6.1 In-Line Knife-Edge Follower

The most efficient manner to describe the construction of a
cam with a knife-edge follower is through an actual
construction. Using the displacement diagram from Figure
9.19, a cam profile to be used with a knife-edge follower has
been constructed and shown in Figure 9.20.

The following general procedure is used to graphically
construct such a profile:

1. Draw the base circle of radius Rb. The size is typically a
function of the spatial constraints of the application.

2. Draw the follower in the home position.

3. Draw radial lines from the center of the cam,
corresponding to the cam angles identified on the
displacement diagram. For construction purposes,
the cam will remain stationary and the follower will 
be rotated in a direction opposite to the actual cam
rotation.

4. Transfer the displacements from the displacement 
diagram to the radial lines. Measure these displace-
ments from the base circle.

5. Draw a smooth curve through these prescribed 
displacements.

TABLE 9.5 Motion Scheme Comparisons

Motion Scheme
Peak 
Velocity

Peak 
Acceleration Peak Jerk

Constant Velocity 1.000 H/T q q
Constant Acceleration 2.000 H/T 4.000 H/T2 q
Harmonic 1.571 H/T 4.945 H/T2 q
Cycloidal 2.000 H/T 6.283 H/T2 40 H/T3

Trapezoidal 2.000 H/T 5.300 H/T2 44 H/T3

Modified Trapezoidal 2.000 H/T 4.888 H/T2 61 H/T3

3-4-5 Polynomial 1.875 H/T 5.777 H/T2 60 H/T3

4-5-6-7 Polynomial 2.188 H/T 7.526 H/T2 52 H/T3

Modified Sine 1.760 H/T 5.528 H/T2 69 H/T3

Trace point, F

Roller follower circle

Home

Offset, e

Rb

RfBase circle

Prime circle

Cam profile

Pitch curve

FIGURE 9.18 Cam nomenclature.

9.6 GRAPHICAL DISK CAM PROFILE
DESIGN

Once the desired motion of a cam and follower has been
defined through a displacement diagram, the actual shape of
the cam can be designed. The shape of the cam depends on
the size of the cam along with the configuration of the
follower. Prior to designing the profile of a disk cam, some
geometric features must be defined. The following features
are illustrated in Figure 9.18.

The base circle is the smallest circle centered on the cam
rotation axis and tangent to the cam surface. The size of the
base circle is typically dictated by the spatial restrictions of
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6. To accurately construct a profile consistent with the
displacement diagram, it may be necessary to transfer
additional intermediate points from the rise and fall
intervals.

9.6.2 In-Line Roller Follower

Again, the most efficient manner of describing the
construction of a cam with an in-line roller follower is
through an actual construction. Using the displacement
diagram from Figure 9.19, a cam profile to be used with an
in-line roller follower has been constructed and shown in
Figure 9.21. The following general procedure is used to
construct such a profile:

1. Draw the base circle of radius Rb. The size is typically a
function of the spatial constraints of the application.

2. Draw the follower of radius Rf in the home position,
tangent to the base circle.

3. Draw radial lines from the center of the cam, correspond-
ing to the cam angles identified on the displacement
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FIGURE 9.20 Cam profile design—in-line, knife-edge follower.
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FIGURE 9.19 General follower displacement diagram.

diagram. For construction purposes, the cam will remain
stationary and the follower will be rotated in a direction
opposite to the actual cam rotation.

4. Identify the trace point at the home position. For a
roller follower, this is the point at the center of the
roller.

5. Draw the prime circle through the trace point at its
home position.

6. Transfer the displacements from the displacement
diagram to the radial lines. Measure these displace-
ments from the prime circle.

7. Draw the roller outline of radius Rf, centered at the
prescribed displacements identified in the previous step.

8. Draw a smooth curve tangent to the roller at these
prescribed displacements.

9. To accurately construct a profile consistent with the
displacement diagram, it may be necessary to transfer
additional intermediate points from the rise and fall
intervals.



Cams: Design and Kinematic Analysis 239

9.6.3 Offset Roller Follower

The most efficient manner of describing the construction of
a cam with an offset roller follower is through an actual
construction. Using the displacement diagram from Figure
9.19, a cam profile to be used with an offset roller follower
has been constructed and shown in Figure 9.22. The follow-
ing general procedure is used to construct such a profile.

1. Draw the base circle of radius Rb. The size is typically a
function of the spatial constraints of the application.

2. Draw the follower centerline in the home position.

3. Draw the prime circle, whose radius is equal to the sum
of the base and roller follower radii 

4. Draw the follower in the home position of radius Rf,
centered where the follower centerline intersects the
prime circle.

(Rb 6 Rf).

5. Identify the trace point at the home position. For a
roller follower, this is the point that is at the center of
the roller.

6. Draw an offset circle of radius e, centered at the cam
rotation axis. It will be tangent to the follower
centerline.

7. Draw lines tangent to the offset circle, corresponding to
the reference cam angles on the displacement diagram.
For construction purposes, the cam will remain
stationary and the follower will be rotated in a direc-
tion opposite to the actual cam rotation.

8. Transfer the displacements from the displacement
diagram to the offset lines. Measure these displace-
ments from the prime circle.

9. Draw the roller outline of radius Rf, centered at the
prescribed displacements identified in the previous step.
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FIGURE 9.21 Cam profile design—in-line roller follower.
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10. Draw a smooth curve tangent to the roller at these
prescribed displacements.

11. To accurately construct a profile consistent with the
displacement diagram, it may be necessary to transfer
additional intermediate points from the rise and fall
intervals.

9.6.4 Translating Flat-Faced Follower

The most efficient manner for describing the construction of
a cam with a flat-faced follower is through an actual
construction. Using the displacement diagram from Figure
9.19, a cam profile to be used with a translating flat-faced
follower has been constructed and shown in Figure 9.23.

The following general procedure is used to graphically
construct such a profile.

1. Draw the base circle of radius Rb. The size is typically a
function of the spatial constraints of the application.

Recall that for this type of follower, the base circle also
serves as the prime circle.

2. Draw the follower in the home position, tangent to the
base circle.

3. Draw radial lines from the center of the cam, corre-
sponding to the cam angles on the displacement
diagram. For construction purposes, the cam will
remain stationary and the follower will be rotated in
a direction opposite to the actual cam rotation.

4. Transfer the displacements from the displacement dia-
gram to the radial lines, measured from the base circle.

5. Draw the flat-faced outline by constructing a line perpen-
dicular to the radial lines at the prescribed displacements.

6. Draw a smooth curve tangent to the flat-faced outlines.

7. To accurately construct a profile consistent with the dis-
placement diagram, it may be necessary to transfer addi-
tional intermediate points from the rise and fall motions.
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FIGURE 9.22 Cam profile design—offset roller follower.
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FIGURE 9.23 Cam profile design—flat-faced follower.

9.6.5 Pivoted Roller Follower

The pivoted follower provides rotational motion as the output
of the cam and follower system. With translating followers,
the equations presented in Section 9.5 are used to calculate the
magnitude of the instantaneous linear displacement, ΔRF,
velocity, vF, and acceleration, aF, of the follower center,
point F. For the pivoted follower, the equations presented in
Section 9.5 can be used to calculate the instantaneous
rotational displacement, ΔθL, velocity, ωL, and acceleration,
αL, of the follower link. To use the equations in Section 9.5
for rotational motion analysis, the prescribed follower
displacement must be angular, ΔθL, instead of linear, H.

Again, the most efficient manner of describing the con-
struction of a cam with a pivoted roller follower is through an
actual construction. Using the displacement diagram from
Figure 9.19, a cam profile to be used with a pivoted roller
follower has been constructed and shown in Figure 9.24.

The following general procedure is used to graphically
construct such a profile.

1. Draw the base circle of radius Rb, where the size is a
function of the spatial constraints of the application.

2. Draw the prime circle, whose radius is equal to the sum
of the base and roller follower radii.

3. Draw the pivot circle of radius Rp. The distance 
between the pivot and the cam axis is also a function 
of the spatial constraints of the application.

4. Locate the home position of the pivot.

5. Draw an arc, centered at the home pivot, with a radius
equal to the length of the pivoted follower link, RL.

6. Draw the follower in the home position of radius Rf,
centered where the arc drawn in step 5 intersects the
prime circle.

7. Draw radial lines from the center of the cam to the
pivot circle, corresponding to the cam angles on
the displacement diagram. Recall that the follower is
being rotated in a direction opposite to the cam
rotation.
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FIGURE 9.24 Cam profile design—pivoted roller follower.

8. From each pivot point, draw an arc with a radius equal
to the length of the follower arm, RL, outward from the
prime circle.

9. Transfer the displacements from the displacement
diagram to the pivot arcs drawn in step 8. As men-
tioned, the prescribed displacements for a pivoted
follower can be angular. Equation (9.3) can be used
to convert from angular displacement of the
follower link, ΔθL, to linear displacement of the
roller center, ΔRF.

. (9.3)

10. Draw the roller outline, centered at the prescribed
displacements identified in the previous step.

11. Draw a smooth curve tangent to the roller at these
prescribed displacements.

12. To accurately construct a profile consistent with the dis-
placement diagram, it may be necessary to transfer addi-
tional intermediate points from the rise and fall motions.

9.7 PRESSURE ANGLE

Because a force is always transmitted perpendicular to
surfaces in contact, the cam does not always push the follower
in the direction of its motion. As discussed in the previous
section, the curvature of the cam affects the position between
the follower centerline and the actual contact point.

¢RF = RL32(1 - cos ¢uL)

The force required to push the follower depends on the
application of the cam system. However, the contact force be-
tween the cam and follower can be much greater, depending
on the location of the contact point. Actually, only one compo-
nent of the contact force generates the follower motion. The
other force component is undesirable as it generates a side load
and must be absorbed by the follower guide bearings.

The pressure angle, δ, correlates these two components
of the contact force. The pressure angle, at any point on the
profile of a cam, is the angle between the follower movement
and direction that the cam is pushing it. More precisely, it is
the angle between the path of the follower motion and the
line perpendicular to the cam profile at the point of follower
contact. Each point on the cam surface has a pressure angle.
The pressure angle is illustrated in Figure 9.25.

After graphically constructing a cam profile, the
magnitude of the pressure angle can be visualized by
observing the location of the contact point in relation to
the follower centerline. The regions where the cam profile
exhibits the greatest curvature should be identified.
Measurements of the pressure angles in this region should
be obtained. In general, the pressure angle should be kept
as small as possible and should not exceed 30°. The magni-
tude of the pressure angle can be decreased by

1. Increasing the size of the base circle,

2. Decreasing the magnitude of follower displacement,

3. Increasing the angle of cam rotation prescribed for the
follower rise or fall,
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cam, the construction angle increments were refined for in-
creased accuracy. The cam profile was constructed by
locating the follower circles and drawing the cam profile
tangent to the follower circles. Notice that the cam does not
contact the follower at all locations. At a cam angle of 135°,
the cam will not push the roller to the desired position.

This situation can be corrected by using a larger base
circle or reducing the diameter of the roller follower.
However, the contact stresses in the cam and follower are
increased if the roller diameter is reduced. Thus, a roller of
excessively small diameter should be avoided.

A similar situation can occur with a flat-faced follower.
Figure 9.27a illustrates a cam segment whose follower also
requires a rapid rise. Notice that once the flat-faced
follower positions are located, a smooth curve cannot be
constructed to represent the cam profile. One follower
construction line (90°) falls outside the intersection of the
adjacent follower construction lines. Thus, at a cam angle
of 90°, the cam will not push the flat-faced follower to its
desired position.

Figure 9.27b illustrates another cam segment, with a
larger base circle. This cam has the exact same displacement
requirements as the one in Figure 9.27a. In this case, a
smooth cam profile can be constructed tangent to all
follower construction lines. Again, a functional design was
achieved by increasing the diameter of the base circle.

9.9 ANALYTICAL DISK CAM PROFILE
DESIGN

The previous sections illustrated graphical methods used
to design a cam profile. Depending on the precision
required for the application, these methods can produce
sufficiently accurate profiles. Of course, the accuracy is
increased when the construction is accomplished on a
CAD system. With CAD, splines are typically used to
construct the smooth curve of the cam profile. Often,

Unobtainable displacement

0� (Home)

90�

180�

270�

FIGURE 9.26 Impractical cam with a roller follower.

Direction of
follower motion

Pressure
angle,δ

Contact force

FIGURE 9.25 Pressure angle.

4. Decreasing the amount of follower offset, or

5. Modifying the follower motion scheme.

9.8 DESIGN LIMITATIONS

As seen in Section 9.6, the design of a cam profile cannot
begin until first deciding on a follower type and the location
and size of a base circle. These decisions are usually depen-
dent on the magnitude of the transmitted forces and the size
requirements of the cam-driven machinery. It must be
understood that these decisions may not always be practical.

Figure 9.26 illustrates a cam with an in-line roller
follower. Notice that there is a rapid rise and fall at a cam
angle of 135°. Also note that during this portion of the
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splines have precision errors that may violate tangency
constraints. To increase the accuracy, smaller cam angle
increments can be employed.

In some situations, highly accurate cams are required.
It is desirable to be able to analytically determine the
coordinates of points on the cam surface as well as coordi-
nates of a milling cutter that will be used to manufacture
the cam. Equations have been developed for the
coordinates of the different types of followers. This section
merely presents these equations, and the reader is referred
to more detailed sources for the derivations [Ref. 4].
Incorporating the equations into a spreadsheet or some
other programmable device can quickly generate the
profile coordinates.

In general, a Cartesian coordinate system is used so
that the origin is at the cam center. The positive y-axis is
along the direction of the follower motion in its home
position. The positive x-axis is 90° clockwise from the 
y-axis, consistent with a right-hand coordinate system.
Figure 9.28 illustrates this coordinate system.

9.9.1 Knife-Edge Follower

The x and y coordinates of the cam profile are given as

(9.3)

(9.4)

where the following notation is used:
Rx = x coordinate of cam surface profile
Ry = y coordinate of cam surface profile
Rb = Base circle radius

= Cam rotation angle measured against the direction of
cam rotation from the home position

ΔR = Follower displacement at cam angle 

Most cams are produced through a cutting operation,
using computer numerical control milling machines. These
machines are capable of rotating the cam by a fraction of a
degree, while advancing the cutter by thousandths of a
millimeter. Through this method, the cam profile can be
precisely manufactured.

f

f

Ry = (Rb + ¢R)cosf

Rx = (Rb + ¢R) sinf

Cam profile
coordinates
Rx and Ry
at cam angle 

y

Follower
offset, e

Cam angle,

φφ

ω

φ

x

Base circle
radius, Rb

Home (  = 0�)φ

Roller
follower
radius, Rf

FIGURE 9.28 Cam profile coordinate system.
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FIGURE 9.27 Impractical cam with a flat-faced follower.
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FIGURE 9.29 Coordinates for Example Problem 9.4.

The x and y coordinates of the center of the milling
cutter, or grinding wheel, are given as

(9.6)

(9.7)Cy = (Rc + Rb + ¢R)cosf

Cx = (Rc + Rb + ¢R) sinf

where the following additional notation is used:
Cx = x coordinate of cutter center
Cy = y coordinate of cutter center
Rc = Mill cutter radius

EXAMPLE PROBLEM 9.4

For the application stated in Example Problem 9.2, analytically determine the cam profile coordinates when a knife-

edge follower is incorporated. Because of the size constraints of the machine, a cam with a base circle diameter of

200 mm must be used. The cam is to rotate counterclockwise.

SOLUTION: 1. Calculate Coordinates of the Cam Profile

The base circle radius is half of the base circle diameter; thus

Substitution into equations (9.4) and (9.5) gives

2. Summarize the Profile Coordinates for Several Cam Angles

Inserting these equations into a spreadsheet gives the results listed in Figure 9.29.

3. Plot the Profile Coordinates

A spreadsheet can be used to easily create a plot of the profile coordinates. This plot is shown as Figure 9.30 and

illustrates the cam profile.

Ry = (Rb + ¢R)cosf = [(100mm) + ¢R]cosf

Rx = (Rb + ¢R) sinf = [(100 mm) + ¢R] sinf

Rb = 100mm
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FIGURE 9.30 Cam profile for Example Problem 9.4.

9.9.2 In-Line Roller Follower

In general, a roller follower is complicated by the fact that
the cam contact point is not in line with the roller center.
The angle between the follower centerline and the cam
contact point varies with curvature of the cam profile. For
an in-line roller follower, this angle is the pressure angle. The
instantaneous angle can be computed as

(9.8)

For an in-line roller follower, this angle is also the pressure
angle. In addition to the notation used in Section 9.9.1, the
following terms are defined as

Rf = Radius of the roller follower

v = Magnitude of the instantaneous velocity of the
cam follower at the cam angle 

ωcam = Rotational speed of the cam in radians per time

The term (v/ωcam) is a measure of the rate of change of
the follower displacement with respect to the cam angle. In

f

a = tan-1 c v

vcam

(Rf + Rb + ¢R)

(Rf + Rb + ¢R)2 d = d

situations where the instantaneous follower velocity is not
readily available, the slope of the displacement diagram can
be estimated using equation (9.7).

(9.9)

Then the x and y coordinates of the cam profile can be
given as

(9.10)

(9.11)

The x and y coordinates of the milling cutter are
given as

(9.12)

(9.13)

Cy = [Rf + Rb + ¢R]cosf - [Rc - Rf]cos(f - a)

Cx = -[Rf + Rb + ¢R] sinf + [Rc - Rf] sin(f - a)

Ry = [Rf + Rb + ¢R]cosf + Rf cos(f - a)

Rx = -[Rf + Rb + ¢R] sinf + Rf sin(f - a)

v

vcam
=

dR

df
�

¢R

¢f
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SOLUTION: 1. Calculate the Time for a Full Cycle

The total time to complete the full cycle is needed to determine the required speed of the cam.

2. Calculate the Required Rotational Speed of the Cam

From equation (9.2),

3. Determine the Cam Rotation for Each Follower Motion Interval

The angular increment of the cam consumed by each follower motion sequence is determined by equation (9.1).

4. Calculate the Displacements during Each Follower Motion Interval

The equations for the harmonic rise and fall were given in Table 9.3. Substituting into the harmonic rise 

equations gives

¢R1 =
H1

2
c1 - cosapt1

T1
b d =

(1.5 in.)

2
c1 - cosa pt1

1.5 s
b d

b4 = 10.143rev/s2 (2.0 s) = 0.286rev = 102.8°

b3 = 10.143rev/s2 (1.5 s) = 0.214rev = 77.2°

b2 = 10.143rev/s2 (2.0 s) = 0.286rev = 102.8°

b1 = (vcam)(T1) = 10.143rev/s2 (1.5 s) = 0.214rev = 77.2°

vcam =
1rev

©Ti
=

1rev

7s
= 0.143rev/s = 0.899rad/s = 8.57rpm

= 1.5 + 2.0 + 1.5 + 2.0 = 7.0 s

©Ti = T1 + T2 + T3 + T4

EXAMPLE PROBLEM 9.5

Two cams are used to drive a gripper of a mechanical part handler. The two cams can generate independent horizon-

tal and vertical motions to the gripper. Such machines can relocate parts in a similar fashion to a robot at a fraction of

the cost. The part handler is shown in Figure 9.31.

The prescribed motion for one of the cam followers is as follows:

1. Rise 1.5 in. in 1.5 s using the harmonic motion scheme.

2. Dwell for 2 s.

3. Return in 1.5 s using the harmonic motion scheme.

4. Dwell for 2 s.

5. Repeat the sequence.

An in-line roller follower with a radius of 0.5 in. is used on a cam with a base circle radius of 3.5 in. Tabulate the

follower motion and specify the coordinates of the cam profile.

FIGURE 9.31 Part-handling machine for Example Problem 9.5.
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Substituting into the harmonic fall equations gives

5. Calculate the Coordinates of the Cam Profile

Substitution into equations (9.8), (9.10), and (9.11) gives

6. Summarize the Profile Coordinates for Several Cam Angles

Inserting these equations into a spreadsheet gives the results listed in Figure 9.32.

7. Plot the Profile Coordinates

A spreadsheet can be used to easily create a plot of the profile coordinates. This plot is shown as Figure 9.33 and 

illustrates the cam profile.

Ry = -[Rf + Rb + ¢R]cosf + Rf cos(f - a) = -[0.5 + 3.5 + ¢R]cosf - 0.5cos(f - a)

Rx = -[Rf + Rb + ¢R] sinf + Rf sin(f - a) = -[0.5 + 3.5 + ¢R] sinf + 0.5sin(f - a)

a = tan-1 c v

vcam

[Rf + Rb + s]

[Rf + Rb + s]2 d = tan-1 c v

10.899rad/s2
[(0.5 in.) + (3.5 in.) + s]

[(0.5 in.) + (3.5 in.) + s]2 d

v2 =
- pH2

2T2
csin apt2

T2
b d =

- p(1.5 in.)

2(1.5 s)
csin a pt2

1.5 s
b d

¢R2 =
H2

2
c1 + cosapt2

T2
b d =

(1.5 in.)

2
c1 + cosa pt2

1.5 s
b d

v1 =
pH1

2T1
csin apt1

T1
b d =

p11.5 in.2
211.5s2 csin a pt1

1.5 s
b d

FIGURE 9.32 Cam profile coordinates for Example Problem 9.5.
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9.9.3 Offset Roller Follower

An offset roller follower is further complicated by the fact
that the follower motion is not in line with the cam contact
point, which, in turn, is not in line with the roller center.
Thus, the profile equations become a bit more complex. The
angle between the lines connecting the follower center with
the cam contact point, and the follower center with the cam
center is computed as

(9.14)

As in equation (9.8), the term (v/ωcam) is a measure of the
rate of change of the follower displacement with respect to
the cam angle. In situations where the instantaneous
follower velocity is not readily available, the slope of the
displacement diagram can be estimated using equation
(9.9). The pressure angle, δ, can be calculated as

(9.15)

As before, the offset distance, e, is defined as the distance
between the follower centerline and the cam center. A posi-
tive offset distance is defined in the positive x direction.
Conversely, a negative offset distance is defined in the

d = a - tan-1a e

Rf + Rb + ¢R
b

a Rf + Rb + ¢R

e2 + (Rf + Rb + ¢R)2 - e 1n/vcam2bd

a = tan-1 c a n
vcam

b

negative x direction. The offset distance shown in Figure
9.28 is a positive value. Then the x and y coordinates of the
cam profile can be given as

(9.16)

(9.17)

The x and y coordinates of the milling cutter are given as

(9.18)

(9.19)

9.9.4 Translating Flat-Faced Follower

The analytical construction of a translating flat-faced
follower can also exhibit a contact point that is not in line
with the cam centerline. The angle between the follower
centerline and the line connecting the cam contact point
with the cam center varies with the curvature of the cam
profile and can be computed as

(9.20)a = tan-1e a v

vcam
b 1

(Rb + ¢R)
f

- [Rc - Rf ]  cos (f - a)

Cy = (e)sinf - [Rf + Rb + ¢R] cos f

+ [Rc - Rf] sin(f - a)

Cx = (e)cosf - [Rf + Rb + ¢R] sin f

Ry = (e)sin f - [Rf + Rb + ¢R]  cos f + Rf cos (f - a)

Rx = (e)cosf - [Rf + Rb + ¢R] sinf + Rf sin(f - a)

FIGURE 9.33 Cam profile for Example Problem 9.5.



As in equations (9.8) and (9.14), the term (v/ωcam) is a mea-
sure of the rate of change of the follower displacement with
respect to the cam angle. In situations where the instantaneous
follower velocity is not readily available, the slope of the dis-
placement diagram can be estimated using equation (9.9).

Then the x and y coordinates of the cam profile can be
given as

(9.21)

(9.22)

The x and y coordinates of the milling cutter are given as

(9.23)

(9.24)

where

(9.25)

9.9.5 Pivoted Roller Follower

The analytical construction of a pivoted roller follower
is similar to the offset translating follower. However, the
geometry and definitions are slightly different. Figure 9.34
illustrates the nomenclature used for a cam with a pivoted
roller follower.

g = tan-1 c (Rb + ¢R)tan(a)

Rc + Rb + ¢R
d

Cy = c Rb + ¢R + Rc

cosg
d sin(f + g)

Cx = c Rb + ¢R + Rc

cosg
d cos(f + g)

Ry = aRb + ¢R

cosa
b sin(f + a)

Rx = aRb + ¢R

cosa
b cos(f + a)
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Cam profile
coordinates
Rx and Ry
at cam angle 

Home (  = 0�)φ
y

RL

Rp

Rf

ΔθL

Δ R

x

φ

φ

Rb

F

FIGURE 9.34 Cam profile coordinate system, with a pivoted follower.

The following notation is used:

RL = Length of the follower pivot link

RP = Distance between the cam center and the pivot
location

ΔθL = Instantaneous angular position of the follower
pivot link

ωL = Instantaneous angular velocity of the follower
pivot link

αL = Instantaneous angular acceleration of the fol-
lower pivot link

The main difference with a pivoted follower is that its
motion is rotational and the prescribed motion is usually the
angular position of the follower versus time, or cam angle.
Equation (9.3) gave the relation between the angular dis-
placement of the follower link and the linear displacement of
the roller center, point F.

(9.3)

The velocity of the follower center can be related to the rota-
tional velocity of the follower link.

(9.26)

Again, the angle between the lines connecting the
follower center with the cam contact point and the follower
center with the cam center varies with the curvature of the
cam profile and can be computed as

(9.27)a 1

(Rf + ¢R + Rb) - 1v/vcam2cosg
b d

aL = tan-1 c a v

vcam
b

vF = RLvL

¢RF = RL32(1 - cos ¢uL)
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9.10.1 Graphical Cylindrical Cam 
Profile Design

The most efficient manner for describing the construction of a
cylindrical cam is through an actual construction. Using the
displacement diagram from Figure 9.19, a cylindrical cam
profile has been constructed and shown in Figure 9.35. The
following general procedure is used to construct such a profile:

1. Draw a straight line equal to the circumference of the
cylindrical cam.

2. Divide this line into sections corresponding to the
reference cam angles on the displacement diagram.

3. Transfer the displacements from the displacement
diagram to the lines corresponding to the reference
cam angles.

4. Draw the roller follower at the prescribed displacements.

5. Draw a smooth curve tangent to the roller outlines.

6. To accurately construct a profile consistent with the dis-
placement diagram, it may be necessary to transfer addi-
tional intermediate points from the rise and fall motions.

0

Z

90 180 270 360

ΔR90
ΔR240

FIGURE 9.35 Cylindrical cam profile design.

As before, the term (vF/ωcam) is a measure of the rate of
change of the follower displacement with respect to the cam
angle. In situations where the instantaneous follower veloc-
ity is not readily available, the slope of the displacement
diagram can be estimated using equation (9.9).

Internal angles are given as

(9.28)

(9.29)

(9.30)

Finally, the x and y coordinates of the cam profile can be given
as

(9.31)

(9.32)

and the pressure angle is given as

(9.33)

The x and y coordinates of the milling cutter are given as

(9.34)

(9.35)

9.10 CYLINDRICAL CAMS

Although disk cams are the most common type of cam, cylin-
drical cams are also widely used. As presented in Section 9.2
and illustrated in Figure 9.3b, a cylindrical cam consists of a
groove wrapped around a cylinder. A cylindrical cam is a posi-
tive motion cam in that the follower is constrained in a groove
and an external member is not needed to maintain contact be-
tween the follower and the cam. There are many applications
in which it is necessary for the cam to exert a positive control of
the follower during the rise or fall sequences.

Often, a tapered roller follower is used as shown in
Figure 9.3b. It is used because the top edge of the groove
travels at a higher speed than the bottom portion. Thus, the
taper can compensate for the speed differential and prevent
any slipping and skidding action of the roller. When a
cylindrical roller is used, it is advisable to use a narrow
width to minimize the velocity difference across the face of
the roller.

In general, calculation and layout procedures are similar
to those for the disk cam. The following sections discuss
profile generation techniques for a cylindrical cam with a
translating follower. The profile generation for other types of
followers are similar.

Cy = [Rf + Rb + ¢R] sinb - [Rc - Rf]cos(b - a)

Cx = [Rf + Rb + ¢R]cosb - [Rc - Rf] sin(b - a)

d = g + a -
p

2

Ry = - [Rf + Rb + ¢R] sinb - Rf  cos (b - a)

Rx = - [Rf + Rb + ¢R]cosb - Rf sin(b - a)

b =
p

2
+ f + a

f = cos-1 c aRp
2 + (Rb + Rf + ¢R)2 - RL

2

2(Rp) (Rb + Rb + s)
b d

g = cos-1 c aRL
2 + (Rb + Rf + ¢R)2 - Rp

2

2(RL) (Rb + Rb + s)
b d

9.10.2 Analytical Cylindrical Cam 
Profile Design

Because a cylindrical cam is wrapped around a cylinder, a
cylindrical coordinate system is used to define the groove
profile. The angular coordinate, θ, is the angle around the
cam, and the z-axis is the axial position on the cam. The
angle between the follower centerline and the cam contact
point varies with the curvature of the groove profile and can
be computed as

(9.36)

The notation used is the same as in the preceding
sections. For a translating follower, this angle is also the
pressure angle. Similar to disk cams, the pressure angle
should be kept to a minimum and not exceed 30°.

The z-coordinate of the upper groove profile, when the
follower center is at , can be given as

(9.37)

(9.38)u = f - tan-1a Rf cosa

Rb
b

Rz = ¢R + Rf cosa

f

aL = tan-1a vF

vcam
b
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Here, Rb is the radius of the cylindrical cam.
The z-coordinate of the lower groove profile, when the

follower center is at , can be given as

(9.39)

(9.40)

The coordinate of the milling cutter is given as

(9.41)

(9.42)

9.11 THE GENEVA MECHANISM

A geneva mechanism is a unique design that produces a
repeated indexing motion from constant rotational motion.
Because of this motion, the geneva mechanism is commonly
classified with cams. A four-station geneva mechanism is
illustrated in Figure 9.36.

The geneva mechanism consists of a driving roller and a
geneva wheel. The geneva wheel consists of a disk with
several radial slots and is fastened to an output shaft. The
driving roller is fastened to an arm that, in turn, is fastened
to the input shaft. The arm is usually attached to a locking
disk that prevents the wheel from rotating when the driving
roller is not engaged in a slot. The locking disk fits into a
cutout on the wheel.

The motion of the geneva mechanism is characterized
by the roller entering a slot in the wheel, indexing the wheel.
When the roller exits the slot, the wheel locks into position
until the roller enters the next slot. In Figure 9.36a, the
roller rotates clockwise and is just about to enter the geneva
wheel. In Figure 9.36b, the roller has entered the slot and
has turned the wheel counterclockwise. Notice that the
locking disk has moved away from the wheel, allowing it to
rotate.

When designing a wheel, it is important that the roller
enters the slot tangentially. Otherwise, impact loads are
created and the mechanism will perform poorly at high
speeds or loads. Because of this constraint, the following
geometric relationships are derived [Ref. 7]. Refer to Figure
9.36 for definitions of the geometric properties.

(9.43)

where
n = Number of stations in the geneva wheel

(9.44)

(9.45)

(9.46)R = d  cosa bo

2
b

a = d  sina bo

2
b

go = 90°-
bo

2

bo =
360°

n

u = f

Cz = ¢R

u = f + tan-1a Rf cosa

Rb
b

Rz = ¢R - Rf cosa

f

(9.47)

The kinematics of the geneva wheel can also be analytically
determined. The angle of the roller, Δγ, is defined from the start
of engagement. The angle of the wheel, measured from the
start of engagement, is defined as β and is calculated as

(9.48)

where

(9.49)

(9.50)

where
Δγ = Amount of rotation of driving from the position where
the roller has just entered the slot.

The instantaneous velocity and acceleration of the
geneva wheel have been found [Ref. 7] by

(9.51)

(9.52)

These equations are derived using the typical angular
sign convention. That is, ω and α are positive when counter-
clockwise and negative when clockwise.

+ a a
r
b (vinput shaft)

2 sin(2b - 2c)

(ainput shaft) cos(b - c)- a a
r
b

awheel = - a a
r
b  (vinput shaft)

2 sin(b - c)

vwheel = a a
r
b  (vinput shaft) cos(b - c)

c = 180° - go + ¢g

r = 3a2 + d2 - 2ad  cos(180 - c)

b = sin-1[1 a
r
2 sin(180° - c)]

S 6 d - a

(b)

(a)

r

Geneva wheel

Crank
R

Driving roller

Locking
disk

Driving roller enters
the geneva slot

d

a

0γ

0γΔγ

0β

β

ω

φ

ω

S

FIGURE 9.36 Four-station geneva mechanism.
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15�

Driving roller enters
the geneva slot

ω

FIGURE 9.37 Geneva mechanism for Example Problem 9.6.

EXAMPLE PROBLEM 9.6

A geneva mechanism has been designed with six stations, as shown in Figure 9.37. The distance between the driving

and driven shafts is 80 mm. The driving arm rotates at a constant rate of 80 rpm clockwise. Determine the angular

velocity and acceleration of the wheel when the driving arm has rotated 15° from the position where the roller has just

entered the slot.

SOLUTION: 1. Calculate Geneva Geometry

Equations (9.43) through (9.47) can be used to calculate the geometric properties of this geneva 

mechanism.

2. Calculate Geneva Kinematic Properties

Equations (9.48) through (9.52) can be used to determine the kinematic relationships when the driving arm has

rotated 15° from the position where the roller has just entered the slot.

vinput shaft = 80rpm = -8.4 rad/s, cw

b = sin-1 c a

r
sinc d = sin-1 c 40mm

58.94mm
sin45° d = 28.7°

= 3(40mm)2 + (80mm)2 - 2(40 mm)(80 mm)cos(45°) = 58.94mm

r = 3a2 + d 2 - 2ad cos(180 - c)

c = 180° - go + ¢g = 180° - 60° + 15° = 135°

¢g = 15°

S 6 d - a = 80 - 40 = 40mm

R = d cos a bo

2
b = (80 mm)cos a 60°

 2
b = 69.3mm

a = d sina bo

2
b = (80 mm)sin a 60°

 2
b = 40mm

go = 90° -
bo

2
= 90° -

60

2
= 60°

bo =
360°

n
=

360°

6
= 60°
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PROBLEMS

For graphical solutions, manual techniques can be instructive,
but the use of a CAD system is highly recommended.

Graphical Displacement Diagrams

9–1. A cam is required for an automated transfer mech-
anism. The cam follower must rise outward 1.0 in.
with constant velocity in 3.0 s, dwell for 0.5 s, fall
with constant velocity in 2.0 s, and then repeat the
sequence. Determine the required speed of the
cam and graphically plot a follower displacement
diagram.

9–2. A cam is required for a reciprocating follower for a
pick-and-place robotic arm. The cam follower must
rise outward 0.75 in. with constant velocity in 1.4 s,
dwell for 2.3 s, fall with constant velocity in 0.8 s,
dwell for 1.9 s, and then repeat the sequence.
Determine the required speed of the cam and
graphically plot a follower displacement diagram.

9–3. A cam drive is required for a shaker platform. This
platform is used to test the shipping-worthiness of
packaged items. The cam follower must rise outward
1.0 in. with constant acceleration in 0.7 s, dwell for
0.2 s, fall with constant acceleration in 0.5 s, and then
repeat the sequence. Determine the required speed
of the cam and graphically plot a follower displace-
ment diagram.

9–4. A cam drive is required for a mechanism that feeds
papers into a printing press. The cam follower must
rise outward 1.0 in. with constant acceleration in 1.7 s,
dwell for 0.8 s, fall 0.5 in. with constant acceleration in
0.8 s, dwell for 0.3 s, fall 0.5 in. with constant accelera-
tion in 0.8 s, and then repeat the sequence. Determine
the required speed of the cam and graphically plot a
follower displacement diagram.

9–5. A cam drive is required for an automated slide on a
screw machine that turns intricate parts. The cam

follower must rise outward 1.5 in. with constant
acceleration in 1.2 s, dwell for 0.7 s, fall 0.5 in. with
constant acceleration in 0.9 s, dwell for 0.5 s, fall 1.0 in.
with constant acceleration in 1.2 s, and then repeat the
sequence. Determine the required speed of the cam
and graphically plot a follower displacement diagram.

9-6. A cam drive is used for a mechanism that drives an
automated assembly machine. The cam follower
must rise outward 13 mm with constant velocity in
3 s, dwell for 3 s, fall 5 mm with constant accelera-
tion in 2 s, dwell for 3 s, fall 8 mm with constant
acceleration in 2 s, and then repeat the sequence.
Determine the required speed of the cam and
graphically plot a follower displacement diagram.

9–7. A cam drive is used for a mechanism that tests the
durability of oven doors. The cam follower must rise
outward 2 in. with harmonic motion in 1 s, dwell for
0.5 s, fall 2 in. with harmonic motion in 1 s, dwell for
1 s, and then repeat the sequence. Determine the
required speed of the cam and graphically plot a
follower displacement diagram.

9–8. A cam drive is used for a mechanism that moves a tool
in an automated screw machining process. The cam
follower must rise outward 24 mm with harmonic
motion in 0.2 s, dwell for 0.3 s, fall 10 mm with
harmonic motion in 0.3 s, dwell for 0.2 s, fall 14 mm
with harmonic motion in 0.2 s, and then repeat the se-
quence. Determine the required speed of the cam and
graphically plot a follower displacement diagram.

9–9. A cam drive is used for a mechanism that packs
stuffing into shipping boxes. The cam follower must
rise outward 1 in. with cycloidal motion in 1.5 s, fall
1 in. with cycloidal motion in 1 s, dwell for 0.5 s, and
then repeat the sequence. Determine the required
speed of the cam and graphically plot a follower
displacement diagram.

9–10. A cam drive is used for a mechanism incorporated
in a shoe-sewing machine. The cam follower must

= +67.1rad/s2 = +67.1rad/s2, ccw

+ a 40mm

58.94mm
b21 -8.4rad/s22sin[2(28.7°) - 2(135°)]

 = a 40mm

58.94mm
b21 -8.4 rad/s22sin (28.7° - 135°) - 0

+ a a

r
b2

(vinput shaft)
2sin(2b - 2a)

awheel = - a a

r
b (vinput shaft)

2sin(b - a) - a a

r
b (ainput shaft) cos(b - a)

ainput shaft = 0(constant angular velocity of input shaft)

vwheel = a a

r
b (vinput shaft) cos(b - c) = a 40mm

58.94mm
b 1-8.4 rad/s2cos(28.7° - 135°) = + 1.6rad/s = 15.3 rpm, ccw
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rise outward 0.5 in. with cycloidal motion in 0.7 s,
dwell for 0.2 s, fall 0.25 in. with cycloidal motion in
0.5 s, dwell for 0.2 s, fall 0.25 in. with cycloidal
motion in 0.5 s and then repeat the sequence.
Determine the required speed of the cam and
graphically plot a follower displacement diagram.

9–11. A cam drive is required to synchronize two motions
on an automated transfer device. The cam follower
must rise outward 10 mm with constant accelera-
tion in 90° of cam rotation, dwell for 30°, fall 10 mm
with constant acceleration in 180° of cam rotation,
and dwell for 60°. Graphically plot a follower
displacement diagram.

9–12. A cam is used for an exhaust valve in an engine. The
cam follower must rise outward 0.5 in. with
harmonic motion in 150° of cam rotation, dwell for
30°, and fall 0.5 in. with harmonic motion in 180° of
cam rotation. Graphically plot a follower displace-
ment diagram.

9–13. A cam is used for a newspaper-collating device. The
cam follower must rise outward 0.5 in. with
cycloidal motion in 120° of cam rotation, dwell for
30°, fall 0.5 in. with cycloidal motion in 120° of cam
rotation, dwell for 30°, and fall 0.5 in. with cycloidal
motion in 60° of cam rotation. Graphically plot a
follower displacement diagram.

Analytical Displacement Diagram

For problems 9–14 through 9–23, determine the speed of the
cam and use the motion equations and a spreadsheet to plot a
displacement diagram of the follower. Also calculate the max-
imum velocity and acceleration of the follower.

9–14. Use the required cam follower motion specified in
Problem 9–1.

9–15. Use the required cam follower motion specified in
Problem 9–2.

9–16. Use the required cam follower motion specified in
Problem 9–3.

9–17. Use the required cam follower motion specified in
Problem 9–4.

9–18. Use the required cam follower motion specified in
Problem 9–5.

9–19. Use the required cam follower motion specified in
Problem 9–6.

9–20. Use the required cam follower motion specified in
Problem 9–7.

9–21. Use the required cam follower motion specified in
Problem 9–8.

9–22. Use the required cam follower motion specified in
Problem 9–9.

9–23. Use the required cam follower motion specified in
Problem 9–10.

For problems 9–24 through 9–26, use the motion equa-
tions and a spreadsheet to plot a displacement diagram of
the follower.

9–24. Use the required cam follower motion specified in
Problem 9–11.

9–25. Use the required cam follower motion specified in
Problem 9–12.

9–26. Use the required cam follower motion specified in
Problem 9–13.

Analytical Motion Curves

For problems 9–27 through 9–36, use the motion equations
and a spreadsheet to generate plots of the follower displace-
ment, velocity, and acceleration versus time.

9–27. Use the required cam follower motion specified in
Problem 9–1.

9–28. Use the required cam follower motion specified in
Problem 9–2.

9–29. Use the required cam follower motion specified in
Problem 9–3.

9–30. Use the required cam follower motion specified in
Problem 9–4.

9–31. Use the required cam follower motion specified in
Problem 9–5.

9–32. Use the required cam follower motion specified in
Problem 9–6.

9–33. Use the required cam follower motion specified in
Problem 9–7.

9–34. Use the required cam follower motion specified in
Problem 9–8.

9–35. Use the required cam follower motion specified in
Problem 9–9.

9–36. Use the required cam follower motion specified in
Problem 9–10.

Graphical Plate Cam Profile Design

9–37. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating in-line knife-edge
follower. The cam must have a base circle of 3.0 in.
and rotate clockwise. Graphically construct the
profile.

9–38. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating in-line knife-edge
roller follower. The cam must have a base circle of
2.0 in. and rotate counterclockwise. Graphically
construct the profile.

9–39. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating in-line roller fol-
lower. The roller diameter is 1.0 in. The cam must
have a base circle of 3.0 in. and rotate clockwise.
Graphically construct the profile and estimate the
largest pressure angle.

9–40. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating in-line roller
follower. The roller diameter is 0.75 in. The cam
must have a base circle of 2.0 in. and rotate counter-
clockwise. Graphically construct the profile and
estimate the largest pressure angle.
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FIGURE P9.37 Problems 37–44 and 47–54.

9–41. A plate cam must provide the displacement shown in
Figure P9.37 to a reciprocating offset roller follower.
The follower is positioned in the vertical plane, con-
tacting the top of the cam. The offset distance is 0.75
in. to the left of the cam center. The roller diameter is
1.0 in. The cam must have a base circle of 3.0 in. and
rotate clockwise. Graphically construct the profile
and estimate the largest pressure angle.

9–42. A plate cam must provide the displacement shown in
Figure P9.37 to a reciprocating offset roller follower.
The follower is positioned in the vertical plane, con-
tacting the top of the cam. The offset distance is 0.5
in. to the right of the cam center. The roller diameter
is 0.75 in. The cam must have a base circle of 2.0 in.
and rotate counterclockwise. Graphically construct
the profile and estimate the largest pressure angle.

9–43. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating flat-faced
follower. The cam must have a base circle of 5.0 in.

and rotate clockwise. Graphically construct the pro-
file and estimate the largest pressure angle.

9–44. A plate cam must provide the displacement shown
in Figure P9.37 to a reciprocating flat-faced
follower. The cam must have a base circle of 6.0 in.
and rotate counterclockwise. Graphically con-
struct the profile and estimate the largest pressure
angle.

9–45. A plate cam must provide the displacement shown
in Figure P9.45 to a pivoted roller follower. The
length of the follower link is 4 in. and is pivoted 5 in.
from the cam rotation axis. The roller diameter is 1
in. The cam must have a base circle of 3.0 in. and
rotate clockwise. Graphically construct the profile
and estimate the largest pressure angle.

9–46. A plate cam must provide the displacement shown
in Figure P9.45 to a pivoted roller follower. The
length of the follower link is 3 in. and is pivoted
3.5 in. from the cam rotation axis. The roller
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FIGURE P9.45 Problems 45, 46, 55, and 56.

diameter is 0.75 in. The cam must have a base
circle of 2.0 in. and rotate counterclockwise.
Graphically construct the profile and estimate the
largest pressure angle.

Analytical Plate Cam Profile Design

For problems 9–47 through 9–56, use the specific cam profile
equations and a spreadsheet to generate a chart of profile
coordinates for every 10° of cam angle.

9–47. Use the cam described in Problem 9–37.

9–48. Use the cam described in Problem 9–38.

9–49. Use the cam described in Problem 9–39.

9–50. Use the cam described in Problem 9–40.

9–51. Use the cam described in Problem 9–41.

9–52. Use the cam described in Problem 9–42.

9–53. Use the cam described in Problem 9–43.

9–54. Use the cam described in Problem 9–44.

9–55. Use the cam described in Problem 9–45.

9–56. Use the cam described in Problem 9–46.

Graphical Cylindrical Cam Design

9–57. A cylindrical cam must provide the displacement
shown in Figure P9.37 to a reciprocating roller
follower. The roller diameter is 1.0 in. The cylinder
diameter is 5 in. and rotates clockwise. Graphically
construct the profile and estimate the largest
pressure angle.

9–58. A cylindrical cam must provide the displacement
shown in Figure P9.37 to a reciprocating roller
follower. The roller diameter is 30 mm. The cylinder
diameter is 150 mm and rotates clockwise.
Graphically construct the profile and estimate the
largest pressure angle.
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Analytical Cylindrical Cam Design

For problems 9–59 and 9–60, use the cylindrical cam profile
equations and a spreadsheet to generate a chart of profile
coordinates for every 10° of cam angle.

9–59. Use the cam described in Problem 9–57.

9–60. Use the cam described in Problem 9–58.

Geneva Mechanism Problems

9–61. A geneva mechanism has been designed with four
stations. The distance between the driving and
driven shafts is 3 in. The driving arm rotates at a con-
stant rate of 60 rpm counterclockwise. Determine
the angular velocity and acceleration of the wheel
when the driving arm has rotated 25° from the posi-
tion where the roller has just entered the slot.

9–62. A geneva mechanism has been designed with five
stations. The distance between the driving and
driven shafts is 60 mm. The driving arm rotates at a
constant rate of 70 rpm clockwise. Determine the
angular velocity and acceleration of the wheel when
the driving arm has rotated 20° from the position
where the roller has just entered the slot.

9–63. A geneva mechanism has been designed with six sta-
tions. The distance between the driving and driven
shafts is 4 in. The driving arm rotates at a constant
rate of 90 rpm counterclockwise. Determine the
angular velocity and acceleration of the wheel when
the driving arm has rotated 25° from the position
where the roller has just entered the slot.

CASE STUDIES

9–1. The cam shown in Figure C9.1 is used to feed papers
to a printing press. Carefully examine the compo-
nents of the mechanism, then answer the following
leading questions to gain insight into its operation.

1. As shaft G is forced to turn clockwise, determine the
motion of item E.

2. What is the name of the connection between items E
and F?

3. What causes the stack of papers, sitting on item J, to
remain at a level where a mechanism at B can grab
them?

4. Why does the radius on item H change?
5. What feature allows any rotation of item H to be

transferred to item G?
6. Describe the mechanism that performs the same

function as this cam for smaller stacks of papers
used in computer printers and copy machines.

9–2. The cam shown in Figure C9.2 drives link J, which,
in turn, drives another mechanism not shown. Link
A is pivoted at its bottom to a machine frame. A stud
extends from link A and through a slot in link B.

Carefully examine the components of the mecha-
nism, then answer the following leading questions
to gain insight into its operation.

1. As cam D rotates clockwise, describe the motion of
link B.

2. What type of cam is D?
3. What type of follower is C?
4. What type of component is item F ?
5. Describe the action of item F.
6. What type of component is item E ?
7. Describe the function of item E.

J
B

C

E
D

F

A

FIGURE C9.2 (Courtesy, Industrial Press.)
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J
G

K
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C

B
A

FIGURE C9.1 (Courtesy, Industrial Press.)



8. Describe the cyclical motion of item B.
9. What changes would occur to the motion of B if

item E were lengthened?
10. What changes would occur to the motion of B if the

stud at E were shortened?
9–3. The machine shown in Figure C9.3 stamps and

forms steel parts. Carefully examine the compo-
nents of the mechanism, then answer the follow-
ing leading questions to gain insight into its
operation.

1. As rod C starts to slide downward, what is the
motion of cam E ?

2. What is the motion of plunger H ?
3. What happens to a strip of sheet metal clamped at W ?
4. As rod C continues to slide downward, what is the

motion of the plunger?
5. What is the motion of slides I ?
6. What happens to the steel strip at W ?

7. As rod C starts to slide upward, what is the motion
of plunger H ?

8. What is the purpose of this mechanism?
9. Why are springs contacting slides I ?

10. Why is a spring supporting item K ?
11. What type of mechanism could drive rod C ?

9–4. A machine is shown in Figure C9.4. Carefully exam-
ine the components of the mechanism, then answer
the following leading questions to gain insight into
its operation.

1. As gear K rotates clockwise, describe the motion of
link F.

2. Discuss the specifics of the cyclical motion of link F.
3. As gear K rotates clockwise, describe the motion of

slide D.
4. As gear K rotates clockwise, describe the motion of

gear N.
5. As gear K rotates clockwise, describe the motion of

link Q.
6. What type of component is item P called?
7. Describe the motion to which item V is constrained.
8. Discuss exactly the manner in which link Q is

attached to item V.
9. Discuss the cyclical motion of the entire machine.

10. State a need for such a machine.
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reduce speed, or change the direction of motion from one
shaft to the other.

It is extremely common for the output of mechanical
power sources, such as electric motors and engines, to be
rotating at much greater speeds than the application
requires. The fax machine requires that the rollers feed the
document through the machine at a rate compatible with
the scanning device. However, a typical electric motor
rotates at greater speeds than are needed at the rollers.
Therefore, the speed of the motor must be reduced as it is
transmitted to the feed roller shafts. Also the upper rollers
must rotate in the direction opposite to that of the lower
rollers. Thus, gears are a natural choice for this application.

Figure 10.2a illustrates two mating spur gears
designed to transmit motion between their respective
shafts. Figure 10.2b shows two friction rollers or disks that
are also designed to transmit motion between the shafts.
Such disks are obviously less costly than complex gear
configurations. However, the disks rely on friction to
transmit forces that may accompany the motion. Because
many applications require the transmission of power
(both motion and forces), smooth disk surfaces may not
be able to generate sufficient frictional forces and thus will
slip under larger loads.

To remedy the possibility of slipping, a gear is formed
such that the smooth surfaces of the disks are replaced by
teeth. The teeth provide a positive engagement and elimi-
nate slipping. From a kinematic viewpoint, the gear pair in

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Identify the different types of gears.

2. Identify and use standard gear geometric features.

3. Calculate center distance, contact ratio, interference
limitations, and backlash variations.

4. Calculate and use the velocity ratio to determine the
kinematic properties of mating gears.

5. Determine the kinematic properties of gear and
planetary gear trains.

10.1 INTRODUCTION

Gears are an extremely common component used in many
machines. Figure 10.1 illustrates the drive mechanism for the
paper feed rollers of a scanner. In this application, an electric
motor drives a small gear that drives larger gears to turn the
feed rollers. The feed rollers then draw the document into
the machine’s scanning device.

In general, the function of a gear is to transmit motion
from one rotating shaft to another. In the case of the feed
drive of Figure 10.1, the motion of the motor must be trans-
mitted to the shafts carrying the rollers. In addition to trans-
mitting the motion, gears are often used to increase or

Electric
motor

Lower
feed
rollers

Document

Upper feed
rollers

FIGURE 10.1 Feed rollers for a scanner.
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Figure 10.2a would replace the disks of Figure 10.2b because
the effective diameters are identical.

The principles of general gearing and the associated
kinematic relations are presented in this chapter. The focus
of this book is on the analysis and design of mechanisms
that are necessary to provide the motion required of
machinery. Consistent with this mission, the focus of this
chapter is on the selection of standard gears to produce the
motion required in industrial machinery. Because they are
the most widely used and least complicated gear, spur gears
are emphasized. The reader is referred to other sources for
further detail on gear tooth profiles, manufacture, quality,
design for strength, and more complex gears [Refs. 4, 13, 15].

10.2 TYPES OF GEARS

Spur gears are simplest and, hence, the most common type of
gear. The teeth of a spur gear are parallel to the axis of rota-
tion. Spur gears are used to transmit motion between paral-
lel shafts, which encompasses the majority of applications. A
pair of mating spur gears is illustrated in Figure 10.3a.

A rack is a special case of spur gear where the teeth of
the rack are not formed around a circle, but laid flat. The
rack can be perceived as a spur gear with an infinitely large
diameter. When the rack mates with a spur gear, translating
motion is produced. A mating rack and gear are illustrated
in Figure 10.3b.

Internal or annular gears have the teeth formed on the
inner surface of a circle. When mating with a spur gear, the
internal gear has the advantage of reducing the distance
between the gear centers for a given speed variation. An
internal gear mating with a traditional spur gear is illus-
trated in Figure 10.3c.

Helical gears are similar to, and can be used in the same
applications as, spur gears. The difference is that the teeth of
a helical gear are inclined to the axis of rotation. The angle of
inclination is termed the helix angle, . This angle provides a
more gradual engagement of the teeth during meshing and
produces less impact and noise. Because of this smoother
action, helical gears are preferred in high-speed applications.
However, the helix angle produces thrust forces and bending
couples, which are not generated in spur gears. A pair of
mating helical gears is illustrated in Figure 10.3d.

w

(a) Spur gears (b) Friction rollers

FIGURE 10.2 Gears and rollers.

Herringbone gears are used in the same applications as
spur gears and helical gears. In fact, they are also referred
to as double helical gears. The herringbone gear appears as
two opposite-hand helical gears butted against each other.
This complex configuration counterbalances the thrust
force of a helical gear. A herringbone gear is shown in
Figure 10.3e.

Bevel gears have teeth formed on a conical surface and
are used to transmit motion between nonparallel shafts.
Although most of their applications involve connecting per-
pendicular shafts, bevel gears can also be used in applica-
tions that require shaft angles that are both larger and
smaller than 90°. As bevel gears mesh, their cones have a
common apex. However, the actual cone angle of each gear
depends on the gear ratio of the mating gears. Therefore,

(a) Spur gear (b) Rack and pinion

(c) Internal gear

(g) Miter gears

(d) Helical gear

(f) Bevel gear(e) Herringbone gear

(h) Worm gear

FIGURE 10.3 Gear types.
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bevel gears are designed as a set, and replacing one gear to
alter the gear ratio is not possible. A pair of mating bevel
gears is illustrated in Figure 10.3f.

Miter gears are a special case of bevel gears where the
gears are of equal size and the shaft angle is 90°. A pair of
mating miter gears is illustrated in Figure 10.3g.

A worm and worm gear is used to transmit motion
between nonparallel and nonintersecting shafts. The worm
has one tooth that is formed in a spiral around a pitch cylin-
der. This one tooth is also referred to as the thread because it
resembles a screw thread. Similar to the helical gear, the
spiral pitch of the worm generates an axial force that must be
supported. In most applications, the worm drives the worm
gear to produce great speed reductions. Generally, a worm
gear drive is not reversible. That is, the worm gear cannot
drive the worm. A mating worm and worm gear are shown
in Figure 10.3h.

10.3 SPUR GEAR TERMINOLOGY

As stated, spur gears are the most common type of gear.
In addition, the terminology used to describe spur gears also
applies to the other types of gears. Therefore, a thorough dis-
cussion of spur gear features and terminology is necessary.

The principal gear tooth features for a spur gear are
illustrated in Figure 10.4.

The pitch circle of a gear is the circle that represents the
size of the corresponding friction roller that could
replace the gear. These corresponding rollers were
illustrated in Figure 10.2b. As two gears mate, their pitch
circles are tangent, with a point of contact on the line
that connects the center of both circles. The pitch circle
is shown in Figure 10.4.

The pitch point is the point of contact of the two pitch
circles.

The pitch diameter, d, of a gear is simply the diameter
of the pitch circle. Because the kinematics of a spur gear
are identical to an analogous friction roller, the pitch

diameter is a widely referenced gear parameter. However,
because the pitch circle is located near the middle of the
gear teeth, the pitch diameter cannot be measured
directly from a gear.

The number of teeth, N, is simply the total number of
teeth on the gear. Obviously, this value must be an
integer because fractional teeth cannot be used.

The circular pitch, p, is the distance measured along
the pitch circle from a point on one tooth to the corre-
sponding point on the adjacent tooth of the gear. The
circular pitch can be calculated from the number of
teeth and the pitch diameter of a gear. The governing
equation is

(10.1)

The base circle of a gear is the circle from which the
curved shape of the gear tooth is constructed. Details on
the generation of the curved tooth profile are presented
in the following section.

The base diameter, db, is the diameter of the circle from
which the gear tooth profile is derived. The base circle is
thoroughly explained in Section 10.4.

The face width, F, is the length of the gear tooth parallel
with the shaft axis.

The addendum, a, is the radial distance from the pitch
circle to the top of a gear tooth.

The dedendum, b, is the radial distance from the pitch
circle to the bottom of a gear tooth.

The whole depth, hT, is the height of a gear tooth and is
the sum of the addendum and dedendum.

The clearance, c, is the amount that the dedendum
exceeds the addendum. This is the room between the
top of a gear tooth and the bottom of the mating gear
tooth.

The backlash, B, is the amount that the width of a tooth
space exceeds the thickness of a gear tooth, measured on
the pitch circle.

p =
pd

N

Face width (F)

Face

FlankAddendum (a)

Dedendum (b)

Dedendum circle

Addendum circle

Pitch circle

Fillet radius

Tip radius

Tooth ThicknessPitch Diameter (d)

Circular pitch (p)

FIGURE 10.4 Spur gear tooth features.



TABLE 10.1 Standard Diametral Pitches

Coarse Pitch Fine Pitch

2 6 20 80

2.25 8 24 96

2.5 10 32 120

3 12 40 150

3.5 16 48 200

4 64
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The diametral pitch, Pd, or simply pitch, actually refers
to the tooth size and has become a standard for tooth
size specifications. Formally, the diametral pitch is the
number of teeth per inch of pitch diameter.

(10.2)

The diametral pitch is a commonly referenced gear
parameter in the U.S. Customary Units. Again, it is a relative
measure of the size of a gear tooth. The standard tooth sizes
and their diametral pitches are shown in Figure 10.5.
Although mating gears can have different diameters and
number of teeth, mating gears must have the same diametral
pitch. This should be obvious from the fact that the diame-
tral pitch is a measure of tooth size.

The diametral pitch cannot be measured directly from
a gear; yet, it is an extremely common referenced value.
Theoretically, it is possible to produce almost any size gear
teeth, but in the interest of standardized tooling, the
American Gear Manufacturer’s Association (AGMA) desig-
nated preferred diametral pitches. These standardized
pitches are shown in Table 10.1. Although no physical
significance exists, preference for standard diametral

Pd =
N

d

pitches is given to even integers. Sheet-metal gauges that
measure the standard diametral pitches are available. The
units of diametral pitch are the reciprocal of inches (in.�1);
yet it is not customary to specify units when expressing
numerical values.

The module, m, is a commonly referenced gear parame-
ter in the SI unit system. The module is also a relative
measure of tooth size. It is defined as the ratio of pitch diam-
eter to the number of teeth in a gear.

(10.3)

The module is also a relative measure of tooth size and
is theoretically the reciprocal of the diametral pitch.
However, because it is referenced in the SI system, the
module has units of millimeters. Therefore, the module
and diametral pitch are not numerically reciprocal. The rela-
tionship between diametral pitch and module accounting
for units is

(10.4)

As with the diametral pitch, tooling for commercially
available metric spur gears is stocked in standardized
modules. Common values are shown in Table 10.2.

m =
25.4

Pd

m =
d

N

3456

8
10

12
16

20243248

FIGURE 10.5 Standard tooth sizes.

TABLE 10.2 Standard Metric Modules

1 4 16

1.25 5 20

1.5 6 25

2 8 32

2.5 10 40

3 12 50
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Pressure angle, φ

Pitch circle

Pitch circle

Pitch line

Base circle

Base circle
Line of centers

Pressure line

FIGURE 10.6 Pressure angle.

Substituting equations (10.2) and (10.3) into (10.1), the
circular pitch can also be expressed as

(10.5)

The pressure angle, φ, is the angle between a line tangent
to both pitch circles of mating gears and a line perpendicular
to the surfaces of the teeth at the contact point. The line
tangent to the pitch circles is termed the pitch line. The
line perpendicular to the surfaces of the teeth at the contact
point is termed the pressure line or line of contact. Therefore,
the pressure angle is measured between the pitch line and the
pressure line. The pressure angle is illustrated in Figure 10.6.

The pressure angle affects the relative shape of a gear
tooth, as shown in Figure 10.7. Although gears can be man-
ufactured in a wide range of pressure angles, most gears are
standardized at 20° and 25°. Gears with 141⁄2° pressure
angles were widely used but are now considered obsolete.
They are still manufactured as replacements for older gear
trains still in use. Because the pressure angle affects the
shape of a tooth, two mating gears must also have the same
pressure angle.

Recall that forces are transmitted perpendicular to the
surfaces in contact. Therefore, the force acting on a tooth is
along the pressure line. As is discussed in the next section, gear
teeth are shaped to maintain a constant pressure angle during
engagement. Gears with smaller pressure angles efficiently
transfer torque and apply lower radial loads onto the shaft and
supporting bearings. However, as the pressure angles are
reduced, a greater tendency exists for gear teeth to interfere as
they engage.

p =
pd

N
=
p

Pd
= pm

10.4 INVOLUTE TOOTH PROFILES

In order to achieve smooth motion, a gear tooth must have
a shape that keeps the driven gear rotating at a constant
velocity throughout the engagement and disengagement
process. Stated more concisely, gears need to have a
constant velocity ratio. This condition requires that the
path of gear tooth contact is along a straight line. That line
must also intersect the point that is common to both pitch
circles. Figure 10.8 illustrates two mating teeth at three
intervals of the engagement process. Notice that the
contact point traces a straight line, termed the contact line.
This line also intersects the point that is tangent to both
pitch circles, which is necessary for the gears to maintain a
constant velocity ratio.

Discovering a tooth shape that fulfils the condition is
not a trivial task; however, several forms have been identi-
fied as adequate candidates. Of the possible shapes, the
involute of a circle has become standard for most gear
applications. An involute shape is constructed by unwind-
ing a taut wire from a base circle with diameter db. The path
traced by the end of the wire is termed the involute curve of
a circle. An involute profile is illustrated in Figure 10.9a. A
segment of this involute curve is then used to form a gear
tooth profile.

For an involute profile, the contact line is identical to
the pressure line, as described in the previous section. The
pressure angle, or inclination of the contact line, is deter-
mined from the segment of involute curve used for the
gear tooth. The pressure angle increases as the distance
between the base circle and the pitch circle increases. This
is shown in Figure 10.9b. The relationship between the

Pitch

Base

circle

φ = 14½� φ = 20� φ = 25� 

circle

Pitch

Base

circle

circle

Pitch

Base

circle

circle

FIGURE 10.7 Pressure angle influence on tooth shapes.
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Pitch
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Small
pressure
angle

Large
pressure
angle

db

(b)

Pitch
circle

FIGURE 10.9 Involute gear tooth.

pressure angle, pitch diameter, and base circle diameter is
expressed by

(10.6)

Because the definition of an involute extends only from
a base circle, any portion of tooth profile inside the base
circle is not an involute. It is common to machine this
portion as a radial line and a fillet to the dedendum circle.
The portion of the tooth inside the base circle is not
designed to be contacted by a mating gear tooth. Such
contact would result in interference.

The most serious drawback to using involute gear tooth
profiles is the possibility of interference between the tip of
the gear tooth and the flank of the mating tooth. This occurs
when the smaller gear has a low number of teeth. In certain
circumstances, the gear tooth form can be changed from the
full-depth shape of Figure 10.9 to avoid interference.
Interference and employing alternate profiles are discussed
in Section 10.6.3.

db = d  cosf

Driver gear
(pinion)

Driven gear

Contact line
or pressure line

Base
circle

Pitch
circle

Addendum
circle

Base
circle

Pitch
circle

Pitch line

Pressure angle, φ

Addendum
circle

Center distance, C

Line of centers

3 2 1

FIGURE 10.8 Gear mating process.
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EXAMPLE PROBLEM 10.1

A 20° full-depth, involute spur gear with 35 teeth has a diametral pitch of 10. Determine the diameter of the pitch cir-

cle, the circular pitch, and the base circle.

SOLUTION: 1. Calculate the Pitch Diameter

The pitch diameter can be computed by rearranging equation (10.2).

2. Calculate the Circular Pitch

The circular pitch can be computed from equation (10.5).

3. Calculate the Base Circle Diameter

The base circle can be computed directly from equation (10.6).

This is the diameter of the circle where the involute shape originates. It is not an apparent feature when inspecting an

actual gear.

db = d cos f = 3.5  cos(20°) = 3.289 in.

p =  
p

Pd
 =  

p

(10 in.-1)
 = 0.314 in.

d =  
N

Pd
 =  

35

10
 = 3.5 in.

10.5 STANDARD GEARS

Gears can be manufactured using a variety of processes. For
metal gears, the most common processes are cutting on
shapers or milling machines, casting, and forming through
powder-metallurgy processes. Plastic gears are typically
injection molded. The reader is referred to sources dedi-
cated to gear manufacture for details on the individual
processes [Ref. 13].

Because the majority of processes utilize dedicated
tooling, which is unique to each gear size, it is economically
desirable to standardize the gear sizes. Standardized gears are
readily available in most industrial equipment catalogs. These
gears are sold interchangeably and can mesh with other gears
having the same diametral pitch and pressure angle. Of
course, for this to be accomplished, the manufacturers must
follow a standard convention to form the details of the gear
tooth profile. The AGMA is the primary organization that
oversees this standardization scheme. It is a full-service trade
association representing about 400 manufacturers and users
of gears and gearing products and suppliers of equipment.

As stated, any two involute gears with the same diametral
pitch and pressure angle will mate. Therefore, gear teeth
have been standardized based on the diametral pitch and pres-
sure angle. As mentioned in Section 10.3, standard pressure
angles are 141⁄2°, 20°, and 25°. The 141⁄2° pressure angle is
becoming obsolete and is used mainly for a replacement gear.

The diametral pitch is a measure of tooth size. In appli-
cations where the transmitted forces are high, larger teeth,
having smaller values of diametral pitch, are required. Gears

TABLE 10.3 AGMA Full-Depth Gear Tooth
Specifications

Coarse Pitch Fine Pitch
Tooth Feature (Pd 20)< (Pd 20)»
Pressure angle,F 141⁄2° or 20° or 25° 20°

Addendum, a 1.000

Pd

1.000

Pd

Dedendum, b 1.250

Pd
0.002 +  

1.2

Pd

Working depth, hk 2.000

Pd

2.000

Pd

Whole depth, ht 2.250

Pd
0.002 +  

2.200

Pd

Circular tooth thickness, t 1.571

Pd

1.571

Pd

Fillet radius, rf 0.300

Pd

not standardized

Min. clearance, c 0.250

Pd
0.002 +  

0.200

Pd

Clearance (ground tooth), c 0.350

Pd
0.002 +  

0.350

Pd

Min top land width 0.250

Pd

not standardized

AGMA standard 201.02 207.04

Face width 12

Pd

12

Pd
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EXAMPLE PROBLEM 10.2

Consider the 20° full-depth, involute spur gear, with 35 teeth and a diametral pitch of 10, from Example Problem 10.1.

Determine the diameter of the addendum circle, dedendum circle, and the clearance.

SOLUTION: 1. Calculate the Addendum

The addendum circle is the outer diameter of the gear. The addendum is the distance from the pitch circle on a

gear tooth to the top of the tooth. The standard distance for this gear can be computed from the equations in

Table 10.3.

2. Calculate the Addendum Diameter

Notice that this is the distance between the radii of the pitch circle and the addendum circle. Therefore,

the diameter of the addendum circle is offset a distance, a, on both sides of the pitch circle. In Example

Problem 10.1, the pitch diameter is 3.5 in. Therefore, the diameter of the addendum circle can be 

computed as

3. Calculate the Dedendum Diameter

In a similar fashion, the dedendum is the distance between the radii of the pitch circle and the dedendum circle.

Therefore, the dedendum can be computed as

and the dedendum circle diameter is

4. Calculate the Amount of Noninvolute Profile on the Tooth

Notice that the base circle diameter from this example problem is 3.289 in. Comparing this to the dedendum

circle reveals that a short portion of the gear tooth profile is inside the base circle. On a radial basis, the length of

this short portion of tooth profile is determined by

Recall that the definition of an involute extends only from a base circle. This short portion of tooth profile is not

an involute and should not be contacted by the mating gear tooth.

5. Calculate the Clearance

Finally, the clearance is the amount that the dedendum exceeds the addendum. This is the room between the top

of a gear tooth and the bottom of the mating gear tooth. The standard distance for this gear can be computed

using the equations in Table 10.3.

Notice that the clearance is greater than the distance of the noninvolute portion of the gear tooth. Thus, contact

between gear teeth on this portion is not expected.

c =
0.25

Pd
=

0.25

10
= 0.025 in.

Noninvolute radial length =
(3.289)

2
-

(3.250)

2
= 0.019

db = d - 2b = 3.5 - 2(0.125) = 3.25 in.

b =
1.25

Pd
=

1.25

10
= 0.125 in.

da = d + 2a = 3.5 + 2(0.100) = 3.7 in.

a =
1

Pd
=

1

10
= 0.100 in.

are used in a great range of applications from mechanical
watches with low forces to large steel-rolling mills with
extremely large forces. Therefore, a wide range of diametral
pitches must be available. The standardized values of diame-
tral pitch were given in Table 10.1.

Most gear tooth features, as identified in Section 10.3
and Figure 10.3, are standardized relative to the diametral

pitch and pressure angle. The governing relationships are
given in Table 10.3. These relationships are maintained by
AGMA. AGMA revises and publishes new standards every
year, most of which are certified by the American
National Standards Institute (ANSI). AGMA standards
strongly influence both the American and the world
marketplaces.
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Small drive gear

Large driven gear

FIGURE 10.10 Concrete mixer for Example Problem 10.3.

In practice, the manufactured profile of the gear teeth
will deviate from the theoretical form just discussed.
Composite error accounts for manufacturing imperfec-
tions on the tooth profile and the tooth-to-tooth spacing.
AGMA [Standard 2000-A88] defines a spectrum of quality
indexes ranging from the lowest (3) to the highest (16) pre-
cision. The velocity of the mating gear teeth, which will be
discussed in Section 10.7, is one factor that determines the
required quality. Obviously, the cost of a gear will be a func-
tion of this quality.

10.6 RELATIONSHIPS OF GEARS IN MESH

Two gears in contact were shown in Figure 10.3. As two gears
mesh, the smaller gear is commonly termed the pinion and
the larger is referred to as the bull gear or simply the gear.
Recall that in order for two gears to mate, they must have the
same diametral pitch and pressure angle. Relationships of
two mating gears are discussed in the following sections.

10.6.1 Center Distance

The center distance, C, is defined as the center-to-center
distance between two mating gears. This is also the distance

between the shafts that are carrying the gears. For the
common configuration of external gears (Figure 10.3), the
distance can be written as

(10.7)

because

Equation (10.7) can be rewritten as

(10.8)

For internal gears (Figure 10.3c), the center distance is
the difference in the pitch radii and can be written as

(10.9)Cinternal gears = r2 - r1 =
(d2 - d1)

2
=

(N2 - N1)

2Pd

Cexternal gears =
(N1 + N2)

2 Pd

d =
N

Pd

Cexternal gears = r1 + r2 =
(d1 + d2)

2

EXAMPLE PROBLEM 10.3

Two 5-pitch, 20° full-depth gears are used on a small construction site concrete mixer. The gears transmit power from

a small engine to the mixing drum. This machine is shown in Figure 10.10. The pinion has 15 teeth and the gear has

30 teeth. Determine the center distance.

SOLUTION: 1. Calculate Pitch Diameters

The pitch diameters of both gears can be determined from equation (10.2).

d1 =
N1

Pd
=

15

5
= 3.0 in.



Gears: Kinematic Analysis and Selection 269

2. Calculate the Center Distance

Because these gears are external, the center distance can be found from equation (10.7).

3. Verify Center Distance

Of course, equation (10.8) can be used to directly calculate the center distance from the information given.

C =
(N1 + N2)

2Pd
=

(15 + 30)

2(5)
= 4.5 in.

C =
(d1 + d2)

2
=

(3.0 in. + 6.0 in.)

2
= 4.5 in.

d2 =
N2

Pd
=

30

5
= 6.0 in.

10.6.2 Contact Ratio

The contact ratio, mp, is the average number of teeth that are in
contact at any instant. Obviously, the contact ratio must
exceed 1 because contact between gears must not be lost. In
practice, contact ratios should be greater than 1.2. Robust
designs have contact ratios of 1.4 or 1.5. To illustrate the
principle, a contact ratio of 1.2 indicates that one pair of teeth
is always in contact and a second pair of teeth is in contact 20
percent of the time.

Greater contact ratio values result in smoother action
because another gear tooth shares the load for a longer
duration during the engaging/disengaging process. In
addition, with more teeth sharing the load, greater power
may be transmitted. However, the most direct manner in
which the contact ratio can be increased is to use larger
gears. This is in direct contrast to most design goals of
compactness.

Numerically, contact ratio can be expressed as the length
of the path of contact divided by the base pitch, pb. The base
pitch, in turn, is defined as the distance between corresponding

points of adjacent teeth, measured on the base circle. The base
pitch can be computed with the following:

(10.10)

Of course, the path of the contact point, of involute gear
teeth, is a straight line (Section 10.4). The length of this con-
tact path, Z, is derived by the intersections of the respective
addendum circles and the contact line. This length is derived
[Ref. 9] as

(10.11)

Thus, an expression for the contact ratio, in terms of the
gear tooth geometry, can be given as

(10.12)mp =
Z

pb

+ 3(r1 + a1)2 - (r1 cosf)2 - r1 sinf

Z = 3(r2 + a2)2 - (r2 cosf)2 - r2 sinf

pb =
pd1 cosf

N1
=
pd2 cosf

N2

EXAMPLE PROBLEM 10.4

For the concrete mixer gears described in Example Problem 10.3, determine the contact ratio.

SOLUTION: 1. Calculate the Basic Tooth Properties

The pitch radii of both gears can be determined from the pitch diameters.

From Table 10.3, the addendum for 20° full-depth teeth is

a =
1

Pd
=

1

5
= 0.20 in.

r2 =
d2

2
=

6.0 in.

2
= 3.0 in.

r1 =
d1

2
=

3.0 in.

2
= 1.5 in.



TABLE 10.4 Gear Teeth Combinations to Ensure No Interference

� = 14° � = 20° � = 25°

Number of Pinion
Teeth

Maximum Number 
of Gear Teeth

Number of Pinion
Teeth

Maximum Number 
of Gear Teeth

Number of Pinion
Teeth

Maximum Number of
Gear Teeth

< 23 Interference < 13 Interference < 9 Interference

23 26 13 16 9 13

24 32 14 26 10 32

25 40 15 45 11 249

26 51 16 101 12 q

27 67 17 1309

28 92 18 q

29 133

30 219

31 496

32 q
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10.6.3 Interference

As mentioned earlier, the most serious drawback with using in-
volute gear tooth profiles is the possibility of interference. Gear
teeth have involute profiles between the base circle and the ad-
dendum circle. When a gear with few teeth and small pressure
angles is constructed, the dedendum circle is considerably
smaller than the base circle of the involute. Therefore, the tooth
between the base circle and the dedendum is not an involute. If
the mating gear tooth were to contact this portion of the tooth,
the fundamental condition for constant velocity ratio would be
violated. This condition is termed interference and, as it occurs,
the teeth can exhibit drastic noise, vibration, and wear.

Interference is induced as designers attempt to make
gear assemblies compact by using too few teeth on the gears.
Interference commonly occurs when a small gear mates
with a much larger one. A relationship that can be used to

determine the necessary number of teeth in the gear to avoid
interference has been derived [Ref. 9]. Equation (10.13)
determines the largest number of teeth in the gear to ensure
no interference. The relationship is given as a function of
the number of teeth in the mating pinion, along with the
pressure angle and addendum size.

(10.13)

where k is defined from the addendum relation

Equation (10.13) can be used to tabulate suitable
combinations of gears that avoid interference. These combi-
nations are given in Table 10.4.

a =
k

Pd

N2 6  
{N1

2
 sin2

 f - 4k2}

4k - 2N1 sin2
 f

2. Calculate the Base Pitch

The base pitch is calculated from equation (10.10).

3. Calculate Contact Length

The length of the contact line is calculated from equation (10.11).

Then the contact ratio is determined from equation (10.12).

Although this ratio is acceptable, larger values (1.4–1.5) are desirable.

mp =  
Z

pb
=

0.9255 in.

0.6890 in.
 = 1.3433

= 0.9255 in.

+ 3(1.5 + 0.2)2 - (1.5 cos 20°)2 - 1.5 sin 20°

 = 3(3.0 + 0.2)2 - (3.0 cos 20°)2 - 3.0 sin 20°

 Z = 3(r2 + a2)2 - (r2 cos f)2 - r2 sin f + 3(r1 + a1)2 - (r1 cos f)2 - r1 sin f

pb =
pd1 cos f

N1
 =  
p(3.0  in.)cos(20°)

15
 = 0.6890 in.



Gears: Kinematic Analysis and Selection 271

Note from Table 10.4 that 141⁄2° pinions with more than
32 teeth can mate with any size gear without interference.
Also, any standard 141⁄2° pinion with fewer than 23 teeth
experiences interference, regardless of the size of the mating
gear. Such limits can be gathered for other standard pressure
angles.

It is apparent from Table 10.4 that an involute pinion
with a 25° pressure angle permits usage of gears with fewer
teeth without interference. As a result, more compact gear
assemblies can be produced. This is the primary reason for the
popularity of 25° teeth and the obsolescence of 141⁄2° teeth.

For the extreme case where a pinion can mate with
any other gear, N2 = q can be substituted into equation

(10.13). This provides the size of pinion that can mate
with any gear. As already mentioned, a 141⁄2° pinion with
32 teeth exhibits such properties. Once N2 = q is substi-
tuted, the following relationship is derived:

(10.14)

It should be noted that a gear with N2 = q would also
have an infinite pitch radius. This is the concept behind a
rack, as shown in Figure 10.3d. Thus, equation (10.14) must
be met to ensure that a gear mates with a rack and avoids
interference.

N1 7
2k

sin2f

EXAMPLE PROBLEM 10.5

For the gears of the concrete mixer described in Example Problem 10.3, determine whether interference is a

concern.

SOLUTION: 1. Use Interference Table to Check Criteria

From Table 10.4, it is observed that a 15 tooth pinion, with 20° full-depth teeth, cannot mate with a gear with more

than 45 teeth without interference. With only 30 teeth, interference is not a foreseeable problem.

2. Use Interference Equation to Check Criteria

The same result can be obtained from equation (10.13). From Table 10.3, the addendum is

Therefore,

Equation (10.13) can be used to check for interference problems.

The number of teeth on the driven gear, 30, is less than the limiting value of 45.48. Therefore, interference is not

a foreseeable problem.

N2 6 45.48

N2 6
{152 sin2 20° - 4(1)2}

4(1) - 2(15) sin2 20°

N2 6
{N1

2sin2
f - 4k 2}

4k - 2N1 sin2f

k = 1

a =
1

P

As previously mentioned, the tooth profile can be altered
from the full-depth form to allow the mating of small gears
with large gears. Of course, this minimizes the total size of a
gear system, which is a common design goal. AGMA has
included standard provisions for modifying involute profiles.

Stub teeth have been developed with a large pressure
angle and short teeth. The stub system has stronger teeth but
a working depth usually 20 percent less than full-depth teeth.

Another alternate system is the long-and-short adden-
dum system. For these profiles, the addendum on one gear is
increased and the addendum on the mating gear is decreased.

The result, of course, is that these nonstandard gears are
no longer interchangeable with standard gears. These
specialty gears are infrequently used in general machine

design and the details are beyond the scope of this text.
References should be consulted for discussions of nonstan-
dard profiles [Refs. 4, 9, 13, 15].

10.6.4 Undercutting

Interference can also be avoided by removing the material
on the gear tooth between the base circle and dedendum
circle. This is the portion of the gear tooth that is not an
involute and would interfere with the mating tooth. An
undercut gear tooth is shown in Figure 10.11.

Undercutting obviously reduces the strength of the gear,
thus reducing the power that can be safely transmitted. In
addition, it also reduces the length of contact, which reduces



thickness of a gear tooth because backlash is a measure of
the tooth thickness to the tooth space. Recommended
values of backlash are specified by AGMA [Standard 2002-
B88]. Although these values are somewhat conservative,
general power-transmitting gears have recommended
backlash values of

For commercially available stock gears, backlash values
are considerably higher to allow for greater flexibility in
applications. The backlash values of these gears are typically

Therefore, great care must be taken when specifying stock
gears for applications with reversing directions or frequent
start/stop sequences.

Backlash values are strongly influenced by any variation
in the center distance of the gears. Of course, in any produc-
tion environment, the center distance of two gears varies.
However, a deviation in the nominal center distance can be
purposely specified by the designer to adjust the backlash
to a desired range. The backlash variation ΔB that will be
encountered with a variation in the center distance ΔC can
be approximated by the following relationship:

(10.15)

Equation (10.15) can be used with equation (10.7) or
(10.8) to specify a center distance that produces backlash
values to be maintained in the range given. Reducing the
center distance reduces the backlash, and vice versa.

¢B L 2 (¢C )tan f

0.3

Pd
6 B stock gears 6

0.5

Pd

0.05

Pd
6 B recommended 6

0.1

Pd
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the contact ratio and results in rougher and noisier gear
action. Therefore, undercutting should be avoided unless the
application absolutely requires a compact gearset. In these
cases, advanced kinematic and strength analyses and experi-
ments are necessary to verify proper operation.

10.6.5 Backlash

As stated in Section 10.3, backlash is the amount that the
width of a tooth space exceeds the thickness of a gear tooth,
measured on the pitch circle. In more practical terms, it is
the amount that a gear can turn without its mating gear
turning. Although backlash may seem undesirable, some
backlash is necessary to provide for lubrication on the gear
teeth. Gears that run continuously in one direction can actu-
ally have considerable backlash. Gears that frequently
start/stop or reverse direction should have closely controlled
backlash.

A nominal value of backlash is designed into a gear
tooth profile. The amount of backlash determines the

Undercut to avoid interference
(occurs in highest stress area)

Standard gear
tooth profile

FIGURE 10.11 Undercut gear tooth.

EXAMPLE PROBLEM 10.6

The gears for the concrete mixer described in Example Problem 10.3 are catalog items with a designed backlash of 0.4/Pd.

Specify a center distance that reduces the backlash to an AGMA-recommended value of 0.1/Pd.

SOLUTION: 1. Calculate Designed Backlash

2. Calculate Recommended Backlash

3. Calculate the Adjusted Center Distance

Rearranging equation (10.15) gives

From Example Problem 10.3, the nominal center distance was determined as 4.5 in. Therefore, to adjust the

backlash value, the center distance should be reduced to

Cadjusted = 4.5 - 0.0824 = 4.4176 in.

¢C L
¢B

(2 tanf)
=

(0.02 - 0.08)

2 tan(20°)
= 0.0824 in.

Brecommended =
0.1

Pd
=

0.1

5
= 0.02 in.

Bdesigned =
0.4

Pd
=

0.4

5
= 0.08 in.
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It should be emphasized that reducing the center distance will produce an overly tight mesh and may produce

excessive noise, overheating, and structural overload. However, some applications require minimal backlash. Of

course, testing should be conducted to confirm the design.

10.6.6 Operating Pressure Angle

As mentioned in preceding sections, the pressure angle
defines the line of action of the force onto the gear teeth. The
designated pressure angle is cut or formed into the gear
tooth and affects the actual shape of the tooth (Figure 10.7).

It should be mentioned that as the center distance of the
mating gears deviates from the nominal value, the actual
pressure angle during operation differs from the designated
value. In other words, two 20° gears may actually have a
greater pressure angle during operation by increasing the

center distance from the nominal value. The relationship
that can be used to determine the amount of variance is
derived [Ref. 9] as

(10.16)

Applications that require precise calculation of the
actual force being transmitted should use this operating
pressure angle. This reflects the actual performance of the
gear forces.

cosfoperating = e Cnominal

Coperating
f cosfnominal

EXAMPLE PROBLEM 10.7

For the gears of the concrete mixer described in Example Problem 10.3, determine the operating pressure angle when

the center distance is measured at 4.4176 in. as in Example Problem 10.6.

SOLUTION: From the numbers in Example Problem 10.6 and equation (10.16), the following can be determined:

and

foperating = 16.82°

cosfoperating = e Cnominal

Coperating
f cosfnominal = e 4.5

4.4176
f cos20° = 0.9572

10.7 SPUR GEAR KINEMATICS

A basic function of gears is to provide a constant velocity
ratio between their respective shafts. A pair of gears that has
a constant velocity ratio means that the driven gear main-
tains a uniform speed as long as the driver gear rotates at a
constant speed. This condition led to the development of the
involute tooth profile. A pair of mating spur gears is shown
in Figure 10.12.

Formally, the velocity ratio, VR, is defined as the angular
speed of the driver gear (gear 1) divided by the angular speed
of the driven gear (gear 2).

(10.17)

Because a ratio is valid regardless of units, the velocity
ratio can be defined in terms of revolutions per minute,
radians per time, or any other convenient set of rotational
velocity units. In practice, a velocity ratio of 3 would be indi-
cated as 3:1 and pronounced “three to one.” Likewise, a
velocity ratio of 1/3 would be indicated as 1:3 and
pronounced “one to three.”

VR =
vdriver

vdriven
=
v1

v2

The pitch line velocity, vt, is defined as the magnitude of
the velocity of the pitch point of the two mating gears. This
velocity is also illustrated in Figure 10.12. It should be appar-
ent that the pitch line velocity of both gears is identical
because one gear tooth pushes the mating tooth. Therefore,
the pitch line velocity is a linear measure and can be related

Gear   2

d2d1

C

Pinion

r1

vt (pitch point velocity)

r2

1

1
2ω

ω

FIGURE 10.12 Kinematics of meshing gears.



to the rotational velocities of the gears and their pitch radii
using equation (6.5).

(10.18)

Note that, as in Chapter 6, the angular velocity in this equa-
tion must be specified in radians per unit time.

Combining equations (10.17) and (10.18) gives the
following relation:

Introducing the pitch diameters,

and introducing the diametral pitch and number of teeth,

Because the diametral pitch of the two gears must be identi-
cal for the teeth to mate, Pd can be eliminated from the
previous equation, yielding

d2

d1
=

N2

Pd

N1

Pd

= VR

d2

d1
=

(2r2)

(2r1)
=

r2

r1
= VR

v1

v2
=

r1

r2
= VR

vt = r1v1 = r2v2 Collecting all the preceding relationships yields a
comprehensive expression for the velocity ratio.

(10.19)

An algebraic sign convention designates the relative
direction of gear rotations. In the typical external gearset, the
shaft centers are on opposite sides of the common tangent
to the pitch circles, which dictates that the gears rotate in
opposite directions. To signify this fact, the velocity ratio is
given a negative value.

For internal gears, as shown in Figure 10.3c, the shaft
centers are on the same side of the common tangent to
the pitch circles. This dictates that the gears rotate in the
same direction. Thus, the velocity ratio is given a positive
value.

As discussed in the introduction, many gears are used in
applications where the speed from a power source must be
reduced. Therefore, it is typical to have velocity ratios greater
than 1. As can be seen from equation (10.17), this indicates
that the drive gear rotates faster than the driven gear, which
is the case in speed reductions.

VR =
v1

v2
=

r2

r1
=

d2

d1
=

N2

N1

d2

d1
=

N2

N1
= VR

274 CHAPTER TEN

EXAMPLE PROBLEM 10.8

A set of gears is used to reduce the speed from an electric motor to a shaft driving a grocery checkout conveyor

(Figure 10.13). The gear on the motor shaft is a 10-pitch pinion, has 15 teeth, and drives at 1800 rpm clockwise.

Determine the speed of the mating gear, which has 45 teeth. Also calculate the pitch line velocity.

Electric motor

1 = 1800 rpm
N1 = 15 teeth
ω

Grocery checkout conveyor

N2 = 45 teeth

FIGURE 10.13 Checkout conveyor for Example Problem 10.8.

SOLUTION: 1. Calculate the Velocity Ratio

The velocity ratio can be computed from equation (10.19).

In practice, this value would be commonly expressed as a 3:1 gear ratio. Note that the negative value indicates

that the gears rotate in opposite directions. This is consistent with external gears.

VR =
N2

N1
=

45

15
= -3
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2. Calculate the Rotational Velocity of the Driven Gear

The angular velocity of the driven gear can be computed by rearranging equation (10.17).

3. Calculate the Pitch Line Velocity

The pitch diameters are computed from equation (10.2).

The pitch line velocity can be computed from equation (10.18).

Converting units,

vt = 8482.3 in./min c 1ft

12 in.
d = 706.9 ft/min

vt = (0.75 in.)111309.7rad/min2 = 8482.3 in./min

v1 = (1800rpm) c 2p rad

1rev
d = 11309.7 rad/min

r1 =
1.5

2
= 0.75 in.

vt = r1v1

d2 =
N2

Pd
=

45

10
= 4.5 in.

d1 =
N1

Pd
=

15

10
= 1.5 in.

v2 =
v1

VR
=

1800rpm

(-3)
= -600rpm = 600 rpm, counterclockwise

As mentioned earlier, AGMA [Standard 2000-A88] has
defined a set of quality control numbers, ranging from 3 to 16.
These numerical ratings reflect the accuracy of the tooth
profile, the tooth-to-tooth spacing, and surface finish. The
pitch line velocity, vt, is one factor that determines the required
quality of the gear. Table 10.5 shows the recommended gear
quality for drives of precision mechanical systems.

TABLE 10.5 Recommended AGMA
Gear Quality

Pitch Line Speed
(ft/min, fpm)

Suggested Gear 
Quality (AGMA Rating)

0–800 6–8

800–2000 8–10

2000–4000 10–12

Over 4000 12–14

10.8 SPUR GEAR SELECTION

In a design situation, gears must be selected to accomplish a
desired task. Often this task is to achieve a desired velocity
ratio. Because the majority of gears in operation are AGMA
standard, the designer only needs to determine the key para-
meters. These parameters are the diametral pitch, pressure
angle, and number of teeth on each gear. Most other gear

TABLE 10.6 Suitable Diametral Pitches for 20°
Mild-Steel Gears with Standard
Face Width

Power Pinion rpm

hp 50 100 300 600 900 1200 1800 2400 3600

0.05 20 20 24 32 32 32 32 32 32

0.10 16 20 20 24 24 24 32 32 32

0.25 12 16 20 20 24 24 24 24 24

0.33 10 12 16 20 20 24 24 24 24

0.50 10 12 16 20 20 20 20 24 24

0.75 8 10 12 16 16 20 20 20 20

1.0 6 10 12 16 16 16 20 20 20

1.5 6 8 12 12 16 16 16 16 20

2.0 6 6 10 12 12 12 16 16 16

3.0 5 6 8 10 12 12 12 12 16

5.0 4 5 6 8 10 10 12 12 12

7.5 4 5 6 8 8 8 10 10 10

10 3 4 6 6 6 8 8 8 10

15 2 4 5 6 6 6 6 6 8

20 2 3 4 5 6 6 6 6 —

25 — 3 4 5 5 5 6 5 —

30 — 2 4 4 5 5 5 — —

40 — 2 3 4 4 — — — —

50 — — 3 4 4 — — — —



Conservative estimates of appropriate diametral
pitches can be readily obtained from most commercial gear
suppliers. The suppliers use the AGMA standards to deter-
mine the power-carrying capabilities of their stock gears.
From this data, an estimate of suitable diametral pitch can
be made with knowledge of the nominal power that is
transmitted by the gear pair, the rotational speed of the
pinion, and the gear material. As an example, such data are
presented in Table 10.6. This table gives suitable diametral
pitches of 20° mild-steel gears with standard face width,
based on pinion speed and the power transmitted. Similar
tables exist for alternate pressure angles and materials. The
use of these tables can be illustrated with an example.
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features can be determined using the AGMA standard rela-
tionships presented in previous sections.

10.8.1 Diametral Pitch

In the typical design situation, the first selection parameter is
an appropriate diametral pitch. Because the diametral pitch
is the relative size of a gear tooth, it stands to reason that the
transmitted forces and the gear material properties influence
this decision. Precise selection criteria involve calculation of
gear tooth stresses and contact pressures. The calculation
procedures are outlined in the AGMA specifications. This
level of detail is beyond the scope of this text.

EXAMPLE PROBLEM 10.9

A pair of mild-steel gears is to be selected for the concrete mixer described in Example Problem 10.3. The mixer is

driven by a 10-hp engine at a speed of 1800 rpm. Determine an appropriate diametral pitch.

SOLUTION: Mild-steel gears that are capable of handling 10 hp at a pinion speed of 1800 rpm are specified. From interference

criteria, Table 10.3 shows that an 18-tooth pinion with a pressure angle of 20° can mate with any other gear. Table 10.6

suggests that a diametral pitch of eight should be used to transfer the power. Therefore, an 18-tooth, mild-steel pinion

with a diametral pitch of eight should be suitable. For a more reliable selection, thorough strength analysis should be

performed.

10.8.2 Pressure Angle

The second parameter that should be selected is a pressure
angle. As mentioned, the standard values of pressure angles
are 141⁄2°, 20°, and 25°. Recall that 141⁄2° is recommended only
for replacement of other 141⁄2° gears on existing machinery.
Gears with pressure angles of 20° are well suited for general
applications. Gears with pressure angles of 25° can be
smaller without a concern for interference but have less
efficient force transmission. Therefore, they are best suited
for high-speed and lower-power applications.

10.8.3 Number of Teeth

Finally, the number of gear teeth should be determined.
This decision is typically influenced by the desired velocity

ratio. In general, smaller gears are preferred because they
minimize size, weight, and cost. Of course, the minimum
size is determined by interference criteria. The number
of teeth on a gear also must be an integer. Although
this statement seems obvious, it must be a constant
consideration, as obtaining an integer solution can be
difficult. In addition, gear manufacturers do not stock
gears with tooth increments of one. Table 10.7 lists typical
commercially available gears. A specific catalog, such as
Boston Gear, Browning Gears, or Martin Sprocket & Gear,
should be consulted when deciding on the number of
teeth, as more options than listed in Table 10.7 may be
available.

TABLE 10.7 Number of Teeth for commercially available stock gears 

32 Diametral Pitch

12 16 20 28 36 48 64 80 112

14 18 24 32 40 56 72 96 128

24 Diametral Pitch

12 18 24 30 42 54 72 96 144

15 21 27 36 48 60 84 120

20 Diametral Pitch

12 16 24 35 50 80 100 160

14 18 25 40 60 84 120 180

15 20 30 45 70 90 140 200
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EXAMPLE PROBLEM 10.10

A gear reducer is used on a concept for a small trolling motor for fishing boats. The gears must transmit 5 hp from an

electric motor at 900 rpm to the propeller at 320 rpm. Select a set of gears to accomplish this task.

SOLUTION: 1. Determine a Suitable Diametral Pitch and Pressure Angle

Because this application involves general gearing, a pressure angle of 20° is used. Referring to Table 10.6, an

estimate of a suitable diametral pitch is

2. Use the Required Velocity Ratio to Iterate and Determine Appropriate Number of Teeth

The required velocity ratio is

Rearranging equation (10.19) yields

Because a smaller assembly is generally preferred, values of pinion (driver) teeth are substituted, beginning

with the smallest possible pinion. Note that an iterative procedure must be used because the number of teeth

must be an integer. Using

Ndriver = 14,  Ndriven = 14 a 900

320
b = 39.38

Ndriver = 13,  Ndriven = 13 a 900

320
b = 36.56

Ndriven = Ndrivera vdriver

vdriven
b = Ndrivera 900rpm

320rpm
b = Ndriver12.81252

VR =
vdriver

vdriven
=

900rpm

320rpm
= 2.8125

Pd = 10

16 Diametral Pitch

12 16 24 32 48 64 96 160

14 18 28 36 56 72 128 192

15 20 30 40 60 80 144

12 Diametral Pitch

12 15 20 28 42 60 84 120 168

13 16 21 30 48 66 96 132 192

14 18 24 36 54 72 108 144 216

10 Diametral Pitch

12 16 24 30 45 55 80 120 200

14 18 25 35 48 60 90 140

15 20 28 40 50 70 100 160

8 Diametral Pitch

12 16 22 32 44 60 80 112

14 18 24 36 48 64 88 120

15 20 28 40 56 72 96 128

6 Diametral Pitch

12 16 24 33 48 66 96

14 18 27 36 54 72 108

15 21 30 42 60 84 120

5 Diametral Pitch

12 16 24 30 45 70 110 160

14 18 25 35 50 80 120 180

15 20 28 40 60 100 140

TABLE 10.7 Continued
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The smallest integer combination is 16 and 45 teeth. Also, from the preceding discussion, a suitable diametral

pitch is 10. Table 10.7 confirms that these gears are commercially available.

3. Calculate the Pitch Diameters and Center Distance

Finally, the corresponding pitch diameters and center distance are

Cexternal gears =
(d1 + d2)

2
=

(1.6 + 4.5)

2
= 3.05 in.

d2 =
N2

Pd
=

45

10
= 4.5 in.

d1 =
N1

Pd
=

16

10
= 1.6 in.

Ndriver = 16,  Ndriven = 16 a 900

320
b = 45

Ndriver = 15,  Ndriven = 15 a 900

320
b = 42.14

Often, gears must be selected to alter the velocity ratio
between shafts of an existing machine. A similar situation
occurs when the gear shafts must be spaced at a specific
distance due to other constraints. Both of these situations
place a limit on the center distance of the gears. In these
situations, the number of teeth selected for each gear may
not be the smallest possible, but those needed to fill the

distance between the shafts. Also, a larger tooth than neces-
sary can be used to help fill the distance between shafts.
Finally, some deviation from the target ratio may be needed
to specify standard gears. In general, the relationships
explained throughout this chapter can be used to specify
any gearset. The following examples illustrate some possible
scenarios.

EXAMPLE PROBLEM 10.11

A pair of gears is powered by an electric motor and used to drive the spindle of a lathe at 200 rpm. This drive

system is illustrated in Figure 10.14. The 1-hp motor will be replaced by a more efficient but higher-speed 

motor, rated at 600 rpm. To accomplish this alteration, a new set of gears must be selected that will maintain 

the spindle speed at 200 rpm. However, the gears are mounted in an elaborate housing that cannot be

modified. Therefore, the center distance between the gears must remain at 7.5 in. Specify a set of gears that can 

be used.

Motor

Gear

Pinion

Spindle

FIGURE 10.14 Lathe drive for Example Problem 10.11.
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SOLUTION: 1. Specify the Gear Ratio and Center Distance

The main parameters in this problem are the velocity ratio and the center distance. The required velocity

ratio is

Therefore,

which can be rewritten as

In addition, the center distance is

2. Determine the Required Diameter of the Gears

Using these relationships, appropriate pitch diameters can be algebraically determined by

Solving,

and

3. Determine an Appropriate Diametral Pitch

The problem now reduces to finding a suitable diametral pitch and number of teeth that result in the required

pitch diameters. Because this application involves general gearing, a pressure angle of 20° is used. Referring to

Table 10.6, an estimate of a suitable diametral pitch is 14. Therefore, only values of are considered. By

relating the pitch diameter, diametral pitch, and number of teeth, the following can be calculated:

Diametral pitches of 14 and lower are substituted into these two equations. Recall that only the

solutions having an integer number of teeth are valid. Iterating through all combinations, only three are

feasible.

The best alternative would depend on availability of standard gears, cost, and weight of the gearset. Notice that

the output speed will be exactly 200 rpm. In many situations, the driven speed cannot be exactly obtained. The next

problem illustrates such a case.

Ndriven = (VR)Ndriver = 3Ndriver = 3(3.75Pd) = 11.25Pd

Ndriver = (d1) (Pd) = 3.75Pd

Pd … 14

d2 = 3(3.75) = 11.25 in.

d1 = 3.75 in.

Cexternal gears =
d1 + d2

2
=

d1 + 3d1

2
=

4d1

2
= 7.5

Cexternal gears =
(d1 + d2)

2
= 7.5

d2 = 3d1

VR =
d2

d1
= 3.0

VR =
vdriver

vdriven
=

600 rpm

200 rpm
= 3.0

EXAMPLE PROBLEM 10.12

A gear-driven exhaust fan and housing is shown in Figure 10.15. To improve the air flow, the speed of the fan needs to

be increased to 460 rpm, but it must be as close to this speed as possible. The existing 3-hp motor will be used, which

operates at 1750 rpm. The housing should not be altered, which has a bearing system with a center distance of 9.5 in.

Select a set of gears for this application.
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SOLUTION: 1. Specify the Gear Ratio and Center Distance

As in Example Problem 10.11, the main parameters in this problem are the velocity ratio and the center distance.

The required velocity ratio is

This design scenario is complicated by a nonfractional velocity ratio. It will be impossible to obtain a driven

speed at exactly 460 rpm using an integer number of gear teeth. This is solved by rounding the velocity ratio to a

fractional value.

This rounding will yield a driven speed of

Assuming that the fan operates properly at this speed,

As before, the center distance is

2. Determine the Required Diameters for the Gears

Using these relationships, appropriate pitch diameters can be algebraically determined.

Solving,

and

d2 = 3.75(4) = 15 in.

d1 = 4 in.

Cexternal gears =
(d1 + 3.75d1)

2
=

4.75d1

2
= 9.5 in.

Cexternal gears =
(d1 + d2)

2
= 5.5 in.

d2 = 3.75d1

vdriven = avdriver

VR
b = a 1750rpm

3.75
b = 466 rpm

VR = a d2

d1
b L 3.75

VR =
vdriver

vdriven
=

1750rpm

460rpm
= 3.80

Pinion

Gear

Impeller

Motor

Housing

FIGURE 10.15 Exhaust fan for Example Problem 10.12.
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3. Determine an Appropriate Diametral Pitch

As before, the problem now reduces to finding a suitable diametral pitch and number of teeth that result in the

required pitch diameters. As mentioned, finding integer teeth is improbable because of the decimal velocity

ratio. An interactive solution is required.

Because this application involves general gearing, a pressure angle of 20° is used. Referring to

Table 10.6, an estimate of a suitable diametral pitch is 12. Therefore, only values of Pd ≤12 are considered.

By relating the velocity, pitch diameter, diametral pitch, and number of teeth, the following can be

calculated:

Diametral pitches of 12 and lower are substituted into these two equations. Recall that only solutions having

an integer number of teeth are valid. Calculating all combinations, three are feasible:

Other feasible combinations exist with gears having a diametral pitch lower than 8. Again, the best

alternative would depend on the availability of standard gears, cost, and weight of the gearset.

Ndriven = (VR)Ndriver = 3.75Ndriver = 3.75(2Pd) = 7.5Pd

Ndriver = (d1) (Pd) = 2Pd

10.9 RACK AND PINION KINEMATICS

A gear rack was briefly discussed in Section 10.2 and
illustrated in Figure 10.3b. It is used to convert rotational
motion of a pinion to translating motion of the rack. The
most noteworthy application is the rack-and-pinion steering
in automobiles. In this application, the rotational motion
from the steering wheel pushes the rear of the front wheels,
steering the car in a new direction; thus, the motion transfers
from rotational to linear. A rack and pinion can also be oper-
ated such that the linear motion of the rack rotates the pinion.

As briefly mentioned in Section 10.5.3, a rack is a special
case of a spur gear. As the diameter of a gear becomes very
large, the local profile of the teeth resembles a rack. In fact,
mathematically, a rack can be treated as a spur gear with an
infinite pitch diameter. Therefore, all geometric properties

that were introduced for spur gears also apply to a rack.
The only difference is that instead of referring to a pitch
diameter, a rack has a pitch line.

From a kinematic standpoint, the rotational motion of
the pinion and the linear motion of the rack can be related
through concepts presented in Chapter 6, equation (6.5).
The rack displacement equation can be given as

(10.20)

where Δθpinion must be specified in radians. The magnitude
of the linear velocity of the rack is given as

(10.21)vrack = vpinionrpinion =
(dpinion) (vpinion)

2

¢ Rrack = r (¢u) =
(dpinion)(¢upinion)

2

EXAMPLE PROBLEM 10.13

A rack and pinion is used on a drill press as shown in Figure 10.16. The 16-pitch pinion has 16 teeth. Determine the

distance that the handle (and pinion) must be rotated in order to advance the drill 0.75 in.

SOLUTION: From equation (10.20), the rotation of the pinion is desired.

And

Converting to degrees,

¢upinion = 1.5 rada 180°

p rad
b = 85.94°

 ¢upinion =
2(0.75 in.)

(1.0 in.)
= 1.5 rad

dpinion =
Npinion

Pd
=

16

16
= 1.0 in.

¢upinion =
2¢Rrack

dpinion
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Rack
Pinion

FIGURE 10.16 Rack and pinion drill press.

EXAMPLE PROBLEM 10.14

For the drill press described in Example Problem 10.13, determine the speed that the pinion must be rotated in order

to advance the drill at a rate of 12 in./min.

SOLUTION: From equation (10.21), the rotational speed of the pinion is determined by

Converting to revolutions per minute,

vpinion = 24 rad/min a 1rev

2p rad
b = 3.82 rpm

vpinion =
2vrack

dpinion
=

2112 in./min2
(10 in.)

= 24 rad/min

10.10 HELICAL GEAR KINEMATICS

Helical gears were introduced in Section 10.2 and illus-
trated in Figure 10.3d. The development of helical gears
actually resulted from machinists discovering that
stepped gears ran smoother and quieter than spur gears. A
stepped gear consisted of a number of thin spur gears
placed side by side, with each gear rotated a small angle
relative to the adjacent gear. The resulting stacked gear
did not exhibit the same large impact that two teeth
usually have when they come into contact (e.g., ordinary
spur gears).

Helical gears are the extreme case of stepped gears,
where the teeth are not stepped but inclined to the axis of the
gear. When used on parallel shafts, helical gears provide
overlapping tooth contact. That is, when the front edge of a
tooth comes into contact and begins to take the transmitted
load, the back edge of the previous tooth is also in contact.
This results in smoother and quieter operation, as a tooth
loads gradually. For these reasons, helical gears are often

preferred, even though they are more difficult to manufac-
ture and, consequently, more expensive.

Helical gears are designated as either right-hand or left-
hand, depending on the slope of the inclined teeth. A helical
gear with teeth that slope down toward the left is designated as
a left-hand helix. Conversely, a helical gear with teeth that slope
down toward the right is designated as a right-hand helix. The
upper helical gear illustrated in Figure 10.3d is a left-hand gear.

Helical gears can also be used on nonparallel shafts
without altering the inherent geometry. Such a configura-
tion is termed crossed helical gears. However, with crossed
configurations, the forces required to drive the gearset
increase dramatically with the shaft angle. Therefore, such
configurations are recommended for lower-power transmit-
ting applications.

The geometric and kinematic relationships for helical
gears are very similar to spur gears. The major difference
is the definition of a helix angle, , which is the angle of
inclination of the teeth. This angle is illustrated with the left-
hand helical gear shown in Figure 10.17.

f
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Transverse circular pitch, p

Normal circular pitch, pn

Helix angle, ϕ

A
B

A

B

FIGURE 10.17 Helical gear geometry.

A cross-sectional view through a helical gear, perpen-
dicular to the gear axis, appears identical to a spur gear. This
view is generated by section A–A in Figure 10.17, termed the
transverse section. The tooth geometric properties defined
for spur gears can be used for helical gears. To avoid confu-
sion, these properties are designated as transverse properties.
The transverse circular pitch, transverse pressure angle, and
transverse diametral pitch are identical to the corresponding
spur gear definitions. The transverse circular pitch is shown
in Figure 10.17.

Some additional geometric properties are defined by
viewing a cross section, normal to the gear teeth. This view
would be generated by section B–B in Figure 10.17, termed
the normal section.

The normal circular pitch, pn, is defined as the distance
between corresponding points on a gear, measured on the
pitch circle and normal to the gear tooth. The normal circu-
lar pitch is also shown in Figure 10.17. The normal circular
pitch can be related to the transverse circular pitch through
trigonometry.

(10.22)

The normal diametral pitch, Pd
n, is defined using the

normal circular pitch in a similar fashion as equation (10.5).

(10.23)

A normal module, mn, is similarly defined as

(10.24)

Also from trigonometry,

(10.25)

(10.26)

A normal pressure angle, θn, is also defined from the
tooth form in this normal view. The normal pressure angle

m =  
mn

cos f

Pd = Pd
n

 cos f

mn = ppn

Pd
n =  

p

pn

pn = p  cos  f

can also be related to the transverse pressure angle by the
following:

(10.27)

Helical gears are rarely used interchangeably and, there-
fore, no standard tooth systems exist like those described for
spur gears. The preferred dimensions are usually dependent
on the manner in which the helical gear is formed. When
the gear is cut through a hobbing operation, the normal
diametral pitch should conform to the standards listed in
Table 10.1. Conversely, when a gear is cut on a shaper, the
transverse diametral pitch should conform to values listed in
Table 10.1.

The helix angle for most gears varies between 15° and
45°. Because the teeth are at an angle to the shaft, a thrust
load is produced with mating helical gears. The thrust force
varies directly with the tangent of the helix angle, and there-
fore, larger helix angles require sufficient axial gear and shaft
support.

For parallel shaft applications, the velocity ratio
presented in equation (10.19) is also applicable to helical
gears. Two additional requirements, beyond those for spur
gears, for proper meshing of helical gears include:

1. The gears must have equal helix angles.

2. The helix on the two mating gears must be opposite
hand. That is, one gear must have a left-hand helix and
the other a right-hand one.

The presence of the helix angle also aids in the avoid-
ance of interference. An equation similar to equation (10.13)
has been derived for helical gears. Thus, the minimum num-
ber of pinion teeth that can be used, mating with any size
gear, without interference concerns is written as follows:

(10.28)

Values generated from this equation are condensed into
Table 10.8.

N1 7  
2k cos w

sin2
 f

tan f n = tan f cos f

TABLE 10.8 Minimum Helical Gear 
Teeth to Avoid Interference

Normal Pressure Angle, nF

Helix Angle 141⁄2° 20° 25°

0 (spur gear) 32 17 12

5° 32 17 12

10° 31 17 12

15° 29 16 11

20° 27 15 10

22.5° 25 14 10

25° 24 13 9

30° 21 12 8

35° 18 10 7

40° 15 8 6

45° 12 7 5
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EXAMPLE PROBLEM 10.15

In order to reduce the noise in a gear drive, two 12-pitch gears with 20 and 65 teeth are to be replaced with helical

gears. The new set of gears must have the same velocity ratio. Because the same housing will be used, the center

distance must also remain the same. Assume that the helical gears will be formed with a hob.

SOLUTION: 1. Calculate Desired Velocity Ratio and Center Distance

The original velocity ratio and center distance must be computed as follows:

2. Determine an Appropriate Diametral Pitch

Because the gears will be cut with a hob, the normal diametral pitch should conform to the standards listed in

Table 10.1. The original gears had a diametral pitch of 12; thus, it is assumed that the teeth have sufficient

strength. The helical gears then are selected with a normal diametral pitch of 12.

3. Determine Appropriate Number of Teeth

By substituting equation (10.22) into equation (10.7), the following calculations can be made:

Also,

Therefore,

which reduces to

This equation reveals that N1 must be less than 19.2 for this application. By trial, the following combinations are

considered in Table 10.9.

The first solution to generate integer numbers for both teeth will be used. A 16-tooth pinion and a 

52-tooth gear having a helical angle of 33.55° are selected. Notice that from the interference criteria in Table 10.8, a

normal pressure angle of either 20° or 25° can be used.

cos w =  
N1

19.2

(N1 + 3.25 N1)

24 cos w
 = 3.4

N2

N1
 = 3.25

Cexternal gears =  
(N1 + N2)

2Pd
n

 cos w
 =  

(N1 + N2)

2(12 cos w)
 = 3.4 in.

 Cexternal gears =  
(N1 + N2)

2Pd
 =  

(20 + 65)

2(12)
 = 3.4 in.

 VR =  
Ndriven

Ndriver
 =  

65

20
 = 3.25

TABLE 10.9 Iterations for Example Problem 10.15

Pinion Gear Normal Helix Diametral
Teeth Teeth Diametral Angle Pitch

N1 N2 Pitch P d
n w Pd

19 61.75 12 8.27 11.88

18 58.50 12 20.36 11.25

17 55.25 12 27.70 9.62

16 52 12 33.55 9.00
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10.11 BEVEL GEAR KINEMATICS

Bevel gears were introduced in Section 10.2 and illustrated
in Figure 10.3f. Bevel gears are used for transmitting motion
between two shafts that intersect. One of the most impor-
tant properties of a bevel gear arrangement is the shaft
angle, . The shaft angle is defined as the angle between the
centerlines of the supporting shafts. Common bevel gear
applications consist of shafts that intersect at right angles or
have a shaft angle of 90°.

As discussed in Section 10.1 and illustrated in Figure
10.2, spur gears exhibit the same kinematics as two friction
rollers. In a similar fashion, bevel gears can be replaced by
two friction cones. With this conical geometry, the depth
of the gear teeth tapers from the outside toward the mid-
dle. Most geometric tooth features used with spur gears,
such as the pitch diameter and addendum, apply to bevel
gears. This can be seen from the axial section of the two
mating bevel gears shown in Figure 10.18. Because the
tooth tapers, tooth features are measured at the outside
edge of the tooth.

The angular velocity ratio, as presented for spur gears
in equation (10.19), is also applicable to bevel gears. The
diametral pitch and pressure angle also have the same defi-
nition as spur gears and must be identical for bevel gears to
mate. The diametral pitch for bevel gears typically follows
the standard values as presented in Table 10.1. Most bevel
gears are made with a pressure angle of 20°; however, the
tooth form is usually not an involute due to the difficulty in
manufacturing. Alternate profiles have been developed,
have been trademarked by vendors, and serve as competi-
tive features.

In addition to diametral pitch and pressure angle, bevel
gears are classified by their pitch angle, . The pitch angle is
the generating angle of the cone upon which the gear is
constructed. The pitch angles are labeled for the two mating

g

©

gears shown in Figure 10.18. The pitch angle of each gear is a
function of the velocity ratio and can be given as

(10.29)

(10.30)

Because the pitch cone is a function of the velocity ratio,
a single bevel gear cannot be replaced to alter the ratio, as
was the case for spur gears. Thus, bevel gears are sold as a set.

In Figure 10.18, it is apparent that the sum of the pitch
angles for the two mating gears must equal the shaft angle.
Thus

(10.31)

A miter gear, as shown in Figure 10.3g, is a special case
of a bevel gear with a shaft angle of 90° and a velocity ratio of
1. Using equations (10.29) and (10.30), the pitch angle for
both miter gears equals 45°.

The mounting of bevel gears is critical. For ideal mating,
the apex of the cones for both gears must be at the same
location. Any deviation could cause excessive backlash or
interference. Due to the inherent geometry of bevel gears, at
least one gear must be attached to the end of a cantilevered
shaft. This configuration lends itself to excessive deflections,
which can also result in problems with backlash.

Axial thrust loads developed by mating bevel gears
always tend to separate the gears. This can contribute to shaft
deflection and must also be considered. Of course, the shaft
support bearings must also be configured to withstand this
thrust force.

© = gpinion + ggear

 tanggear =
sin ©

e cos © + aNpinion

Ngear
b f

 tangpinion =
sin ©

e cos © + a Ngear

Npinion
b f

Gear
pitch
angle
gear

Pinion pitch angle
           pinion

Face width

Addendum

Dedendum

Pitch
diameter

Shaft angle, Σ

FIGURE 10.18 Mating bevel gears.
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Single thread Double thread

FIGURE 10.19 Multiple thread concept.

EXAMPLE PROBLEM 10.16

A pair of bevel gears have 18 and 27 teeth and are used on shafts that intersect each other at an angle of 70°. Determine

the velocity ratio and the pitch angles of both gears.

SOLUTION: 1. Calculate Velocity Ratio

The velocity ratio can be computed from equation (10.17).

2. Calculate Pitch Angles

The pitch angles can be computed from equations (10.29) and (10.30).

ggear = tan-1 c sin(70°)

(cos70°) + 118/272 d = 42.98°

 tanggear =
sin ©

ccos © + aNpinion

Ngear
b d

gpinion = tan-1 c sin(70°)

(cos70°) + (27/18)
d = 27.02°

 tangpinion =
sin ©

ccos © + a Ngear

Npinion
b d

VR =
Ngear

Npinion
=

27teeth

18teeth
= 1.5

10.12 WORM GEAR KINEMATICS

A worm and worm gear is described in Section 10.2 and
illustrated in Figure 10.3h. A worm and worm gear is used to
transfer motion between nonparallel and nonintersecting
shafts. With a worm gearset, large velocity ratios can be
obtained in a rather limited space. The small gear is termed
the worm, and the larger is termed the worm gear, worm
wheel, or simply the gear.

The worm resembles a screw, and often the teeth on the
worm are referred to as threads (Figure 10.3h). Worms are
commonly available with single, double, and quadruple
threads. Thus, the number of worm teeth (threads), Nw, is an
important property. The concept of multiple threads super-
imposed on a single worm is illustrated in Figure 10.19.

attempt to provide a larger contact patch on which the forces
are transferred. The worm may also be cut with a concave
length so it better conforms to the round worm gear. When
both options are incorporated, the worm gearset is known as
double-enveloping and provides a larger contact patch and
greater power transmission. For such configurations, the
worm and worm gear are not interchangeable and thus are
sold as a set.

The worm gear is actually an extreme case of a helical
gear with a large helix angle, which wraps the tooth
around the gear. Therefore, the worm is described by all
the geometric properties of a helical gear given in Section
10.6. The values of diametral pitch typically conform
to the standards in Table 10.1. The pressure angles also
conform to the 141⁄2°, 20°, and 25° standards used with
helical gears. In practice, the pressure angle is also selected
based on the lead angle of the worm, as will be discussed
later.

The worm is described by the number of threads, the
worm pitch diameter, dw, the pitch, pw, and the lead angle, .
The worm pitch diameter is determined similar to that in
spur gears, as the diameter of the circle that remains tangent
to the pitch diameter of the worm gear. The worm pitch is
also similar to the definition for spur gears and is the dis-
tance between corresponding points on adjacent teeth
(threads). These worm geometric properties are illustrated
in Figure 10.20.

l

The tooth form of the worm gear is typically an invo-
lute. It is also common to cut the teeth concave across the
face so they better conform to the cylindrical worm. This
technique is termed enveloping worm gear teeth. It is an
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Also shown in Figure 10.20 is the lead angle, which is the
angle of inclination of the teeth (threads). It can be computed
from a trigonometric relationship to the other worm features.

(10.32)

For a mating worm gearset, the pitch of the worm must
be the same as the pitch of the worm gear. Thus, from
equation (10.1),

(10.33)pw = pgear =
p

Pd

tanl =
Nwpw

pdw

Pitch diameter

Double thread

Lead angle

Pitch

FIGURE 10.20 Worm geometry.

For shafts that are at 90°, which is the usual case, the
lead angle of the worm must equal the helix angle of the
worm gear.

The velocity ratio of a worm gearset is computed as the
number of teeth on the worm gear divided by the number of
threads of the worm.

(10.34)

This is also identical to the spur gear application.
In most gearsets, the worm is the driver, thereby making

the set a speed reducer. Most sets are irreversible in that the
worm cannot turn the gear because a substantial friction
force develops between the teeth. Irreversible drives are also
referred to as self-locking. Worms must have a lead angle
greater than approximately 10° to be able to drive the mating
worm gear. This would result in a reversible gearset, but it is
highly uncommon.

Although irreversibility may sound like a pitfall, distinct
advantages exist. For example, lifting equipment typically
requires that the load be held in an upward position, even as
the power source is removed, such as a motor being turned
off. Because the worm cannot rotate the worm gear, the load
is locked in an upright position. This braking action is used
in several mechanical devices, such as hoists, jacks, and
lifting platforms. For these cases, the strength of the teeth
and the predictability of friction must be analyzed to ensure
safety.

VR =
Ngear

Nw

EXAMPLE PROBLEM 10.17

A worm gearset is needed to reduce the speed of an electric motor from 1800 rpm to 50 rpm. Strength considerations

require that 12-pitch gears be used, and it is desired that the set be self-locking. Select a set that accomplishes this task.

SOLUTION: 1. Identify Appropriate Number of Teeth

The velocity ratio can be computed from equation (10.17).

When a single-thread worm is selected, the worm gear must have

From equation (10.33), and using a diametral pitch of 12, the pitch of the worm is determined by

2. Calculate the Size of the Gearset

Because self-locking is desired, a conservative lead angle of 5° is used. Equation (10.32) is used to determine the

following:

 tan 5° =
(1)(0.2618)

pdw

 tanl =
Nwpw

pdw

pw =
p

Pd
=
p

12
= 0.2618 in.

Ngear =
VR

Nw
=

(36)

(1)
= 36 teeth

VR =
vworm

vgear
=

1800rpm

50rpm
= 36
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10.13 GEAR TRAINS

A gear train is a series of mating gearsets. Gear trains are
commonly used to achieve large speed reductions. Many
mechanical power sources, such as engines, turbines,
and electric motors, operate efficiently at high speeds
(1800–10,000 rpm). Many uses for this power, such as garage
door openers, automotive drive wheels, and ceiling fans,
require low speeds (10–100 rpm) for operation. Therefore, a
desire to achieve large-velocity reductions is common, and
the use of gear trains is very common.

For example, it may be desired to reduce the speed of a
shaft from 1800 rpm to 10 rpm. Thus, a velocity reduction of
180:1 is required. If this reduction were attempted with one
gearset, equation (10.19) would reveal that the driven gear
would be 180 times larger than the drive gear. Obviously, the
driven gear would be tremendously large, heavy, and expensive.

A second, more logical option is to reduce the speed in
steps, through a series of gear pairs. This strategy cascades

the rotational velocities toward the desired output velocity.
This is exactly the logic behind gear trains.

When multiple gear pairs are used in a series, the
overall velocity ratio is termed a train value—TV. The
train value is defined as the input velocity to the gear train
divided by the output velocity from the train. This is
consistent with the definition of a velocity ratio. A train
value is the product of the velocity ratio of the individual
mating gear pairs that comprise the train. In equation
form, it is stated as

(10.35)

The algebraic sign resulting from the multiplication of
individual velocity ratios determines the relative rotational
direction of input and output shafts. Positive values reveal
that the input and output shafts rotate in the same direction,
and negative values indicate opposite rotation.

TV =
vin

vout
= (VR1) (VR2) (VR3) Á

2

3 5

4 6

7

FIGURE 10.21 Gear train for Example Problem 10.18.

Solving,

The pitch diameter of the worm gear is

Finally, the center distance is

C =
(dworm + dgear)

2
=

(1.0499 + 3.0)

2
= 2.0250 in.

dgear =
Ngear

Pd
=

36teeth

12
= 3.0 in.

dw = 1.0499 in.

EXAMPLE PROBLEM 10.18

A gear train is shown in Figure 10.21. The gears have the following properties:



Gears: Kinematic Analysis and Selection 289

Gear 2: N2 = 12 teeth and Pd = 12

Gear 3: d3 = 2.5 in.

Gear 4: N4 = 15 teeth

Gear 5: d5 = 3.0 in. and Pd = 10

Gear 6: d6 = 1.5 in. and Pd = 8

Gear 7: N7 = 32 teeth

Determine the rotational velocity of gear 7 as gear 2 drives at 1800 rpm counterclockwise. Also determine the distance

between the shafts that carry gears 2 and 7.

SOLUTION: 1. Calculate Consistent Gear Dimensions

In order to calculate the train value, consistent properties of the gears must be determined. For this problem,

gear pitch diameters are used and must be computed.

Gear 4 mates with gear 5 and must have an identical diametral pitch.

Likewise, gear 7 mates with gear 6 and must have an identical diametral pitch.

2. Calculate Velocities and Ratios

The train value can then be computed as

The speed of gear 7 can be determined through this train value.

The center distance between gears 2 and 7 can be determined by stacking the pitch radii from all gears between 2

and 7. This can be seen in Figure 10.21.

= a1 in.

2
b + a2.5 in.

2
b + a1.5 in.

2
b + a3 in.

2
b + a1.5 in.

2
b + a4 in.

2
b = 6.75 in.

C = r2 + r3 + r4 + r5 + r6 + r7

v7 =
v2

TV
=

1800  rpm

(-13.33)
= - 135 rpm = 135  rpm,cw

v2

v7
= TV

= a- 2.5  in.

1  in.
b a- 3  in.

1.5 in.
b a- 4 in.

1.5  in.
b = - 13.33

TV = (VR2-3) (VR4-5) (VR6-7) = a- d3

d2
b a- d5

d4
b a- d7

d6
b

d7 =
N7

Pd
=

32

8
= 4 in.

d4 =
N4

Pd
=

15

10
= 1.5 in.

d2 =
N2

Pd
=

12

12
= 1 in.

EXAMPLE PROBLEM 10.19

Design a gear train that yields a train value of +300:1. From interference criteria, no gear should have fewer than 15

teeth and, due to size restrictions, no gear can have more than 75 teeth.

SOLUTION: 1. Break Train Value into Individual Velocity Ratios

With the restrictions placed on gear size used in this train, the maximum individual velocity ratio is

determined by

As with all design problems, more than one possible solution exists. Because a train value is the

product of individual velocity ratios, one solution can be obtained by factoring the train value into 

VRmax =
N2

N1
=

75

15
= 5
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10.14 IDLER GEARS

Consider the gear train shown in Figure 10.22. Notice that
the middle gear mates with the small gear to form the first
ratio. The middle gear also mates with the large gear to form
a second ratio. As always, the train value can be computed as
the product of the velocity ratios.

alter the direction of the output motion, yet not affect the
magnitude of that motion. To illustrate this function,
consider an arrangement where gear 2 mates directly with
gear 4. The resulting train value would be

Thus, the idler gear serves to reverse the direction of the
output. As mentioned, the size of the idler gear does not influ-
ence the kinematics of the train. In practice, this idler gear can
be sized to conveniently locate the centers of the input and
output gears. Of course, because all three gears mesh, they
must have identical diametral pitches and pressure angles.

10.15 PLANETARY GEAR TRAINS

The gear trains presented in preceding sections all had gear
centers attached to fixed bodies. With planetary gear trains,
this restriction is removed. In these trains, a link that holds the
center of the gears is allowed to move. A planetary gear train,
which is also called an epicyclic train, is shown in Figure 10.23.

Planetary trains can be used to achieve large speed
reductions in a more compact space than a conventional
gear train. However, a greater benefit is the ability to readily
alter the train value. Because all links are capable of moving,
one can alter the train value by holding different gears or
carriers. In practice, switching the fixed link is accomplished
with brake or clutch mechanisms, thus releasing one link
and fixing another. For this reason, planetary gear trains are
very common in automotive transmissions.

Because the motion can resemble the planets rotating
about the sun in our solar system, the term planetary gear
train was applied to this system. Expanding on this compar-
ison, the center gear is called the sun. Gears that revolve
around the sun are called planets. A carrier holds the planet
gears in orbit around the sun. Finally, the train is commonly
encased in the internal gear termed the ring gear. These gears
are labeled in Figure 10.23.

TV = (-VR2-4) = -
d4

d2

2

2 in. dia.

6 in. dia.

8 in. dia.

3
4

FIGURE 10.22 Gear train with an idler gear.

values no greater than the maximum individual velocity ratios. For this problem, no factor can be greater

than 5.

Therefore, a gear train with gear pairs that have individual velocity ratios of –5, –5, –4, and –3 nets a train

value of 300. A negative value is used for the individual velocity ratios because it is desirable to use the more

common external gears.

2. Identify the Number of Teeth for Each Gear

In general, when using external gears that produce opposite rotations, an even number of gear pairs must be

used to produce a positive train value. Because the solution for this example has four gear pairs, the output rotation

occurs in the same direction as the input.

VR7-8 = - 3,use external gears with N7 = 15  andN8 = 45

VR5-6 = - 4,use external gears with N5 = 15  andN6 = 60

VR3-4 = - 5,use external gears with N3 = 15  andN4 = 75

VR1-2 = - 5,use external gears with N1 = 15  andN 2 = 75

TV = 300 = (-5)(-60) = (-5)(-5)(12) = (-5)(-5)(-4)(-3)

Notice that d3 appears in both the numerator and the
denominator. In this situation, the influence of the middle
gear is negated. This gear arrangement creates a train value of

Therefore, the train value is dependent only on the size
of the first and last gears. The diameter, or the number of
teeth, of the center gear does not influence the train value.
The center gear is termed an idler gear. Its function is to

TV = a -
d3

d2
b a -

d4

d3
b = +

d4

d2

TV = a- 6

2
b a-

8

6
b = +

8

2
= + 4

TV = (VR2-3)(VR3-4) = a- d3

d2
b a- d4

d3
b
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10.15.1 Planetary Gear Analysis by
Superposition

The motion of a planetary gear train is not always as intu-
itive as fixed-center trains. As gears and carriers rotate, the
motion can appear rather complex. To analyze the motion of
a planetary gear train, the method of superposition can be
used to “step through” the gear movements.

The method of superposition consists of the following:

Step One 

The first step is to relax the constraint on the fixed link and
temporarily assume that the carrier is locked. Turn the pre-
viously fixed gear one revolution and calculate the effect on
the entire train.

Step Two 

The second step is to free all constraints and record
the movement of rotating each link one revolution in the
opposite direction of the rotation in step one. As this motion
is combined with the motion in the first step, the superim-
posed motion of the fixed gear equals zero.

Step Three 

The motion of all links is determined by combining the
rotations from the first two steps. Finally, velocities are
proportional to the rotational movements.

Stated in general terms, this method seems complex.
However, it is rather straightforward. The method is best
illustrated with an example problem.

(a)

(b)

Planet gear (3)

Carrier (2)

Input shaft

Sun gear (1)

Ring gear (4)

Output shaft
(fastened to ring gear)

3

2

1

4

FIGURE 10.23 A planetary gear train.

EXAMPLE PROBLEM 10.20

A planetary gear train is illustrated in Figure 10.24. The carrier (link 2) serves as the input to the train. The sun

(gear 1) is the fixed gear and has 30 teeth. The planet gear (gear 3) has 35 teeth. The ring gear serves as the output from

the train and has 100 teeth. Determine the rotational velocity of all members of this gear train when the input shaft

rotates at 1200 rpm clockwise.

SOLUTION: 1. Complete Step 1

The first step is to temporarily fix the carrier then compute the motions of all gears as the previously fixed

gear rotates one revolution. Thus, the following can be determined:

Gear 1 rotates one revolution.

¢u1 = +1rev

N4 = 100 T

N3 = 35 T

N1 = 30 T

43

2

1

FIGURE 10.24 Planetary train for Example Problem 10.20.
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Gear 3 rotates (VR1–3) as much as gear 1.

Gear 4 rotates (VR3–4) as much as gear 3.

2. Complete Step 2

The second step rotates all links –1 revolution. This returns the sun gear to its original position, yielding a

net movement of zero.

3. Complete Step 3

The method of superposition involves combining these two motions, resulting in the actual planetary gear

train motion. Thus the rotations from both steps are algebraically added together. The two steps are summarized

in Table 10.10.

¢u4 = (VR3-4) (¢u3) = (VR3-4) (V1-3)(¢u1) = a+35

100
b a- 30

35
b (+1rev) = -0.3  rev

¢u3 = (VR1-3)(¢u1) = a- 30

35
b (+1rev) = - 0.857 rev

EXAMPLE PROBLEM 10.21

A planetary gear train is illustrated in Figure 10.25. The carrier (link 2) serves as the input to the train. The ring gear

(gear 1) is the fixed gear and has 120 teeth. The planet gear (gear 4) has 40 teeth. The sun gear (gear 3) serves as the

output from the train and has 30 teeth. Determine the rotational velocity of all members of this gear train when the

input shaft rotates at 1200 rpm clockwise.

SOLUTION: 1. Complete Steps 1–3

The first step is to temporarily fix the carrier. Then compute the motions of all gears as the previously fixed gear

rotates one revolution.

The second step rotates all links –1 revolution. This returns the ring gear to its original position, yielding a

net movement of zero.

The two steps are summarized in Table 10.11.

4. Determine Velocities of All Links

The velocities can be determined by using the ratios of angular displacements.

vring = a -1.3

-1
b vcarrier = (+1.3) (1200 rpm) = +1560rpm = 1560rpm, cw

vplanet = a -1.857

-1
b vcarrier = (+1.857)(1200rpm) = + 2228rpm = 2228rpm,cw

vsun = a ¢usun

¢ucarrier
b vcarrier = a 0

-1
b (1200rpm) = 0rpm

TABLE 10.10 Tabulating Planetary Gear Analysis
for Example Problem 10.20

Link Sun Planet Ring Carrier

Step 1:
Rotate with fixed carrier +1 -0.857 -0.3 0

Step 2:

Rotate all links -1 -1 -1 -1

Step 3:
Total rotations 0 -1.857 -1.3 -1
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2. Compute Velocities of All Links

The velocities can be determined by using the ratios of angular displacements.

vsun = a -5.0

-1
b  vcarrier = (+5.0) (1200 rpm) = + 6000 rpm = 6000  rpm, cw

vplanet = a +2.0

-1
 b  vcarrier = (-2.0) (1200 rpm) = - 2400 rpm = 2400 rpm, counterclockwise

vcarrier = 1200 rpm, clockwise

vring = a ¢uring

¢ucarrier
b  vcarrier = a 0

-1
b  (0  rpm) = 0  rpm

Gear 1 (ring)

Gear 3 (sun)

Gear 4 (planet)

Link 2 (carrier)

FIGURE 10.25 Planetary train for Example Problem 10.21.

TABLE 10.11 Solution Steps for Example Problem 10.21

Link Sun (Gear 3) Planet (Gear 4) Ring (Gear 1) Carrier (Gear 2)

Step 1:

Rotate with fixed carrier a 120

40
 b  a -40

30
 b = - 4.0 a 120

40
b = 3.0

+1 0

Step 2:

Rotate all links -1 -1 -1 -1

Step 3:

Total rotations -5.0 +2.0 0 -1

10.15.2 Planetary Gear Analysis
by Equation

Along with the tabular method, the motion of a planetary
gear train can also be analyzed through an equation that is
derived from the relative angular velocities. To develop the
formula method, the motion of the mating gears is exam-
ined relative to the carrier. Thus, kinematic inversion is used
to view the train is as if the carrier were fixed. One gear on
the end of the train is designated the first gear. The gear on
the opposite end of the train is designated the last gear.

The train is comprised of meshing gear pairs consisting
of driver and driven gears. The first gear is designated as a
driver gear and the last gear is a driven gear. The intermedi-
ate gears are appropriately identified depending on whether

they drive or are driven. In computing the ratio for each pair,
the ratio is negative for mating external gears and positive
for gears having an internal mesh.

Shifting focus to absolute velocities, the first gear has an
angular velocity designated ωF and the last gear has an angu-
lar velocity designated ωL. The carrier has an angular veloc-
ity ωcarrier. The relationship between the angular velocities
and number of teeth in the train is given as follows.

(10.36)

=  
vL - vcarrier

vF - vcarrier

;  
product of number of teeth on driver gears

product of number of teeth on driven gears
  

vL/carrier

vF/carrier
 =



Equation (10.36) can be solved for any of the angular
velocity terms, knowing the other two. Often, either the first
gear, last gear, or the carrier is fixed and a zero is substituted
for that term. While less complicated than the tabular

method, this formula method is limited to cases where
a path of meshes links the first and last gears. The method is
illustrated in the following example problems.
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EXAMPLE PROBLEM 10.22

A planetary gear train was illustrated in Figure 10.24. The carrier (link 2) serves as the input to the train. The sun

(gear 1) is the fixed gear and has 30 teeth. The planet gear (gear 3) has 35 teeth. The ring gear serves as the output

from the train and has 100 teeth. In Example Problem 10.20 the rotational velocity of the ring gear was

determined to be 1560 rpm clockwise, as the input shaft rotates at 1200 rpm clockwise. Use the formula method

to verify this result.

SOLUTION: 1. Specify the first and last gear.

The sun (gear 1) will be designated the first gear. Being on the other end of the train, the ring gear (gear 4) will

be designated as the last gear.

2. Substitute Gear Ratios into the Planetary Train Formula.

Gear 1 (first) mates with gear 3, which in turn mates with gear 4 (last). Substituting into Equation (10.36)

gives:

3. Identify the Angular Velocity Terms.

The sun is fixed, giving ωF = 0. The carrier rotates at 1200 rpm clockwise. Taking clockwise to be a negative

direction, ωcarrier = �1200. The ring gear must be determined, thus ωL = ?

4. Substitute Values into the Planetary Train Formula and Solve.

Substituting values into Equation (10.36) gives:

Solving,

vL = 1200a- 30

35
b a+ 35

100
b -1200 = - 1560 = 1560  rpm, cw

a- 30

35
b a+ 35

100
b =

vL - (-1200)

0 - (-1200)

a- N1

N3
b a+ N3

N4
b =

vL - vcarrier

vF - vcarrier

EXAMPLE PROBLEM 10.23

A planetary gear train was illustrated in Figure 10.25. The carrier (link 2) serves as the input to the train. The ring

(gear 1) is the fixed gear and has 120 teeth. The planet gear (gear 4) has 40 teeth. The sun gear (gear 3) serves as the

output from the train and has 30 teeth. In Example Problem 10.21 the rotational velocity of the sun gear was deter-

mined to be 6000 rpm clockwise, as the input shaft rotates at 1200 rpm clockwise. Use the formula method to verify

this result.

SOLUTION: 1. Specify the first and last gear.

The sun (gear 3) will be designated the first gear. Being on the other end of the train, the ring gear (gear 1) will

be designated as the last gear.

2. Substitute Gear Ratios into the Planetary Train Formula.

Gear 2 (first) mates with gear 4, which in turn mates with gear 1 (last). Substituting into Equation (10.36)

gives:

a- N3

N4
b a+ N4

N1
b =

vL - vcarrier

vF - vcarrier
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3. Identify the Angular Velocity Terms.

The ring is fixed, giving ωL = 0. The carrier rotates at 1200 rpm clockwise. Taking clockwise to be a negative

direction, ωcarrier = –1200. The sun gear must be determined, thus ωF = ?

4. Substitute Values into the Planetary Train Formula and Solve.

Substituting values into Equation (10.36) gives:

Solving,

vF = 1200a- 40

30
b a+ 120

40
b - 1200 = - 6000 = 6000  rpm, cw

a- 30

40
b a+ 40

120
b =

0 - (-1200)

vF - (-1200)

PROBLEMS

Spur Gear Geometry

For Problems 10–1 through 10–4, determine the following:

a. The pitch circle diameter
b. The diameter of the base circle
c. The diameter of the addendum circle
d. The diameter of the dedendum circle
e. The circular pitch

10–1. A 20°, full-depth, involute spur gear with 18 teeth
has a diametral pitch of 12.

10–2. A 20°, full-depth, involute spur gear with 48 teeth
has a diametral pitch of 8.

10–3. A 141⁄2° full-depth, involute spur gear with 40 teeth
has a diametral pitch of 16.

10–4. A 25° spur gear with 21 teeth has a metric module of
4. Determine the pitch circle diameter.

For Problems 10–5 through 10–8, determine the following:

a. The center distance
b. The contact ratio
c. Whether interference will occur
d. A center distance that reduces backlash from a

vendor value of 0.4/Pd to an AGMA-recommended
value of 0.1/Pd

10–5. Two 12-pitch, 20°, full-depth, involute spur gears
are used on an industrial circular saw for cutting
timber. The pinion has 18 teeth and the gear
has 42.

10–6. Two 4-pitch, 20°, full-depth, involute spur gears are
used on a tumbling machine for deburring steel
stamped parts. The pinion has 12 teeth and the gear
has 28.

10–7. Two plastic, 48-pitch, 25°, full-depth, involute spur
gears are used on an electric shaver. The pinion has
18 teeth and the gear has 42.

10–8. Two 16-pitch, 141⁄2° full-depth, involute spur gears
are used on a machine shop lathe. The pinion has
16 teeth and the gear has 72.

For Problems 10–9 through 10–14, determine the
following:

a. Their pitch diameters
b. The center distance

10–9. Two mating 12-pitch gears have 18 external and
48 internal teeth, respectively.

10–10. Two mating 20-pitch gears have 15 external and
60 internal teeth, respectively.

10–11. Two mating gears have 18 and 48 teeth, respectively,
and a center distance of 4.125.

10–12. Two mating gears have 20 and 45 teeth, respectively,
and a center distance of 3.25.

10–13. An 8-pitch, 18-tooth pinion mates with an internal
gear of 64 teeth.

10–14. A 12-pitch, 24-tooth pinion mates with an internal
gear of 108 teeth.

Gear Kinematics

For Problems 10–15 through 10–18, determine the following:

a. The speed of the gear
b. The pitch line velocity

10–15. An 8-pitch, 18-tooth pinion rotates clockwise at
1150 rpm and mates with a 64-tooth gear.

10–16. A 20-pitch, 15-tooth pinion rotates clockwise at
1725 rpm and mates with a 60-tooth gear.

10–17. A 6-pitch, 21-tooth pinion rotates clockwise at 850
rpm and mates with a 42-tooth gear.

10–18. A 24-pitch, 24-tooth pinion rotates clockwise at
1725 rpm and mates with a 144-tooth gear.

Gear Selection with an Established 

Center Distance

10–19. Two 10-pitch gears are to be mounted 12 in. apart
and have a velocity ratio of 5:1. Find the pitch diam-
eters and the number of teeth on both gears.

10–20. Two 16-pitch gears are to be mounted 3.75 in. apart
and have a velocity ratio of 4:1. Find the pitch diam-
eters and the number of teeth on both gears.
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10–21. Two 32-pitch gears are to be mounted 2.25 in. apart
and have a velocity ratio of 8:1. Find the pitch diam-
eters and the number of teeth on both gears.

10–22. Two gears are to be mounted 5 in. apart and have a
velocity ratio of 4:1. Find appropriate pitch diame-
ters, diametral pitches, and the number of teeth on
both gears that will be suitable.

10–23. Two gears are to be mounted 3.5 in. apart and have a
velocity ratio of 6:1. Find appropriate pitch diame-
ters, diametral pitches, and the number of teeth on
both gears that will be suitable.

10–24. Two gears are to be mounted 10 in. apart and have a
velocity ratio of 3:1. Find appropriate pitch diame-
ters, diametral pitches, and the number of teeth on
both gears that will be suitable.

Catalog Gear Selection

10–25. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 5 hp. The
pinion drives at 1800 rpm and the gear must rotate
as close to 480 rpm as possible. Determine an appro-
priate set of catalog gears, from Table 10.7, for this
application.

10–26. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 2.5 hp.
The pinion drives at 1500 rpm and the gear must
rotate as close to 500 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

10–27. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 8 hp. The
pinion drives at 1500 rpm and the gear must rotate
as close to 200 rpm as possible. Determine an appro-
priate set of catalog gears, from Table 10.7, for this
application.

10–28. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 10 hp.
The pinion drives at 800 rpm and the gear must
rotate as close to 180 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

10–29. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 1 hp. The
pinion drives at 1725 rpm and the gear must rotate
as close to 560 rpm as possible. Determine an appro-
priate set of catalog gears, from Table 10.7, for this
application.

10–30. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 10 hp.
The pinion drives at 1175 rpm and the gear must
rotate as close to 230 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

10–31. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 10 hp.
The pinion drives at 1175 rpm and the gear must
rotate as close to 170 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

10–32. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 3 hp. The
pinion will be driven at 1750 rpm and the gear must
rotate as close to 290 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

10–33. A pair of 20°, mild-steel gears are to be selected for
an application where they need to transfer 20 hp.
The pinion drives at 825 rpm and the gear must
rotate as close to 205 rpm as possible. Determine an
appropriate set of catalog gears, from Table 10.7, for
this application.

Rack and Pinion

10–34. A rack and pinion will be used for a height adjust-
ment on a camera stand. The 24-pitch pinion has
18 teeth. Determine the angle that the handle (and
pinion) must rotate to raise the camera 5 in.

10–35. A rack and pinion will be used to lower a drill on a
drill press. The 16-pitch pinion has 20 teeth.
Determine the angle that the handle (and pinion)
must rotate to raise the drill 3 in.

10–36. An 8-pitch, 18-tooth pinion is used to drive a rack.
Determine the distance that the rack travels when
the pinion rotates 3 revolutions.

10–37. A 12-pitch, 24-tooth pinion is used to drive a rack.
Determine the distance that the rack travels when
the pinion rotates 5 revolutions.

10–38. A rack and pinion will be used for a steering mecha-
nism. The 12-pitch pinion has 18 teeth. Determine
the required speed of the pinion if the rack must be
driven at a rate of 50 in./min.

10–39. A rack and pinion will be used for a steering mecha-
nism. The 10-pitch pinion has 20 teeth. Determine
the required speed of the rack if the pinion rotates at
a rate of 80 rpm.

Helical Gears

For Problems 10–40 and 10–41, determine the following:

a. The pitch diameters
b. The normal diametral pitch
c. The normal circular pitch
d. Whether interference is a problem

10–40. A pair of helical gears has a 20° pressure angle, a 45°
helix angle, and an 8 diametral pitch. The pinion has
16 teeth and the gear has 32 teeth.

10–41. A pair of helical gears has a 141⁄2° pressure angle, a
30° helix angle, and a 12 diametral pitch. The pinion
has 16 teeth and the gear has 48 teeth.

296 CHAPTER TEN
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10–42. In order to reduce the noise of a gear drive, two 
8-pitch spur gears with 20 and 40 teeth are to be
replaced with helical gears. The new set must have
the same velocity ratio and center distance. Specify
two helical gears, which will be formed on a hob, to
accomplish the task.

10–43. In order to reduce the noise of a gear drive, two 
12-pitch spur gears with 18 and 54 teeth are to be
replaced with helical gears. The new set must have
the same velocity ratio and center distance. Specify
two helical gears, which will be formed on a hob, to
accomplish the task.

Bevel Gears

10–44. A pair of bevel gears has 20 and 75 teeth and is used
on shafts that intersect each other at an angle of 90°.
Determine the velocity ratio and the pitch angles of
both gears.

10–45. A pair of bevel gears has 20 and 75 teeth and is used
on shafts that intersect each other at an angle of 60°.
Determine the velocity ratio and the pitch angles of
both gears.

10–46. A pair of bevel gears has 18 and 90 teeth and is used
on shafts that intersect each other at an angle of 75°.
Determine the velocity ratio and the pitch angles of
both gears.

Worm Gears

10–47. A worm gearset is needed to reduce the speed of an
electric motor from 3600 to 60 rpm. Strength
considerations require that 16-pitch gears be used,
and it is desired that the set be self-locking. Specify a
set that accomplishes the task.

10–48. A worm gearset is needed to reduce the speed of an
electric motor from 1800 to 18 rpm. Strength
considerations require that 12-pitch gears be used,
and it is desired that the set be self-locking. Specify a
set that accomplishes the task.

10–49. A worm gearset is needed to reduce the speed of an
electric motor from 3600 to 40 rpm. Strength
considerations require that 20-pitch gears be used,
and it is desired that the set be self-locking. Specify a
set that accomplishes the task.

Gear Trains

10–50. A gear train is shown in Figure P10.50. The gears have
the following properties: N2 = 18 teeth; N3 = 72 teeth
and Pd = 10; N4 = 16 teeth and Pd = 8; and N5 = 48

teeth. Determine the velocity of gear 5 as gear 2 drives
at 1200 rpm clockwise. Also determine the center
distance between gears 2 and 5.

10–51. A gear train is shown in Figure P10.50. The gears have
the following properties: N2 = 20 teeth and Pd = 10;
d3 = 6 in.; d4 = 2 in., and Pd = 8; and N5 = 48 teeth.
Determine the velocity of gear 5 as gear 2 drives at
1800 rpm counterclockwise. Also determine the
center distance between gears 2 and 5.

10–52. A gear train is shown in Figure P10.52. The gears have
the following properties: N2 = 15 teeth; N3 = 90 teeth
and Pd = 16; N4 = 15 teeth; N5 = 75 teeth; N6 = 75
teeth and Pd = 12; N7 = 15 teeth; and N8 = 60 teeth
and Pd = 8. Determine the velocity of gear 8 as gear
2 drives at 3600 rpm clockwise. Also determine the
center distance between gears 2 and 8.
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FIGURE P10.50 Problems 50 and 51.
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FIGURE P10.52 Problems 52 and 53.

10–53. A gear train is shown in Figure P10.52. The gears have
the following properties: N2 = 16 teeth and Pd = 16;
d3 = 8 in.; d4 = 1.5 in.; N5 = 50 teeth and Pd = 10;
d6 = 5.5 in.; N7 = 1.5 in. and Pd = 8; and N8 = 56 teeth.
Determine the velocity of gear 8 as gear 2 drives at
1200 rpm counterclockwise. Also determine the
center distance between gears 2 and 8.

10–54. A gear train is shown in Figure P10.54. The gears have
the following properties: N1 = 20 teeth and Pd = 16;
d2 = 8 in.; and d3 = 1.5 in. and Pd = 10. Determine the
distance that the rack moves for each revolution of
gear. Also determine the center distance between
gears 1 and 3.

10–55. A gear train is shown in Figure P10.54. The gears
have the following properties: N1 = 18 teeth and 

4

1

2

3

FIGURE P10.54 Problems 54–56.
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Pd = 20; d2 = 5.5 in.; and d3 = 2.5 in. and Pd = 8.
Determine the required speed of gear 1 for the rack
to move at a rate of 50 in./min.

10–56. A gear train is shown in Figure P10.54. The gears
have the following properties: d1 = 2.5 in.; N2 = 75
teeth and Pd = 10; and N3 = 24 teeth. Determine the
required diametral pitch of the rack for the rack to
move 0.5 in. for each revolution of gear 1.

10–57. A gear train is shown in Figure P10.57. The gears
have the following properties: N1 = 16 teeth and 
Pd = 16; d2 = 8 in.; N3 = 20 teeth; and N4 = 50 teeth.
Determine the velocity of gear 4 as gear 1 drives at
1800 rpm.

Gear Train Design

10–61. Devise a gear train with a train value of 400:1. Specify
the number of teeth in each gear. From interference
criteria, no gear should have fewer than 17 teeth. Due
to size restrictions, no gear should be larger than
75 teeth. Also sketch the concept of the train.

10–62. Devise a gear train with a train value of –200:1.
Specify the number of teeth in each gear. From
interference criteria, no gear should have fewer than
17 teeth. Due to size restrictions, no gear should be
larger than 75 teeth. Also sketch the concept of the
train.

10–63. Devise a gear train with a train value of –900:1. Specify
the number of teeth in each gear. From interference
criteria, no gear should have fewer than 17 teeth. Due
to size restrictions, no gear should be larger than
75 teeth. Also sketch the concept of the train.

Gear-Driven Mechanisms

10–64. A casement window opening mechanism is shown
in Figure P10.64. The gears have the following prop-
erties: d1 = 1 in.; N2 = 30 teeth and Pd = 20; N3 = 18
teeth and Pd = 18; and d4 = 4 in. Starting at the
configuration shown, with β = 20°, graphically
determine (using either manual drawing techniques
or CAD) the angular rotation of the window when
the crank rotates one revolution.

1

2

3

4

FIGURE P10.57 Problems 57 and 58.

10–58. For the gear train shown in Figure P10.57, the gears
have the following properties: N1 = 17 teeth and 
Pd = 20; d2 = 4 in.; N3 = 18 teeth; and N4 = 36 teeth.
Determine the required velocity of gear 1 for gear 4
to drive at 380 rpm.

10–59. A gear train is shown in Figure P10.59. The gears
have the following properties: Nworm = 1 thread;
N2 = 45 teeth; N3 = 18 teeth and Pd = 16; d4 = 6 in.;
and N5 = 80 teeth. Determine the velocity of gear 5
as gear 1 drives at 1800 rpm. Also determine the
center distance between gears 2 and 5.

1

2

3

4 5

FIGURE P10.59 Problems 59 and 60.

10–60. For the gear train shown in Figure P10.59, the gears
have the following properties: Nworm = 2 threads;
N2 = 60 teeth; N3 = 18 teeth and Pd = 12; d4 = 6 in.; and
N5 = 54 teeth. Determine the required velocity of gear
1 (the worm) to enable gear 5 to drive at 28 rpm. Also
determine the center distance between gears 2 and 5.

4

10"

6"
Window

β3

2

1

FIGURE P10.64 Problems 64–67.

10–65. For the casement window shown in Figure P10.64,
analytically determine the angular rotation of the
window when the crank rotates one revolution
using the configuration shown (β = 20°).

10–66. For the casement window mechanism shown in
Figure P10.64, the gears have the following proper-
ties: d1 = 0.75 in.; N2 = 48 teeth and Pd = 32; N3 = 16
teeth and Pd = 32; d4 = 4 in. Starting at the configura-
tion shown (β = 20°), graphically determine (using
either manual drawing techniques or CAD) the rota-
tional speed with which the window opens when the
crank rotates at a constant rate of 20 rpm.
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10–67. For Problem 10–66, analytically determine the
rotational speed with which the window opens from
the configuration shown (β = 20°) when the crank
rotates at a constant rate of 20 rpm.

Planetary Gear Trains

10–68. A planetary gear train is shown in Figure P10.68.
The carrier (link 2) serves as the input to the train.
The sun (gear 1) is fixed and has 16 teeth with a
diametral pitch of 16. The planet gear (gear 3) has a
2-in. pitch diameter. The ring serves as the output
from the train and has a 5-in. pitch diameter.
Determine the rotational velocity of all members
of this gear train when the input shaft rotates at
1800 rpm clockwise.

10–69. For the planetary gear train shown in Figure P10.68,
the carrier (link 2) serves as the input to the train.
The sun (gear 1) serves as the output gear and has
18 teeth with a diametral pitch of 12. The planet
gear (gear 3) has a 2.5-in. pitch diameter. The ring
gear is fixed and has a 6.5-in. pitch diameter.
Determine the rotational velocity of all members of
this gear train when the input shaft rotates at
800 rpm counterclockwise.

10–70. A planetary gear train is shown in Figure P10.70. The
carrier (link 2) serves as the input to the train. The
sun (gear 1) is fixed and has a 1.25-in. pitch diameter
with a diametral pitch of 16. Gear 3 has 42 teeth and
gear 4 has 21 teeth. Gear 5 has 32 teeth and is keyed
to the same shaft as gear 4. Gear 5 mates with the
ring gear (gear 6), which serves as the output from
the train and has 144 teeth. Determine the rotational
velocity of all members of this gear train when the
input shaft rotates at 680 rpm clockwise.

10–71. A planetary gear train is shown in Figure P10.70.
The carrier (link 2) serves as the input to the train.
The sun (gear 1) serves as the output from the train
and has a 1.0-in. pitch diameter with a diametral
pitch of 20. Gear 3 has 45 teeth and gear 4 has
20 teeth. Gear 5 has 30 teeth and is keyed to the
same shaft as gear 4. Gear 5 mates with the ring

gear (gear 6), which is fixed and has 150 teeth.
Determine the rotational velocity of all members
of this gear train when the input shaft rotates at
1125 rpm counterclockwise.

10–72. A planetary gear train is shown in Figure P10.72.
The carrier (link 2) serves as the input to the train.
Gear 2 is fixed and has 48 teeth with a diametral
pitch of 12. Gear 1 has 24 teeth, gear 3 has a pitch
diameter of 2.5 in., and gear 4 has 35 teeth and a
diametral pitch of 10. Determine the rotational
velocity of all members of this gear train when the
input shaft rotates at 900 rpm clockwise.

10–73. A planetary gear train is shown in Figure P10.72.
The carrier (link 2) serves as the input to the train.
Gear 2 is fixed and has a 4.0-in. pitch diameter with
a diametral pitch of 10. Gear 1 has 25 teeth, gear
3 has a pitch diameter of 2.5 in., and gear 4 has
32 teeth and a diametral pitch of 8. Determine the
rotational velocity of all members of this gear train
when the output shaft rotates at 210 rpm clockwise.

CASE STUDIES

10–1. A mechanism utilizing two spur gears and a rack is
shown in Figure C10.1. Carefully examine the
components of the mechanism, then answer the
following leading questions to gain insight into its
operation.
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FIGURE P10.68 Problems 68 and 69.
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FIGURE P10.70 Problems 70 and 71.
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FIGURE P10.72 Problems 72 and 73.
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1. As segment gear A rotates counterclockwise from
the position shown, what is the motion of rack C?

2. As segment gear A rotates counterclockwise from the
position shown, what is the motion of the gear B?

3. As gear A rotates until tooth E disengages with rack
C, what motion is exhibited in gear B?

4. What is the entire range of motion for gear B?
5. What is the entire range of motion for rack C?
6. What is the purpose of this mechanism?
7. What are possible operating problems with this

mechanism?
10–2. A device from a wire-forming machine is shown in

Figure C10.2. Link B and spur gear C are keyed
to the same shaft. Likewise, link E and spur gear D
are keyed to the same shaft. Carefully examine the
components of the mechanism, then answer
the following leading questions to gain insight into
its operation.

8. How would the motion of link G be altered if the
mechanism were assembled such that everything
appeared identical except link E rotated clock-
wise 90°?

10–3. A device that controls the motion of a gear attached
to gear D is shown in Figure C10.3. Carefully exam-
ine the components of the mechanism, then answer
the following leading questions to gain insight into
its operation.

A

D
B

E

C

FIGURE C10.1 (Courtesy, Industrial Press.)
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F
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D

G

FIGURE C10.2 (Courtesy, Industrial Press.)

1. As link A moves to the left, what is the motion of
link B?

2. As link A moves to the left, what is the motion of
gear C?

3. As link A moves to the left, what is the motion of
gear D?

4. As link A moves to the left, what is the motion of
link E?

5. As link A moves to the left, what is the motion of
link F?

6. As link A moves to the left, what is the motion of
link G?

7. Describe specifically the motion given to G as link A
reciprocates back and forth.

D

B

A

C

F

FIGURE C10.3 (Courtesy, Industrial Press.)

1. As gear A rotates clockwise, what is the motion of
gear B?

2. As gear A rotates clockwise, what is the motion of
gear C?

3. As gear A rotates clockwise, what is the motion of
gear D?

4. As the handle F is forced upward, what happens to
the mating gears?

5. As gear A rotates clockwise, what are the motions of
gears B, C, and D?

6. What is the purpose of this mechanism?
7. What problems may occur when operating this

mechanism?
10–4. A device that drives a piston (G) is shown in

Figure C10.4. Carefully examine the components
of the mechanism, then answer the following lead-
ing questions to gain insight into its operation.
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L

FIGURE C10.4 (Courtesy, Industrial Press.)

1. As gear B rotates clockwise, what is the motion of
gear C?

2. As gear B rotates clockwise, what is the motion of
gear D?
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3. If link J were hinged at A, but were not attached to
gear B, what motion would link J exhibit and what
would cause this motion?

4. What is the motion of the center of gear D?
5. What is the motion of piston G?
6. What is the purpose of this mechanism?

10–5. A device is shown in Figure C10.5. Shaft C is a free run-
ning fit through gears H and J, but item K is attached
with a pin to the shaft. Carefully examine the compo-
nents of the mechanism, then answer the following
leading questions to gain insight into its operation.

1. As shaft G rotates as shown, which direction does
gear H rotate?

2. What type of gears are F, J, and H?
3. As shaft G rotates as shown, what is the motion of

item A?

4. As item A contacts collar L, what changes occur to
the motion of the mechanism?

5. What is the purpose of item O?
6. Why are there set screws on collars L and Q?
7. What is the purpose of this mechanism?
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FIGURE C10.5 (Courtesy, Industrial Press.)
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C H A P T E R

E L E V E N

BELT AND CHAIN DRIVES

not provide any insight. Therefore, only analytical tech-
niques are practical and are introduced in this chapter.

11.2 BELTS

The function of a belt drive is to transmit rotational motion
and torque from one shaft to another, smoothly, quietly, and
inexpensively. Belt drives provide the best overall combina-
tion of design flexibility, low cost, low maintenance, ease of
assembly, and space savings.

Compared to other forms of power transmission, belt
drives have these advantages:

� They are less expensive than gear or chain drives.
� They have flexible shaft center distances, where gear

drives are restricted.
� They operate smoothly and with less noise at high speeds.
� They can be designed to slip when an overload occurs in

the machine.
� They require no lubrication, as do chains and gears.
� They can be used in more than one plane.
� They are easy to assemble and install and have flexible

tolerances.
� They require little maintenance.
� They do well in absorbing shock loading.

Belts are typically made of continuous construction of
materials, such as rubberized fabric, rubberized cord,
reinforced plastic, leather, and fabric (i.e., cotton or synthetic
fabric). Many belt shapes are commercially available and are
listed here.

1. A flat belt is shown in Figure 11.1a. This belt is the
simplest type but is typically limited to low-torque
applications because the driving force is restricted to
pure friction between the belt and the pulley.

2. A V-belt is shown in Figure 11.1b. This is the most
widely used type of belt, particularly in automotive and
industrial machines. The V shape causes the belt to
wedge tightly into the pulley, increasing friction and
allowing higher operating torque.

3. A multi-V-belt is shown in Figure 11.1c. This belt
design is identical to several V-belts placed side by side
but is integrally connected. It is used to increase the
amount of power transferred.

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Describe the advantages of a belt drive.

2. Identify several different types of belt designs.

3. Determine the geometric relationships of a belt 
drive.

4. Analyze the kinematic relationships of two shafts
coupled by a belt drive.

5. Describe the advantages of a chain drive.

6. Identify several different types of chain designs.

7. Determine the geometric relationships of a chain 
drive.

8. Analyze the kinematic relationships of two shafts
coupled by a chain drive.

11.1 INTRODUCTION

The primary function of a belt or chain drive is identical to
that of a gear drive. All three of these mechanisms are used
to transfer power between rotating shafts. However, the use
of gears becomes impractical when the distance between
the shafts is large. Both belt and chain drives offer the
flexibility of efficient operation at large and small center
distances.

Consider the chain on a bicycle. This mechanism is used
to transfer the motion and forces of the rotating pedal
assembly to the rear wheel. The distance between these two
rotating components is considerable, and a gear drive would
be unreasonable. Additionally, the velocity ratio of the chain
drive can be readily altered by relocating the chain to an
alternate set of sprockets. Thus, a slower pedal rotation but
greater forces are needed to maintain the identical rotation of
the rear wheel. The velocity ratio of a belt drive can be similarly
altered. Changing a velocity ratio on a gear drive is a much
more complex process, as in an automotive transmission.

Belt and chain drives are commonly referred to as
flexible connectors. These two types of mechanisms can be
“lumped together” because the kinematics are identical. The
determination of the kinematics and forces in belt and chain
drives is the purpose of this chapter. Because the primary
motion of the shafts is pure rotation, graphical solutions do
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4. A cog belt is shown in Figure 11.1d. This belt design is
similar to a V-belt but has grooves formed on the inner
surface. This feature increases belt flexibility, allowing
the belt to turn smaller radii. Thus, it can be used on
smaller pulleys, reducing the size of the drive.

5. A timing belt is shown in Figure 11.1e. This belt design
has gear-like teeth that engage with mating teeth on the
pulleys. This arrangement combines the flexibility of a
belt with the positive grip of a gear drive. This belt is
widely used in applications where relative positioning
of the respective shafts is desired.

Pulleys, more appropriately referred to as sheaves, are
the wheels that are connected to the shafts and carry the
belt. The pulleys have a groove around the outside, with a
shape to match that of the belt. A V-belt sheave is shown in
Figure 11.2. Industrial sheaves are machined from steel or

cast iron, depending on diameter. For lighter service,
sheaves may be made from aluminum, plastic, or die-cast
zinc. The construction is either solid or spoked, also
depending on size. Large sheaves are typically spoked and
constructed from cast iron.

Sheaves are classified with a pitch diameter, which is
the diameter slightly smaller than the outside of the
groove, corresponding to the location of the center of the
belt. Commercially stocked sheaves are commonly sold in
fractional-inch inside groove diameters. Table 11.1 illus-
trates the available sheave diameters.

When belts are in operation, they stretch over time.
Machines that utilize a belt drive need some feature that can
compensate for the belt stretch, such as an adjustable motor
base, or an idler pulley. An idler pulley is used to maintain
constant tension on the belt. It is usually placed on the slack
side of the belt and is preloaded, usually with springs, to
keep the belt tight.

As stated, V-belts are the most widely used type of belt.
Commercially available industrial V-belts are made to one of
the standard sizes shown in Figure 11.3. Of course, the larger
cross sections are able to transmit greater power. Often,
several belts are used on multiple-groove pulleys to increase

(b) V-belt (c) Multi-V-belt

(a) Flat belt

(e) Timing belt(d) Cog belt

FIGURE 11.1 Types of belts.
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FIGURE 11.2 Single-groove V-belt sheave.
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FIGURE 11.3 Industrial narrow-section V-belts.

TABLE 11.1 Commercially Available Sheaves

Sheave Pitch Diameters (in.)

3V Belt 5V Belt 8V Belt

2.2 5.3 4.3 8.4 12.3

2.3 5.6 4.5 8.9 13.0

2.5 6.0 4.8 9.2 13.8

2.6 6.5 4.9 9.7 14.8

2.8 6.9 5.1 10.2 15.8

3.0 8.0 5.4 11.1 16.8

3.1 10.6 5.5 12.5 17.8

3.3 14.0 5.8 13.9 18.8

3.6 19.0 5.9 15.5 19.8

4.1 25.0 6.2 16.1 21.0

4.5 33.5 6.3 18.5 22.2

4.7 6.6 20.1 29.8

5.0 6.7 23.5 39.8

7.0 25.1 47.8

7.1 27.9 52.8

7.5 57.8

8.1 63.8
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the amount of power transmitted by the belt drive. A guide
to V-belt selection is given in Figure 11.4. The power values
are listed “per belt.” When the belt drive must transfer 6 hp
using a three-groove belt, each of the three belts must be
capable of carrying 2 hp.

It must be noted that Figure 11.4 gives only a rough
guide to selecting an appropriate belt size. It is important to
select the most suitable belt drive based on a detailed study
of the application and the power transmission requirements.
These detailed selection procedures are given in the manu-
facturers’ catalogs.

11.3 BELT DRIVE GEOMETRY

A belt drive is intended to provide a constant velocity ratio
between the respective shafts. A sketch of the basic geometry
in a belt drive is shown in Figure 11.5.

As stated, the pitch diameter, d, of the sheave is mea-
sured to the point in the groove where the center of the belt
sits. This is slightly smaller than the outside diameter of the
sheave. Note that the diameters shown for the sheaves in
Figures 11.2 and 11.5 are the pitch diameters.

The center distance, C, is the distance between the center
of the driver and driven sheaves. Of course, this is also the
distance between the two shafts coupled by the belt drive.
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FIGURE 11.4 Industrial V-Belt selection chart.
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FIGURE 11.5 Belt drive geometry.

Small center distances can cause fatigue, with frequent
maximum loading on the belt sections as it enters the small
sheave. Large center distances, with the long unsupported
span, can cause belt whip and vibrations. Normal center dis-
tances for V-belts should be in the following range:

The belt length, L, is the total length of the belt.
Specifically, the outside length is usually specified. This is the
dimension obtained by wrapping a tape measure around the
outside of the belt in the installed position. Belts are com-
mercially available at specified lengths. Table 11.2 illustrates
the available lengths for industrial V-belts. The center
distance and pitch diameters can be mathematically related
[Ref. 2].

(11.1)

and

(11.2)

where

(11.3)

The angle of contact, θ, is a measure of the angular
engagement of the belt on each sheave. It can be computed
for each sheave as follows:

(11.4)

(11.5)

The power ratings for commercially available belts, as
shown in Figure 11.4, are for drives with sheaves of the same
size. Thus, the “rated” angle of contact is 180°. For smaller

u2 = 180° + 2 sin-1e d2 - d1

2C
f

u1 = 180° - 2 sin-1e d2 - d1

2C
f

B = 4L - 2p(d2 + d1)

C =
B + 3B2 - 32(d2 - d1)2

16

L = 2C +
p

2
 (d2 + d1) +

(d2 - d1)2

4C

d2 6 C 6 3(d1 + d2)
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angles, the amount of friction that can be developed around
the sheave is reduced, and therefore, the amount of power
that a belt can transfer is reduced. Table 11.3 shows the
percent of actual rated power that can be transferred by a
belt riding over a sheave with a contact angle smaller than
180°. Belt manufacturers suggest keeping the contact angle
greater than 120° when possible.

11.4 BELT DRIVE KINEMATICS

In a manner identical to gear drives, the velocity ratio, VR, is
defined as the angular speed of the driver sheave (sheave 1)
divided by the angular speed of the driven sheave (sheave 2).

(11.6)

Because a ratio is valid regardless of units, the velocity ratio
can be defined in terms of revolutions per minute, radians

VR =
vdriver
vdriven

=
v1
v2

per time, or any other convenient set of rotational velocity
units. Using the same logic as the derivation of equation
(10.19) yields the following equation:

Introducing the pitch diameters gives

Thus, a comprehensive definition of a velocity ratio is
given as

(11.7)

Notice that for the typical arrangement, as shown in
Figure 11.3, the sheaves rotate in the same direction. Crossed
drives or serpentine drives, as shown in Figure 11.6, can be
used to reverse the direction of sheave rotation.

Many industrial applications require belts to reduce the
speed of a power source. Therefore, it is typical to have
velocity ratios greater than 1. As can be seen from equation
(11.6), this indicates that the drive sheave rotates faster than
the driven sheave, which is the case in speed reductions.

The belt speed, vb, is defined as the linear velocity of the
belt. The magnitude of this velocity corresponds to the mag-
nitude of the linear velocity of a point on the pitch diameter
of each sheave. Therefore, the belt speed can be related to the

VR =
v1

v2
=

r2

r1
=

d2

d1

d2

d1
=

2r2

2r1
=

r2

r1
= VR

v1
v2

=
r2
r1

= VR

ω1
ω2

(a) Cross drive

ω1 ω

ω

ω

(b) Serpentine drive

FIGURE 11.6 Alternate forms of belt drives.

TABLE 11.3 Reduced Power Capability with Contact Angle

Angle of Contact, θ 180° 160° 140° 120° 100° 80°

Actual Capability (% of rated power) 100 95 89 82 74 63

TABLE 11.2 Commercially Available V-Belt 
Lengths (in.)

3V Belt Lengths

25.0 40.0 63.0 100.0

26.5 42.5 67.0 106.0

28.0 45.0 71.0 112.0

30.0 47.5 75.0 118.0

31.5 50.0 80.0 125.0

33.5 53.0 85.0 132.0

35.5 56.0 90.0 140.0

37.5 60.0 95.0

5V Belt Lengths

50.0 90.0 160.0 280.0

53.0 95.0 170.0 300.0

56.0 100.0 180.0 315.0

60.0 106.0 190.0 335.0

63.0 112.0 200.0 355.0

67.0 118.0 212.0

71.0 125.0 224.0

75.0 132.0 236.0

80.0 140.0 250.0

85.0 150.0 265.0

8V Belt Lengths

100.0 160.0 236.0 355.0

112.0 170.0 250.0 400.0

118.0 180.0 265.0 450.0

125.0 190.0 280.0

132.0 200.0 300.0

140.0 212.0 315.0

150.0 224.0 335.0
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rotational velocities of the sheaves and their pitch radii using
equation (6.5).

(11.8)

Note that, as in Chapter 6, the angular velocity in this
equation must be specified in radians per unit time.

A belt transfers maximum power at speeds of 4000 to
5000 fpm (ft/min). Therefore, it is best to design a belt drive

vb = r1v2 =
d1

2
v1 = r2v =

d2

2
v2

to operate in this range. Large sheaves for industrial use are
cast iron and typically are limited to a maximum belt speed
of 6500 fpm. This is because the inertial forces created by the
normal acceleration become excessive. Special balance may
be needed for speeds exceeding 5000 fpm, as vibration can
be caused by the centrifugal acceleration. Finally, another
type of drive, specifically chains, is typically more desirable
for speeds under 1000 fpm.

EXAMPLE PROBLEM 11.1

A belt drive is used to transmit power from an electric motor to a compressor for a refrigerated truck. The

compressor must still operate when the truck is parked and the engine is not running. The 10-hp electric motor

is rated at 3550 rpm, and the motor sheave diameter is 5 in. The compressor sheave has 7.5 in.

diameter. Determine the appropriate industrial belt size, the operating speed of the compressor, and the 

belt speed.

SOLUTION: 1. Select an Appropriate Belt Size

With a 10-hp motor driving at 3550 rpm, Figure 11.4 suggests using a 3V belt.

2. Calculate Driver Sheave Speed

From equation (11.8), the velocity ratio is determined by

The speed of the compressor can be determined from rewriting equation (11.8).

Units of the motor shaft speed are converted to radians per unit time.

3. Calculate Belt Speed

The belt speed can be calculated from equation (11.7).

vb = a d1

2
b v1 =

5 in.

2
122,305 rad/min2 = 55,762 in./min = 4647fpm

v1 = 3550 rev/min a 2p rad

1rev
b = 22,305 rad/min

v2 =
d1v1

d2
=

(5 in.) (3550 rpm)

(7.5 in.)
= 2367 rpm

VR =
d2

d1
=

7.5 in.

5 in.
= 1.5

EXAMPLE PROBLEM 11.2

A belt drive is required to reduce the speed of an electric motor for a grinding wheel, as shown in 

Figure 11.7. The 50-hp electric motor is rated at 1725 rpm, and a grinding wheel speed of approximately 

600 rpm is desired. Determine an appropriate belt size and find suitable sheave diameters of stock pulleys 

listed in Table 11.1. Also select a suitable belt length from Table 11.2 and calculate the corresponding center 

distance.

SOLUTION: 1. Determine Appropriate Belt Size

With a 50-hp motor driving at 1725 rpm, Figure 11.4 suggests using a 5V belt.

2. Determine Ideal Diameter for Driver Sheave

The respective shaft speeds are as follows:

v1 = 1725 rev/min a2p rad

1rev
b = 10,838 rev/min
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A belt speed of 4000 to 5000 fpm is optimal. Rewriting equation (11.7) yields the following:

3. Select Available Sheave

Selecting a driver sheave of 10.20 in. from Table 11.1 yields a belt speed of

4. Select Available Driven Sheave

From equation (11.8), the desired velocity ratio is determined by

And the resulting driven sheave diameter is calculated as follows:

The closest stock sheave of 27.9 in. is selected. Rewriting equation (11.8), the actual grinding wheel 

speed is

5. Select an Available Belt

The suggested center distance for belt drives is within the following range

A mid-value of 72 in. is tentatively selected. Substituting into equation (11.1) gives

27.9 in. 6 C 6 114.3 in.

d2 6 C 6 3(d1 + d2)

v2 =
v1 d1

d2
=

(1725 rpm) (10.2 in.)

27.9 in.
= 630 rpm

d2 = (VR) (d1) = 2.87(10.2 in.) = 29.3 in.

VR =
v1

v2
=

10,838 rad/min

3770 rad/min
= 2.87

vb =
d1

2
v1 =

10.20 in.

2
110,838rad/min2 = 55,274 in./min = 4606 fpm

= 0.83 ft = 9.96 in.

d1 = 2a vb

v1
b = 2a 4500 ft/min

10,838 rad/min
b

v2 = 600 rev/min a 2p rad

1rev
b = 3770 rev/min

FIGURE 11.7 Grinding wheel for Example Problem 11.2.
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Because a standard length of belt is desired, a 212-in. belt will be selected from Table 11.2. Equations (11.3) and

(11.4) are used to calculate the required, actual center distance.

where

= 4(204.9) - 2p(27.9 + 10.2) = 580.2 in.

B = 4L - 2p(d2 + d1)

=
580.2 + 3(580.2)2 - 32(27.9 - 10.2)2

16
= 71.98 in.

C =
B + 3B2 - 32(d2 - d1)2

16

= 2(72 in.) +
p

2
 (27.9 + 10.2) +

(27.9 - 10.2)2

4(72)
= 204.9 in.

L = 2C +
p

2
 (d2 + d1) +

(d2 - d1)2

4C

11.5 CHAINS

As with belts, chain drives are used to transmit rotational
motion and torque from one shaft to another, smoothly, qui-
etly, and inexpensively. Chain drives provide the flexibility of
a belt drive with the positive engagement feature of a gear
drive. Therefore, chain drives are well suited for applications
with large distances between the respective shafts, slow
speed, and high torque.

Compared to other forms of power transmission, chain
drives have the following advantages:

� They are less expensive than gear drives.

� They have no slippage, as with belts, and provide a more
efficient power transmission.

� They have flexible shaft center distances, whereas gear
drives are restricted.

� They are more effective at lower speeds than belts.

� They have lower loads on the shaft bearings because ini-
tial tension is not required as with belts.

� They have a longer service life and do not deteriorate
with factors such as heat, oil, or age, as do belts.

� They require little adjustment, whereas belts require fre-
quent adjustment.

11.5.1 Types of Chains

Chains are made from a series of interconnected links. Many
types of chain designs are commercially available and are
listed here.

1. A roller chain is shown in Figure 11.8a. This is the most
common type of chain used for power transmission.
Large roller chains are rated to over 600 hp. The roller
chain design provides quiet and efficient operation but
must be lubricated.

(a) Roller chain

(b) Multiple-strand roller chain

(c) Offset sidebar roller chain

(d) Silent chain

FIGURE 11.8 Types of chains.

2. A multiple-strand roller chain is shown in Figure 11.8b.
This design uses multiple standard roller chains built
into parallel strands. This increases the power capacity
of the chain drive.
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3. An offset sidebar roller chain is shown in Figure 11.8c.
This is less expensive than a roller chain but has slightly
less power capability. It also has an open construction
that allows it to withstand dirt and contaminants,
which can wear out other chains. These chains are
often used on construction equipment.

4. An inverted tooth, silent chain is shown in Figure 11.8d.
This is the most expensive chain to manufacture. It can
be efficiently used in applications that require high-
speed, smooth, and quiet power transmission.
Lubrication is required to keep these chains in reliable
operation. They are common in machine tools, pumps,
and power drive units.

11.5.2 Chain Pitch

Technical organizations maintain standards (e.g., ANSI stan-
dard B29-1) for the design and dimensions of power trans-
mission chains to allow interchangeability. Roller chains are
classified by a pitch, p, which is the distance between the pins
that connect the adjacent links. The pitch is illustrated in
Figure 11.9. Roller chains have a size designation ranging from
25 to 240. This size designation refers to the pitch of the chain,
in eightieths of an inch. Thus, a 120 chain has a pitch of 120/80

Pitch

FIGURE 11.9 Chain pitch.

or inches. The larger-pitch chains have greater power
capacity. Roller chain pitch selection is dependant on the
power transmitted and speed of the system. A general guide to
selecting an appropriate chain pitch is given in Figure 11.10.
Manufacturers’ catalogs provide detailed procedures to select
the most suitable chain drive based on a detailed study of the
application and the power transmission requirements.

11.5.3 Multistrand Chains

In a similar fashion to belts, multiple-strand chains can be
used to increase the amount of power transmitted by the
chain drive. However, a multiple-strand chain does not
provide a direct multiple of the single-strand capacity. When
the chain drive requires multiple strands, equation (11.9) is
used to calculate the power transmitted through each chain.
A multistrand factor has been experimentally determined
and is tabulated in Table 11.4.
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(11.9)

The vertical axis of Figure 11.10 displays the power capacity
based on different numbers of strands. Equation (11.9) has al-
ready been implemented in generating Figure 11.10.

11.5.4 Sprockets

Sprockets are the toothed wheels that connect to the shaft
and mate with the chain. The teeth on the sprocket are
designed with geometry to conform to the chain pin and
link. The shape of the teeth varies with the size of the chain
and the number of teeth. A sprocket designed to mate with a
roller chain is shown in Figure 11.11.

Sprockets are commonly referenced by the correspond-
ing chain size and the number of teeth. Commercially avail-
able sprockets are given in Table 11.5. As with gears and

Power per chain =
total power transmitted

multistrand factor

sheaves, the pitch diameter is an important kinematic prop-
erty. The pitch diameter is the diameter across the middle of
the sprocket teeth, which corresponds to the centerline of
the chain. It can be determined from the chain size and
number of teeth, as will be presented in the next section.

11.6 CHAIN DRIVE GEOMETRY

The basic geometry in a chain drive is virtually identical to
that of a belt drive, as shown in Figure 11.12.

The number of teeth, N, in the sprocket is a commonly
referenced property. It is generally recommended that
sprockets have at least 17 teeth, unless they operate at very
low speeds––under 100 rpm. Of course, a higher number of
teeth will result in a bigger sprocket. The larger sprocket
should normally have no more than 120 teeth.

As stated, the pitch diameter, d, of the sprocket is mea-
sured to the point on the teeth where the center of the chain
rides. This is slightly smaller than the outside diameter of the

TABLE 11.5 Commercially Available Single-Strand Sprockets

Chain Size Number of Teeth on the Sprocket

25 8 through 30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

35 4 through 45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

40 8 through 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

50 8 through 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

60 8 through 60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

80 8 through 60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120

100 8 through 60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120

120 9 through 45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120

140 9 through 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96

160 8 through 30, 32 through 36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96

180 13 through 25, 28, 35, 39, 40, 45, 54, 60

200 9 through 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72

240 9 through 30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60
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N1
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Slack side
2ω

ω

θθ
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1 2
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FIGURE 11.12 Chain drive geometry.

TABLE 11.4 Multistrand Factor

Number of Roller Chain Strands 2 3 4 5 6 8 10

Multistrand Factor 1.7 2.5 3.3 3.9 4.6 6.2 7.5

Pitch
dia., d

Bore
dia.

Web

Hub

FIGURE 11.11 Roller chain sprocket.
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sprocket. Note that the diameters shown for the sprockets in
Figure 11.11 are the pitch diameters. The pitch diameter of a
sprocket with N teeth for a chain with a pitch of p is deter-
mined by

(11.10)

The center distance, C, is the distance between the center
of the driver and driven sprockets. Of course, this is also the
distance between the two shafts coupled by the chain drive.
In typical applications, the center distance should be in the
following range:

The chain length is the total length of the chain. Because
the chain is comprised of interconnected links, the chain
length must be an integral multiple of the pitch. It is prefer-
able to have an odd number of teeth on the driving sprocket
(17, 19, . . . ) and an even number of pitches (links) in the
chain to avoid a special link. The chain length, L, expressed
in number of links, or pitches, can be computed as

(11.11)

The center distance for a given chain length can be computed as

(11.12)

It should be restated that the chain length, L, in
Equation (11.12) must be stated in the number of links.

The angle of contact, θ, is a measure of the angular
engagement of the chain on each sprocket. It can be
computed as

(11.13)

(11.14)

Chain manufacturers suggest keeping the angle of contact
greater than 120° when possible.

Finally, when in operation, chains have a tight side and
a slack side. In most applications, chain drives should be

u2 = 180° + 2sin-1e p(N2 - N1)

2C
f

u1 = 180° - 2sin-1e p(N2 - N1)

2C
f

C =
p

4
CL -

(N2 + N1)

2
+ CeL -

(N2 + N1)

2
f2

-
8(N2 - N1)2

4p2
S

L =
2C

p
+

(N2 + N1)

2
+ e p(N2 - N1)2

4p2C
f

30p 6 C 6 50p

d =
p

sin1180°/N2

designed so that the slack side is on the bottom or lower
side. Due to the direction of shaft rotation and the relative
positions of the drive and driven shafts, the arrangement
shown in Figure 11.12 has the slack side on the bottom.

11.7 CHAIN DRIVE KINEMATICS

Once again, the velocity ratio, VR, is defined as the angular
speed of the driver sprocket (sprocket 1) divided by the
angular speed of the driven sprocket (sprocket 2). Using the
same derivations as for gear and belt drives, the velocity ratio
consists of

(11.15)

Because a ratio is valid regardless of units, the velocity ratio
can be defined in terms of revolutions per minute, radians per
time, or any other convenient set of rotational velocity units.
Many industrial applications require chains to reduce the
speed of a power source. Therefore, it is typical to have veloc-
ity ratios greater than 1. As can be seen from equation (11.15),
this indicates that the drive sprocket rotates faster than the
driven sprocket, which is the case in speed reductions.

Similar to belts, the linear velocity of the chain, or chain
speed, is defined as vc. The magnitude of this velocity corre-
sponds to the magnitude of the linear velocity of a point on
the pitch diameter of each sprocket. As with belt speed, chain
speed can be computed by

(11.16)

In equation (11.16), the rotation velocities must be stated in
radians per unit time.

Lubrication for the chain is important in maintaining
long life for the drive. Recommended lubrication methods
are primarily dictated by the speed of the chain. The recom-
mended lubrication is as follows:

� Low speed (vc < 650 fpm): manual lubrication, where the
oil is periodically applied to the links of the chain.

� Moderate speed (650 < vc < 1500 fpm): bath lubrica-
tion, where the lowest part of the chain dips into a bath
of oil.

� High speed (1500 fpm < vc): oil stream lubrication, where
a pump delivers a continuous stream onto the chain.

vc =
d1

2
v1 =

d2

2
v2

VR =
vdriver

vdriven
=
v1

v2
=

d2

d1
=

N2

N1

EXAMPLE PROBLEM 11.3

A single-strand roller chain drive connects a 10-hp engine to a lawn waste chipper/shredder, as shown in Figure 11.13.

As the engine operates at 1200 rpm, the shredding teeth should rotate at 240 rpm. The drive sprocket has 18 teeth.

Determine an appropriate pitch for the chain, the number of teeth on the driven sprocket, the pitch diameters of both

sprockets, and the chain speed. Also indicate the number of links in a suitable chain and specify the required center

distance.
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SOLUTION: 1. Select an Appropriate Chain Pitch

With a 10-hp engine driving a sprocket at 1200 rpm, Figure 11.10 specifies that a 40-pitch, single-strand chain is

appropriate.

2. Determine the Number of Teeth on the Driven Sprocket

By rewriting equation (11.15), the number of teeth needed on the driven sprocket can be determined.

Notice from Table 11.5 that a 90-tooth sprocket is commercially available for a No. 40 chain.

3. Determine the Pitch Diameter of the Sprockets

A No. 40 roller chain has a pitch of

From equation (11.10), the pitch diameters of the sprockets are

4. Calculate the Chain Speed

The chain speed can be calculated from equation (11.16).

With a chain speed of 1300 fpm, a bath lubrication system for the chain is desired.

5. Determine an Appropriate Center Distance

The suggested center distance for a chain drive is

15 in. 6 C 6 25 in.

30p 6 C 6 50p

vc = ad1

2
b v1 = a 2.88 in.

2
b 10,833 rad/min = 15,603 in./min = 1300 fpm

v1 = 1200 rev/min a2p rad

1rev
b = 10,838 rad/min

d2 =
p

sin a180°

N2
b

=
0.5  in.

sin a 180°

90teeth
b

= 14.33 in.

d1 =
p

sin a180°
N1
b

=
0.5  in.

sin a 180°
18teeth

b
= 2.88  in.

p =
40

80
= 0.5  in.

N2 = N1a v1

v2
b = 18e 1200 rpm

240 rpm
f = 90 teeth

FIGURE 11.13 Chipper/shredder for Example Problem 11.3.
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A mid-value of 20 in. is tentatively selected. Substituting into equation (11.11) gives

An even 138 links will be specified. The corresponding, actual center distance is computed from 

equation (11.12).

=
(0.5  in.)

4
C (138) -

(90 + 18)

2
+ Ce (138) -

(90 + 18)

2
f2

-
8(90 - 18)2

4p2 S = 20.187 in.

C =
p

4
CL -

(N2 + N1)

2
+ CeL -

(N2 + N1)

2
f2

-
8(N2 - N1)

2

4p2 S

=
2(20  in.)

(0.5  in.)
+

(90 + 18)

2
+ e 0.5 in.(90 - 18)2

4p2(20  in.)
f = 137.28  links

L =
2C

P
+

(N2 + N1)

2
+ e p1N2 - N122

4p2C
f

PROBLEMS

Belt Kinematics

11–1. A motor, operating clockwise at 1725 rpm, is
coupled through a belt drive to rotate the crank of
an industrial sewing machine. The diameter of the
motor sheave is 3.5 in. and the sheave on the sewing
machine crank is 8 in. Determine the speed of the
driven sheave and the belt speed.

11–2. A motor, operating clockwise at 1150 rpm, is cou-
pled through a belt drive to rotate an industrial
exhaust fan. The diameter of the motor sheave is 
5 in. and the sheave on the fan is 12 in. Determine
the speed of the driven sheave and the belt speed.

11–3. An engine is coupled through a belt drive to rotate
an air compressor, which must operate at 1200 rpm
clockwise. The diameter of the motor sheave is 4 in.
and the sheave on the compressor is 10 in.
Determine the required speed of the engine and the
belt speed.

11–4. A motor, operating counterclockwise at 1125 rpm, is
coupled through a belt drive to rotate a drill press.
The diameter of the motor sheave is 2.5 in. and the
sheave on the drill spindle is 9 in. Determine the
speed of the driven sheave and the belt speed.

11–5. A motor, operating counterclockwise at 1750 rpm, is
coupled through a belt drive to furnace blower. The
diameter of the motor sheave is 6.5 in. and the
sheave on the drill spindle is 10.5 in. Determine the
speed of the driven sheave and the belt speed.

11–6. An engine is coupled through a belt drive to rotate a
generator, which must rotate at 1800 rpm counter-
clockwise. The diameter of the engine sheave is 6 in.
and the sheave on the generator is 9 in. Determine the
required speed of the engine sheave and the belt
speed.

Belt Drive Geometry

11–7. Two sheaves have diameters of 3.5 in. and 8 in. and
their center distance is 23 in. Compare the center
distance to the ideal range and determine the associ-
ated belt length. Also determine the angle of contact
over the smaller sheave.

11–8. Two sheaves have diameters of 5 in. and 12 in.
Determine the center distance of a drive utilizing a
72-in. belt and compare that center distance to the
ideal range. Also determine the angle of contact over
the smaller sheave.

11–9. Two sheaves have diameters of 8 in. and 12 in.
Determine the center distance of a drive utilizing an
88-in. belt and compare that center distance to the
ideal range. Also determine the angle of contact over
the smaller sheave.

11–10. Two sheaves have diameters of 8 in. and 24 in.
Determine the center distance of a drive utilizing a
104-in. belt and compare that center distance to the
ideal range. Also determine the angle of contact over
the smaller sheave.

Belt Drive Selection

11–11. A belt drive is desired to couple the motor with a
mixer for processing corn syrup. The 10-hp electric
motor is rated at 3550 rpm and the mixer must
operate as close to 900 rpm as possible. Select an
appropriate belt size, commercially available
sheaves, and a belt for this application. Also calcu-
late the actual belt speed and the center distance.

11–12. A belt drive is desired to couple the motor with a
mixer for processing corn syrup. The 25-hp electric
motor is rated at 950 rpm and the mixer must oper-
ate as close to 250 rpm as possible. Select an appro-
priate belt size, commercially available sheaves, and
a belt for this application. Also calculate the actual
belt speed and the center distance.
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11–13. A belt drive is desired to couple the motor with a
conveyor. The 5-hp electric motor is rated at 1150
rpm and the conveyor driveshaft must operate as
close to 250 rpm as possible. Select an appropriate
belt size, commercially available sheaves, and a belt
for this application. Also calculate the actual belt
speed and the center distance.

11–14. A belt drive is desired to couple an engine with the
blade shaft of a commercial lawn mower. The 
10-hp engine is to operate at 2000 rpm and the blade
shaft must operate as close to 540 rpm as possible.
Select an appropriate belt size, commercially avail-
able sheaves, and a belt for this application. Also cal-
culate the actual belt speed and the center distance.

11–15. A belt drive is desired to couple an engine with the
drive system of a snowmobile. The 70-hp engine is
to operate at 3000 rpm and the driveshaft must
operate as close to 750 rpm as possible. Select an
appropriate belt size, commercially available
sheaves, and a belt for this application. Also calcu-
late the actual belt speed and the center distance.

11–16. A belt drive is desired to couple an electric motor
with the spool of a winch. The 2-hp electric motor
operates at 200 rpm and the spool must operate as
close to 60 rpm as possible. Select an appropriate
belt size, commercially available sheaves, and a belt
for this application. Also calculate the actual belt
speed and the center distance.

Chain Kinematics

11–17. The shaft of a gearbox is coupled through a No. 60
chain drive, rotating a concrete mixer at 180 rpm
clockwise. The drive sprocket has 19 teeth and the
sprocket on the mixer has 84. Determine the speed
of the drive sprocket, the chain speed, and the
recommended lubrication method.

11–18. A gearmotor, operating clockwise at 220 rpm, is
coupled through a No. 40 chain drive to a liquid
agitator. The drive sprocket has 19 teeth and the
sprocket on the mixer has 50. Determine the speed
of the driven sprocket, the chain speed, and the
recommended lubrication method.

11–19. A gearmotor, operating clockwise at 180 rpm, is
coupled through a No. 80 chain drive to an escala-
tor. The drive sprocket has 27 teeth and the sprocket
on the escalator has 68. Determine the speed of the
driven sprocket, the chain speed, and the recom-
mended lubrication method.

11–20. The shaft of a gearbox is coupled through a No.
100 chain drive, rotating a driveshaft for a pulp
screen at a paper-producing plant. The screen dri-
veshaft rotates at 250 rpm clockwise. The drive
sprocket has 25 teeth and the sprocket on the mixer
has 76. Determine the speed of the drive sprocket,
the chain speed, and the recommended lubrication
method.

Chain Drive Geometry

11–21. Two sprockets, for a No. 60 chain, have 17 and 56
teeth. The chain has 120 links. Determine the pitch
diameter of each sprocket, their center distance, and
the angle of contact over the smaller sprocket. Also
compare the center distance to the ideal range.

11–22. Two sprockets, for a No. 80 chain, have 19 and 64
teeth. The chain has 140 links. Determine the pitch
diameter of each sprocket, their center distance, and
the angle of contact over the smaller sprocket. Also
compare the center distance to the ideal range.

11–23. Two sprockets, for a No. 40 chain, have 21 and 84
teeth. The chain has 200 links. Determine the pitch
diameter of each sprocket, their center distance, and
the angle of contact over the smaller sprocket. Also
compare the center distance to the ideal range.

11–24. Two sprockets, for a No. 120 chain, have 25 and 72
teeth. The chain has 150 links. Determine the pitch
diameter of each sprocket, their center distance, and
the angle of contact over the smaller sprocket. Also
compare the center distance to the ideal range.

Chain Drive Selection

11–25. A chain drive is desired to couple a gearmotor with a
bucket elevator. The 40-hp gearmotor will operate
at 350 rpm and the elevator drive shaft must operate
as close to 60 rpm as possible. Select an appropriate
chain size, commercially available sprockets, and
number of links for a chain. Also calculate the actual
chain speed and the center distance.

11–26. A chain drive is desired on a corn picker to couple a hy-
draulic motor with a driveshaft. The 30-hp motor will
operate at 550 rpm and the driveshaft must operate as
close to 100 rpm as possible. Select an appropriate
chain size, commercially available sprockets, and num-
ber of links for a chain. Also calculate the actual chain
speed and the center distance.

11–27. A chain drive is desired to couple an engine and
gearbox with the drive wheels on an all-terrain vehi-
cle. When the 130-hp engine/gearbox will output
600 rpm, the drive axle must operate as close to 140
rpm as possible. Select an appropriate chain size,
commercially available sprockets, and number of
links for a chain. Also calculate the actual chain
speed and the center distance.

11–28. A chain drive is desired to couple a gearmotor with a
screw drive on a press. The 50-hp gearmotor will
operate at 600 rpm and the screw drive must operate
as close to 100 rpm as possible. Select an appropriate
chain size, commercially available sprockets, and
number of links for a chain. Also calculate the actual
chain speed and the center distance.

11–29. A chain drive is desired to couple an engine and gear-
box with the auger on a snowblower. When the 8-hp
engine/gearbox will output 300 rpm, the auger must
operate as close to 40 rpm as possible. Select an
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FIGURE C11.1 (Courtesy, Industrial Press.)

appropriate chain size, commercially available sprock-
ets, and number of links for a chain. Also calculate the
actual chain speed and the center distance.

11–30. A chain drive is desired to couple a gearmotor with a
parts storage carousel. The 10-hp gearmotor will
operate at 425 rpm and the carousel shaft must
operate as close to 75 rpm as possible. Select an
appropriate chain size, commercially available sprock-
ets, and number of links for a chain. Also calculate the
actual chain speed and the center distance.

CASE STUDIES

11–1. The device shown in Figure C11.1 drives a chute
that funnels individual beverage bottles into 
12-pack containers. Pin C is rigidly attached to one
link of the chain. Yoke D is rigidly welded to rod E,
which extends to the chute (not shown). Carefully
examine the components of the mechanism, then
answer the following leading questions to gain
insight into its operation.

1. As sprocket A drives clockwise, determine the
motion of sprocket B.

2. As sprocket A drives clockwise, specify the instanta-
neous motion of pin C.

3. As sprocket A drives clockwise, specify the instanta-
neous motion of yoke D.

4. How far must sprocket A rotate to move pin C onto
a sprocket?

5. What happens to the motion of rod E when the pin
rides onto the sprocket?

6. What happens to rod E when pin C is on the top
portion of the chain drive?

7. Discuss the overall motion characteristics of rod E.

11–2. The sheave shown in Figure C11.2 drives shaft A,
which drives a log splitter (not shown). Notice that
the sheave is split into two halves, labeled B and C.
These two halves are threaded together at D. Carefully
examine the components of the mechanism, then
answer the following leading questions to gain insight
into its operation.

1. As handle H rotates, what is the motion of shaft I?
2. As handle H rotates, what is the motion of the right

half, C, of the sheave?
3. What is the resulting effect on the sheave by rotating

handle H?
4. What is item J and what is its function?

5. What is the purpose of item F and must it stay in
contact with item E ?

6. What is item G and what is its function?
7. What would you call such a device?

11–3. The sheave shown in Figure C11.3 drives a mecha-
nism (not shown) in a machine that shakes paint cans.
These machines are used to thoroughly mix the paint
at the time of purchase and are common at most paint
retail locations. Carefully examine the components of
the mechanism, then answer the following leading
questions to gain insight into its operation.

1. As tab B is forced upward into lever C, determine
the motion of item D.

2. As tab B is forced upward into lever C, determine
the resulting action of sheave G.

3. As tab B is forced upward into lever C, determine the
resulting action of the paint-shaking mechanism.

4. Item A is the door to the paint-shaking compart-
ment; discuss the purpose of the mechanism.

5. Discuss the reason for so many notches, E, in sheave G.
6. Discuss the purpose of spring H.
7. What would you call such a device?
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FIGURE C11.2 (Courtesy, Industrial Press.)
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FIGURE C11.3 Mechanism for Case Study 11.3
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C H A P T E R

T W E L V E

SCREW MECHANISMS

commonly, inside a nut. Whenever possible, the selection of
a thread should be standard to improve interchangeability
for maintenance or replacement. Threads, whether internal
or external, are classified with the following features.

The two most common features of a thread are the pitch
and pitch diameter. The pitch, p, is the distance measured
parallel to the screw axis from a point on one thread to the
corresponding point on the adjacent thread. The pitch diam-
eter, d, is the diameter measured from a point halfway
between the tip and root of the thread profile through the
axis and to the corresponding point on the opposite side.
Figure 12.1 illustrates these properties.

Other pertinent features of a screw thread (Figure 12.1)
include the major diameter, the minor diameter, the lead
angle, and the included angle. In the U.S. Customary Unit
System, the number of threads per inch, n, along the length of
the screw is more commonly used than the pitch. The
threads-per-inch value is related to the pitch through the
following equation:

(12.1)n =
1

p

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Describe the operation of a screw mechanism.

2. Become familiar with thread features and standard
thread forms.

3. Understand the function of a ball screw.

4. Determine whether a thread is self-locking.

5. Compute the torque required to rotate a screw and the
efficiency of a screw joint.

6. Compute the kinematic relationships of a general screw
mechanism.

7. Understand the operation of a differential screw and
compute the kinematic relationships.

8. Understand the operation of an auger and compute the
kinematic relationships.

12.1 INTRODUCTION

In general, screw mechanisms are designed to convert rotary
motion to linear motion. Consider a package for a stick
deodorant. As the knob turns, the deodorant stick either
extends or retracts into the package. Inside the package, a
screw turns, which pushes a nut and the deodorant stick along
the thread. Thus, a “disposable” screw mechanism is used in
the deodorant package. This same concept is commonly used
in automotive jacks, some garage door openers, automotive
seat adjustment mechanisms, and milling machine tables.

The determination of the kinematics and forces in a
screw mechanism is the purpose of this chapter. Because the
motion of a nut on a thread is strictly linear, graphical solu-
tions do not provide any insight. Therefore, only analytical
techniques are practical and are introduced in this chapter.

12.2 THREAD FEATURES

For a screw to function, there must be two mating parts, one
with an internal thread and the other with an external
thread. The external threads are turned on the surface of a
shaft or stud, such as a bolt or screw. The internal threads
can be tapped into a part, such as a cast housing or, more

0 1
Threads per inch

Included
angle Lead

angle Pitch

Minor
dia.

Pitch
dia.

Major
dia.

FIGURE 12.1 Thread profile.

12.3 THREAD FORMS

Thread form defines the shape of the thread. The thread
features introduced in the previous section were illustrated
on a unified thread form. Regardless, these definitions are
applicable to all thread forms. The most popular thread
forms include unified, metric, square, and ACME threads.
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FIGURE 12.2 Thread forms.

12.3.1 Unified Threads

Unified threads are the most common threads used on
fasteners and small mechanisms. They are also commonly
used for positioning mechanisms. Figure 12.2a illustrates the
profile of a unified thread. It is described as a sharp, triangular
tooth. The dimensions of a unified thread have been stan-
dardized and are given in Table 12.1. Unified threads are des-
ignated as either coarse pitch (UNC) or fine pitch (UNF).

A standard unified thread is specified by the size,
threads per inch, and coarse or fine pitch. Standard thread
designations would appear as

10–32 UNF
1/2–13 UNC

A standard metric thread is specified by the metric
designation “M,” the nominal major diameter, and pitch.
A standard thread designation would appear as

M10 × 1.5

12.3.3 Square Threads

Square threads, as the name implies, are a square, flat-top
thread. They are strong and were originally designed to trans-
fer power. A square thread form is shown in Figure 12.2c.
Although they efficiently transfer large loads, these threads are
difficult to machine with perpendicular sides. The square
threads have been generally replaced by ACME threads.

12.3.4 ACME Threads

ACME threads are similar to square threads, but with sloped
sides. They are commonly used when rapid movement is
required or large forces are transmitted. An ACME thread
form is shown in Figure 12.2d. The standard ACME screw
thread dimensions are given in Table 12.3. This thread is
the most common form used in screw mechanisms for
industrial machines. Its advantages are low cost and ease
of manufacture. Its disadvantages include low efficiencies,
as will be discussed later, and difficulty in predicting 
service life.

12.4 BALL SCREWS

Ball screws have also been designed to convert rotary motion
of either the screw or nut into relatively slow linear motion of
the mating member along the screw axis. However, a ball
screw has drastically less friction than a traditional screw
configuration. The sliding contact between the screw and nut
has been replaced with rolling contact of balls in grooves
along the screw. Thus, a ball screw requires less power to
drive a load. A ball screw is shown in Figure 12.3.

The operation of a ball screw is smooth because the
rolling balls eliminate the “slip-stick” motion caused by the
friction of a traditional screw and nut. However, because of
the low friction of a ball screw, a brake must usually be used
to hold the load in place.

The kinematics of a ball screw are identical to those of a
traditional screw. Therefore, a distinction is not required
when performing a kinematic analysis. The following
concepts apply to both traditional and ball screws.

12.5 LEAD

In determining the motion of a screw mechanism, the lead of
the screw is a critical parameter and must be understood. The
lead, L, is the distance along the screw axis that a nut travels
with one revolution of the screw. For most screws, the lead is
identical to the pitch. However, screws are available with
single or double threads. Thus, the number of threads, Nt,
superimposed on a screw is an important property. The
concept of multiple threads superimposed on a single screw
is illustrated in Figure 12.4.

12.3.2 Metric Threads

Metric thread forms are also described as sharp, triangular
shapes, but with a flat root. However, the standard dim-
ensions are convenient metric values and coordinated
through the International Organization for Standardization
(ISO). The thread shape is shown in Figure 12.2b. Standard
metric thread dimensions are given in Table 12.2.
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and the predictability of friction must be analyzed to ensure
safety. Mathematically, the condition that must be met for
self-locking is as follows:

(12.4)

In equation (12.4), μ is the coefficient of friction of the
nut–thread interface. For traditional threads, common
values for the coefficient of friction are

μ = 0.10 for very smooth, well-lubricated surfaces

μ = 0.15 for general machined screws with well-lubricated
surfaces

μ = 0.20 for general machined screws with ordinary
surfaces

Special surface treatments and coatings can reduce these
values by at least half. Ball screws, with inherent low friction,
are virtually never self-locking.

12.6 SCREW KINEMATICS

From a kinematic viewpoint, the screw joint connects two
bodies and couples two degrees of freedom. Typically, the joint

m 7 tan l

TABLE 12.1 Standard Unified Thread Dimensions

Coarse Threads Fine Threads

Nominal Pitch Nominal Pitch Nominal
Major Threads (in.) Pitch Threads (in.) Pitch

Diameter per inch, Diameter per inch, Diameter

Size (in.) n p =  
1

n (in.) n p =  
1

n (in.)

0 0.0600 — — — 80 0.0125 0.0519

1 0.0730 64 0.0156 0.0629 72 0.0139 0.0640

2 0.0860 56 0.0179 0.0744 64 0.0156 0.0759

3 0.0990 48 0.0208 0.0855 56 0.0179 0.0874

4 0.1120 40 0.0250 0.0958 48 0.0208 0.0985

5 0.1250 40 0.0250 0.1088 44 0.0227 0.1102

6 0.1380 32 0.0313 0.1177 40 0.0250 0.1218

8 0.1640 32 0.0313 0.1437 36 0.0278 0.1460

10 0.1900 24 0.0417 0.1629 32 0.0313 0.1697

12 0.2160 24 0.0417 0.1889 28 0.0357 0.1928
1⁄4 0.2500 20 0.0500 0.2175 28 0.0357 0.2268
1⁄16 0.3125 18 0.0556 0.2764 24 0.0417 0.2854
3⁄8 0.3750 16 0.0625 0.3344 24 0.0417 0.3479
7⁄16 0.4375 14 0.0714 0.3911 20 0.0500 0.4050
1⁄2 0.5000 13 0.0769 0.4500 20 0.0500 0.4675
9⁄16 0.5625 12 0.0833 0.5084 18 0.0556 0.5264
5⁄8 0.6250 11 0.0909 0.5660 18 0.0556 0.5889
3⁄4 0.7500 10 0.1000 0.6850 16 0.0625 0.7094
7⁄8 0.8750 9 0.1111 0.8028 14 0.0714 0.8286

1 1.0000 8 0.1250 0.9188 12 0.0833 0.9459

11⁄4 1.2500 7 0.1429 1.1572 12 0.0833 1.1959

11⁄2 1.5000 6 0.1667 1.3917 12 0.0833 1.4459

13⁄4 1.7500 5 0.2000 1.6201 — — —

2 2.0000 41⁄2 0.2222 1.8557 — — —

The lead can be computed as

(12.2)

A lead angle, , is shown in Figure 12.1 and is defined as
the angle of inclination of the threads. It can be computed
from a trigonometric relationship to the other screw fea-
tures.

(12.3)

When a screw thread is very steep and has large lead angles,
the torque required to push a load along a screw can become
large. Typical screws have lead angles that range from
approximately 2° to 6°. Additionally, small lead angles
prohibit a load to “slide down a screw” due to gravity. The
friction force and shallow thread slope combine to lock the
load in place. This is known as self-locking and is desirable
for lifting devices. For example, a car jack requires that
the load be held in an upward position, even as the power
source is removed. When the thread is self-locking, the load
is locked in an upright position. This braking action is used
in several mechanical devices, but the strength of the thread

tan l =  
Nt p

pd
 =  

L

pd

 l

L = Nt p



TABLE 12.2 Standard Metric Thread Dimensions

Coarse Threads Fine Threads

Nominal Pitch Nominal Pitch Nominal
Major (mm) Pitch (mm) Pitch

Diameter Diameter Diameter

(mm) p =  
1

n
(mm) p =  

1

n
(mm)

1 0.25 0.84 — —

1.6 0.35 1.37 0.20 1.47

2 0.40 1.74 0.25 1.84

2.5 0.45 2.20 0.35 2.27

3 0.50 2.67 0.35 2.77

4 0.70 3.54 0.50 3.67

5 0.80 4.47 0.50 4.67

6 1.00 5.34 0.75 5.51

8 1.25 7.18 1.00 7.34

10 1.50 9.01 1.25 9.18

12 1.75 10.85 1.25 11.18

16 2.00 14.68 1.50 15.01

20 2.50 18.35 1.50 19.01

24 3.00 22.02 2.00 22.68

30 3.50 27.69 2.00 28.68

36 4.00 33.36 3.00 34.02

42 4.50 39.03 — —

48 5.00 44.70 — —
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FIGURE 12.3 Ball screw. (Courtesy, Warner Electric.)

is configured such that one body will translate with a rotational
input from the other body. Depending on the constraints of
the two bodies, the following relative motions are possible:

I. Translation of the nut as the screw rotates: Occurs when the
screw is unable to translate and nut is unable to rotate.

II. Translation of the screw as the nut rotates: Occurs when
the nut is unable to translate and screw is unable to
rotate.

III. Translation of the screw as it rotates: Occurs when the
nut is fully constrained against any motion.

IV. Translation of the nut as it rotates: Occurs when the
screw is fully constrained against any motion.

Regardless of the actual system configuration, the
relative motion is the same. A given rotation produces a
resulting translation. Therefore, equations are developed to
describe the relative motion, and the absolute motion can be
determined when examining the actual system configura-
tion. A notation is made where

A is the part that is allowed to rotate.

B is the other part joined by the screw joint.

As previously defined, the lead of a screw is the distance
along the screw axis that a nut travels with one revolution of
the screw. Therefore, the magnitude of the relative displace-
ment of B relative to A is calculated as follows:

(12.5)¢RB/A = L ¢uA

Single thread Double thread

FIGURE 12.4 Multiple thread concept.

TABLE 12.3 Standard ACME Thread 
Dimensions

Nominal
Major 
Diameter (in.)

Threads per 
inch, n

Pitch (in.)

p =  
1

n

Nominal
Pitch 
Diameter (in.)

1⁄4 16 0.0625 0.2043

5⁄16 14 0.0714 0.2614
3⁄8 12 0.0833 0.3161
7⁄16 12 0.0833 0.3783
1⁄2 10 0.1000 0.4306
5⁄8 8 0.125 0.5408
3⁄4 6 0.1667 0.6424
7⁄8 6 0.1667 0.7663

1 5 0.2000 0.8726

11⁄8 5 0.2000 0.9967

11⁄4 5 0.2000 1.1210

13⁄8 4 0.2500 1.2188

11⁄2 4 0.2500 1.3429

13⁄4 4 0.2500 1.5916

2 4 0.2500 1.8402

21⁄4 3 0.3333 2.0450

21⁄2 3 0.3333 2.2939

23⁄4 3 0.3333 2.5427

3 2 0.5000 2.7044

31⁄2 2 0.5000 3.2026

4 2 0.5000 3.7008

41⁄2 2 0.5000 4.1991

5 2 0.5000 4.6973
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Differentiating yields equations for the magnitude of the 
velocity and acceleration.

(12.6)

(12.7)

Note that the lead, L, is specified as the relative displacement
per revolution. Therefore, in this instance, the angular motion
must be specified in revolutions. Thus, ωA should be specified
in revolutions per minute (or second), and αA should be spec-
ified in revolutions per squared minute (or squared second).

aB/A = LaA

vB/A = LvA

The direction of the relative motion depends on the
hand designation of the thread. Screws and the mating nuts
are classified as either right-hand or left-hand. A right-hand
thread is most common. For this threaded joint, the screw
advances into the nut when the screw rotates clockwise. A
right-hand thread slopes downward to the left on an external
thread when the axis is horizontal. The slope is opposite on
an internal thread. The opposite, left-hand configuration
produces the opposite motion.

The following examples illustrate the determination of
screw kinematics.

Screw shaft bearing

ScrewNut

Linear guide Slide

Motor

FIGURE 12.5 Slide for Example Problem 12.1.

EXAMPLE PROBLEM 12.1

A screw-driven slide, shown in Figure 12.5, is used on a production machine that moves a saw blade to cut the

sprue off raw castings. A single thread, 3⁄4 -6 ACME screw shaft moves the slide. The screw is rotated at 80 rpm,

moving the slide to the right. Determine the speed of the slide. Also determine the number of revolutions to move

the slide 3.5 in.

SOLUTION: 1. Determine Relative Motion

In this configuration, the motor rotates the screw in the bearings, but shoulders on the shaft prevent the screw

translating. The nut is held against rotation, but is allowed to translate along the linear guides. This is case I as

previously described. The following notation will be used:

Part A is the screw.

Part B is the nut.

2. Calculate Screw Geometry

A single-thread, 3⁄4 -6 ACME screw has the following properties:

Number of threads: Nt = 1 thread/rev

Number of threads per inch: n = 6

Pitch: in./thread

Lead: L = Nt p = 0.167 in./rev

3. Determine Screw Displacement

The angular displacement of the screw to produce a 3.5 in. linear displacement of the nut and slide is determined

by rearranging equation (12.5).

In the absence of further information, it is assumed that this is a standard, right-hand thread. Therefore, the

screw must turn counterclockwise, as viewed from the right end, to move the nut to the right.

¢uA =
¢RB/A

L
=

3.5 in.

0.167 in./rev
= 20.96rev

p =
1

n
=

1

6
= 0.167
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4. Determine Nut Velocity

The linear velocity of the nut can be calculated from equation (12.6).

Because the screw is constrained against translation, this computed velocity is the absolute velocity of

the nut.

VB/A = LvA = 10.167 in./rev2180rev/min2 = 13.36 in./min :

EXAMPLE PROBLEM 12.2

A screw-operated press is shown in Figure 12.6. The screw has a single 1⁄2 *10 ACME thread, both in a 

right-hand and left-hand orientation, as shown. The handle rotates counterclockwise at 45 rpm to drive

the pressure plate downward. In the position shown, with β = 25°, determine the velocity of the pressure 

plate.

Left-hand
thread

Right-hand
thread

Pressure
plate

2' 2'

β

FIGURE 12.6 Press for Example Problem 12.2.

B

β A5
4 3

2
1

C

FIGURE 12.7 Kinematic diagram for Example Problem 12.2

SOLUTION: 1. List Screw Properties

A single-thread, 1⁄2 *10 ACME screw has the following properties:

Number of teeth per inch: n = 10

Pitch:

Number of threads: Nt = 1

Lead: L = Nt p = 0.10 in./rev

2. Sketch a Kinematic Diagram and Identify Degrees of Freedom

A kinematic diagram of this mechanism is shown in Figure 12.7. By calculating the mobility of the mechanism,

five links are identified. There are also four pin joints. Therefore,

and

With two degrees of freedom, both nuts must be driven. The screw configuration shown in Figure 12.6 does

drive both nuts.

M = 3(n - 1) - 2jp - jb = 3(5 - 1) - 2(5) - 0 = 12 - 10 = 2

n = 5 jp = 5(3pins and 2  sliding joints) jb = 0

p =
1

n
=

1

10
= 0.10 in.
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3. Determine Velocity of Nuts

From Figure 12.6, the screw is free to rotate but is fixed against axial displacement. With the opposite-hand

threads, the two nuts also move in opposite directions. Therefore, the relative velocity of the nut with respect to

the screw equation (12.6) is the absolute velocity of each advancing nut. As the screw rotates with a velocity of 45

rpm, the nut advances at a rate of

Thus,

4. Determine Velocity of the Plate

A velocity equation can be written as

A velocity diagram is formed from both velocity equations. Notice that because of symmetry, the displacement

and velocity of B is vertical (Figure 12.8).

VB = VA + 7 VB/A = VC + 7 VB/C

VA = 4.5 in./min ;  and VC = 4.5 in./min :

vnut/screw = Lvscrew = 10.10 in./rev2145rev/min2 = 4.5 in./min

12.7 SCREW FORCES AND TORQUES

The torque and force acting on a screw and nut assembly are
shown in Figure 12.9.

The relationships between the force and torque have
been derived [Ref. 2] and are a strong function of the
coefficient of friction, μ, between the thread and nut. Friction
was discussed in Section 12.5. A substantial amount of energy
can be lost to friction when using a threaded mechanism.

The first case to study is one in which the motion of the
nut occurs in the opposite direction from the applied force
acting on a nut. This is commonly referred to as a case of lift-
ing or pushing a load. The required torque to accomplish
this motion is calculated as follows:

(12.8)T = a Fd

2
b c (L + pmd)

(pd - mL)
d

T

F

FIGURE 12.9 Force and torque on a screw.

Using trigonometry, the following relationship can be written:

For the case shown,

 VB = vA tan(90 - b) = 14.5 in./min2 tan(90° - 20°) = 12.4 in./min T

b = 25°

tan(90 - b) =
vB

vA

VB/A

VA VC

VB/C

VB

β90 – β90 – 

FIGURE 12.8 Velocity diagram for Example Problem 12.2.
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where:
F = magnitude of applied force on nut
d = pitch diameter of threads
L = lead of threads
μ = coefficient of friction between the nut and threads

The second case to be studied is one in which the
motion of the nut is in the same direction as the force acting
on the nut. In essence, the load assists the motion of the nut.
This is commonly referred to as a case of lowering a load. The
required torque to accomplish this motion is as follows:

(12.9)

An efficiency, e, can be defined as the percent of power
that is transferred through the threads to the nut. It is the
ratio of torque required to raise the load in the absence of
friction to the torque required to raise a load with friction.
Again, a closed-form equation has been derived for
efficiency.

T = aFd

2
b c (pmd - L)

(pd + mL)
d

(12.10)

In addition to the previously defined quantities, the included
thread angle, α, is used. This angle was illustrated in Figure
12.2. Standard values include

Unified thread: α = 30°

Metric thread: α = 30°

Square thread: α = 0°

ACME thread: α = 14.5°

Threaded screws typically have efficiencies between 20 and
50 percent. Thus, a substantial amount of energy is lost
to friction. As opposed to threaded screws, ball screws have
efficiencies in excess of 90 percent. For ball screws, the oper-
ational torque equations can be estimated as

(12.11)

(12.12)T = 0.143FL (To lower a load)

T = 0.177F L (To raise a load)

e = a L

pd
b c (pdcosa - mL)

(pmd + Lcosa)
d

EXAMPLE PROBLEM 12.3

A screw jack mechanism is shown in Figure 12.10. A belt/sheave is used to rotate a nut, mating with a single-thread,

1–5 ACME screw, to raise the jack. Notice that a pin is used in a groove on the screw to prevent the screw from 

rotating. The nut rotates at 300 rpm. Determine the lifting speed of the jack, the torque required, and the efficiency

of the jack.

500 lb

T

FIGURE 12.10 Jack for Example Problem 12.3.

SOLUTION: 1. List Screw Properties

A single-thread, 1 × 5 ACME screw has the following properties:

Number of teeth per inch: n = 5

Pitch:

Number of threads: Nt = 1

Lead: L = Nt p = 0.20 in./rev

p =
1

n
=

1

5
= 0.20 in.



324 CHAPTER TWELVE

2. Calculate Velocity of Screw

In Figure 12.10, the nut is fixed from translation. Therefore, the velocity computed with equation (12.6) is that

of the advancing screw. As the nut rotates with a velocity of 300 rpm, the thread advances through the nut at a

rate of

3. Calculate Required Torque

The torque required to raise the load is dependent on the estimated coefficient of friction between the threads

and nut. Because this jack configuration is used in standard industrial settings, a coefficient of friction of 0.2 is

assumed. In Table 12.3, the nominal pitch diameter for 1 × 5 ACME threads is 0.8726 in. Also, for all ACME

threads, the included angle is 29°. Therefore, the torque can be computed from equation (12.8).

4. Calculate Efficiency

Finally, efficiency can be computed from equation (12.10).

An efficiency of 0.24 reveals that only 24 percent of the power transferred to the nut is delivered into lifting 

the weight. The remaining 76 percent is lost in friction. If these values are not acceptable, a ball screw could be 

substituted for the ACME thread. A ball screw has not only an efficiency of approximately 90 percent but also a 

significantly higher cost. However, recall that a ball screw is not self-locking and does not maintain the load at an 

elevated level.

=
(0.2)

p(0.8726)
e [p(0.8726) cos(29 ) - (0.2) (0.2)]

[p(0.2) (0.8726) + (0.2) (cos29°)]
f = 0.24

e = a L

pd
b c (pdcosa - mL)

(pmd + Lcosa)
d

=
(500 lb)(0.8726 in.)

2
e [(0.20 + p(0.2) (0.8726)]

[p(0.8726) - (0.2) (0.2)]
f = 60.4 in. - lb

T = aFd

2
b (L + pmd )

(pd - mL)

Vscrew = Lvnut = 10.20 in./rev21300rev/min2 = 60 in./min c

A B C

FIGURE 12.11 A differential screw.

12.8 DIFFERENTIAL SCREWS

A differential screw is a mechanism designed to provide very
fine motions. Although they can be made in several forms,
one common form is shown in Figure 12.11. This particular
differential screw configuration consists of two different
threads on the same axis and one sliding joint.

to rotate. Specifically, as thread B rotates one revolution, nut
C is retracted a distance equal to the lead of thread B.
However, because thread B already advances one revolution,
the net motion of nut C is the difference between the lead of
threads A and B. Thus, this screw arrangement with different
leads is called the differential screw.

For differential screws, the kinematic relationships
among the magnitude of the angular and the linear motion
can be modified as follows:

(12.13)

(12.14)

(12.15)

Again note that the lead, L, is specified as the nut displace-
ment per revolution. Therefore, in this rare instance, the
angular motion should be specified in revolutions.

When the leads of the two threads are close, small
motions of the nut can be produced. This configuration is
popular for fine adjustments of precision equipment at a
relatively low cost.

anut = (LA - LB)ascrew

vnut = (LA - LB)vscrew

¢R nut = (LA - LB) ¢uscrew

In Figure 12.11, as the handle turns one revolution,
thread A rotates one revolution and advances a distance equal
to the lead of thread A. Of course, the motion of thread B is
identical to thread A because it is machined onto the same
shaft as A. Thus, thread B also rotates one revolution and
advances a distance equal to the lead of thread A. As thread B
rotates one revolution, nut C is retracted because it is unable
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EXAMPLE PROBLEM 12.4

A device that is intended to gauge the length of parts is shown in Figure 12.12. The concept utilizes a differential screw,

such that the rotation of knob A slides nut D until it is firmly pressed against part E. Nut D also has a pointer that can be

used to determine the length of part E. The objective is to configure the system such that one rotation of knob A

causes a 0.1-mm traverse of nut D. Select threads B and C to accomplish this requirement.

SOLUTION: Use the following differential screw kinematics equation:

Several arrangements are possible. The standard threads listed in Table 12.2 are utilized. These have a single thread, so

the lead and pitch are identical. Then two threads need to be selected that have a difference in pitch of 0.1 mm.

Although a few options are feasible, arbitrarily select coarse pitch threads.

For thread B: M5 × 0.8

For thread C: M4 × 0.7

 (L B - LC ) = 0.1 mm/rev

 0.1 mm = (L B - LC ) (1 rev)

¢Rnut = (L B - L C ) ¢uscrew

12.9 AUGER SCREWS

Many centuries ago, Archimedes ingeniously applied a screw
mechanism to lifting water, which is now known as the
“Archimedes Screw” (Figure 12.13). As the screw rotates,
each thread of the screw transports a certain amount of
water. With this screw mechanism, the mating nut is actually
the fluid being transported. This form is still utilized today
to transport many different types of material. Common
applications include transporting molten plastic into molds,
moving salt from dump trucks through spreaders for icy
winter roads, digging fence post holes in soil, and moving
cattle feed through long troughs. This screw mechanism is
more commonly referred to as an auger.

The kinematic equations presented in equations (12.16),
(12.17), and (12.18) can be used to determine the motion of the
material being transported, given the motion of the auger.
Consistent with standard screws, a pitch or lead of an auger
blade is defined. The volumetric transport rate is then a function
of the clearance between auger blades, which traps the material
being transported. This can be mathematically written as

(12.16)

(12.17)

(12.18)

PROBLEMS

Screw Thread Geometry

12–1. Compute the lead, and lead angle, of a 1⁄4 -20 UNC
thread. Also determine whether it is self-locking
when the thread is of general machined quality.

(volume trapped between augerblades) (Lauger)ascrew

Volumetric acceleration through auger =

(volume trapped between augerblades) (Lauger)vscrew

Volumetric flow through auger =

= (volume trapped between auger blades) (Lauger) ¢uscrew

Volume through auger

D

E
C B A

FIGURE 12.12 Measuring device for Example Problem 12.4.

FIGURE 12.13 Archimedes screw.
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12–2. Compute the lead, and lead angle, of a 1⁄4 -28 UNC
thread. Also determine whether it is self-locking
when the thread is of general machined quality.

12–3. Compute the lead, and lead angle, of an M16 × 2.0
thread. Also determine whether it is self-locking
when the thread is of general machined quality.

12–4. Compute the lead, and lead angle, of a 1- 1⁄8 -5
ACME thread. Also determine whether it is self-
locking when the thread is of general machined
quality.

Screw-Driven Displacement

12–5. A stick deodorant package utilizes a screw to advance
and retract the stick. The thumb wheel rotates a stan-
dard 1⁄4 -20 thread that moves the nut and deodorant
stick. Determine the distance that the stick advances
when the thumb wheel is rotated 3 revolutions.

12–6. A tension-testing machine is shown in Figure P12.6.
A single-thread, 2–4 ACME screw moves the nut.
Determine the displacement of the raising ram
when the screw is rotated 10 revolutions.

12–8. An adjustable work table is shown in Figure P12.8.
The input shaft is coupled, through a set of bevel
gears, to a nut. The nut rotates, pushing a screw up
and down. The bevel gears have a ratio of 5:1. The
screw has a 1⁄2 -13 UNC thread. Determine the dis-
placement of the raising table when the input shaft
is rotated 10 revolutions.

Grips

Ram

Screws

FIGURE P12.6 Problems 6, 18, and 25.

Bevel
gears

Input
shaft

Table

ScrewNut

FIGURE P12.8 Problems 8, 20, and 27.

β

β

All four
links are
2 ft in
length

Pressure plate

Crank

FIGURE P12.9 Problems 9–11 and 21.

12–7. A garage door opener is shown in Figure P12.7.
A single-thread, 1–5 ACME screw moves the
nut. Determine the displacement of the bottom
of the lowering door when the screw is rotated 10
revolutions.

Drive screw
Track

Doorω

FIGURE P12.7 Problems 7, 19, and 26.

12–9. A screw-operated press is shown in Figure P12.9.
The screw has a single 1⁄2 -10 ACME thread, both in
right-hand and left-hand orientation, as shown.
The press is initially configured with β = 25°.
Graphically determine the displacement of the
lowering pressure plate when the crank is rotated 20
revolutions.

12–10. The press described in Problem 12–9 is initially
configured with β = 45°. Graphically determine the
displacement of the lowering pressure plate when
the crank is rotated 15 revolutions.

12–11. The press described in Problem 12–9 is initially
configured with β = 65°. Graphically determine the
displacement of the lowering pressure plate when
the crank is rotated 30 revolutions.



Screw Mechanisms 327

Platform

6"
10"

10"

6"

10"

4"
Crank

3"

FIGURE P12.12 Problems 12, 13, and 22.

12–12. A 3⁄4 -10 UNC threaded rod drives a platform as
shown in Figure P12.12. Graphically determine the
displacement of the lowering platform when the
crank is rotated 12 revolutions.

12–13. For the platform described in Problem 12–12,
graphically determine the displacement of
the raising platform when the crank is rotated 8
revolutions.

12–14. The motor shown in Figure P12.14 rotates a 3⁄4 -10
UNC threaded rod to a tilt platform used for
flipping crates. Graphically determine the angu-
lar displacement of the raising table and the linear
displacement of the top edge when the motor
rotates 25 revolutions.

12–15. For the platform described in Problem 12–14,
graphically determine the angular displacement
of the lowering table and the linear displacement
of the top edge when the motor rotates 15
revolutions.

12–16. The height and angle of the drawing table, shown in
Figure P12.16, is adjusted by rotating the crank. The
crank rotates a screw, moving the nut and altering
the L distance. The screw has a 7⁄8 -14 UNF thread.
The table is initially configured with L = 9 in.

Graphically determine the displacement of the top
and bottom edges of the raising table when the
crank is rotated 5 revolutions.

12–17. The drawing table, shown in Figure P12.16, is
initially configured with L = 8 in. The screw has a
7⁄8 -14 UNF thread. Graphically determine the
displacement of the top and bottom edges of
the lowering table when the crank is rotated 30
revolutions.

Screw-Driven Velocity

12–18. The screw in the tension-testing machine
described in Problem 12–6 rotates at 40 rpm,
lowering the ram. Determine the linear velocity of
the ram.

12–19. The screw in the garage door opener described in
Problem 12–7 rotates at 1200 rpm, opening the
door. Determine the linear velocity of the bottom of
the door.

12–20. The input shaft of the work table described in
Problem 12–8 rotates at 600 rpm, raising the table.
Determine the linear velocity of the table.

12–21. The screw in the press described in Problem 12–9
rotates at 45 rpm, lowering the pressure plate. The
press is configured with β = 25°. Determine the
linear velocity of the pressure plate.

12–22. The crank in the platform described in Problem
12–12 rotates at 30 rpm, raising the platform.
Determine the linear velocity of the platform.

Motor

24"

12"

Platform

18"

36"

FIGURE P12.14 Problems 14, 15, 23, and 28.

6"

4"

9"

9"

11"

L

8"

18"

Note: The screw is
not constrained
to the horizontal

18"

Crank

FIGURE P12.16 Problems 16, 17, 24.
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A

F
G H I

G F

B C D E

FIGURE C12.1 (Courtesy, Industrial Press.)

12–23. The motor in the tilt platform mechanism described
in Problem 12–14 rotates at 1800 rpm, raising the
platform. Determine the angular velocity of the
platform.

12–24. The crank of the drawing table described in Problem
12–16 rotates at 20 rpm, lowering the table. The table
is initially configured with L = 9 in. Determine the
velocity of the top and bottom edges of the table.

Screw-Driven Acceleration

12–25. The screw in the tension-testing machine described
in Problem 12–6 rotates at 40 rpm, lowering the
ram. The motor is shut down and it will take 1.7 s to
completely stop. Determine the linear acceleration
of the ram during the shut-down period.

12–26. The garage door opener described in Problem 12–7
is activated to open the door. It takes the motor 0.7 s
to achieve the steady-state running speed of 1200
rpm. At the instant of activation, determine the
linear acceleration of the bottom of the door.

12–27. The motor for the work table described in Problem
12–8 is turned on to raise the table. It takes the 20
revolutions for the input shaft to achieve its steady-
state running speed of 1200 rpm. Determine the
linear acceleration of the table.

12–28. The motor in the tilt platform mechanism described
in Problem 12–14 rotates at 900 rpm, raising the
platform, then is shut down. It will take 4 revolu-
tions to completely stop. Determine the angular
velocity and acceleration of the platform.

Screw Force and Torque

12–29. A 1⁄2 – in. standard ACME thread is used on a 
C-clamp. This thread is of general machine quality
with minimal lubricant. For the clamp to exert a
500-lb force on the materials being clamped
together, determine the torque required.

12–30. Estimate the efficiency of the C-clamp described in
Problem 12–29.

12–31. A jack uses a double-thread ACME thread with a
major diameter of 25 mm and a pitch of 5 mm. The
jack is intended to lift 4000 N. Determine

the lead angle,
whether the jack is self-locking,
the torque to raise the load,
the torque to lower the load, and
the efficiency of the jack.

12–32. A jack uses a double-thread 1–5 ACME thread. The
jack is intended to lift 2000 lb. Determine

the lead angle,
whether the jack is self-locking,
the torque to raise the load,
the torque to lower the load, and
the efficiency of the jack.

12–33. For the table in Problem 12–8, the thread is of gen-
eral machine quality with minimal lubricant. The
table supports 75 lb; determine the torque that must
be transferred to the nut.

12–34. Estimate the efficiency of the screw used in the table
described in Problem 12–16.

Differential Screws

12–35. A differential screw is to be used in a measuring
device similar to the one described in Example
Problem 12.4. Select two standard threads such that
one rotation of the knob creates a 0.5-mm traverse
of the nut.

12–36. A differential screw is to be used in a measuring device
similar to the one described in Example Problem 12.4.
Select two standard threads such that one rotation of
the knob creates a 0.25-in. traverse of the nut.

12–37. A differential screw is to be used in a measuring
device similar to the one described in Example
Problem 12.4. Select two standard threads such that
one rotation of the knob creates a 0.05-in. traverse
of the nut.

CASE STUDIES

12–1. The device shown in Figure C12.1 utilizes a screw
mechanism. Carefully examine the components of
the mechanism, then answer the following leading
questions to gain insight into the operation.

1. What is the hand designation for thread B?
2. What is the hand designation for thread E?
3. When handle A rotates counterclockwise, what is

the motion of nut C?
4. When handle A rotates counterclockwise, what is

the motion of slide H?
5. When handle A rotates counterclockwise, what is

the motion of nut D?
6. When handle A rotates counterclockwise, what is

the motion of slide I?
7. What is the function of both links labeled F?
8. What is component G and what is its function?
9. What is the function of this device, and what would

you call it?
12–2. The device shown in Figure C12.2 utilizes a screw

mechanism. Carefully examine the components of
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D E

A
I B

F G

J

FIGURE C12.2 (Courtesy, Industrial Press.)

2. What is the function of pin H?
3. As handwheel A rotates counterclockwise, what is

the motion of threaded sleeve B?
4. What actually couples the motion of shaft I and

threaded sleeve B?
5. Threaded sleeve B has right-hand threads; as

handwheel A rotates counterclockwise, what is the
motion of nut C?

6. What happens to this device when pads D and E
make contact?

7. What component is F and what is its function?
8. What is the function of this device?
9. What would happen if nut G were tightened?

10. What would happen to this device if the interface J
were designed with a more vertical slope?

the mechanism, then answer the following leading
questions to gain insight into the operation.

1. As handwheel A rotates counterclockwise, what is
the motion of shaft I?
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C H A P T E R

T H I R T E E N

STATIC FORCE ANALYSIS

movement are gradual or the mass of the components is
negligible. These include clamps, latches, support linkages,
and many hand-operated tools, such as pliers and cutters.

The following chapter deals with force analysis in mech-
anisms with significant accelerations. In many high-speed
machines, the inertial forces created by the motion of a
machine exceed the forces required to perform the intended
task. This condition is termed dynamic equilibrium. The
analysis of dynamic equilibrium uses many concepts of
static equilibrium. Thus, static equilibrium (Chapter 13) is
presented before proceeding to dynamic equilibrium
(Chapter 14).

13.2 FORCES

A force, F, is a vector quantity that represents a pushing or
pulling action on a part. Pulling a child in a wagon implies
that a force (pulling action) is applied to the handle of the
wagon. Being a vector, this force is defined by a magnitude F,
and a direction of the pulling action. In the U.S. Customary
System, the common unit for the magnitude of a force is the
avoirdupois pound or simply pound (lb). In the International
System, the primary unit used is the Newton (N).

One of the most common operations is the determina-
tion of the net effect of several forces. Two or more forces
that are applied to a part can be combined to determine the
resulting effect of the forces. Combining forces to find a
resultant is a procedure identical to adding displacement,
velocity, or acceleration vectors. This was presented in
Sections 3.9 and 3.11. Conversely, one force can be broken
into two components along the orthogonal axis. This was
presented in Section 3.10. Often, utilizing the components of
a force, along a set of convenient axes, facilitates analysis.
Being vector quantities, forces can be manipulated through
all the methods illustrated in Chapter 3.

13.3 MOMENTS AND TORQUES

A moment, or torque, is the twisting action produced by a
force. Pushing on the handle of a wrench produces an action
that tends to rotate a nut on a bolt. Thus, the force causes a
twisting action around the center of a bolt. This resulting
action is termed a moment or torque. Figure 13.1 illustrates
such a force, causing a twisting action.

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Define and identify a force.

2. Calculate the moment of a force.

3. Understand the difference between mass and 
weight.

4. Understand and apply Newton’s three laws of
motion.

5. Create a free-body diagram of a general machine
component.

6. Identify and use the special conditions for equilibrium
of a two-force member.

7. Calculate sliding frictional force and identify its
direction.

8. Determine the forces acting throughout a 
mechanism.

13.1 INTRODUCTION

The general function of any machine is to transmit motion
and forces from an actuator to the components that perform
the desired task. Consider an escalator used in many com-
mercial buildings: Electrical power is fed into motors, which
drive mechanisms that move and fold the stairs. The task is
to safely and efficiently move people up and down multilevel
buildings.

Up to this point in the book, the sole focus was on the
motion of a machine. This chapter, and the next, is dedicated
to an introduction to machine forces. A critical task in the
design of machines is to ensure that the strength of the links
and joints is sufficient to withstand the forces imposed on
them. Therefore, a full understanding of the forces in the
various components of a machine is vital.

As mentioned in Chapter 7, an inertial force results
from any accelerations present in a linkage. This chapter
deals with force analysis in mechanisms without accelera-
tions, or where the accelerations can be neglected. This
condition is termed static equilibrium. Static equilibrium
is applicable in many machines where the changes in
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FIGURE 13.1 The definition of a moment or torque.
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3"

12"
37 lb

40°

FIGURE 13.2 Door for Example Problem 13.1.

In planar mechanics, a moment is a property that is stated
relative to a reference point. For the wrench in Figure 13.1, the
objective of the force is to deliver a twisting action to the nut.
Therefore, a reference point is appropriately placed at the
center of the nut, point A. The magnitude of a moment
relative to point A, MA, created by a force can be calculated as

(13.1)MA = (F)(d)

Where F is the magnitude of the force, d is the perpendicular
distance between the force and a reference point A. Moments
are expressed in the units of force multiplied by distance.
In the U.S. Customary System, the common units for
moments are inch-pound (in. lb) or foot-pound (lb-ft). In
the International System, the common units used are
Newton-millimeters (Nmm) or Newton-meters (Nm).

The moment of a force not only has a magnitude but
also a direction, depending on the relative position of the
force and the reference point. The direction of a moment, or
twisting action, relative to the reference point is simply des-
ignated as clockwise or counterclockwise. This direction is
consistent with the twisting direction of the force around the
reference point. The twisting action of the force illustrated in
Figure 13.1, relative to the nut, is a clockwise moment.
Moments are conventionally considered positive when act-
ing counterclockwise and negative when acting clockwise.

The difference between a moment and a torque is sub-
tle. A moment is any twisting action of a force. A torque is a
specific type of a moment. In machine applications, a torque
is any moment where the point of reference is at the center of
a shaft or other pin-type connection.

EXAMPLE PROBLEM 13.1

A mechanism to automatically open a door exerts a 37-lb force on the door, applied in a direction as shown in 

Figure 13.2. Determine the moment, relative to the pivot of the door, created by the force.

SOLUTION: 1. Calculate Perpendicular Distance

The moment can be computed from equation (13.1). Although the force is given, the geometry of the door must

be examined to determine the perpendicular distance, d. The geometry has been isolated and broken into two

triangles in Figure 13.3. Notice that both triangles were constructed to be right triangles. The common side to

the two triangles, labeled as side c, can be determined with the known data for the upper triangle. From the

Pythagorean theorem,

The included angle, β, can also be found from the trigonometric relations.

b = tan-1a 3 in.

12 in.
b = 14.0°

c = 3(12 in.)2 + (3 in.)2 = 12.37 in.
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F2

3"

12"

37 lb

40°

FIGURE 13.4 Force components for Example Problem 13.1.

Focusing on the lower triangle, the included angle, γ, can be found because the total angle was given 

as 40°; thus,

Finally, the perpendicular distance can be determined from the trigonometric relations of the lower 

triangle.

2. Calculate Moment

The moment, relative to the pivot A, is calculated from equation (13.1). The direction is consistent with the

twisting action of the force relative to the pivot A, which in this case is clockwise.

ALTERNATIVE SOLUTION:

1. Resolve Force into Rectangular Components

In the previous solution, the calculation of a perpendicular distance was rather complex. An alternative solution

can be used that involves defining a convenient coordinate system that is aligned with the given dimensions. The

components of the original force F are identified as F1 and F2 and shown in Figure 13.4.

The magnitude of F1 and F2 can be computed as

MA = F(d ) = 37 lb(5.42 in.) = 200.5 in. lb, cw

d = c sin(g) = (12.37 in.) sin(26°) = 5.42 in.

g = 40° - b = 26°

2. Identify Perpendicular Distance for Each Component

Notice that both of these components cause a moment relative to point A. However, the perpendicular distance

for each moment is apparent. From Figure 13.4, it is seen that the perpendicular distance for F1 and F2 is 12 in.

and 3 in., respectively. Also notice that F1 causes a clockwise turning action around point A. The moment

F2 = (37 lb)cos40° = 28.3 lb

F1 = (37 lb) sin40° = 23.8 lb

c

Pivot A
3

d 12

37 1b

40° β

γ

FIGURE 13.3 Door geometry for Example Problem 13.1.
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FIGURE 13.5 Free-body diagram.

caused by F2 is counterclockwise. The traditional sign convention is to assign counterclockwise moments a 

positive value.

3. Calculate Moment

Calculating the moment relative to point A,

= 200.5 in. lb, cw

= -200.5 in. lb

= - [(23.8 lb)(12 in.)] + [(28.3 lb)(3 in.)]

MA = - F1(12 in.) + F2(3 in.)

13.4 LAWS OF MOTION

Sir Isaac Newton developed three laws of motion that serve
as the basis of all analysis of forces acting on machines and
components. These laws are stated as follows:

FIRST LAW: Every object remains at rest, or moves
with constant velocity, unless an unbalanced force acts
upon it.

SECOND LAW: A body that has an unbalanced force has

a. Acceleration that is proportional to the force,

b. Acceleration that is in the direction of the force,
and

c. Acceleration that is inversely proportional to the
mass of the object.

THIRD LAW: For every action, there is an equal and
opposite reaction.

All of these laws are utilized in the study of mechanisms.
However, in this chapter dealing with static force analysis,
only the first and third laws are applicable. The following
chapter incorporates the second law into the analysis.

13.5 FREE-BODY DIAGRAMS

To fully understand the safety of a machine, all forces that
act on the links should be examined. It is widely accepted
that the best way to track these forces is to construct a free-
body diagram. A free-body diagram is a picture of the iso-
lated part, as if it were floating freely. The part appears to be
floating because all the supports and contacts with other
parts have been removed. All these supports and contacts are
then replaced with forces that represent the action of the
support. Thus, a free-body diagram of a part shows all the
forces acting on the part.

13.5.1 Drawing a Free-Body Diagram

Figure 13.5 illustrates a free-body diagram of an isolated
link. Notice that this part is designated as link 3. It is essential
that all forces are shown on the free-body diagram. A conve-
nient notation is to label the forces consistent with the link
number that is being acted upon and the link number that is

driving the action. Thus, a force designated as F34 is a force
on link 3 from the contact of link 4.

Because forces are vectors, determination of a force
requires knowledge of the magnitude and direction of that
force. If the direction of a force is known, it should be indi-
cated on the free-body diagram. This is the case for F34 in
Figure 13.5. When the direction of a force is not known, it is
common to draw two orthogonal components of the
unknown force. These two components represent the two
items that need to be determined for full understanding of
the force. Notice that this is the case for F32 in Figure 13.5.

The following steps can assist in systematically drawing
a free-body diagram:

I. Isolate the component(s) that must be studied.

II. Draw the component as if it were floating freely in
space by removing all visible supports and physical
contact that it has with other objects.

III. Replace the supports, or physical contacts, with the
appropriate force and/or moments, which have the
same effect as the supports.

13.5.2 Characterizing Contact Forces

Establishing the supporting forces takes some care. As a gen-
eral rule, if the nature of the contact prevents motion in a
certain direction, there must be a supporting force in that
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F

(a) Direction of Reaction is Known

(b) Direction of Reaction is Unknown

(c) Reaction Prohibits Translation and Rotation

Fy

Fx

Fx

M

Fy

FIGURE 13.6 Reaction forces.

translation in both planar directions. Reactions in this
group involve two unknowns, usually shown as the 
x- and y-components of the reaction force. Figure 13.6b
illustrates this type of contact.

c. Reaction Prohibits Rotation: Components in this
group include fixed supports and pin joints at an
actuator (motor or engine). Each of these supports can
prevent translation in both planar directions and free
rotation. Reactions in this group involve three
unknowns, usually shown as the x- and y-components
of the reaction force and a reaction moment. Figure
13.6c illustrates this type of contact.

EXAMPLE PROBLEM 13.2

An engine hoist is shown in Figure 13.7. The engine being raised weighs 250 lb. Draw a free-body diagram of the

entire hoist.

SOLUTION: In order to construct a free-body diagram of the entire hoist, it first must be isolated and drawn as if it were floating

freely in space. This is done by removing the floor, as it is the only body that supports the hoist. The engine is also

removed, as it is not an integral part of the hoist.

Once the hoist is redrawn without the engine and floor, reaction forces must be placed at the contact points of

the removed items. First, because the engine weighs 250 lb, a force with a known magnitude and direction replaces the

effect of the engine.

Second, the action of the floor must be replicated. The front roller falls into case (a), where the direction of the

reaction force is known. Any roller on a smooth surface prevents translation in a direction perpendicular to the

smooth surface. The reaction at the front roller is labeled .F 21A
y

direction. The types of reactions can be divided into three
groups corresponding to the type of physical contacts.

a. Direction of Reaction is Known: Components in
this group include rollers, sliders, pins in slots, and
cables. Each of these supports can prevent motion in
only one direction. Reactions in this group involve
only one unknown, namely the magnitude of the
reaction force. Figure 13.6a illustrates this type of
contact.

b. Direction of Reaction is Unknown: Components in
this group include frictionless pins, hinges, and sliders
on rough surfaces. Each of these supports can prevent
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FIGURE 13.7 Engine hoist for Example Problem 13.2.

250 lb
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FBD
Entire engine hoist
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21B

F
y
21B

F
y
21A

FIGURE 13.8 Free-body diagram for Example Problem 13.2.

The rear roller differs in that a braking device is implemented. In addition to exhibiting a vertical reaction force,

the wheel-and-brake configuration also prevents translation along the floor. Therefore, the reaction at the rear roller

has both x- and y-components. The reactions at the rear roller are labeled and . A completed free-body

diagram is shown in Figure 13.8.

F 21B
y

F 21B
x

13.6 STATIC EQUILIBRIUM

Newton’s first law applies to all links that are at rest or mov-
ing at constant velocity; thus, the condition is referred to as
static equilibrium. For an object to be in static equilibrium,
the following two necessary and sufficient conditions must
be met:
Condition I:
The combination, or resultant, of all external forces acting
on the object is equivalent to zero and does not cause it to
translate. Mathematically, the first condition of equilibrium
can be summarized as

(13.2)

This condition indicates that all the external forces
acting on the component are balanced. The symbol Σ
implies the summation of all forces acting on a free-body
diagram. As introduced in Chapter 3, forces are vectors and
equation (13.2) can be written as

All of the methods for vector manipulation that were
introduced in Chapter 3 can be used with this vector
equation to solve for unknown forces. Either graphical or
analytical methods can be used, but force analysis is typically
better suited for analytical methods. Therefore, the first

F1 + 7 F2 + 7 F3 + 7 Á + 7 FN = 0

© F = 0

condition of static equilibrium can be resolved into compo-
nents, yielding two algebraic equations.

(13.3)

(13.4)

Condition II:
The moment due to any external force is canceled by the
moments of the other forces acting on the object and do not
cause it to rotate about any point. The second condition of
equilibrium can be mathematically summarized as

(13.5)

This condition indicates that all the moments acting on the
component are balanced. The location of point A is arbitrary.

13.7 ANALYSIS OF A TWO-FORCE 
MEMBER

A special case of equilibrium, which is of considerable inter-
est, is that of a member that is subjected to only two forces.
This type of machine component is termed a two-force mem-
ber. Many mechanism links, particularly couplers and con-
necting rods, are two-force members. A two-force member is
shown in Figure 13.9.

©MA = 0

© F
y = 0

© F
x = 0
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FIGURE 13.9 Two-force member.

5 lb 5" 3"

1.5"

1.5"
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FIGURE 13.10 Nutcracker for Example Problem 13.3.

2. Act along the same line, and

3. Be opposite in sense.

Because the two forces must act along the same line, the only
line that can satisfy this constraint is the line that extends
between the points where the forces are applied. Thus, a link
with only two forces simply exhibits either tension or
compression.

This fact can be extremely useful in force analysis. When
the locations of the forces are known, the direction of the
forces are defined. When the magnitude and sense of a single
force are known, the other force’s magnitude and sense can
be immediately determined. Thus, the analysis of a two-
force member is simple.

EXAMPLE PROBLEM 13.3

A novelty nutcracker is shown in Figure 13.10. A force of 5 lb is applied to the top handle, as shown, and the mecha-

nism does not move (static). Draw a free-body diagram and determine the forces on each link. For this analysis, the

weight of each link can be considered negligible.

SOLUTION: 1. Sketch the Free-Body Diagrams for the Mechanism Links

Notice that link 3 (AC) is a simple link, containing only two pin joints. In addition, no other force is acting on

this link. Thus, it is a two-force member and the forces acting on the link must be equal and along the line

that connects the two pins. The free-body diagram for link 3 is shown as Figure 13.11a. As stated previously, the

notation used is that F32 is a force applied to link 3 as a result of contact from link 2.

Being a two-force member, the direction of the two forces, F34 and F32, is along the line that connects the

two pins. The angle of inclination, θ, of this line can be determined.

Link 2 is also a simple link that contains only two pin joints; however, an additional force is applied to the

handle. Thus, this link is not a two-force member. Newton’s third law stipulates that a force that is acting at A will

be equal and opposite to F32. Thus, the direction of F23 is known as a result of Figure 13.11a. The general pin

joint at point B dictates that two reaction forces will be used. The free-body diagram for link 2 is shown as Figure

13.11b.

Link 4 has sliding contact with link 1. Neglecting any friction force, this contact force will act perpendicu-

lar to the contact surface. The contact force from the nut itself will similarly act perpendicular to the mating

u = tan-1a 2.5

1.5
b = 59.0°

In order for a two-force member to be in equilibrium
the two forces must:

1. Have the same magnitude,
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FIGURE 13.11 Free-body diagrams for Example Problem 13.3.

surface. Also, Newton’s third law stipulates that a force acting at B will be equal and opposite to F34. Thus,

the direction of F43 is known as a result of Figure 13.11a. The free-body diagram for link 4 is shown as 

Figure 13.11c.

2. Solve the Equilibrium Equations for Link 2

Link 2 is examined first because it contains the applied force. The three unknown forces on this link 

(Figure 13.11b) are solved by using the three equilibrium equations.

Solving the three equations yields

3. Solve the Equilibrium Equations for Link 3

Because link 3 is a two-force member (Figure 13.11a), the equilibrium equations dictate that the forces have the

same magnitude, act along the same line, and are opposite in sense. Of course, Newton’s third law dictates that

. Thus, the forces acting on link 3 are

4. Solve the Equilibrium Equations for Link 4

The free-body diagram of link 4 (Figure 13.11c) will reveal the force exerted on the nut. Of course, Newton’s

third law dictates that . Because the forces on link 4 all converge at a point, the moment equation ofF34 = F43

F34 = 11.96 lb    59°

F32 = 11.96 lb 59°

F32 = F23

F21
y

= - 5.25 lb = 5.25   lb T

F21
x = - 6.16 lb = 6.16   lb ;

F23 = + 11.96 lb = 11.96   lb   59°

(5 lb)(8 in.) - (F23 cos59.0°) (1.5 in.) - (F23 sin59.0°) (3 in.) = 0

+ ©MB = 0:

F23 sin59.0° + F21
y

- 5 lb = 0

+ c  ©F
y = 0:

F23 cos59.0° + F21
x   = 0

+:  ©F x = 0:

�

Q 

Q 
b 
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equilibrium does not apply. The two unknown forces on this link are solved by using two component 

equilibrium equations.

Solving the two equations yields

Fnut = + 10.25 lb = 10.25 lbc

F41 = + 6.16 lb = 6.16 lb:

Fnut - F43 sin59.0° = 0

+c  ©F
y
= 0:

F41 - F43 cos59.0° = 0

:+ ©F
x

= 0:

EXAMPLE PROBLEM 13.4

Figure 13.12 shows a mechanism used to crush rocks. The 60-mm mechanism crank is moving slowly, and inertial

forces can be neglected. In the position shown, determine the torque required to drive the 60-mm crank and crush the

rocks.

SOLUTION: 1. Sketch Free-Body Diagrams for the Mechanism Links

Using trigonometry to determine the internal angles of this four-bar mechanism can be completed as

discussed in Chapter 4. An alternative approach is to construct the kinematic diagram using CAD. The

internal angles were measured and the results are shown in Figure 13.13. Notice that link 3 (BC) is a simple

link, containing only two pin joints. In addition, no other force is acting on this link. Thus, it is a two-force

member and the forces acting on the link must be equal and along the line that connects the two pins. The

free-body diagram for link 3 is shown as Figure 13.14a. As stated previously, the notation used is that F32 is a

force applied to link 3 as a result of contact from link 2.

Link 2 is also a simple link that contains only two pin joints; however, a drive torque is applied to the

link at the shaft (point A). Thus, this link is not a two-force member. Newton’s third law stipulates that a

force that is acting on link 2 at point B will be equal and opposite to F32. Thus, the direction of F23 is known

as a result of Figure 13.14c. The general pin joint at point A dictates that two reaction forces will be used. The

free-body diagram for link 2 is shown as Figure 13.14b.

360 mm

400 mm

180 mm

90°

130 mm

9000 N

70°

60 mm
ω

FIGURE 13.12 Rock crusher for Example Problem 13.4.
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FIGURE 13.13 CAD layout for Example Problem 13.4.
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FIGURE 13.14 Free-body diagrams for Example Problem 13.4.

Link 4 also contains two pin joints but is not a two-force member. The rock-crushing force is applied at a

third point on the link. The angle of this crushing force, from the horizontal, can be calculated from the angles

shown in Figure 13.13. Aligning angles along the horizontal gives

180° - 97.0° - 70° = 13.0°
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Also, Newton’s third law stipulates that a force that is acting onto link 4 at point C will be equal and opposite to

F34. The general pin joint at point D dictates that two reaction forces must be used. The free-body diagram for

link 4 is shown as Figure 13.14a.

2. Solve the Equilibrium Equations for Link 4

Link 4 is examined first because it contains the applied force. The three unknown forces on this link 

(Figure 13.11a) are solved by using the three equilibrium equations.

Solving the three equations yields

3. Solve the Equilibrium Equations for Link 3

Because link 3 is a two-force member (Figure 13.14c), the equilibrium equations dictate that the forces have the

same magnitude, act along the same line, and are opposite in sense. Of course, Newton’s third law dictates that

. Thus, the forces acting on link 3 are

4. Solve the Equilibrium Equations for Link 4

The free-body diagram of link 2 (Figure 13.14b) will reveal the instantaneous torque required to operate the de-

vice. Of course, Newton’s third law dictates that .

Solving the three equations yields

Because the torque is the desired value, solving only the moment equation was necessary.

T21 = + 408,561 Nmm = 409 Nm,cw

F21

y
= + 2121 N = 212 NT

F21
x = + 6809 N = 6809 N;

- T21 + (F23 cos 17.3°) (60 mm) = 0

+ ©M A = 0:

- F21
y

+ F23 sin 17.3° = 0

+ c ©F y = 0:

- F21
x + F23 cos  17.3° = 0

:+ ©F x = 0:

F23 = F32

F32 = 7132 N 17.3°

F34 = 7132 N 17.3°

F34 = F43

F41
y

= + 96.3  N = 96.3 Nc

F41
x = + 1960 N = 1960 N;

F43 = + 7132 N = 7132 N 17.3°

(9000 N) (130 mm) - (F43 sin65.7°) (180 mm) = 0

+ ©MD = 0:

(9000 N) sin13.0° - F43 sin17.3° + F41
y

= 0

+ c  ©F y = 0:

(9000 N)cos13.0° - F43 cos 17.3° - F41
x = 0

:+  ©F x = 0:

�
�

b 

b 

Q 
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TABLE 13.1 Approximate Coefficients of Sliding
Friction

Dry Lubricated

Hard steel On hard steel 0.45 0.08

On Babbitt 0.35 0.15

Mild steel On mild steel 0.60 0.12

On bronze 0.34 0.17

On brass 0.44 —

On copper lead 0.36 0.15

On cast iron 0.23 0.13

On lead 0.95 0.30

On aluminum 0.50 —

On laminated plastic 0.35 0.05

On Teflon — 0.04

Cast iron On cast iron 0.15 0.07

On bronze 0.22 0.07

On brass 0.30 —

On copper 0.29 —

On zinc 0.21 —

Aluminum On aluminum 1.40 —

Output shaft

Follower

3.5"

Scotch-yoke mechanism

Crosshead slot 

B

D

C
A

Cylinder

Fluid in

300 lb

Piston

135°

FIGURE 13.15 Valve actuator for Example Problem 13.5.

13.8 SLIDING FRICTION FORCE

As stated in Section 13.5, a contact force, as a result of a
sliding joint, always acts perpendicular to the surface in con-
tact. This contact force is commonly referred to as a normal
force because it acts perpendicular to the surfaces in contact.

When friction cannot be neglected in machine analysis,
an additional force, friction force, Ff, is observed. Friction
always acts to impede motion. Therefore, a friction force acts
on a sliding link, perpendicular to the normal force, and in a
direction opposite to the motion (velocity).

For a stationary object, friction works to prevent
motion until the maximum attainable friction has been
reached. This maximum value is a function of a coefficient of
friction, μ. The coefficient of friction is a property that is
determined experimentally and is dependent on the materi-
als and surface conditions of the contacting links. Average
values of friction coefficients for common materials are
given in Table 13.1. The magnitude of the friction force that
acts on sliding components is calculated as

(13.6)

As mentioned, for moving objects, the friction force acts
opposite to the direction of the relative sliding motion.

Ff = mN

EXAMPLE PROBLEM 13.5

The scotch-yoke mechanism shown in Figure 13.15 is used in a valve actuator. As fluid is pumped into the cylinder, the

increased pressure drives the mechanism and applies a torque to the output shaft. This torque can be used to actuate

(open and close) valves. At the instant shown, the pressure load on the piston is 25 lb. Determine the torque generated on

the output shaft. The coefficient of friction between the follower pin and crosshead slot is 0.15.

SOLUTION: 1. Sketch a Kinematic Diagram of the Mechanism

The kinematic diagram of this scotch-yoke mechanism is shown in Figure 13.16.
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2. Sketch Free-Body Diagrams of the Mechanism Links

Link 2 is the piston/rod assembly/crosshead slot. Link 4 is the follower. Notice that link 3 is not a tangible link. It

is used in a kinematic simulation to separate the revolute joint on the follower and the sliding joint in the

crosshead slot. Thus, the mechanism is modeled with all lower-order joints. The kinematic diagram has four

links, two pin joints, and two sliding joints, and consequently one degree of freedom. The driver for this mecha-

nism is the movement of the fluid into the cylinder.

The free-body diagrams for links 2 and 4 are shown in Figure 13.17. Link 3 is not required for force

analysis. Notice that a friction force is shown opposing relative motion. The directions may seem confusing

and warrant further explanation.

Consider link 4 (Figure 13.17b). The pin moves upward relative to the crosshead slot. Therefore, friction

will act to prevent this motion of the pin by acting downward. Similarly, consider link 2 (Figure 13.17a). The slot

moves downward relative to the pin (recall the definition of relative motion). Therefore, friction will act to

prevent this motion of the slot by acting upward.

3. Solve the Equilibrium Equations for Link 2

Link 2 (Figure 13.17a) is examined first because it contains the applied force. For this analysis, only the 

x-equilibrium equation is required.

4. Solve the Equilibrium Equations for Link 4

The free-body diagram of link 4 (Figure 13.17b) will reveal the torque on the output shaft. Of course, Newton’s

first law dictates that .

The torque can be determined by using the moment equilibrium equation.

- (F42 cos45°) (3.5 in.) + (mF42 cos45°) (3.5 in.) + T21 = 0

+ ©MA = 0:

Ff42 = mF42 = (0.15)(300 lb) = 45 lb

F42 = F24

F24 = 300 lb;

:+ ©F x = 0:

3.5"

135°
B

AC
D

2

3

4

FIGURE 13.16 Kinematic diagram for Example Problem 13.5.
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y
41

F
x
41

F42

4

2

Ff 24 Ff 42

F24F21 C

F21 D

300 lb

FIGURE 13.17 Free-body diagrams for Example Problem 13.5.
�
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β 160 N

100 N

140 N

FIGURE P13.1 Problems 1–3.

25 lb β

8"

FIGURE P13.4 Problems 4–6.

80 mm

50 mm200 N 

β

FIGURE P13.7 Problems 7–9.

2.5'

1.5'
6'

600 lb

FIGURE P13.10 Problem 10.

Finally, the torque exerted on the output shaft is

T21 = + 631 lb-in. = 631 lb-in., cw

- [(300 lb) cos45°] (3.5 in.) + [(45 lb)cos 45°(3.5 in.)] + T21 = 0

PROBLEMS

Resultant Force

13–1. Determine the resultant for the forces shown in
Figure P13.1 when .b = 25°

13–2. Determine the resultant for the forces shown in
Figure P13.1 when .

13–3. Determine the resultant for the forces shown in
Figure P13.1 when .

Moment of a Force

13–4. A force is applied to a box wrench as shown in
Figure P13.4. Determine the moment, relative to the
center of the nut, when .b = 90°

b = 105°

b = 65°

13–5. A force is applied to a box wrench as shown in
Figure P13.4. Determine the moment, relative to the
center of the nut, when .

13–6. A force is applied to a box wrench as shown in
Figure P13.4. Determine the moment, relative to the
center of the nut, when .b = 110°

b = 75°

13–7. A force that is applied to a control lever is shown in
Figure P13.7. Determine the moment, relative to the
pivot block, when .b = 0°

13–8. A force that is applied to a control lever is shown in
Figure P13.7. Determine the moment, relative to the
pivot block, when .

13–9. A force that is applied to a control lever is shown in
Figure P13.7. Determine the moment, relative to the
pivot block, when .

Static Machine Forces

13–10. Figure P13.10 shows an overhead lift device. If a
600-lb force is suspended from the top boom while
the mechanism is stationary, determine the force
required in the cylinder. The top boom weighs 80 lb
and the weight of the cylinder is negligible.

b = 130°

b = 60°

13–11. Figure P13.11 shows a mechanism that raises pack-
ages in a transfer mechanism. If a 100-N package sits
on the horizontal link while the mechanism is
stationary, determine the torque required from the
motor. The weights of the links are negligible.
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13–12. Figure P13.12 shows a mechanism that is used to
shear thin-gauge sheet metal. If a 200-N force is
applied as shown, determine the force on the sheet
metal. The weights of the links are negligible.

13–13. Figure P13.13 shows an adjustable platform used to
load and unload freight trucks. Currently, a 1200-lb
crate is located as shown. Draw a free-body diagram
for each link. The platform weighs 400 lb, and the
weight of all other links is considered insignificant.

13–14. The clamp shown in Figure P13.14 has a rated load
of 1500 lb. Determine the compressive force this
creates in the threaded rod, AB.

13–15. A utility lift vehicle is shown in Figure P13.15.
Determine the force required by the hydraulic cylin-
der to maintain the position of the bucket.

13–16. A front loader is shown in Figure P13.16. Determine
the force required from both hydraulic cylinders to
maintain the shovel position.

13–17. A 500-lb crate is supported on a lift table, as shown
in Figure P13.17. Determine the force required in
the hydraulic cylinder to keep the platform in the
position shown.

700 mm748 mm

100 mm

400 mm
100 N900 mm

FIGURE P13.11 Problem 11.

175 mm

40°
30 mm

60 mm

75 mm

100 mm

200 N

FIGURE P13.12 Problem 12.

18"

18"

6"

24" 24" 24"

44"

80"

FIGURE P13.13 Problem 13.

5"

2"

3"

4"

2" 5"

1500 lb

FIGURE P13.14 Problem 14.

2.4 m

5 m

1200 N
2.0 m 0.9 m

1.2 m

FIGURE P13.15 Problem 15.

12"

16"

10" 30"

10"
20"

15"

50"

12"60"40"

30"

1200 lb

FIGURE P13.16 Problem 16.
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32"

60"

20"
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FIGURE P13.19 Problem 19.
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H D ECTube
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FIGURE C13.1 (Courtesy, Industrial Press.)

FIGURE P13.17 Problem 17.

FIGURE P13.18 Problem 18.

13–18. Figure P13.18 illustrates a refuse truck capable of
moving a dumpster from a lowered position, as
shown, to a raised and rotated position. Gravity
removes the contents into the truck box. The dump-
ster weighs 2400 lb and is shared equally by the two
front forks. Determine the force in the two hydraulic
cylinders.

13–19. Figure P13.19 shows a materials handling mecha-
nism that slides 8-lb packages along a counter.
The coefficient of kinetic friction between the
package and counter is 0.25. The coefficient of
kinetic friction between the collar and rod is 0.10.

Determine the instantaneous torque required to
operate this mechanism. It operates at a low speed,
so inertial forces are negligible.

CASE STUDY

13–1. Figure C13.1 shows a mechanism that gives motion
to plunger J. Carefully examine the components of
the mechanism, then answer the following leading

questions to gain insight into its operation.

1. As lever A is rotated, what type of motion does item
C exhibit?

2. What type of connection do items A and C have?
3. What type of motion does ball H have?
4. What type of motion does plunger J have?
5. What is the purpose of spring K?
6. What is the purpose of item E?
7. What is the purpose of this mechanism?
8. Compare this mechanism to another mechanical

concept that serves the same purpose.
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C H A P T E R

F O U R T E E N

DYNAMIC FORCE ANALYSIS

chapter deals with force analysis in machines with significant
accelerations. This condition is termed dynamic equilibrium.
The analysis of dynamic equilibrium uses many concepts
of static equilibrium. Therefore, an understanding of the
topics presented in the previous chapter is necessary prior to
studying this chapter.

14.2 MASS AND WEIGHT

Mass and weight are not identical. Mass, m, is a measure of
the amount of material in an object. Mass can also be
described as the resistance of an object to acceleration. It is
more difficult to “speed up” an object with a large mass.

The weight, W, of an object is a measure of the pull of
gravity on it. Thus, weight is a force directed toward the
center of the earth. The acceleration of gravity, g, varies
depending on the location relative to a gravitational pull.
Thus, the weight of an object will vary. Mass, however, is
a quantity that does not change with gravitational pull.
As stated, it is used to describe the amount of material in
a part.

The magnitude of weight and mass can be related
through Newton’s gravitational law.

(14.1)

In most analyses on earth, the acceleration of gravity is
assumed to be

This assumption is applicable to all machines and mecha-
nisms discussed in this book. Of course, in the case of
designing machines for use in outer space, a different gravi-
tational pull would exist.

Mass and weight are often confused in the U.S.
Customary System; it is most convenient to use a derived
unit for mass, which is the slug. This unit directly results
from the use of equation (14.1)

Occasionally, the pound-mass (lbm) is also used as a measure
of mass. It is the mass that weighs 1 pound on the surface of

slug = [lb/ft/s2] = lb s2/ft

g = 32.2 ft/s2 = 386.4 in./s2 = 9.81m/s2 = 9810 mm/s2

W = mg

O B J E C T I V E S

Upon completion of this chapter, the student will be 
able to:

1. Understand the difference between mass and 
weight.

2. Calculate the mass moment of inertia of an object
either by assuming a similarity to a basic shape or 
from the radius of gyration.

3. Transfer the mass moment of inertia to an alternative
reference axis.

4. Calculate inertial forces and torques.

5. Determine the forces, including inertia, acting
throughout a mechanism.

14.1 INTRODUCTION

During the design of a machine, determining the operating
forces is critical. Consider the development of an automo-
tive windshield wiper system. A key task is the selection of
an electric motor that will drive the wipers. The torque
required to operate the system is the main attribute in this
selection process. Different scenarios must be considered,
such as the fact that the car might be parked under a maple
tree. Increased wiper friction due to the tree sap will
demand greater motor torque. A common scenario occurs
during periods of heavy rain. The wipers will be operated
on a high-speed setting. As the wipers oscillate at increased
speeds, large accelerations will result. Inertial forces will be
created from the high accelerations. These forces may be
large enough to damage the components of the wiper
system. In fact, the inertial forces created by the motion of
many high-speed machines exceed the forces required to
perform the intended task. In a reciprocating engine, such
as an automobile engine, the inertial forces can be greater
than the force produced by the gas pressure. In a gas
turbine, the inertial force on the bearings due to an unbal-
anced rotor can be magnitudes greater than the weight of
the rotor.

Thus, for machines with significant accelerations,
dynamic force analysis is necessary. The previous chapter dealt
with force analysis in mechanisms without accelerations. This
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FIGURE 14.1 Part for Example Problem 14.1.

the earth. Assuming that the standard value of gravity
applies, the pound-mass can be converted to slugs by

Generally stated, any calculation in the U.S. Customary
System should use the unit of slug for mass. In the
International System, the common unit used for mass is the
kilogram .

14.3 CENTER OF GRAVITY

The center of gravity, cg, of an object is the balance point of
that object. That is, it is the single point at which the
object’s weight could be held and be in balance in all direc-
tions. For parts made of homogeneous material, the cg is
the three-dimensional, geometric center of the object. For
many simple parts, such as a cylinder, the geometric center
is apparent. Locating the center of gravity becomes impor-
tant in force analysis because this is the location of the

(kg = N s2/m)

1slug = 32.2 lbm

force of gravity, or weight. In dynamic force analysis, any
inertia effects due to the acceleration of the part will also
act at this point.

For complex parts, the location of the center of grav-
ity is not obvious. A common method of determining the
center of gravity is to divide the complex part into simple
shapes, where the center of gravity of each is apparent.
The composite center of gravity can be determined from
a weighted average of the coordinates of the individual
cgs. For example, the x-component of the center of gravity
of a composite shape can be found from the following
equation:

(14.2)

Because the acceleration due to gravity will be the same for
the entire body, weight can be substituted for mass in
equation (14.2). Of course, similar equations can be written
for the y- and z-coordinates of the center of gravity.

xcg  total =
m 1 xcg  1 + m 2 xcg  2 + m 3 xcg 3 + Á

m1 + m2 + m3 + Á

EXAMPLE PROBLEM 14.1

The part shown in Figure 14.1 is made from steel (0.283 lb/in.3). Determine the coordinates of the center of

gravity.

SOLUTION: 1. Divide the Link into Basic Shapes

This part can be readily divided into two components. The lower plate will be designated as component 1, and the

upper shaft will be designated as component 2.

2. Calculate the Weight of the Basic Shapes

The weight of parts is determined by calculating the volume of the parts and multiplying by the density of steel.

These weights and cg coordinates are organized in Table 14.1.

W2 = 10.283 lb/in.32 c p
4

 (2 in.)2 (3 in.)d = 5.33 lb

W1 = 10.283 lb/in.3 [(10 in.) (4 in.) (0.5 in.)] = 5.66 lb
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14.4 MASS MOMENT 
OF INERTIA

The mass moment of inertia, I, of a part is a measure of the
resistance of that part to rotational acceleration. It is more
difficult to “speed up” a spinning object with a large mass
moment of inertia. Mass moment of inertia, or simply
moment of inertia, is dependent on the mass of the object
along with the shape and size of that object. In addition,
inertia is a property that is stated relative to a reference point
(or axis when three dimensions are considered). This refer-
ence point is commonly the center of gravity of the part.

Figure 14.2 illustrates a general solid object. Notice that
a small element of the object has been highlighted. The mass
moment of inertia of this small element is determined by

multiplying its mass, dm, by the square of the distance, r, to a
reference axis, z. This distance is the perpendicular distance
from the axis to the arbitrary element dm.

The mass moment of inertia of the entire object is the
sum of all particles that comprise the object. Mathematically,
the moment of inertia is expressed as

(14.3)

Because the definition involves r, the value of the mass
moment of inertia is different for each axis. For example,
consider a slender rod. The mass moment of inertia relative
to its longitudinal axis will be small because r is small
because r is small for each element of the rod. For an axis
that is perpendicular to the rod, the moment of inertia will
be large because r is large for the outermost elements.

Mass moment of inertia is expressed in the units of
mass times squared length. In the U.S. Customary System,
the common units are slug-squared feet (slug ft2), which
convert to pound-feet-squared seconds (lb ft s2). In the
International System, the common units used are kilogram-
squared meters (kg m2).

14.4.1 Mass Moment of Inertia of Basic
Shapes

Equation (14.2) has been used to derive equations for
primary shapes. Table 14.2 gives these equations, which can
be used to compute the mass moment of inertia for
common solid shapes of uniform density.

Iz =Lr2
 dm

3. Use Equation (14.2) to Calculate the Center of Gravity

The coordinates of the center of gravity are found.

The center of gravity of both parts lies on the z-axis. Therefore, the center of gravity of the composite (total) part

will also lie on the z-axis. Therefore,

zcg  total = 0

 =  
(5.66 lb) (0.25 in.) + (5.33 lb) (2 in.)

(5.66 + 5.33) lb
 = 1.099 in.

 ycg  total =  
Wpart 1 ycg part 1 + Wpart 2 ycg part 2

Wpart 1 + Wpart 2

 =  
(5.66 lb) (3 in.) + (5.33 lb) (0 in.)

(5.66 + 5.33) lb
 = 1.545 in.

 xcg  total =  
Wpart 1 xcg part 1 + W part 2 xcg part 2

W part 1 + W part 2

z

z

dm
r

FIGURE 14.2 A general solid object.

TABLE 14.1 Basic Shapes Data for Example Problem 14.1

Component Weight (lb) xcg (in.) ycg (in.) zcg (in.)

1 5.66 (10/2 - 2) = 3 (0.5/2) = 0.25 0

2 5.33 0 (0.5/2) = 0.25 0



TABLE 14.2 Mass Moments of Inertia

Shape Name Rendering Mass Moment of Inertia

Cylinder Ix =  
1

2
 [mr 2]

Iy =
1

12
 [m(3r 2 +  l 2)]

Iz =
1

12
 [m(3r 2 +  l 2)]

Slender rod Ix = 0

Iy =
1

12
  [ml 2]

Iz =
1

12
  [ml 2]

Thin disk
Ix =  

1

2
  [mr 2]

Iy =  
1

4
  [mr 2]

Iz =  
1

4
  [mr 2]

Rectangular block Ix =
1

12
 [m (w 2 + h 2)]

Iy =
1

12
 [m (w 2 + l 2)]

Iz =
1

12
  [m (h2 + l 2)]
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3" 18" x

FIGURE 14.3 Part for Example Problem 14.2.

EXAMPLE PROBLEM 14.2

The part in Figure 14.3 weighs 3 lb. Determine the mass moment of inertia of the part, relative to an x-axis at the

center of the part.

y

z l x

y

r

x

l

z

y

r

x

z

x

y

lz

h

w

SOLUTION: 1. Determine the Mass of the Part

The part weighs 3 lb and it is assumed to be used on the earth’s surface. The mass can be calculated from

equation (14.1).

m =  
W

g
 =  

3 lb

32.2 ft/s2 = 0.093 slug
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2. Calculate the Mass Moment of Inertia (Solid Cylinder)

In a true sense, this part is a solid cylinder with

The z-axis in Table 14.2 is equivalent to the x-axis in this analysis. The mass moment of inertia relative to this

axis at the center of the part is

3. Calculate the Mass Moment of Inertia (Slender Rod)

This part may be approximated as a slender rod. Using this assumption, the mass moment of inertia is calculated

from Table 14.2 as

The slender rod assumption underestimates the actual mass moment of inertia by only 1.15 percent. Apparently

this part could be approximated as a slender rod.

= 0.0174slug ft2 = 0.0174 lb ft s2

Ix =
1

12
[m(l )2] =

1

12
[0.093slug (1.5 ft)2]

= 0.0178slug ft2 = 0.0178 lb ft s2

lx =
1

12
 [m(3r 2 + l 2)] =

1

12
 [0.093slug(3(0.125 ft)2 + (1.5 ft)2)]

l = 18 in. = 1.5 ft

r = 1.5 in. = 0.125 ft

14.4.2 Radius of Gyration

Occasionally, the moment of inertia of a part about a spec-
ified axis is reported in handbooks using the radius of
gyration, k. Conceptually, the radius of gyration is the
distance from the center of gravity to a point where the
entire mass could be concentrated and have the same
moment of inertia.

The radius of gyration can be used to compute the mass
moment of inertia by

(14.4)

The radius of gyration is expressed in units of length. In
the U.S. Customary System, the common units are feet (ft)
or inches (in.). In the International System, the common
units used are meters (m) or millimeters (mm).

I = mk2

14.4.3 Parallel Axis Theorem

Mass moment of inertia is stated relative to an axis.
Occasionally, the mass moment of inertia is desired relative
to an alternate, parallel axis. A parallel axis transfer equation
has been derived [Ref. 11] to accomplish this task. To trans-
fer the mass moment of inertia from the x-axis to a parallel
x′-axis, the transfer equation is

(14.5)

The value d in equation (14.5) is the perpendicular
distance between the two axes. Notice that the second term in
equation (14.5) can be either added or subtracted. The term
is added when the reference axis is moved away from the
center of gravity of the basic shape. Conversely, the term is
subtracted when the transfer is toward the center of gravity.

Ix œ = Ix ; md2

EXAMPLE PROBLEM 14.3

For the part shown in Figure 14.4, determine the mass moment of inertia of the part relative to an x-axis at the end of

the part.

3" 18"

x′

FIGURE 14.4 Part for Example Problem 14.3.
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FIGURE 14.5 Part for Example Problem 14.4.

SOLUTION: The mass moment of inertia through the center of the part was determined in Example Problem 14.2 as

The distance of the transfer from the center to the end of the part is

Equation (14.5) can be used to transfer the reference axis to the end of the part. Notice that the second term is added

because the transfer is away from the center of gravity.

= 0.0701slug ft2 = 0.0701 lb ft s2

Ix œ = Ix + md 2 = 0.0178slug ft 2 + (0.093 slug) (0.75 ft) 2

d = 9 in. = 0.75 ft

Ix = 0.0178 slug ft2

14.4.4 Composite Bodies

In practice, parts cannot always be simply approximated by
the basic shapes shown in Table 14.2. However, for more
complex parts, the determination of the moment of inertia
can be done by dividing the complex parts into several basic

shapes from Table 14.2. The mass moment of inertia of each
basic shape is computed relative to an axis through the
center of the entire part. Finally, the total mass moment
of inertia is determined by combining the values from the
individual shapes.

EXAMPLE PROBLEM 14.4

The part in Figure 14.5 is made from steel. Determine the mass moment of inertia of the part, relative to a y-axis at the

center of the part.

SOLUTION: 1. Identify the Basic Shapes and Determine Their Mass

The part can be divided into two component shapes, as in Example Problem 14.1. Using the weights determined

in that problem, the mass of the two parts is

2. Determine the Centroidal Mass Moment of Inertia of the Basic Shapes

Component 1 is a rectangular block and component 2 is a cylinder. Using Table 14.2, the mass moment of iner-

tia of each part is determined relative to their individual centers of gravity.

Component 1:

= 0.701slug in.2 = 0.0118  slug ft2 = 0.0118 lb ft s2

Iy =
1

12
[m (w 2 + l 2)] =

1

12
[0.176 slug [(4 in.)2 + (10 in.)2]

m2 =
W2

g
=

5.33 lb

32.2 ft/s2 = 0.165 slug

m1 =
W1

g
=

5.66 lb

32.2 ft/s2 = 0.176 slug
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Component 2:

3. Utilize the Parallel Axis Theorem

The center of gravity information, determined in Example Problem 14.1, will be used to determine the mo-

ment of inertia for each component relative to the composite center of gravity. The parallel axis theorem is

used to accomplish this. Notice that the perpendicular distance between y-axes is along the x-direction.

Component 1:

Component 2:

4. Calculate the Composite Mass Moment of Inertia

= 10.0162 + 0.00152 slug ft2 = 0.0177slug ft2 = 0.0177 lb ft s2

Iy œ = Iy œ(component 1) + Iy œ(component 2)

= 0.0015slug ft2 = 0.0015 lb ft s2

Iy ¿(component2) = Iy(component2) + m2d2
2 = 0.0001slug ft2 + 10.165 slug210.0923 ft22

d2 = 11.099 - 02 in. = 1.099 in. = 0.092 ft

= 0.0162slug ft2 = 0.0162 lb ft s2

Iy œ(component 1) = Iy (component 1) + m1d1
2 = 0.0118slug ft2 + (0.176slug)(0.158 ft)2

d1 = (3.0 - 1.099) in. = 1.901 in. = 0.158 ft

= 0.0138 slug in.2 = 0.0001slug ft2 = 0.0001 lb ft s2

Iy =
1

12
 [m ( r 2)] (longitudinal axis) =

1

12
 [0.165 slug (1 in.)2]

14.4.5 Mass Moment of Inertia—
Experimental Determination

One popular experimental method of determining the
mass moment of inertia of a part is to swing the part as a
pendulum. This method is illustrated in Figure 14.6.

14.5 INERTIAL FORCE

Section 13.4 listed Newton’s three principal laws of mechan-
ics. The second law is critical for all parts that experience
acceleration. It is stated as

SECOND LAW: A body that has an unbalanced force has

a. An acceleration that is proportional to the force,

b. An acceleration that is in the direction of the
force, and

c. An acceleration that is inversely proportional to
the mass of the object.

For linear motion, this law can be stated in terms of the
acceleration of the link’s center of gravity, Ag; thus,

(14.7)

Equation (14.7) can be rewritten as

(14.8)

Notice that the subtraction symbol is used because
both force and acceleration are vectors.

(- 7 )

© F - 7 mAg = 0

© F = mAg

rcg

FIGURE 14.6 Mass moment of inertia experiment.

If the part is displaced a small angle and released, it will
oscillate. The moment of inertia can be determined by
measuring the time to complete one oscillation, Δt. The
mass moment of inertia of the part relative to an axis
through the center of gravity, has been derived [Ref. 11] as

(14.6)Icg = mrcg c a ¢t

2p
b2

g - rcg d
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FIGURE 14.7 Mechanism for Example Problem 14.5.

EXAMPLE PROBLEM 14.5

The compressor mechanism shown in Figure 14.7 is driven clockwise by a DC electric motor at a 

constant rate of 600 rpm. In the position shown, the cylinder pressure is 45 psi. The piston weighs 0.5 lb, and 

the coefficient of friction between the piston and the compressor cylinder is 0.1. The weight of all other 

links is negligible. At the instant shown, determine the torque required from the motor to operate the 

compressor.

The second term in equation (14.8) is referred to as the
inertia of a body. This term is defined as an inertial force,

(14.9)

The negative sign indicates that the inertial force opposes
acceleration (it acts in the opposite direction of the accelera-
tion). Inertia is a passive property and does not enable a
body to do anything except oppose acceleration.

This notion is commonly observed. Imagine pound-
ing on the gas pedal in an automobile, violently accelerat-
ing the vehicle. Envision the tendency for your head to
lurch backward during the acceleration. This is the inertial
force, acting in an opposite direction to the acceleration
of the automobile. Further, the extent of the lurch is

Fg
i = - 7 mAg

Fg
i

proportional to the magnitude of acceleration. Similarly,
as the brakes in an automobile are slammed, decelerating
the vehicle, your head lurches forward, again opposing the
acceleration of the automobile. This is Newton’s second
law in practice.

Equation (14.8) can be rewritten as

(14.10)

This concept of rewriting equation (14.7) in the form of
equation (14.8) is known as d’Alembert’s principle. Using
d’Alembert’s principle in force analysis is referred to as the
inertia–force method of dynamic equilibrium. It allows for
analysis of accelerating links, using the same methods that
are used in a static analysis.

© F + 7 Fg
i = 0

SOLUTION: 1. Draw a Kinematic Diagram and Identify the Degrees of Freedom

This is a common in-line, slider-crank mechanism, having a single degree of freedom. A scaled kinematic 

diagram is shown in Figure 14.8a.

50°

1

2" A

B

C2
3 8"

4

(a)

FIGURE 14.8 Diagrams for Example Problem 14.5.

2. Decide on a Method to Achieve the Required Motor Torque

Because the piston is the only component without negligible weight, the inertial force, and the 

acceleration, of this component must be determined. The acceleration of the piston (link 4) is strictly

translational and is identical to the motion of point C. Such acceleration analyses have been extensively 

presented in Chapter 7.

Once the acceleration of the piston has been obtained, the subsequent inertial forces can be 

calculated. Finally, free-body diagrams and the corresponding equations can be used to determine the required

torque.
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(b)

(c)

3. Determine the Velocity of Points B and C

This type of analysis was extensively discussed in the earlier chapters of the book. The 2-in. crank is rotating at

600 rpm. The velocity of point B is

The direction of VB is perpendicular to link 2 and consistent with the direction of ω2, up and to the left. Using

CAD, a vector can be drawn to scale, from the velocity diagram origin, to represent this velocity. The relative

velocity equation for points B and C can be written as

A completed velocity diagram is shown in Figure 14.8b. Scaling the vector magnitudes from the diagram,

VC/B = 82.2 in./s 79°

VC = 80.5 in./s:

VC = VB + 7 VC/B

VB = v2 rAB = 162.8 rad/s212 in.2 = 125.6 in./s          40°

v2 =
p

30
1600 rev/min2 = 62.8 rad/s, cw

FIGURE 14.8 Continued

Q

b
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4. Calculate Acceleration Components

The next step is to construct an acceleration diagram, which includes points B and C. Calculating the magni-

tudes of the known accelerations,

(directed toward the 
center of rotation, point A)

(directed from C toward B,
measured from CAD)

Note that point A does not have a normal acceleration because the motion is strictly translational.

5. Construct an Acceleration Diagram

The relative acceleration equation for points B and C can be written as

The completed acceleration diagram is shown in Figure 14.8c.

6. Measure the Piston Acceleration

Scaling the vector magnitudes from the diagram,

Because the tangential acceleration of point B is in the same direction as the velocity, the piston is accelerating

(speeding up), not decelerating.

7. Calculate the Inertial Force

Because the piston is the only link of considerable weight, its inertial force is computed by combining equations

(14.9) and (14.1).

Because the piston does not encounter rotational acceleration, rotational inertia is not observed.

8. Sketch Free-Body Diagrams of the Mechanism Links

Notice that link 3 (BC) is a simple link, containing only two pin joints. In addition, no other force is acting on this

link. Thus, it is a two-force member, and the forces acting on the link must be equal and along the line that con-

nects the two pins. The free-body diagram for link 3 is shown as Figure 14.8d. As before, the notation used is that

F32 is a force that is applied to link 3 as a result of contact from link 2.

Link 2 is also a simple link; it contains only two pin joints. However, a moment (torque) is also applied to this

crank. Thus, this link is not a simple, two-force member. Newton’s third law stipulates that a force that is acting at B

will be equal and opposite to F32. Thus, the direction of F23 is known as a result of Figure 14.8d. The angle between

links 2 and 3 was measured from the CAD model. A general pin joint at point A dictates that two reaction forces will

be present. The free-body diagram for link 2 is shown as Figure 14.8e.

Link 4 has sliding contact with link 1. This contact force will act perpendicular to the contact surface. The

force from the compressed gas will, similarly, act perpendicular to the piston surface. A friction force will oppose

the motion (velocity) of link 4. Also, Newton’s third law stipulates that a force that is acting at C will be equal and

opposite to F34. Thus, the direction of F43 is known as a result of Figure 14.8d. The free-body diagram for link 4

is shown as Figure 14.8f.

9. Solve the Dynamic Equilibrium Equations for Link 4

Link 4 is examined first because it contains the applied force. The gas force is calculated as

Fgas = pgas Apiston = pgas c p(dpiston)2

4
d = 45 lb/in.2 c p(1.5 in.)2

4
d = 79.5 lb;

=
(0.5 lb)

386 in./s2 15378 in./s22 = 6.96 lb;

F g 4
i = - 7 m4 A g 4 =

W4

g
 (- 7 A g 4 )

A C
t = 5378 in./s2 :

AC/B
t = 5985 in./s2 79°

AC
n + 7 AC

t = AB
n + 7 AB

t + 7 AC/B
n + 7 AC/B

t

 AC/B
n =

1VC/B22
rBC

=
182.2 in./s22

8.0 in.
= 844 in./s2 11°

aB
t = 0 (no angular acceleration of the 2 - in. crank)

 AB
n =

(VB)2

rAB
=
1125.6 in./s22

2.0 in.
= 7888 in./s2 50°R

a

Q
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The friction force is

The two unknown forces on this link (Figure 14.8f) are solved by using the following equilibrium

equations:

Solving these equations yields

10. Solve for Equilibrium of Link 3

Because link 3 is a two-force member (Figure 14.8d.), the equilibrium equations dictate that the forces have the

same magnitude, act along the same line, and are opposite in sense. Of course, Newton’s third law dictates that

. Thus, the forces acting on link 3 are

11. Solve for Equilibrium of Link 2

The free-body diagram of link 2 (Figure 14.8e) will reveal the required motor torque. Of course, Newton’s third

law dictates that . The unknown forces and moment on this link are solved using the following

equilibrium equations:

-T21 + (F23 sin39°) (2 in.) = 0

+  ©MA = 0:

F 21
y + F23 sin11° = 0

+ c   ©F y = 0:

F21
x - F23 cos11° = 0

:+    ©F x = 0:

F32 = F23

F32 = 89.8 lb   11°

F34 = 89.8 lb 11°

F32 = F23

 F41 = +16.6 lb = 16.6 lbc

F43 = +89.8 lb = 89.8 lb   11°

- F43 cos 11.0° + F41 - 0.5 lb = 0

+ c  ©F y = 0:

F43 cos 11.0° - Fgas - Fg 4
i - Ff = 0

:+   ©F x + 7 F i = 0:

Ff = mF41 = 0.1 F41

R

R

a

�

11°

W = 0.5 lb

C

F41

F i
g4

F43

Fgas

Ff 41

4Fx
21

T21

F
y
21

F23

B

A2"

11°

39°

2

(f)(e)

3

(d)

F32

F34
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14.6 INERTIAL TORQUE

The concept of an inertial force, as described in equation
(14.7), is an extension of Newton’s second law for linear
motion. For rotational motion, the second law can be
summarized in terms of rotational acceleration and moment
of inertia, relative to an axis through the center of gravity.

(14.11)

Again, the subscript “g” refers to the reference point at the
link’s center of gravity.
Similarly to linear motion, equation (14.11) can be rewritten as

(14.12)

Notice that the subtraction symbol is used because
the directions of the moment and angular acceleration must
be accounted for. The second term in equation (14.12) is

(- 7 )

© Mg - 7 Tg
i = 0

© Mg = Iga

termed the angular inertia of a body. This term is used to
define an inertial torque, :

(14.13)

Again, the negative sign indicates that the inertial torque is
directed opposite to the angular acceleration.
Equation (14.12) can be rewritten as

(14.14)

Equation (14.14) is termed the moment equation of dynamic
equilibrium. It is the rotational equivalent of d’Alembert’s
principle described in Section 14.5. It allows for analysis of
accelerating links, using the same methods as are used in a
static analysis.

The following example problem will combine several of
the dynamic force analysis concepts presented in this chapter.

© M + 7 Tg
i = 0

Tg
i = - 7 Iga

Tg
i

Solving the three equations yields

Because the torque is the desired value, solving only the moment equation was necessary.

T21 = +113.0 lb in. = 113.0 lb in., cw

F21
y

= -17.1 lb = 17.1 lb T

F21
x = +88.1 lb = 88.1 lb :

EXAMPLE PROBLEM 14.6

The mechanism shown in Figure 14.9 is used to lower and retract the landing gear on small airplanes. The wheel

assembly link weighs 100 lb, with a center of gravity as shown. The radius of gyration of the assembly, relative to

the center of gravity, has been experimentally determined as 1.2 ft. The motor link is rotating counterclockwise at

3 rad/s and accelerating at 10 rad/s2. For mass property estimation, the motor crank will weigh approximately 15 lb

and will be 2 ft long, 1 ft wide, and 0.25 ft thick. The connecting link is estimated to weigh 20 lb and can be

modeled as a 3.5-ft slender rod. Determine all forces acting on the joints of all links and the torque required to

drive the motor link.

3.0'

3.0'

2.33'

0.75'

2.0'
1.77'

30°

FIGURE 14.9 Landing gear for Example Problem 14.6.



2. Decide on a Method to Achieve the Required Motor Torque

Because all links have significant weight, the acceleration of the center of gravity of all links must be determined.

Such acceleration analysis has been extensively presented in Chapter 7. Once the accelerations have been established,

the subsequent inertial forces and torques can be calculated. Finally, free-body diagrams and the corresponding

equations can be used to determine the required torque.

3. Determine the Velocity of Points B and C

This type of analysis was extensively discussed in the earlier chapters of the book. The 1.77-ft crank is rotating at

3 rad/s. The velocity of point B is

The direction of VB is perpendicular to link 2 and consistent with the direction of ω2, up and to the left. Using CAD,

a vector can be drawn to scale, from the velocity diagram origin, to represent this velocity.

The relative velocity equation for points B and C can be written as

The vector diagram is constructed in Figure 14.10b. Scaling the vector magnitudes from the diagram,

4. Calculate Acceleration Components

The next step is to construct an acceleration diagram, which includes points B and C. Calculating the magni-

tudes of the known accelerations,

(directed toward the 
center of rotation, point A)

(perpendicular to link 2,

consistent with α2)

(directed from C toward B,

measured from CAD)AC/B
n =

(VC/B)2

rBC
=

(2.63 ft/s)2

3.0  ft
= 2.30 ft/s2 38.6°

AB
t = a2 rAB = 110rad/s22 (1.77 ft) = 17.70 ft/s2 60°

AB
n =

(VB)2

rAB
=
15.31 ft/s22

1.77 ft
= 15.93 ft/s2 30°

VC/B = 2.63 ft/s    51.4°

VC = 5.00 ft/s    30.7°

VC = VB + 7 VC/B

VB = v2 rAB = 13rad/s2 (1.77 ft) = 5.31 ft/s 60°
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D

.75'

B

A

2.0'
1.77'

ω, α
.89'

1.5'

(a)

g2

g3

30°

3'

1

2

3

C

3'

2.33'

g4

4

SOLUTION: 1. Draw a Kinematic Diagram and Identify the Degrees of Freedom

This mechanism is the common four-bar linkage, having a single degree of freedom. A kinematic diagram is

given in Figure 14.10a.

Q

Q

R

a

Q

Q
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(b)

(c)

FIGURE 14.10 Diagrams for Example Problem 14.6.

(directed from C toward D,

measured from CAD)

5. Construct an Acceleration Diagram

The relative acceleration equation for points B and C can be written as

The acceleration polygon is constructed and shown in Figure 14.10c. Notice that the concept of the acceleration

image, as presented in Section 7.10, was used to determine the acceleration of the center of gravity of the three

moving links.

6. Measure the Acceleration of the Center of Gravity of All Links

Scaling the vector magnitudes from the diagram,

AC/B
t = 12.28 ft/s2 51.4° AC

t = 11.60 ft/s2 30.6°

AC
n + 7 AC

t = AB
n + 7 AB

t + 7 AC/B
n + 7 AC/B

t

AC
n =

(VC)2

rCD
=

(500 ft/s2)

2.33 ft
= 10.72 ft/s2 59.3°a

R
Q
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The angular accelerations of the links can then be determined.

7. Calculate Mass Properties

The motor crank can be considered a rectangular block. From Table 14.2, the mass moment of inertia, at the cen-

ter of mass, relative to an axis normal to the broad side of the link is

The connecting arm can be considered a slender rod. From Table 14.2, the mass moment of inertia at the center

of mass relative to an axis normal to the length of the link is

The radius of gyration of the wheel assembly has been experimentally determined. From equation (14.4),

the mass moment of inertia at the center of mass relative to an axis normal to the length of the 

assembly is

8. Calculate the Inertial Force

For the three moving links, the inertial force is computed by combining equations (14.9) and (14.1).

9. Calculate the Inertial Torque

For the three moving links, the inertial torque is computed with equation (14.13).

= 2.60 ft lb, cw

Tg 3
i = - 7 Ig 3a3 = (0.634 lb ft s2)14.1 rad/s22

= 1.94 ft lb, cw

Tg 2
i = - 7 Ig 2a 2 = (0.194 lb ft s2)110rad/s22

=
(100 lb)

32.2 ft/s2 120.32 ft/s22 = 63.11  lb 73.4°

 Fg 4
i = - 7 m4 Ag 4 =

W4

g
(- 7 Ag4 )

=
(20 lb)

32.2 ft/s2 119.21 ft/s22 = 11.93 lb   89.4°

Fg 3
i = - 7 m3Ag 3 =

W3

g
(- 7 Ag 3)

=
(15 lb)

32.2 ft/s2 111.91 ft/s22 = 5.55 lb   78.0°

Fg 2
i - 7 m 2Ag 2 =

W2

g
(- 7 Ag 2)

Ig4 = ml2 = a 100 lb

32.2 ft/s2 b (1.2 ft)2 = 4.472 lb ft s2

Ig3 =
1

12
[ml 2] =

1

12
a 20 lb

32.2 ft/s2 b (3.5 ft)2 = 0.634 lb ft s2

Ig2 =
1

12
[m(W2 + l 2 )] =

1

12
a 15 lb

32.2 ft/s2 b [(2 ft)2 + (1 ft)2] = 0.194 lb ft s2

a4 =
aC

t

rCD
=

11.60 ft/s2

2.33 ft
= 5.0 rad/s2, counterclockwise

a3 =
aC/B

t

rBC
=

12.28 ft/s2

3.0 ft
= 4.1 rad/s2, counterclockwise

Ag4 = 20.32 ft/s2 73.4°

Ag2 = 11.91 ft/s2 78.0° Ag3 = 19.21 ft/s2 89.4°

Q

R

R

b

aa
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10. Sketch Free-Body Diagrams of the Mechanism Links

Because the weight of all links is to be included in the analysis, there are no two-force members. Thus,

all contact forces at the joints are general and are represented by their orthogonal components. The 

free-body diagram of link 4 is shown in Figure 14.10d. The free-body diagram of link 3 is shown in Figure

14.10e. Of course, Newton’s third law, declaring that F34 and F43 have the same magnitude and opposing 

directions, still applies. Finally, the free-body diagram of link 2 is shown in Figure 14.10f. Because each 

link has more than three unknown forces, the equilibrium equations from all links will need to be solved

simultaneously.

11. Generate Equilibrium Equations for Link 4

The following dynamic equilibrium equations are generated from the free-body diagram of link 4 

(Figure 14.10d).

- Fg4
i   [cos(73.4° - 30.6°)] [3.0 ft] - Tg4

i = 0

- F43
x [2.33 ft (sin59.4°)] - F43

y [2.33 ft (cos59.4°)] - W4[3.0 ft(cos 59.4°)]

+ ©MD + 7 Tg
i = 0:

F 41
y - F 43

y - 160.48 lb = 0

F41
y - F43

y - W4 - Fg4
i sin73.4° = 0

+ c  ©F y + 7 Fg
i = 0:

F41
x - F43

x - 18.03 lb = 0

F41
x - F43

x - Fg4
i cos 73.4° = 0

:+   ©F x + 7 Fg
i = 0:

= 22.36 ft lb, cw

Tg 4
i = - 7 Ig 4a 4 = (4.472 lb ft s2)15rad/s22

1.77'

.89'

3.0'

38.6°

89.4°

1.5'

3.0'

2.33'

(f)

(e)

(d)

30°

78°

W2

W3

F
y
41

F
x
41

F
y
43

F
y
43

F
y
34

F
y
32

F
y
23

F
y
21

F
x
34

F
x
32

F
x
21

F
x
23

T21

F
i
g4

F
i
g3

F
i
g2

T
i
g4

T
i
g3

T
i
g2

W4

30.6°

73.4°

59.4°

FIGURE 14.10 Continued

�
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Substituting values gives

12. Generate Equilibrium Equations for Link 3

The following dynamic equilibrium equations are generated from the free-body diagram of link 3 

(Figure 14.10e).

Substituting values gives

13. Generate Equilibrium Equations for Link 2

The following dynamic equilibrium equations are generated from the free-body diagram of link 2 

(Figure 14.10f).

Substituting values gives

14. Solve the Equilibrium Equations

A total of nine equilibrium equations have been generated. As previously stated, Newton’s third law stipulates

that the following magnitudes are equal.

F23
x = F32

x   F 23
y = F23

y

F43
x = F34

x    F 43
y = F 34

y

T21 + 0.885 F23
x + 1.533 F 23

y - 17.17 ft lb = 0

Fg 2
i [sin(78° - 30°)] [0.89 ft] - Tg 2

i = 0

T21 + F23
x [1.77 ft (sin 30°)] + F23

y
[1.77 ft (cos30°)] - W2 [0.89 ft (cos30°)]

+ ©MA + 7 Tg
i = 0:

F23
y + F21

y - 20.43 lb = 0

F23
y + F21

y - W2 - Fg 2
i sin78° = 0

+ c ©Fy + 7 Fg
i = 0:

F23
x + F 21

y + 1.15 lb = 0

F23
x + F21

x + Fg 2
i cos78° = 0

:+  ©Fx + 7 Fg
i = 0:

2.344 F34
x - 1.872 F 34

y + 34.95 ft lb = 0

+ Fg 3
i [cos (38.6° - 0.6°)] [1.5 ft] - Tg 3

i = 0

F34
x [3.0 ft (cos 38.6°)] - F34

y [3.0 ft (sin38.6°)] (2.33 ft) + W3 [1.5 ft (cos38.6°)]

+ ©MB + 7 Tg
i = 0:

F34
y - F32

y - 31.93 lb = 0

F34
y - F32

y - W3 - Fg3
i sin89.4° = 0

+c   ©F y + 7 Fg
i = 0:

F34
x - F32

x - 0.13 lb = 0

F 34
x - F32

x - Fg 3
i cos89.4° = 0

:+  ©F x + 7 Fg
i = 0:

- 2.000 F43
x - 1.186 F43

y - 313.98 ft lb = 0

�
�
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L
d

δ

FIGURE P14.9 Problems 9 and 10.

L

d

Longitudinal axis

Axis perpendicular to length

y
0.75"

0.75"

3.25"
1.75"

0.125"

Ø 0.375"

Ø 0.375"

FIGURE P14.5 Problems 5–8.

FIGURE P14.11 Problem 11.

PROBLEMS

Mass and Mass Moment of Inertia

14–1. The mass of a connecting rod from an internal
combustion engine has been determined to be
2.3 kg. Compute the weight of the rod.

14–2. A robotic gripper was weighed at 4.5 lb. Determine
the mass of the gripper.

14–3. A robotic gripper was weighed at 4.5 lb and has a
radius of gyration relative to a certain axis at the center
of gravity of 5 in. Determine the mass moment of iner-
tia of the part relative to this axis.

14–4. A 6-kg mechanism link has a radius of gyration
relative to a certain axis at the center of gravity of
150 mm. Determine the mass moment of inertia of
the part relative to this axis.

14–5. For the part shown in Figure P14.5, calculate the
mass moment of inertia and the radius of gyration
about a centroidal longitudinal axis of a 14-in.-long
shaft that weighs 5 lb and has a diameter of 0.625 in.

14–6. For the part shown in Figure P14.5, calculate the mass
moment of inertia and the radius of gyration about a
centroidal longitudinal axis of a 1200-mm-long shaft
that has a mass of 100 kg and a diameter of 50 mm.

14–7. The part shown in Figure P14.5 is a solid cylinder 2 ft
in diameter, 3 ft long, and weighing 48 lb. Determine

the mass moment of inertia about its centroidal axial
axis.

14–8. The part shown in Figure P14.5 is a solid cylinder 2 ft
in diameter, 3 ft long, and weighing 48 lb. Determine
the mass moment of inertia about a centroidal axis,
perpendicular to its length.

14–9. The part shown in Figure P14.9 is a slender rod, 14
in. long, rotating about an axis perpendicular to its
length and 3 in. from its center of gravity. Knowing
that the rod weighs 2 lb and has a diameter of
1.25 in., determine its mass moment of inertia
about that axis.

14–10. The part in Figure P14.9 is a slender rod, 0.4 m long,
rotating about an axis perpendicular to its length
and 0.12 m from its center of gravity. Knowing that
the rod has a mass of 6 kg, determine its mass
moment of inertia about that axis.

14–11. Determine the moment of inertia of the steel link
shown in Figure P14.11 with

respect to the y-axis.
(r = 0.183 lb/in.3)

Therefore, nine unknown quantities remain. Solving the nine equilibrium equations, simultaneously, gives the

following results:

T21 = + 307.88 ft lb = 307.88 ft lb, cw

F21
y = + 154.46 lb = 154.46 lbc

F21
x = + 95.17 lb = 95.17 lb:

F32
y = - 134.03 lb = 134.03 lbc and F23

y = 134.03 lbT

F32
x = - 96.32 lb = 96.32 lb: and F23

x = 96.32 lb;
F43

y = - 102.09 lb = 102.09 lbc and F34
y = 102.09 lbT

F43
x = - 96.44 lb = 96.44 lb:  and F 34

x = 96.44 lb;
F41

y = + 58.38 lb = 58.38 lbc

F41
x = - 78.41 lb = 78.41 lb;
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16"

1"
60°

0.75 in. dia.

FIGURE P14.19 Problems 19 and 20.

0.2 m

0.4 m

0.37 m

30�

0.6 m 0.3 m

0.32 m

0.65 m

0.4 m
0.1 m

FIGURE P14.16 Problem 16.18.

14–12. Determine the moment of inertia of the steel link
shown in Figure P14.12 with

respect to the y-axis.
(r = 0.183 lb/in.3)

Inertial Forces

14–13. The compressor mechanism shown in Figure P14.13
is driven clockwise by a DC electric motor at a
constant rate of 800 rpm. In the position shown, the
cylinder pressure is 70 psi, and the piston weighs
0.75 lb. The coefficient of friction between the
piston and the compressor cylinder is 0.1. The
weight of all other links is negligible. At the instant
shown, determine the torque required from the
motor to operate the compressor.

14–14. For the compressor mechanism described in
Problem 14–13, determine the torque required from
the motor if the motor is rotating at 800 rpm and
accelerating at a rate of 5000 rad/s2.

14–15. For the compressor mechanism described in
Problem 14–13, determine the torque required from
the motor if the motor is rotating at 800 rpm and
decelerating at a rate of 5000 rad/s2.

14–16. The materials handling mechanism, shown in Figure
P14.16, slides 4-kg packages along a counter. The
machine operates with the crank rotating counter-
clockwise at a constant rate of 120 rpm. The coeffi-
cient of kinetic friction between the package and
counter is 0.15. The weight of all the mechanism links
is negligible. Determine the instantaneous torque
required from the motor to operate this mechanism.

14–17. For the materials handling mechanism described in
Problem 14–16, determine the torque required from
the motor if the motor is rotating at 120 rpm and
accelerating at a rate of 100 rad/s2.

14–18. For the materials handling mechanism described in
Problem 14–16, determine the torque required from
the motor if the motor is rotating at 120 rpm and
decelerating at a rate of 100 rad/s2.

Inertial Torques
Figure P14.19 shows a link that weighs 4 lb and is rotating clock-
wise at 20 rad/s. For Problems 14–19 and 14–20, determine the
magnitude of the inertial force and the inertial torque at the center
of gravity if:

1.5"

70 psi

7"

1.75"

65°

FIGURE P14.13 Problems 13–15.

y0.75"

0.75"

3.25"
1.75"

0.125"
Ø 0.375"

0.375"

0.75"

FIGURE P14.12 Problem 12.

14–19. The link accelerates at 600 rad/s2.

14–20. The link decelerates at 600 rad/s2.
Figure P14.21 shows a 10-kg link that rotates counter-

clockwise at 15 rad/s. Determine the magnitude of the iner-
tial force and the inertial torque at the center of gravity if:

14–21. The link accelerates at 400 rad/s2.

14–22. The link decelerates at 400 rad/s2.

14–23. Figure P14.23 shows a slider-crank mechanism.
Link 2 rotates clockwise at a constant 200 rad/s. The
weight of link 2 is negligible, link 3 is 3 lb, and link 4
is 2 lb. The radius of gyration of link 3 relative to the
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C

D

40 mm

25 mm

50 Nmm

120 mm

110 mm

B

A

25 mm
β 3

2

4

FIGURE P14.25 Problems 25 and 26.

5"

5"
10 lb

3.5"

Lift

60°

FIGURE P14.27 Problem 27.

8"
10"

50 lb

16"18"

4"

β

FIGURE P14.28 Problems 28 and 29.

150 mm

15 mm

750 mm

ω

75 mm

20°

FIGURE P14.21 Problems 21 and 22.

32

1

4A

B

1.5"

β C

2" 4"

20 lb

FIGURE P14.23 Problems 23 and 24.

center of gravity is 3 in. For , determine the
following:

1. The linear acceleration of link 4 and the center of
gravity of link 3,

2. The angular acceleration of link 3,

3. The inertial force and torque of the coupler link,

4. The pin forces at B and C, and

5. The torque to drive the mechanism in this position.

14–24. Repeat Problem 14–23 with .

14–25. Figure P14.25 shows a four-bar mechanism. Link 2
rotates counterclockwise at a constant 10 rad/s. The
weight of links 2 and 3 is negligible, and link 4 is 17 kg.
The radius of gyration of link 4 relative to the center
of gravity is 45 mm. For , determine the
following:

1. The linear acceleration of the center of gravity of
link 4,

2. The angular acceleration of link 4,

b = 45°

b = 120°

b = 45°

3. The inertial force and torque of link 4,

4. The pin forces at B and C, and

5. The torque to drive the mechanism in this position.

14–26. Repeat Problem 14–25 with .

14–27. Figure P14.27 shows a small hydraulic jack. At this
instant, a 10-lb force is applied to the handle. This
causes the 3.5-in. link to rotate clockwise at a
constant rate of 5 rad/s. The weight of links 2 and
3 is negligible, and link 4 is 1.5 lb. Determine the
following:

b = 90°

1. The linear acceleration of the piston,

2. The inertial force of link 4,

3. The pin forces, and

4. The force developed on the piston due to the
hydraulic fluid.

14–28. Figure P14.28 shows a mechanism for a transfer
conveyor. The driving link rotates counterclockwise
at a constant rate of 25 rpm. The box weighs 50 lb as
shown. The weight of the driving link and the
coupler are negligible. The weight of the conveyor
link is 28 lb and the center of gravity is at its
midspan. The radius of gyration of the conveyor
link relative to the center of gravity is 26 in. For

, graphically determine the following:b = 30°

1. The linear acceleration of the center of gravity of the
conveyor link,

2. The rotational acceleration of the conveyor link,

3. The inertial force and torque of the conveyor link,

4. The pin forces, and

5. The torque required to drive the mechanism.

14–29. Repeat Problem 14–28 with .b = 100°
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mechanism, then answer the following leading
questions to gain insight into its operation.

1. As gear A rotates clockwise, describe the motion of
gear B.

2. As gear A rotates clockwise, what is the immediate
motion of slide C?

3. Discuss the action that takes place as pin E reaches
the end of the slot.

4. Discuss precisely the continual motion of slides C
and E.

5. Discuss how this motion could possibly be used in a
wire-stripping machine.

6. What is the purpose of spring G?

7. How would the mechanism change if a “stiffer”
spring were installed?

CASE STUDY

C14–1 Figure C14.1 shows a mechanism that gives motion
to slides C and D and is used in a wire-stripping
machine. Carefully examine the components of the

C E

A

G

D

B

F

FIGURE C14.1 (Courtesy, Industrial Press.)
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PROBLEMS

Chapter 1
1–26.

1–28.

1–30.

1–32.

1–34.

1–36.

1–38.

1–40.

1–42.

1–44.

1–46.

1–48.

1–50.

1–52. Crank-rocker

1–54. Crank-rocker

Chapter 3
3–2.

3–4.

3–6.

3–8.

3–10.

3–12.

3–14.

3–16.

3–18.

3–20.

3–22.

3–24.

3–26.

3–28.

3–30.

3–32.

3–34.

3–36.

3–38.

3–40.

3–42.

3–44.

3–46.

3–48.

3–52.

3–54.

3–56. J = 101.68   18.3°

J = 109.8   24.1°

J = 26.10   11.4°

J = 101.68   18.3°

J = 109.76   24.1°

J = 26.094   11.4°

J = 212.13   65.0°

J = 5.587     13.8°

J = 8.074   68.3°

J = 212.13   65.0°

J = 5.587   13.76°

J = 8.074   68.3°

R = 221.2   13.4°

R = 212.13   25.0°

R = 24.18     18.1°

R = 221.20 13.5°

R = 212.13 25.0°

R = 24.18     18.1°

h = 83.1 in.

y = 11.7 ft

h = 11.3 ft

L = 8 ft, 8 in.

s = 175 mm

x = 11.5 in. y = 16.4 in.

s = 156.6 mm

R = 12 in.

A = 17.3 in.

n = 6, jp = 7, jh = 0, M = 1

n = 8, jp = 10, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

n = 9, jp = 11, jh = 0, M = 2

n = 6, jp = 7, jh = 0, M = 1

n = 6, jp = 7, jh = 0, M = 1

n = 6, jp = 7, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

n = 6, jp = 7, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

n = 4, jp = 4, jh = 0, M = 1

3–58.

3–60.

3–62.

Chapter 4
4–2.

4–4.

4–6.

4–8.

4–10.

4–12.

4–14.

4–16.

4–18.

4–20.

4–22.

4–24.

4–26.

4–28.

4–30.

4–32.

4–34.

4–36.

4–38.

4–40.

4–42.

4–44.

4–46.

4–48.

4–50.

4–52.

4–54.

4–56.

4–58.

4–60.

4–62.

4–64.

4–66.

4–68.

Chapter 5
5–2.

5–4.

5–6.

5-8.

5-10. Q = 2.083, v = 162.2 rpm

Q = 1.714, v = 63.2 rpm

t1 = 0.067 s, t2 = 0.53 s

t1 = 0.188s, t2 = 0.142 s

b = 49.1°, v = 109 rpm

(¢Rslide pin)max = 44.50 mm

(¢uwiper arm)max = 72.8°

(¢Rblade)max = 1.513 in.

(¢uram)max = 29.5°

(¢uwheel assy)max = 57.6°

(¢uram)max = 46.3°

(¢Rpiston)max = 90.0 mm

¢uram = 5.5°, cw

¢Rclaw = 30.87 mm   86.52°

¢Rbox = 0.362 mT
¢L cylinder = 68.1 mm, shorter

¢utop handle = 16.8°, cw

¢uram = 14.4°, cw

¢Rstamp = 1.570 in.T
¢Rpiston = 66.82 mm;
¢RP = 7.247    10.0°

¢ubed = 14.0°, ccw

¢uram = 3.03°, cw

¢Lspring = 1.118 in., shorter

¢Rclaw = 29.62 mm   85.2°

¢Lcylinder = 1.566 in.

¢Rbox = 0.579 mT
¢Rcarrier = 249.7 mm    45.5°

¢Rend = 203.4    73.9°

¢uwheel = 16.3°, cw

¢uhandle = 34.4°, ccw

¢Rend = 22.644 in.    44.9°

¢uram = 17.6°, ccw

¢uhandle = 22.2°, ccw

¢Rend = 2.029 in.    55.1°

¢ucrank = 23.0°, ccw

¢Rpiston = 47.10 mm;
¢RP = 8.420 in.    27.5°

¢x = 2.189 in.:

D = 38.12 F = 238.9

B = 8.81 C = 117.7

C = 19.22 E = 17.52
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5–12.

5–14.

5–16.

5–18.

5–20.

5–22.

5–24.

5–26.

5–28.

5–30.

5–32.

Chapter 6
6–2.

6–4.

6–6.

6–8.

6–10.

6–12.

6–14.

6–16.

6–18.

6–20.

6–22.

6–24.

6–26.

6–28.

6–30.

6–32.

6–34.

6–36.

6–38.

6–40.

6–42.

6–44.

6–46.

6–48.

6–50.

6–74.

6–76.

6–78.

6–80.

6–82.

6–84.

6–86.

6–88.

6–90.

6–92.

6–94.

Chapter 7
7–4.

7–6. acam = 9.82 rad/s2, cw

¢RA = 40 mm c

V-2. Avehicle = 10.60 ft/s2

VCylinder = 2.64 in./s, compressing

vsegment gear = 5.421 rad/s, cw

vwiper arm = 31.46 rad/s, cw

Vblade = 91.11 in./s:
Vplatform = 12.79 ft/min     12.9°

Vright piston = 288.3 in./s     45°
vblade = 0.071 rad/s, ccw

vbath = 1.245 rad/s, cw

Vblade = 4.82 in./sT
Vpiston = 230.3 in./s;
Vpackage = 953 mm/s:
Vcylinder = 4.39 in./s, compressing

vsegment gear = 3.827 rad/s, cw

vwiper arm = 1.88 rad/s, cw

Vblade = 112.64 in./s:
Vplatform = 15.99 ft/min     12.9°

Vpackage = 775 mm/s:
Vright piston = 150.68 in./s    45°

Vcylinder = 4.39 in./s, compressing

Vblade = 112.91 mm/sc
vsegment gear = 2.232 rad/s, ccw

vbath = 0.85 rad/s, cw

vwiper blade = 2.50 rad/s, ccw

Vblade = 5.94 in./sT
Vblade = 59.63 in./s;
Vpiston = 272.55 in./s;
VA/B = 15.72 ft/s     25.9°

VB/A = 5.94 ft/s         59.4°

VB = 90 ft/s       20°

V = 125.66 ft/min

¢Rtotal = 7.5 in.

¢Rtotal = 72 in.

vmin = .0167 rpm

v = 22.37 min/hr

¢t = 37.5 s

b = 51.43°, v = 240 rpm

b = 49.09°, v = 17.6 rpm

b = 6.92°, v = 40 rpm

b = 8.57°, v = 300 rpm

b = 16.36°, v = 200 rpm

b = 19.3°, v = 33.3 rpm

b = 0°, v = 17.14 rpm

b = 8.6°, v = 1818 rpm

b = 12.6°, v = 4286 rpm

b = 20°, v = 100 rpm

L2 = 4 mm, v = 750 rpm 7–8.

7–10.

7–12.

7–14.

7–16.

7–18.

7–20.

7–22.

7–24.

7–26.

7–28.

7–30.

7–32.

7–34.

7–36.

7–38.

7–40.

7–42.

7–44.

7–60.

7–62.

Chapter 8
(spreadsheet/program results at shown at 120° crank angle)

8–2.

8–4.

8–6.

8–8.

8–10.

8–12.

Chapter 9
9–14.

9–16.

9–18.

9–20.

9–22.

9–28.

9–30.

9–32.

9–34.

9–36.

9–62.

Chapter 10
10–2.

10–4.

10–6.

10–8.

10–10.

10–12.

10–14. C = 3.5 in.

D1 = 2 in., D2 = 4.5 in.

C = 1.125 in.

mp = 1.47

mp = 1.53

D = 84 mm

p = 0.393 in.

vout = 7.46 rad/s, aout = 123 rad/s2

Vmax = 1.43 in./s, Amax = 6.41 in./s2

Vmax = 189 mm/s, Amax = 2961 mm/s2

Vmax = 8.0 mm/s, Amax = 8.0 mm/s2

Vmax = 1.25 in./s, Amax = 3.13 in./s2

vcam = 9.4 rpm, Vmax = 0.94 in./s

vcam = 20 rpm, Vmax = 2.0 in./s

vcam = 17.1 rpm, Vmax = 3.1 in./s

vcam = 13.3 rpm, Vmax = 2.5 in./s

vcam = 42.9 rpm, Vmax = 4.0 in./s

vcam = 10.9 rpm, Vmax = 0.5 in./s

v4 = 204.4 rad/s  at u2 = 120°

A4 = 2349 mm/s2 at u2 = 120°

v4 = 3.27 rad/s at u2 = 120°

V4 = -2577 mm/s  at u2 = 120°

u4 = 16.6° at u2 = 120°

¢R4 = 123.9 mm at u2 = 120°

Ac
B3/B2 = 900 mm/s2  60°

Ac
B3/B2 = 900 mm/s2  30°

Apiston = 93,195 in./s2:
awheel assy = 2.08 rad/s2, cw

anozzle = 78.55 rad/s2, cw

anozzle = 9.80 rad/s2, ccw

ahorse = 5.22 rad/s2, cw

Ablade = 103.73 in./s2;
Ablade = 58.97 in./s2;
Aneedle = 29,271 mm/s2c
Apiston = 37,194 in./s2:
Apiston = 31,341 in./s2:
AC/B = 1.35 ft/s2  42.3°

AA/B = 25.46 mm/s2    11.3°

AA = 5158 in./s2        6.9°

AB = 22,872 in./s2 71.0°

An
B = 17,770 in/s2 70°

¢Ractuator = 10 in.

¢Rlinear motor = 15 in.T
¢Ractuator = 85 in.

ashaft = 7.85 rad/s2, cw
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10–16.

10–18.

10–20.

10–22.

10–24.

10–26.

10–28.

10–30.

10–32.

10–34.

10–36.

10–38.

10–40.

10–42.

10–44.

10–46.

10–48.

10–50.

10–52.

10–54.

10–56.

10–58.

10–60.

10–62.

10–64.

10–66.

10–68.

10–70.

10–72.

Chapter 11
11–2.

11–4.

11–6.

11–8.

11–10.

11–12.

11–14.

11–16.

11–18.

11–20.

11–22.

11–24.

11–26.

11–28. No. 100 Chain

No. 80 Chain

c = 52.424 in., u = 96°

c = 48.724 in., u = 125°

vin. = 760 rpm, cw

vout = 84 rpm, cw

3V belt

3V belt

5V belt

c = 25.618 in., u = 144°

c = 22.375 in., T = 162°

vin = 2700 rpm, ccw

vout = 313 rpm, ccw

vout = 479 rpm, cw

v8 = 378 rpm, ccw

v6 = 536 rpm, cw

v4 = 2160 rpm, cw

¢uwindow = 10.8°ccw

¢uwindow = 8°ccw

N = 17-68, 17-68, 18-45, 18-45, 17-34

v1 = 2520 rpm, C = 9 in.

v1 = 3576 rpm

Pd = 8

s4 = 0.74 in., c = 4.625 in.

v8 = 30 rpm, cw; C = 17.97 in.

v5 = 100 rpm, cw; c = 8.5 in.

Pd = 12, Nw = 2, Ng = 50, l = 5°

gp = 10.4°, gg = 64.6°

gp = 14.9°, gg = 75.1°

Pd = 7.6, N1 = 19, N2 = 38

pn = 0.28 in.

v = 10.6 rpm

¢s = 42.4 in.

¢u = 2.12 rev

Pd = 12, D1 = 4.0 in., D2 = 24.0 in.

D1 = 2.0 in., D2 = 10.25 in.

D1 = 3.0 in., D2 = 13.33 in.

Pd = 12

Pd = 4, N1 = 20, N2 = 60

Pd = 8, N1 = 16, N2 = 64

N1 = 24 teeth, N2 = 96 teeth

Vt = 90.3 in./s

Vt = 67.7 in./s Chapter 12
12–2.

12–4.

12–6.

12–8.

12–10.

12–12.

12–14.

12–16.

12–18.

12–20.

12–22.

12–34.

12–36.

12–38.

12–40.

Chapter 13
13–2.

13–4.

13–6.

13–8.

13–10.

13–12.

13–14.

13–16.

13–18.

Chapter 14
14–2.

14–4.

14–6.

14–8.

14–10.

14–12.

14–14.

14–16.

14–18.

14–20.

14–22.

Tcg
i = 19.5 Nm, ccw

Fcg
i = 1377 N        49.4°

T cg
i = 132.5 in. lbs, cw

Fcg
i = 52.25 lbs      3.7°

Tmotor = 10.22 Nm, ccw

Tmotor = 14.04 Nm, ccw

Tmotor = 199.49 in. lbs, cw

Iy cg = 0.00626 lb in. s2

Iz = 0.166 kg m2

Iz = 1.49lb ft s2

Ix = 31.25 kg m2

I = 0.135 kg m2

m = 0.14 slugs

Rear cyl = 11,110 lbs(C)

Front cyl = 5000 lbs(T)

Rear cyl = 7182 lbs(C)

Front cyl = 2137 lbs(C)

Fscrew = 1200 lb(C)

Fmetal = 868 NT
Fcyl = 3733 lbs(C)

M = 18.9 Nm, cw

M = 188 in. lbs, cw

M = 200 in. lbs, cw

R = 248   66°

M10 * 1.50 and M8 * 1.25

e = 24.5%

e = 47.2%

e = 26%

Vplatform = 7.236 in./s    32.8°

Vtable = 0.154 in./sc
Vnut = 0.167 in./sT
¢Rfront end = 0.921 in.      86.7°

¢Rend = 6.445 in.    28.3°

¢Rplatform = 2.564 in.   29.7°

¢Rplate = 2.756 in.T
¢Rtable = 0.154 in.c
¢Rram = 2.5 in.c
p = .020 in., l = 3.65°

p = .0357 in., l = 2.87°
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A
Absolute motion, 128
Acceleration. See also Coriolis acceleration,

Normal acceleration, Relative
acceleration, Tangential acceleration,
Total acceleration

analysis of, 175
general summary problems, 206
kinematic analysis, 2
paths of, 179–180, 180i
point of interest, 4
vector, 43
velocity profile, 178–179, 179t, 206–207, 207i
Working Model, 208i–209i, 213

Acceleration curves
description of, 202
graphical differentiation, 202–203, 203i
numerical differentiation, 204–205, 205
summary problems, 206i–209i, 212–213

Acceleration images, description of, 196–197
ACME thread types, 314, 315i, 317t
Actuators

definition of, 4
role of, 12–13
types of, 12–13

Addendum, gear terminology, 260, 260i, 263i
Air/hydraulic motors, actuator type, 12
Algebraic solution, common mechanism,

142, 190–191
American Gear Manufacturer’s Association

(AGMA)
diametrical pitch, 261
gear quality, 273, 273t
gear standardization, 264–266, 264t

American National Standards Institute (ANSI),
gear standardization, 265

Analytical method
cam follower displacement diagrams

summary problems, 253–254
cycle position analysis, 96–98, 97i, 98i
cylindrical cam profile design, 250, 255
disk cam profile design, 242–249, 243i–245i,

247i, 249i
disk cam profile design summary problems,

254i–255i, 255
displacement analysis, 79, 79i, 80–81
displacement analysis summary problems,

101i–105i, 106
instant center location summary problems,

162i–164i, 164–165
instant center method, 123, 152, 153i
instant center method summary problems,

162i–164i, 165
limiting positions analysis, 91–93, 92i
limiting positions summary problems,

101i–105i, 105–106
mechanism analysis technique, 24
motion curves summary problems, 254
relative acceleration analysis, 188i,

188–190, 190t

relative acceleration summary problems,
208i–209i, 210

relative velocity method, 137–141, 138i,
140i, 140i

relative velocity method summary problems,
162i–164i, 164–165

vector component addition, 53–55, 54i, 54t
vector component subtraction, 55–60,

56i–57i, 59t
vector magnitude determinations, 66–71,

67i–70i, 66t
vector triangle addition, 50–51, 51i, 53–54,

59–60, 59i, 759, 69, 69i
vector triangle subtraction, 57i, 55–57
velocity curves summary problems,

162i–164i, 165
Angle method, 50–51
Angle of contact

belt drive, 303–304, 303t
chain drive, 308–309

Angular acceleration, 173, 174i
Angular displacement, 73, 73i
Angular inertia of a body, 355
Angular position vector, 72–73
Angular velocity

and linear velocity, 126–127, 127i
links, 125–126, 126i
and relative velocity, 128–129

Annular gears, 259
“Archimedes Screw,” See Auger screws
Assembly circuit

branch defect, 120
circuit defect, 119

Auger screws, 323, 323i
Automatic Dynamic Analysis of Mechanical

Systems (ADAMS®), 24, 31
Avoirdupois pound, 328

B
Backlash

gear mesh relationship, 270–271
gear terminology, 260

Ball screws, 315, 317i, 321
Base circle

cam profile design, 237, 237i
gear terminology, 260i, 262i–263i

Base diameter, 260
Bellcrank, 3i, 4
Belt drive geometry, 302–303, 302i, 311
Belt drive kinematics, 303–306, 303i, 305i, 311
Belt drives

description of, 300–301
selection summary problems, 310
types of, 300–301

Belt length, 302, 303t
Belt speed, 303–304
Belts, 300–302, 301i–302i, 301t
Bevel gear kinematics, 283–284, 283i
Bevel gears, 259–260, 259i, 283
Bull gear, 266

INDEX
Note: The letter ‘i’ and ‘t’ followed by locators refers to illustrations and tables cited in the text
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C
Cam follower displacement diagrams

analytical summary problems, 253–254
description of, 224–225, 238i
graphical summary problems, 252–253

Cam followers, 223
motion scheme nomenclature, 227–228
prescribed motion, 225–226
types of, 224–225, 224i

Cam followers motion scheme
constant acceleration, 228, 228t, 229t, 230i
constant velocity, 228, 228t
cycloidal motion, 230–236, 233i, 234i,

235i, 236i
harmonic motion, 228–230, 228t, 230i

Cam joint
definition of, 3, 3i
kinematic diagram symbol, 5t–6t

Cams
description of, 223, 224i, 226–227, 226i,
types of, 223–224, 224i

Case studies
acceleration analysis, 213–214, 213i–214i
belt/chain drives, 312–313, 312i–313i
cam design/analysis, 255–257, 256i–257i
displacement/position analysis, 108, 108i
dynamic force analysis, 364, 364i
gears, 297–299, 298i–299i
kinematic motion/classification, 29–30, 30i
machine analysis, 42, 42i
machine design, 121–122, 121i–122i
screw mechanisms, 326–327, 326i–327i
spread sheets, 222, 222i
static force analysis, 343, 343i
vectors, 71, 71i
velocity, 168–169, 168i–169i

Center distance
belt drive, 302–303
chain drive, 308–309, 308i
gear mesh relationship, 266i, 267

Center of gravity, 345–346, 345i, 346t
Chain drive

description of, 300, 306–309
selection summary problems, 312

Chain drive geometry, 308i, 308–309, 312
Chain drive kinematics, 309–310, 309
Chain length, 308–309, 308i
Chain pitch, 307, 307t
Chain speed, 309
Chains, types of, 306i, 306–307
Change point, 19t, 20, 21
Circular pitch, 260, 260i
Clearance, 260
Clockwise, 125
Closed-form position analysis

four-bar linkage, 87
in-line slider-crank, 81–83, 81i–82i
offset slider-crank, 84–86, 84i–85i

Coarse pitch, 261t, 264t
Cog belt, 301, 301i



Coincident joint, 16–18
Combined motion schemes

comparisons, 237t
computer software for, 236
description, 236
goals of, 236
jerk, 236
modified sinusoidal acceleration, 237
modified trapezoidal acceleration, 236
polynomial displacement, 236
trapezoidal acceleration, 236

Common mechanisms, algebraic solutions,
142, 190–191

Common units, 173, 329, 346, 348
Commutative law of addition, 49
Complex link, 3i, 4
Component method

analytical addition, 53–55, 754i, 54t
analytical subtraction, 59–60, 59i, 59t

Components, 4, 12
Composite bodies, 349–350, 349i
Computer methods/programs

dynamic analysis programs, 31
mechanism analysis technique, 24–25
user–written programs, 221–222, 221i
value of, 31

Computer-aided design (CAD) systems
mechanism analysis technique, 24–25
vector analysis, 44

Configuration, 74–75
Connecting arm, 19
Constant acceleration, 228, 229i–230i, 229t
Constant angular acceleration, 173–174, 174i
Constant rectilinear acceleration, 171
Constant velocity, 228, 228t
Contact forces, 331–332, 331i, 339–340
Contact line, 262
Contact ratio, 267–268
Coriolis acceleration

description of, 197–201
summary problems, 210–212, 210i–211i

Cosine, 44, 47
Counterclockwise, 126
Coupler, 19
Coupler curve, 101, 101i
Crank

definition of, 3–4, 3i
eccentric, 14, 14i
slider-crank mechanism, 22

Crank-rockers
circuits of, 87, 87i
four-bar mechanism, 19–20, 19t, 20i, 22
machine design, 115–117, 117i
summary problems, 120

Crank-shapers
analytical methods, 118
graphical procedure, 117–118
machine design, 117–118, 117i
summary problems, 120

Cross drives, 303, 303i
Crossed helical gears, 280
Cycle analysis

analytical position, 96, 97i, 99, 100i
description of, 94
displacement diagram, 101–106, 101i–105i
graphical position, 94–96, 94i–96i

Cycloidal motion, follower motion scheme,
230–236, 231t–232t, 231i–236i

Cylinders, actuator type, 4

Cylindrical cams
analytical profile design, 250
description of, 224, 224i, 362
graphical profile design, 249–250, 250ii

D
D’Alembert’s principle, 351
Dedendum, 260i, 260
Degree of freedom

beer crusher computation, 10i, 10–11
description of, 8
equation for, 74
four-bar mechanism calculation, 19, 19i
lift table computation, 15–16, 15i–16i
mechanism types, 8, 8i
outrigger computation, 13–14, 13i–14i
shear press computation, 11–12, 11i–12i
toggle clamp computation, 9i, 9–10

Degree of freedom mechanical press, 17–18,
17i–18i

Diametral pitch
gear terminology, 261
spur gear selection, 273–279, 273t, 276i, 278i

Differential screw, description of, 322–323,
322i–323i, 326

Disk cam profile design
analytical method, 242–249
design limitations, 241–242, 242i
flat-faced follower, 239–240, 239i
graphical features, 237i, 237
in-line knife-edge follower, 238i, 237–238
in-line roller follower, 238i, 238
offset roller follower, 239, 239i
pivoted roller follower, 240–241, 240i

Disk cams, 223–224, 224i
Displacement

analytical method, 79–81, 80i
analytical summary problems, 101i–105i, 106
description of, 74
general summary problems, 101, 101i–105i
and linear velocity, 123
graphical driver analysis, 74i, 74–75
graphical problems, 76–78, 76i, 78i–79i, 80
graphical slave links analysis, 75–76, 75i, 76i
graphical summary problems, 101–106,

101i–105i
kinematic analysis, 2
point of interest, 4
types of, 73
vector, 43
Working Model problems, 101i–103i, 105i,

107–108
Displacement diagrams. See also Cam follower

displacement diagrams
cycle position analysis, 98–99, 99i–100i
summary problems, 101i–103i, 105i, 107
velocity curves, 155, 156i, 157–158, 158i

Double crank, 20, 19t, 20i
Double enveloping worm gear set, 284, 285i
Double rocker, 20, 19t, 20i
Drafting

as technique, 24
vector analysis, 43–44

Driver, 98
Driver link

mechanism analysis, 73
position analysis, 74i, 74–75

Driver point, 73

372 Index

Drivers, 12–13, 15
Drum cam, 224, 224i
Dynamic Analysis of Dynamic Systems (DADS®),

dynamic analysis program, 31
Dynamic equilibrium, 328
Dynamic force analysis

design questions, 2
purpose of, 344
static force analysis, 343, 343i
and static equilibrium, 328
strategy for, 31

Dynamic force analysis programs, 24

E
Eccentric crank, 14, 14i
Efficiency, 321
Elastic parts, 2
Electric motors, 12
Engines, actuator type, 4, 12
Enveloping worm gear teeth, 284, 285i
Epicyclic train, 288–293, 289i
Equilibrium, 333–338, 334i–337i
Equivalent linkage, 201

F
Face width, 260i, 260
Fine pitch, 315, 316t
Flat belt, 300, 301i
Flat-faced follower

analytical profile design, 248
description of, 224i, 225
profile design, 239–240, 239i

Floating link
relative acceleration analysis, 191i,

191–192, 193i–194i, 195–196
relative acceleration summary problems,

210, 210i
relative velocity method, 132–135, 133i–134i

Follower, 19. See also Cam followers
Follower motion, 224, 224i
Follower position, 224–225, 224i
Follower shape, 224i, 225
Foot-pound, 328–329
Force

definition of, 328
screw mechanisms, 320i–321i, 320–322
summary problems, 341, 341i
vector, 43

Force analysis. See also Dynamic force analysis,
Static force analysis

and acceleration, 170
machine design, 1

Formula, spreadsheets, 215–218, 217i–218i
Four-bar linkage, 87
Four-bar mechanisms

algebraic solutions, 142, 190–191
categories of, 19t, 19–20
circuits of, 87, 87i
coupler two–point synthesis, 119i, 118–119
description of, 19, 19i
Grashof ’s theorem, 19
motion classification, 20–21, 21i, 29, 29i
nomenclature, 19
three-point synthesis, 119, 119i
transmission angle, 93–94, 94i
user-written programs, 221i, 221–222
Working Model tutorial, 32–37, 33i–34i, 36i



Frame
definition of, 2
four-bar mechanism, 19
kinematic diagram, 8
Free-body diagrams, 331–333, 331i–333i

Friction
coefficients of, 339, 339t
force analysis, 1
screw mechanisms, 320

Friction force, 339
Full joints, 3, 3i

G
Gear joint, 3, 3i, 5t–6t
Gear kinematics

gear function, 271–273, 271i–272i, 293
Gear mesh relationship

backlash, 270–271
center distance, 266–267, 266i
contact ratio, 267–268
interference, 268–269, 268t
operating pressure angle, 271
undercutting, 269–270, 270i

Gear rack, 259, 259i, 262, 279
Gear selection, 294
Gear standardization, 264–266, 264t
Gear trains

description of, 286–288, 286i
design summary problems, 296
summary problems, 295i–296i, 295–296

Gear-driven mechanisms, summary 
problems, 296, 296i

Gears
description of, 258–259, 258i–259i
terminology, 260i, 260–262, 261t, 262i
types of, 259–260, 259i, 284

General triangles, 46–48, 47i, 48i
Geneva mechanism, 250–252, 250i, 252i, 255
Graphical analysis

cam follower displacement diagrams
summary problems, 252–253

cycle position, 94–96, 94i–96i
cylindrical cam profile design, 250, 250i
disk cam profile design, 237–242, 237i–242i
disk cam profile design summary problems,

254i–255i, 254–255
displacement, 74–79, 74i–79i
displacement diagrams summary

problems,102i–105i, 107
displacement summary problems, 101–106,

101i–105i
driver link displacement, 74i
instant center location summary problems,

162i–164i, 165
instant center method, 123, 149–152,

150i, 152i
instant center method summary problems,

162i–164i, 166
limiting positions, 88i, 87–88
mechanism analysis, 23–24
relative acceleration analysis, 181–187,

182i–183i, 185i–186i
relative acceleration summary problems,

208–209, 208i–209i
relative velocity method, 130–137,

130i–131i, 133i–136i
relative velocity method summary 

problems, 162–164, 162i–164i

slave links displacement, 75–76, 75i–76i
vector addition, 48–50, 49i–50i
vector magnitudes, 63–65, 63i–65i,

70–71, 70i–71i
vector subtraction, 55–57, 55i–57i

Graphical differentiation
acceleration curves, 202–203, 203i
velocity curves, 157i, 157
velocity curves summary problems,

162i–164i, 167
Graphical disk cam profile design

features of, 237i, 237
flat-faced follower, 239–240, 239i
in-line knife-edge follower, 238i, 237–238
in-line roller follower, 238i, 238
offset roller follower, 239, 239i
pivoted roller follower, 240–241, 240i

Grashof ’s theorem, 19
Gruebler’s equation

description of, 8
exceptions to, 18
special cases, 16–18, 16i–18i

Gyration radius, 348

H
Half joint, 3, 3i
Harmonic motion, 228–230, 228t–229t,

229i–230i
Helical gear kinematics, 280–282, 281i,

281t–282t
Helical gears, 259, 259i, 294–295
Helix angle, 280, 281i
Herringbone gears, 259, 259i
Higher order joint, 3, 3i
Hinge joint, 3, 3i
Home position, 237, 237i
Hydraulic cylinders, 13i, 12–13
Hydraulic motors, 12

I
Idler gears, 288i, 288
Idler pulley, 301
In-line follower, 225, 224i
In-line knife-edge follower, 238i, 237–238
In-line roller follower

analytical profile design, 245–247, 245i, 247i
graphical profile design, 238i, 238

In-line slider-crank
closed-form analysis, 81–83, 81i–82i
machine design, 113–114, 114i

Inch-pound, 329
Included angle

screw efficiency, 321
thread feature, 314, 314i

Inertia, 170, 328
Inertia-force method of dynamic 

equilibrium, 351
Inertial forces

description of, 350–355, 351i–352i, 354i
summary problems, 362, 362i

Inertial torques
description of, 355–361, 355i–357i, 359i
summary problems, 362–363, 362i–363i

Input link, 19
Instant center, 142, 142i
Instant center diagram, 144–145, 145i
Instant center method
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analytical velocity method, 123,
152–154, 153i

analytical velocity method summary
problems, 162i–164i, 166–167

graphical velocity method, 123, 149–152,
150i, 152i

graphical velocity method summary
problems, 162i–164i, 166

Instant centers
locating, 142–149, 143i–149i, 146t, 148t
summary problems, 162i–164i, 165–166

Instantaneous center of rotation, 142
Interference, 268–269, 268t
Internal angle

triangle addition problem, 51
triangle subtraction problem, 57–58, 58i

Internal gears, 259, 259i
International Organization for 

Standardization (ISO)
force unit, 328
metric threads, 315
moment unit, 329

Inverted tooth/silent chain, 306i, 307
Involute tooth profile, 262–264, 262i, 263i

J
Joint, definition of, 3, 3i
Joints

coincident, 16i, 16–17
commonly used, 14–15

K
Kennedy’s theorem, instant centers,

144–146, 147
Kinematic analysis, 1i, 2, 3
Kinematic diagram

four-bar mechanism, 19, 19i
manual water pump, 22
symbol system, 4, 5t–6t

Kinematic diagram problems
beer crusher, 10i, 10–11
lift table, 15i–16i, 15–16
mechanical press, 17i–18i, 17–18
nose wheel assemble, 20–21, 21i
outrigger, 13–14, 13i–14i
shear presses, 6–7, 6i–7i, 11–12, 11i–12i
sketching diagrams, 25–28, 25i–28i
toggle clamp, 9i, 9–10
vice grip, 7, 7i

Kinematic inversion, 8
Kinematics, 2
Knife-edge follower

analytical profile design, 242–244, 243i–244i
description of, 224i, 225

L
Law of cosines, oblique triangles, 46
Law of sines, oblique triangles, 46
Lead, 315–316
Lead angle

screw threads, 316
thread feature, 314, 314i
worm gears, 284, 285i

Limiting positions
analytical analysis, 91–93, 92i
definition of, 87, 88i



Limiting positions (Continued)
graphical analysis, 88i, 87–88
graphical analysis problems, 88–91, 88i–90i
summary problems, 101i–105i, 106–107

Line of center, 149, 150i
Line of contact, 262, 262i
Line of proportion, 149, 150i
Linear acceleration, 170–173
Linear cam, 224, 224i
Linear displacement, 73
Linear motion, 125i, 124–125
Linear velocity

and angular velocity, 126–127, 127i
definition of, 123
general point, 124, 124i
rectilinear points, 124i, 123–124

Link, angular position, 72
Linkage acceleration. See also Timing charts
Linkage, definition of, 2
Linkage velocity analysis. See also Timing charts
Links

acceleration analysis, 170, 173–174, 210, 210i
angular velocity, 125–126, 126i
commonly used, 14
definition of, 2
four-bar mechanism tutorial, 32–33, 33i
relative velocity method, 130i, 130–135,

131i, 133i–134i
resizing, 33
slider-crank mechanism tutorial, 37–38, 38i
types of, 3

Locked mechanism, 8, 8i
Long and short addendum system, 269
Lowering a load (screw drive), 321
Lubrication, chain drive kinematics, 309

M
Machine design

crank-shaper, 117–118, 117i
crank-rocker, 115, 116i, 117, 120
slider-crank ratio, 113–115, 114i–115i, 120
three point synthesis, 119, 119i, 121
time ratio problems, 109–110, 120
two position links, 118–121, 118i–119i

Machines, 1
Magnitude, 73, 73i
Magnitude direction

triangle addition, 52
triangle subtraction, 57, 58i

Major diameter, 314, 314i
Manual force, 13
Mass, 344, 361–362, 361i–362i
Mass moment of inertia

basic shapes, 346, 347i, 347t, 348
composite bodies, 349i, 349–350
description of, 346, 346i
experiential determination, 350, 350i
parallel axis theorem, 348i, 348–349
radius of gyration, 348
summary problems, 361–362, 361i–362i

Mechanism
basic components of, 2–4, 3i
definition of, 1–2
degrees of freedom computation, 74
motion analysis, 73
phases of, 80
vectors, 43

Mechanism analysis, 2, 23

Metric thread, 314–315, 315i, 317t
Minor diameter, 314, 314i
Miter gears, 260, 259i, 283
Mobility (M)

equation, 8
equation exceptions, 18
special cases, 16–18, 16i–18i

Mobility (M) calculation
can crusher, 11
four-bar mechanism, 19
graphical displacement analysis, 76
lift table, 16
manual water pump, 22
mechanical press, 17–18
outrigger, 14
shear press, 12
sketching diagrams, 25i–29i, 29
toggle clamp, 9–12, 14

Module, 261, 261t
Moment

description, 328–331, 329i–330i
summary problems, 341, 341i

Moment of inertia
basic shapes, 346–348, 347i, 347t
composite bodies, 349i, 349–350
description of, 346, 346i
experiential determination,

350, 350i
parallel axis theorem, 348i, 348–349
radius of gyration, 348
summary problems, 361–362, 361i

Motion
laws of, 331, 350
mechanism analysis, 1, 1i, 73

Motor
actuator types, 4
four-bar mechanism tutorial, 35–36
slider-crank mechanism tutorial, 41

Multiple threads, 315–316, 317i
Multiple-strand roller chain, 306, 306i
Multi-strand chains, 307, 307t
Multi-V-belt, 300, 301i

N
Newton, force magnitude unit, 328
Newton, Sir Isaac, 170, 331
Normal acceleration

acceleration analysis, 174–177,
175i–176i

description of, 173, 173i
summary problems, 206–207, 207i

Normal circular pitch, 281, 281i
Normal diametral pitch, 281
Normal force, 339
Normal module, 281
Normal pressure angle, 281
Normal section, 281, 281i
Numerical differentiation

acceleration curves, 204–205, 205i
velocity analysis, 159–160, 160i

O
Oblique triangle, 46–48, 46i–48i
Offset follower, 225, 224i
Offset roller follower

analytical profile design, 248
graphical profile design, 239, 239i

Offset sidebar roller chain, 306i, 307
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Offset slider-crank, 221i, 221
closed-form analysis, 84–87, 84i–85i
machine design, 114–115, 115i

Off-set slider crank Mechanism, 221i, 221
Open, 32
Open-loop linkages, 8, 8i
Operating pressure angle, 271
Output link, 19

P
Parallel axis theorem, 248i, 348–349
Parallelogram mechanisms, 22, 23i
Phase, 94
Pin, 3, 3i
Pin joint

kinematic diagram symbol, 5t
four-bar mechanism tutorial, 33–35, 34i
slider-crank mechanism tutorial, 38–41, 40i

Pin-in-a-slot joint, commonly used, 14, 15i
Pinion, 266, 266i. See also Gear rack
Piston, 3, 3i
Pitch

thread features, 315, 315i
worm gears, 284, 285i

Pitch circle, 260, 260i, 262, 262i
Pitch curve, 237, 237i
Pitch diameter

belt drive, 301i–302i, 302–303
chain drive, 308, 308i
gear terminology, 260, 260i
thread feature, 314, 314i

Pitch line
gear terminology, 262, 262i
spur gear kinematics, 271, 271i

Pitch point, 260
Pivot link, 118i, 118
Pivoted followers, 224, 224i
Pivoted roller follower

analytical profile design, 249i, 248–249
profile design, 240–241, 240i

Planar mechanism, 2
Planet gear, 288, 289i
Planetary gear analysis

equation, 291–292
summary problems, 292–293

superposition, 289
summary problems, 289–291

Planetary gear trains
description of, 288–293, 289i, 290t–291t, 291i
summary problems, 297, 297i

Plate cams, 224, 224i
Pneumatic cylinders, 13i, 12–13
Point (P), 73i, 72–73
Point of interest, 4
Point of interest path, 37, 37i
Point position measurement, 36–37
Points

linear acceleration, 173
linear velocity, 124, 124i
relative acceleration analysis, 274, 191–196,

191i–194i
relative acceleration summary problems,

210, 210i
Points/floating link, 132–135, 133i–134i
Points/multiple, relative velocity method,

135–137, 135i–136i
Points/one link, relative velocity method,

130–132, 130i–131i



Points of interest
four-bar mechanism tutorial, 33, 34i
slider-crank mechanism tutorial, 55i

Position, 2, 72
Position analysis

analytical displacement, 80i, 80–81
graphical displacement, 74–76, 74i–76i
graphical displacement problems,

76–79, 76i–79i
in-line slider-crank, 81, 81i
limiting positions, 91–93, 92i
offset slider crank, 84, 84i
purpose of, 72i, 72

Position vector, 73i, 72
Pound, 328
Pressure angle

description of, 241, 241i
gear terminology, 262, 262i
spur gear selection, 274–279, 276i, 278i

Primary centers
locating problems, 145–149, 145i–149i, 146t,

148t
rules of, 203i, 143–144, 143i–144i

Primary joints, 3, 3i
Prime circle, 237, 237i
Prismatic joint, 3, 3i
Pulleys, 301i, 301, 301t
Pythagorean theorem, 45

Q
Quick-return mechanisms, 23, 23i

R
Rack, 259, 259i, 279
Rack and pinion kinematics, 279–280, 280i, 294
Radian, description of, 125–126
Rectilinear points

linear acceleration, 170–171
linear velocity, 123–124, 124i,

Rectilinear translation, 130–132, 130i–131i
Relative acceleration

components, 179–181, 180i, 197–201,
197i–200i

description of, 177–179, 178i, 179t
summary problems, 207i, 207–208

Relative acceleration analysis
analytical method, 188i, 188–190, 190t
analytical summary problems, 208i–209i,

209–210
graphical method, 181–187, 182i–183i,

185i–186i
graphical summary problems, 208–209,

208i–209i
Relative displacement, 317
Relative motion

definition of, 177
description of, 128, 177

Relative velocity, 128–129, 128i, 129i
Relative velocity method

analytical method, 137–141, 138i, 140i
analytical method summary problems,

162i–164i, 164–165
graphical analysis, 130–137, 130i–131i,

133i–136i
graphical analysis summary problems,

162–164, 162i–164i
velocity analysis, 123, 137–141, 138i, 140i
velocity image, 137, 137i

Resultant
definition of, 49
graphical addition problems, 49, 49i, 50
graphical subtraction problem, 56–57, 57i

Resultant components, 53–55, 54i
Resultant force, summary problems, 341, 341i
Resultant magnitude

triangle addition problem, 51
triangle subtraction problem, 58, 58i

Reversible gearset, 285
Revolute joint, 3, 3i
Richardson method (numerical differentiation)

acceleration curves, 204
velocity curves, 159

Right triangle, 44–46, 44i–46i
Ring gear, 288, 289i
Rocker, 3i, 4
Rocker arm link, 4
Roller chain, 306, 306i
Roller follower, 224i, 225
Rotation

instantaneous center of, 142, 142i
kinematic analysis, 2
relative velocity method, 130–132, 130i–131i

S
Scalar quantities, 43
Scotch Yoke mechanism, 23, 23i
Screw actuators, 13
Screw forces/torques, 320–322, 320i–321i, 326
Screw joints, 15, 15i
Screw kinematics, 316–320, 318i–320i
Screw mechanisms, 314
Screw thread, 315, 314i–315i, 323–324
Screw-driven acceleration, 326, 324i–325i
Screw-driven displacement, 324–325, 324i–325i
Screw-driven velocity, 325–326, 324i–325i
Self-locking, 316
Serpentine drives, 303, 303i
Servomotors, 12
Shaft angle, 283, 283i
Sheaves, 301i, 301, 301t
Simple link, 3, 3i, 5t
Simulation

four-bar mechanism, 32–37, 33i–37i
slider-crank mechanism tutorial, 37–41,

38i–40i
Sine, 44, 46
Sketching, practice problems, 25–28, 25i–28i
Slave links, 75–76, 75i–76i
Slider-crank

transmission angle, 93–94, 94i
Slider joint, symbol, 6t
Slider-crank mechanisms

algebraic solutions, 142, 190–191
description of, 22
limiting positions, 88i
machine design, 113–115, 114i–115i
summary problems, 120
Working Model tutorial, 37–41, 38i–40i

Sliding friction force, 339t, 339i–340i, 339–341
Sliding joint, 3, 3i
Sliding link, 38, 38i–39i
Slot joints, 38, 39i
Slug, derivation of, 344
Software. See Computers methods/programs
Solenoids, actuator type, 4
Speed, 2
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Spherical-faced follower, description of,
224i, 225

Spreadsheets
acceleration curves, 205i
cycle position analysis, 97, 98i
cycloidal motion, 235i
displacement curve, 155, 156i
displacement diagram, 100i
general description, 215–220, 215i–220i
in-line roller follower design, 247i
knife-edge follower design, 244i
mechanism analysis technique, 24
summary problems, 222
velocity analysis, 160i

Sprocket, 307, 307i, 308t
Spur gear geometry, summary problems, 293
Spur gear kinematics

gear function, 271–273, 271i–272i
summary problems, 293

Spur gear selection
diametral pitch, 273–279, 273t, 276i, 278i
pressure angle, 274–279, 276i, 278i
set center distance summary problems, 294
teeth number, 274–279, 276i, 278i

Spur gears
gear type, 259, 259i
terminology, 260i, 260–262, 261t

Square thread, 314–315, 315i
Static equilibrium

conditions of, 333
definition of, 328

Static machine forces, summary problems,
341–343, 341i–343i

Straight-line mechanisms, 22
Peaucellier-Lipkin linkage, 22i
Watt linkage, 22i

Stroke, 88i, 88
Stub teeth, 269
Sun gear, 288, 289i
Superposition method, 289
Swing arm followers, 224, 224i
Synthesis, 109

T
Tangent, right triangle, 44
Tangential acceleration

acceleration analysis, 174–175
description of, 173, 173i, 175–177, 176i
summary problems, 206–207, 207i

Tangential velocity, 126
Teeth. See also Involute tooth profile

chain drive, 308, 308i
gear terminology, 260–262
spur gear selection, 273–279, 274t–275t,

276i, 278i
worm gears, 284, 285i

Thread features, 314, 314i
Thread forms, 314–315, 315i, 316t–317t
Thread number, 315–316, 317i
Three-point synthesis, machine design, 119,

119i, 121
Throw angle, 115
Time ratio, 109–110, 120
Timing belt, 301, 301i
Timing charts

problems, 112–113
uses of, 110–111, 111i

Tip-to-tail method, 48



Torque
definition of, 328, 329i
screw mechanisms, 320–322, 320i–321i

Total acceleration, 175–177, 176i
Trace, 101
Trace point, 237, 237i
Translating followers, 224, 224i
Transmission angle

definition, 93
mechanical advantage, 93

Transverse section, 281, 281i
Triangles

summary problems, 67–69, 67i–68i
trigonometric relationships, 44, 44i
types of, 44, 46
vector addition, 50–51, 51i
vector subtraction, 57–60, 58i–60i, 59t

Trigonometry, 44
Triple rocker, 19t, 20, 20i
Truss, 8, 8i
Two-armed synchro loader, 4, 5t
Two-force member, 333–338, 334i–337i
Two-point synthesis

coupler of four-bar mechanism, 119i, 118–119
design class, 118
pivot link, 118–119, 118i–119i
single pivot summary problems, 120–121
two pivots summary problems, 121

U
Undercutting, 269–270, 270i
Unified thread, 314–315, 315i, 316t
United States Customary System

force unit, 328
mass/weight, 344
moment unit, 328–329
threads per inch, 314

V
V-belt, belt type, 300–302, 301i–302i
Vector analysis

analytical magnitude determination, 66–67,
66i,
66t, 71, 71i

component addition, 53–55, 54i, 54t
component subtraction, 59–60, 59i–60i, 59t
graphical addition, 48–50, 49i–50i
graphical magnitude determination, 63–65,

63i–65i
graphical subtraction, 55–57, 55i–57i
triangle addition, 50–51, 51i, 53–55,

54i, 54t, 69i, 69
triangle subtraction, 58i, 57–58

Vector components, 52i, 52
Vector diagram

graphical addition problems, 49–50,
49i–50i

graphical subtraction problems, 55–56, 56i
magnitude determination, 65, 63i–65i
triangle addition problem, 51
triangle subtraction problem, 58–59, 58i

Vector equations, 60, 60i
analytical magnitude determination,

66–67, 71
application of, 62
formation of, 60–62, 61i–62i
graphical magnitude determination,

63–65, 70–71
subtraction, 59

Vector magnitude
analytical determination, 66–67, 66i, 66t,

71, 71i
graphical determination, 63–65, 63i–65i,

70–71, 70i–71i
Vector problems

analytical addition, 51–55, 51i–52i,
54i, 54t, 69i, 69

analytical magnitude determination, 66–67,
66i, 66t, 70–71, 70i–71i

analytical subtraction, 57–60, 58i–60i, 59t,
69i, 70

equations, 61–62, 70, 70i
graphical addition, 49–50, 49i–50i, 69i, 69
graphical magnitude determination, 63–65,

63i–64i, 70i–71i, 70–71
graphical subtraction, 55–57, 55i–57i, 69i, 69
triangle addition, 51i, 51, 53
triangle subtraction, 59–60, 59i–60i, 59t

Vectors
addition methods, 43, 48–55, 48i–52i, 54i, 54t
mechanism characteristics, 43
oblique/general triangles, 46–48
right triangle, 44–46, 44i
subtraction methods, 55–60, 55i–60i, 59t
triangle types, 44–48, 44i–48i, 47i–48i

Velocity
kinematic analysis, 2
point of interest, 4
summary general problems, 161, 161i
summary relative problems, 162, 162i
vector property, 43
Working Model, 162i–164i, 168

Velocity analysis
algebraic solutions, 142
analytical methods, 137–141, 138i, 140i
description of, 123
graphical methods, 130–137,

130i–131i, 133i–136i
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graphical methods summary problems,
162–164, 162i–164i

instant center analytical method,
123, 152, 153i

instant center graphical analysis, 123,
149–152, 150i, 152i

Velocity curves
analytical summary problems, 162i–164i,

167–168
description of, 155–157, 156i
graphical differentiation, 157–158, 157i–158i
graphical summary problems, 162i–164i, 167
numerical differentiation, 159–161, 160i

Velocity image, 137, 137i
Velocity profile

acceleration, 171–172, 172i
linear motion, 125i, 124–125

Velocity ratio
belt drive kinematics, 303
chain drive kinematics, 309
spur gear kinematics, 271–273, 271i–272i

Volume, 323
Volumetric acceleration, 323
Volumetric flow, 323

W
Weight, 344
Whole depth, 260
Windshield wiper system, design concept, 1, 1i
Wipe pattern, components, 1
Working Model software

acceleration, 208i–209i, 213
computer simulation software, 31
displacement problems, 101i–105i,

107–108
four-bar mechanism tutorial, 32–37,

33i–37i
practice problems, 41–42, 41i–42i
purchase information, 32
slider-crank mechanism, 37–41, 38i–40i
velocity problems, 162i–164i, 168

Worm, 284
Worm gear kinematics, 284–286, 285i
Worm gears, 259i, 260, 295
Worm pitch diameter, 284, 285i
Worm wheel, 284

X
X–axis

angle addition, 53
angle subtraction, 59t
component determination, 66, 66t
rotational equation, 155 
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